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Abstract 8 

Ozone depletion events (ODEs) occur every spring in the Arctic and have implications for the atmospheric 9 

oxidizing capacity, radiative balance, and mercury oxidation. Here we comprehensively analyze ozone, 10 

ODEs, and their connection to meteorological/ and air mass history variables through statistical analyses, 11 

back-trajectories, and machine learning (ML) from observations at Villum Research Station, Station Nord, 12 

Greenland from 1996 to 2019.  13 

We show that the ODE frequency and duration peak in May followed by April and March, which is likely 14 

related to air masses spending more time over sea ice and increases in radiation from March to May. Back-15 

trajectories indicate that, as spring progresses, ODE air masses spend more time within the mixed layer and 16 

the geographic origins move closer to Villum. Positive trends in ODE frequency and duration are increasing 17 

observed during May (low confidence) and April (high confidence), respectively. Our analysis revealed 18 

that ODEs are favorable under sunny, calm conditions with air masses arriving from northerly wind 19 

directions with sea ice contact.  20 

The ML model was able to reproduce the ODE occurrence and illuminated that radiation, time over sea ice, 21 

and temperature were the most important variables for modeling ODEs during March, April, and May, 22 

respectively. Several variables displayed threshold ranges for contributing to the positive prediction of 23 

ODEs vs Non-ODEs, notably temperature, radiation, wind direction, time spent over sea ice, and snow on 24 

land. Our ML methodology provides a framework for investigating and comparing the environmental 25 

drivers of ODEs between different Arctic sites and can be applied to other atmospheric phenomena (e.g., 26 

atmospheric mercury depletion events).  27 
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1. Introduction 30 

Globally, ozone is an important constituent of the stratosphere but it also plays a central role in the 31 

tropospheric chemistry. Due to ozone's radiative properties, such as absorption in both the ultraviolet (UV) 32 

and infrared (IR) regions, it serves as an important short-lived climate forcer (SLCF). The absorption of 33 

UV light by ozone also leads to the formation of an O1D atom, which reacts with water vapor to form 34 

hydroxyl (OH) radicals, the most crucial oxidant in the troposphere. Tropospheric ozone sources include in 35 

situ photochemical formation from the catalytic reactions involving nitrogen oxides (NOx)  and volatile 36 

organic compounds (VOCs), which are initiated by OH but dependent on the ratio between NOx and VOCs 37 

(Seinfeld and Pandis, 2016). Stratosphere-troposphere exchange (STE) represents another significant ozone 38 

source (Monks et al., 2015). Sinks of ozone include dry deposition and reactions with NOx, hydrocarbons, 39 

and halogens as well as photolysis driven loss. 40 

During winter and spring in the Arctic, long- range transport from the mid-latitudes and STE are 41 

the major sources of ozone (Helmig et al., 2007a; Hirdman et al., 2010; Stohl, 2006). In the summertime 42 

Arctic, low absolute humidity suppresses the formation of OH radicals and coupled with low primary 43 

emissions of precursor species (VOCs and NOx), in situ formation of ozone is limited (Ianniello et al., 2021; 44 

Morin et al., 2008; Pernov et al., 2021). Dry deposition, photolysis, and reactions with halogens are the 45 

dominant sinks while wet deposition is of less importance in the Arctic because of the low humidity and 46 

the limited removal efficiency of ozone by precipitating snow/ice (Barten et al., 2021).  47 

A phenomenon of the springtime Arctic, known as ozone depletion episodes (ODEs), involves the 48 

rapid depletion of ozone due to catalytic reaction with halogen species (X or Y, representing Br, Cl, or I) 49 

(Barrie et al., 1988; Simpson et al., 2007b, 2015; Skov et al., 2004). As shown in reactions (R) 1-6: 50 

 51 

X2 + hν → 2X            R1 52 

O3 + X → XO + O2         R2 53 

XO + YO → XY + O2         R3 54 

 55 

While ozone is catalytically destroyed by reactions R1 to R3, the number of available halogen 56 

atoms is not increased. Multiphase reactions like the halogen explosion sequence (R1, R2, R4, R5, and R6) 57 

accelerate halogen production, leading to high concentrations of ultra-reactive halogen species and causing 58 

observed ODEs. These reactions require the presence of a frozen, heterogenous surface aided by high 59 

acidity (Sander et al., 2006; Simpson et al., 2007b, 2015). 60 

XO + HO2 → HOX + O2       R4 61 

HOX(g) → HOX(aq)        R5 62 

HOX(aq) + Y- + H+  → H2O + XY      R6 63 
 64 

Moreover, ODEs occur simultaneously with atmospheric mercury depletion episodes (AMDEs) 65 

(Schroeder et al., 1998), and the relative rate principle suggests that ODEs and AMDEs can be explained 66 

by competing reactions of ozone and elemental mercury with Br atoms (Skov et al., 2004, 2020), which has 67 

recently been demonstrated by direct measurements (Wang et al., 2019). The relative importance of ozone 68 

removal by reactions with respectively Br and I atoms in spring is unclear (AMAP, 2015; Benavent et al., 69 

2022; Wang et al., 2019; Whaley et al., 2023). Recently, it was found that Br is the dominant oxidant during 70 
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spring, whereas I chemistry was active during the entire sunlight period (March to October) (Benavent et 71 

al., 2022).  72 

The sources for atmospheric halogens include sea spray aerosols, brine migration through sea ice 73 

and the snowpack, blowing snow, and frost flowers (Simpson et al., 2007b, 2015) and the relative 74 

importance of the halogen sources depends on the location and time. Sea-ice surfaces, aerosol, and frost 75 

flowers have gained significant interest as halogen sources in earlier investigations. Later studies indicate 76 

that frost flowers are of minor importance (Abbatt et al., 2012; Simpson et al., 2007a). Frießess et al. 77 

showed, using trajectory analysis, that areas of first-year sea ice are correlated with high BrO levels (Frieß 78 

et al., 2004), in agreement with later satellite observations for the Arctic (Bougoudis et al., 2020). First-79 

year sea ice is saltier than multi-year ice and therefore expected to be a greater source of halogens to the 80 

atmosphere, however, studies have shown that both first- and multi-year ice are sources of halogens and 81 

ODEs (Bognar et al., 2020; Peterson et al., 2019). Recycling of halogens on frozen heterogenous surfaces 82 

such as sea salt aerosols and snowpack are also important sources of halogens in polar regions (Custard et 83 

al., 2017; Frieß et al., 2023; Peterson et al., 2017, 2018; Pratt et al., 2013; Raso et al., 2017).  84 

Meteorologically, ODEs have been usually associated with sunny conditions and cold temperatures 85 

(Simpson et al., 2015). High and low wind speeds have also been connected to ODEs, where high wind 86 

speeds generate blowing snow (which are a source of halogens) (Blechschmidt et al., 2016; Bougoudis et 87 

al., 2020; Choi et al., 2012; Frieß et al., 2011; Seo et al., 2020; Zhao et al., 2016) and low wind speeds are 88 

associated with a stably stratified  boundary layer, which confine reactants and oxidants in the lower most 89 

atmosphere (Jones et al., 2009). High wind speeds can induce vertical mixing thus bring ozone rich air 90 

masses to the surface and terminating ODEs and AMDEs (Moore et al., 2014). Halogen explosion events 91 

and ODEs have also shown to be temperature dependent (Koo et al., 2012; Tarasick and Bottenheim, 2002). 92 

This is likely connected to the need for an acidic, frozen heterogeneous surface (sea ice, snowpack, blowing 93 

snow, and aerosols) required for halogen propagation (Burd et al., 2017; Jeong et al., 2022), although other 94 

studies have not found such evidence (Halfacre et al., 2014; Jacobi et al., 2010).  95 

Despite numerous studies and significant progress in understanding Arctic tropospheric ozone, the 96 

dynamics of O3 are still not yet fully understood (Simpson et al., 2015; Whaley et al., 2023) and significant 97 

questions remain, including: What is the contribution of different halogen sources to ODEs such as sea ice 98 

surfaces (multi- vs first-year ice), snowpack emissions, or recycling on aerosol particles? What are the 99 

conducive meteorological conditions for ODEs? What is the contribution of halogen activation of aloft vs 100 

in the boundary layer? What is the relative importance of Br and I atoms to ODEs during spring? 101 

The lack of full understanding of halogen dynamics and the connection to ODEs makes it very 102 

important to address the external variables that influence and determine the observed ozone concentrations 103 

especially during ODEs. In the present paper, the connection to meteorological and air mass history 104 

variables is studied to cast light on the variables that control ODEs. This is achieved through statistical 105 

analyses, back-trajectories, and machine learning (ML) applied to ODEs observed at Villum Research 106 

Station, Station Nord in Northeast Greenland from 1996 to 2019.  107 

2. Methods & Materials 108 

2.1. Site description 109 

Villum Research Station (Villum) is located on a small peninsula in North East Greenland (Fig. 1). The 110 

station is located at the Danish military outpost Station Nord (81° 36’ N, 16° 40’ W, 24 m a.s.l.). Ozone 111 

measurements were conducted at Flyger’s Hut from 1995 to 2014 and at the Air Observatory from 2014 to 112 

present. They are located a few hundred meters apart and 2 km south of the central complex of Station Nord 113 
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and upwind of the station the majority of the time (> 95 %). No significant differences in ozone levels were 114 

observed when moving measurement locations.  115 

 116 

 117 

Figure 1. Location of Villum Research Station (Villum).  Mean sea-ice age for March, April, and May 118 

2007-2019, were taken from the National Sea & Ice Data Center (Tschudi et al., 2019) 119 

(https://nsidc.org/data/nsidc-0611/versions/4).  Map background made with data from Cross-Blend-Hypso 120 

(naturalearthdata.com). The mean sea-ice age for individual spring months closely resembled the spring 121 

mean, therefore the spring mean is displayed for clarity.  122 

2.2. Atmospheric measurements 123 

Sample air was drawn into a 20 cm inner diameter (i.d.) electro-polished stainless-steel sampling line with 124 

a protective inlet cap connected to a blower, where the ozone monitors sampled 0.8 L min-1 air. The setup 125 

is constructed to avoid ice formation in the sample tube. Ozone is measured based on its absorption of UV 126 

light at 254 nm. The original data was averaged to half hourly mean values and later reported to EBAS 127 

(https://ebas.nilu.no/). Here we use 1-hour mean mixing ratios averaged from the native time resolution (15 128 

min). The stability of the instruments is ensured by the addition of known concentrations of ozone from an 129 

internal ozone generator traceable to a primary standard, in this way, although different instruments have 130 

been employed, all use the same measurement and calibration methods, thus the measurements uncertainties 131 

are estimated to remain unchanged. The Department of Environmental Science at Aarhus University is 132 

accredited (EN 17025) to measure ozone but at Villum it is not possible to maintain the accreditation as the 133 

visits to the station are not possible frequently enough. However, the instruments are operated as close as 134 

possible to the accreditation procedures. To compensate for the deviations, two monitors are operated in 135 

parallel. The uncertainty at a 95% confidence level (CL) is <7% for mixing ratios above 20 ppbv and 1.4 136 

ppbv for mixing ratios below 20 ppbv (Skov et al., 2004, 2020).    137 

https://nsidc.org/data/nsidc-0611/versions/4
https://ebas.nilu.no/
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To quantify the frequency and the duration of ODEs, the parameter ‘ozone depletion hour’ was 138 

defined as an hour during which the average ozone mixing ratio was below 10 ppbv, following the definition 139 

used by other studies (Halfacre et al., 2014; Koo et al., 2012; Tarasick and Bottenheim, 2002; Yang et al., 140 

2020). In total, 6605 ODE hours were detected. To account for ozone mixing ratios exceeding 10 ppbv 141 

during a single hour which was part of a larger depletion event, hours that were below 15 ppbv and the 142 

previous and next subsequent hours were below 10 ppbv were also classified as ODEs. This resulted in 57 143 

additional hours being classified as ODEs, which brings the total number of ODEs to 6662, although this 144 

addition criteria did not affect the results of this study.  145 

2.3. Meteorological variables 146 

Meteorological data were collected at or near the ozone measurement sites. From 1996 to 2014 147 

measurements of temperature, relative humidity, wind speed, and wind direction were obtained through the 148 

Danish Meteorological Institute’s weather station located within Station Nord (Jensen, 2022). From 2014 149 

to 2020, measurements of temperature, relative humidity (RH), wind speed, wind direction, and solar 150 

radiation were obtained from an automatic weather station located ~44 m from the Air Observatory.  151 

Observations of solar radiation only started in 2014 and input data for ML models require no 152 

missing data. To overcome this absence of measurements before 2014 and extend the input dataset for the 153 

ML model to 2007, we supplemented observations with ERA5 reanalysis data (Hersbach et al., 2020). 154 

ERA5 output of “shortwave solar radiation downwards” was used, which is the amount of shortwave 155 

downwelling solar radiation (including both direct and diffuse radiation) that reaches the Earth’s surface 156 

on a horizontal plane., this includes both direct and diffuse radiation. This is the ERA5 equivalent of the 157 

output of a pyranometer with a radiation spectrum of 0.2–4 µm (Hogan, 2015). ERA5 originally provided 158 

data as an accumulated value in J m−2 but was converted to W m−2 by dividing the original values by one 159 

hour in seconds (3600). Data are on a 0.25° x 0.25° spatial resolution and an hourly temporal resolution. 160 

These data were only used to substitute missing data after 2014 and as a replacement for the absence of 161 

measurements before 2014 and were not included in the evaluation of the statistical analysis of ODEs and 162 

meteorological variables. This approach was only implemented for the machine learning model and not for 163 

the statistical analysis of meteorological variables. A comparison of solar radiation measured at Villum and 164 

ERA5 data after 2014 is shown in Fig. S8. Overall, ERA5 agrees quite well with observations, with a 165 

Spearman rank correlation coefficient of 0.974, although ERA5 slightly underestimates with a slope of 166 

0.881 (Fig. S8), which is common for ERA5 in the Arctic (Pernov et al., 2024). ERA5 data were corrected 167 

using the slope of the observation-model comparison to avoid changepoints in the time series, which could 168 

affect the results of the machine learning model.   169 

2.4. Back trajectory analysis 170 

Air mass back trajectories were calculated via the HYSPLIT trajectory model (Draxler and Hess, 1998; 171 

Rolph et al., 2017; Stein et al., 2015). Trajectories of 168-hour length were calculated, arriving at 50 m 172 

above ground level, for every hour from 2007 to 2019. The trajectory starting height of 50 m was selected 173 

as a compromise between capturing air masses that are representative of our sampling site due to very low 174 

boundary layers in the Arctic (Gryning et al., 2023) and avoiding trajectories intercepting the surface, which 175 

can produce unrepresentative trajectories (Stohl, 1998). The trajectory length was chosen to avoid the 176 

uncertainty associated with extremely long trajectory calculations, while capturing the entire geographic 177 
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extent of ODE air masses. This trajectory length of one week roughly corresponds to the longest observed 178 

ODE at Villum during the study period (~6.5 days, Sect. 3.1) and is shorter than the longest observed ODE 179 

at a land-based station (9 days at Alert by Strong et al. (2002)). Previous studies have shown that ODE air 180 

masses can extent over great distances in the Arctic (Halfacre et al., 2014; Peterson et al., 2017), therefore 181 

we selected a trajectory length of one week to fully investigate the air mass history of ODEs. Other studies 182 

have used shorter (Bognar et al., 2020; Frieß et al., 2023) or longer (Bottenheim and Chan, 2006; Begoin 183 

et al., 2010; Simpson et al., 2018) trajectory lengths than one week. Trajectories were calculated based on 184 

meteorological files from the NCEP/NCAR Reanalysis Data, which has a resolution of 2.5° 185 

latitude/longitude (Kalnay et al., 1996). The mixed layer height for each step of each trajectory was output 186 

by the HYSPLIT model. Only trajectories corresponding temporally to available ozone measurements were 187 

used in this study. To analyze the geographic origins of ODEs, a concentric grid centered around the 188 

location of Villum, consisting of 2° × 4° (latitude x longitude) grid cells, was constructed. The normalized 189 

trajectory frequency for each grid cell was calculated by counting the number of trajectory steps that were 190 

below the mixed layer height and intersecting each grid cell. This was normalized by the total number of 191 

trajectory steps that were below the mixed layer over all grid cells and multiplied by 100%. This 192 

methodology has been utilized by previous studies to systematically analyze the geographic origns of air 193 

masses (Dall’Osto et al., 2017, 2018; Frieß et al., 2023; Heslin-Rees et al., 2020; Pernov et al., 2022).  194 

For each trajectory, a surface-type footprint analysis was performed. The underlying surface types 195 

used for the surface footprint type analysis were produced by the National Oceanic and Atmospheric 196 

Association/National Environmental Satellite, Data, and Information Service (NOAA/NESDIS) Interactive 197 

Multisensor Snow and Ice Mapping System (IMS) developed under the direction of the Interactive 198 

Processing Branch (IPB) of the Satellite Services Division (SSD). The altitude at each step along the 199 

trajectory was compared to the height of the mixed layer. That Ssteps wasere classified as being above the 200 

mixed layer (AML) if the trajectory altitude was above this height. If the trajectory altitude was below this 201 

height, then the underlying surface type (land without snow, sea, sea ice, or snow on land) was recorded 202 

using a polar stereographic map of the Northern Hemisphere classified into 1024×1024 24 km grid cells. 203 

The snow and ice coverage values used for the surface footprint type analysis were produced by the National 204 

Oceanic and Atmospheric Association/National Environmental Satellite, Data, and Information Service 205 

(NOAA/NESDIS) Interactive Multisensor Snow and Ice Mapping System (IMS) developed under the 206 

direction of the Interactive Processing Branch (IPB) of the Satellite Services Division (SSD). It is important 207 

to note that grid cells classified as sea ice likely contain snow on the surface, although the satellite products 208 

used in this study does not differentiate between bare sea ice and snow-covered sea ice, likely due to the 209 

similar spectral signatures between sea ice and snow (U. S. National Ice Center, 2008). We opted to keep 210 

the original labels from the satellite product for this analysis, as we cannot make any definitive statements 211 

about the presence of snow on top of sea ice. The reader should keep this in mind when interpreting the 212 

results. The time spent over different surfaces is expressed as a percentage of the total trajectory length.  213 

2.5. Trend analysis 214 

A trend analysis of trends in ODE frequency, duration, and start/end/range of ODE days for March, April, 215 

and May was performed. The Mann-Kendall test was used to determine the presence of a statistically 216 

significant (SS) trend (Kendall, 1948; Mann, 1945) and the Theil-Sen slope estimator was used to calculate 217 

the magnitude of the trend slope (Sen, 1968; Theil, 1950) via the 3PW algorithm from Collaud Coen et al. 218 

(2020). The 3PW algorithm tests for autocorrelation present in the time series, as this can affect the results 219 
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of the Mann-Kendall test, however, no SS autocorrelation was detected therefore these data were not 220 

prewhitened.  221 

2.6. Machine learning modeling 222 

In this study, we utilize a supervised, binary classification form of machine learning (ML) to investigate 223 

the dynamics of ODEs. The target variable used was the binary label of ODE or Non-ODE, defined as 224 

ozone mixing ratios above or below 10 pbbv, respectively. The explanatory variables used in the ML model 225 

were the meteorological and air mass history variables (RH, wind direction, wind speed, temperature, 226 

radiation,  pressure, time air masses spent over snow on land, time air masses spent over sea ice, and time 227 

air masses spent above the mixed layer). The missing data imputation, the machine learning model, 228 

hyperparameter tuning, the ML explainability approach employed, and model evaluation metrics is 229 

described in the SI Text 1. Below we describe the missing data imputation, the machine learning model, 230 

hyperparameter tuning, the ML explainability approach employed, and model evaluation metrics.  231 

Before input into the ML model, missing data were imputed since ML models require no missing 232 

data in the input files. We imputed missing data using the median value for the hour of the day for that day 233 

of the year. For instance, if a value is missing for hour 12 on the 90th day of the year then this value was 234 

imputed using the median of all values from hour 12 on the 90th day of the year from the entire dataset. This 235 

imputation approach allows us to account for changes occurring from early to late spring as well as diurnal 236 

changes, which would otherwise be overlooked if only using a single median for the spring months. This is 237 

especially important for variables that drastically change over this short period (e.g., temperature, RH, solar 238 

radiation). Table S1 lists the percentage of missing data before imputation for each variable. Wind speed 239 

and direction exhibited the highest percentage of missing data, with both missing ~21 %, therefore data 240 

imputation shouldn’t adversely affect the results of the ML model. No feature engineering (standardization 241 

or normalization) was applied prior to modeling since the initial evaluation metrics were deemed 242 

sufficiently accurate. No temporal information (Julian day, day of year, hour of day) was included in the 243 

input variables. 244 

The XGBoost model was selected as the model used in this study due to its accuracy, computational 245 

efficiency, and ability to handle collinearity amongst the input variables, which is important for 246 

meteorological variables. XGBoost is an ensemble machine learning algorithm using the gradient-boosting 247 

methodology on individual decision trees (which are weak learners) and then builds multiple decision trees 248 

that are sequentially added (Chen and Guestrin, 2016). This allows for the previous tree’s errors to be 249 

learned by the next tree, therefore reducing the loss function while obtaining the best prediction. A 250 

regularized model formalization is used in the XGBoost model to improve computational efficiency and 251 

prevent over-fitting. The xgboost package (v1.6.2) was used and all ML modeling was implemented in a 252 

Python environment (v3.10.2).   253 

Hyperparameter tuning is an essential part of ML which ensures optimal model performance. We 254 

utilized a Bayesian approach for exploring the optimum hyperparameter configuration, implemented 255 

though the Optuna (Akiba et al., 2019) library (v3.0.3). The hyperparameters included, the range of values 256 

explored, and the optimum values are listed in Supplementary Table 2. This study employed a stratified 257 

70/30 train/test split ratio, meaning the test set contained the same proportion of positive labels (i.e., ODEs) 258 

as the entire dataset. The purpose of the training set is for the model to learn how to model the data and the 259 

test set is used to evaluate the model’s performance on unseen data. The objective of the hyperparameter 260 
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tuning procedure is to maximize the mean recall score using 10-fold cross-validation. Cross validation 261 

involves splitting the training data in 10 equally sized folds (or groups), training the model using nine folds 262 

and testing the model using the remaining fold. This was repeated 10 times to use each fold as a test set 263 

once. The final evaluation metrics were averaged using the arithmetic mean to select the optimal 264 

hyperparameters and make an overall evaluation of the model performance. Tuning was performed for 1000 265 

trials and the best hyperparameters were selected. Hyperparameter values were sampled using the Tree-266 

structured Parzen Estimator (TPE) algorithm (Bergstra et al., 2011) and trials were pruned using the 267 

Hyperband pruner (Li et al., 2018). The final set of hyperparameters was selected based on the compromise 268 

between overall performance (high recall scores) and agreement between the training and test set evaluation 269 

metrics using 10-fold cross-validation (prevention of over-fitting).  270 

We employed SHapley Additive exPlanations (SHAP) values (Lundberg and Lee, 2017) which are 271 

based on Shapely values (Shapley, 1953), to assess the effect of the input variables on the model output. 272 

The SHAP approach is a model-agnostic methodology designed to assess input variable importance based 273 

on coalitional game theory (Molnar, 2022), where input variables are treated as “players” in a “game” 274 

(model framework) and SHAP aims to assess the players’ contribution to the “payout” (model output). For 275 

each observation, the SHAP value represents an input variable’s marginal contribution over the mean model 276 

output when considering all possible combinations of the input variables. SHAP values can be positive or 277 

negative, with positive values indicating a variable is more likely to contribute to an observation being 278 

predicted as an ODE while negative values mean a variable is more likely to contribute to an observation 279 

being labeled as a Non-ODE. It is important to note that SHAP values do not represent how well the input 280 

variables explain the behavior of our target variable in the natural environment but how well these variables 281 

explain the behavior of our target variable in our model, therefore SHAP values represent purely statistical 282 

relationships. SHAP can produce both local and global explanations contrary to other commonly used input 283 

variable importance methods (e.g., split count, gain,  permutation importance) that only produce an estimate 284 

of global importance (Lundberg et al., 2019). The global importance for each feature is calculated as the 285 

mean of the absolute SHAP values for said input variable which gives an overview of the most important 286 

variables, however, this does not account for the relationship between the SHAP and input value (positive 287 

or negative relationship, linear or non-linear). Therefore, we assessed the relationship between the SHAP 288 

and ambient values by discretizing the ambient values into fifteen equally spaced bins and calculated the 289 

median and 25th/75th percentiles for each bin. These two approaches allow for the evaluation of the overall 290 

global importance as well as the relationship between ambient and SHAP values for each input variable. 291 

The SHAP approach was applied via the shap package (v0.41.0). 292 

The ML model was evaluated using common metrics for a classification model, namely accuracy, 293 

recall, and Area Under Curve Receiver Operating Characteristics (AUC ROC). The accuracy is the fraction 294 

of correctly labeled data, both positive (ODEs) and negative (Non-ODEs), compared to the total number of 295 

data points (sum of ODEs and Non-ODEs) and ranges from 0 to 1. In other words, accuracy is the fraction 296 

of correctly predicted observations regardless of label (ODE vs Non-ODE). The recall (also defined as the 297 

true positive rate or sensitivity) is the fraction of correctly identified positive labels (ODEs identified by the 298 

ML model) compared to the total number of positive labels (total number of ODEs) and ranges from 0 to 299 

1. In other words, recall is the fraction of ODEs correctly predicted. The ROC curve displays the 300 

performance of a classification model across different decision thresholds and is represented by a plot of 301 

the true positive rate versus the false positive rate. The AUC ROC is the area underneath the ROC curve 302 

and evaluates how well a model can discriminate between positive and negative labels across all decision 303 
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thresholds (0.5 is the default threshold used in this study). The AUC ROC ranges from 0 to 1, with 0.5 304 

representing random chance and 1 representing a perfect model. The accuracy gives an overview of the 305 

model performance for both labels (ODEs vs Non-ODEs), recall gives the model performance only for 306 

positive labels (ODEs), and AUC ROC evaluates the model performance over different decision thresholds, 307 

together, these three metrics give a comprehensive view of the model's performance. These metrics were 308 

implemented using the scikit-learn package (v1.0.2).  309 

  310 
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3. Results 311 

3.1. Overview of ozone and ozone depletion events 312 

The seasonal cycle of ozone mixing ratios with the daily median, minimum/maximum, and interquartile 313 

range for each day of the year is shown in Fig. 2a.  During winter (December-February), ozone mixing 314 

ratios are elevated and slightly increase from January to March, displaying maximum daily median ozone 315 

values in February. During spring (March-May), ozone mixing ratios are highly variable with daily 316 

minimum values reaching 0 ppbv and maximum values observed in April. During summer (June-August), 317 

ozone mixing ratios begin to decrease in late June, remain low during July, and begin increasing in August. 318 

During autumn (September-November), ozone mixing ratios continue to increase and begin to return to 319 

wintertime values in October. A seasonal histogram of ozone mixing ratios is displayed in Fig. 2b. For 320 

winter, autumn, and summer, ozone values are normally distributed with the highest averages experienced 321 

in winter > autumn > summer. Spring experiences a non-parametric distribution and the highest and lowest 322 

observed values as explained above.  323 

 324 

Figure 2. Overview of the seasonal cycle and seasonal distribution. (a) Seasonal ozone cycle of the daily 325 

median (red line), minimum/maximum (light blue shading), and interquartile range (blue shading) and (b) 326 

histograms of ozone by season (winter in blue: December-February, spring in cyan: March-May, summer 327 

in red: June-August, and autumn in grey: September-November).  328 

An overview regarding the frequency and duration of ODEs at Villum is shown in Fig. 3a and b, 329 

respectively. ODEs were formally defined in this study as a period hourly mean observation with an ozone 330 

mixing ratio below 10 ppbv (Halfacre et al., 2014; Koo et al., 2012; Tarasick and Bottenheim, 2002; Yang 331 

et al., 2020). The frequency is calculated as the percentage of ODE hours relative to the number of available 332 

hourly observations during a month over the study period. The ODE duration is defined as the number of 333 

consecutive hours that were classified as ODEs. ODEs are most frequently observed during May, followed 334 

by April and March (Fig. 3a). The increase in the ODE frequency from March to April (10.45 %) is similar 335 

to the increase from April to May (11.26 %). The distribution (median and interquartile range) of the ODE 336 

duration for the spring months is shown in Fig. 3b. The most common length duration of ODEs is 1-2 hours, 337 

with longer ODEs more often occurring in May. The longest ODE occurred during May and lasted 155 338 

hours (~6.5 days). For comparison, the longest ODE observed at a ground-based Arctic station was at Alert, 339 

CanadaA and lasted for 9 days (Strong et al., 2002). Over the central Arctic Ocean, Bottenheim et al. (2009) 340 

observed an ODE lasting from April 21 to May 23, 2007. ODEs lasting less than 8 hours occurred ~50 % 341 
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of the time. ODEs lasting more than one (two) day(s) occurred 21 and 9 % of the time, respectively. 342 

Interestingly, the median of ODE duration between any of the spring months is not significantly different 343 

(Fig. 3b). The median ODE duration increases from March (5.5 h) to April (8 h) to May (9 h), while the 344 

interquartile range increases more drastically from March to May (Fig. 3b). The diurnal ODE frequencies 345 

for each spring month is displayed in Fig. S2, only minor variability is displayed which is most evident 346 

during April.  347 

To investigate changes in the frequency and duration of ODEs, a temporal trend analysis was 348 

performed for 1996-2019. Temporal trends of ODE frequency and duration for each month are displayed 349 

in Fig. 3c and d, respectively. The slopes of the trends are displayed as boxes (colored by p-value range) 350 

with the 95th % confidence intervals (CI) as the red error bars. For ODE frequency, no SS trends at the 95th 351 

% CL were detected, although May is SS at the 85th % CL (p = 0.14) with a slope [lower CI, upper CI])slope 352 

of 0.49 [-0.23,1.2] % yr-1. The only SS trend for ODE duration at the 95th % CL (p = 0.039) is during April, 353 

with an increasing positive trend of 0.2 [0,0.53] h yr-1 (slope [lower CI, upper CI]). Temporal trends in the 354 

start, end, and range of ODE days for each year were also examined to investigate any changes in the ‘ODE 355 

season’. The first ODE was defined as the first day of the year with an ozone measurement < 10 ppbv, the 356 

last ODE day was defined as the last day of the year with an ozone measurement < 10 ppbv, and the range 357 

of the ODE days was defined as the difference between the last ODE day of the year and the first ODE day 358 

of the year. The results are shown in Fig. S3, and no SS trends at the 95th % CL were found.  359 

 360 

Figure 3. Overview of ozone depletion events including (a) bar plots of the frequency of ODEs color-coded 361 

by month, (b) boxplots of ODE duration (the white line represents the median, the colored boxes represent 362 

the interquartile range, the medians of boxes whose notches do not overlap differ with 95% confidence), 363 

(c) trends in ODE frequency, and (d) trends in ODE duration for March, April, and May. The blue, red, and 364 

black bars in (c) and (d) represent trends that are significant on the >95th, >85th, and <85th % CLs, 365 

respectively. The red error bars represent the 95th % confidence intervals (CI) of the slope. The p-values for 366 

ODE frequency in March, April, and May are 0.54, 0.75, and 0.14, respectively. The p-values for ODE 367 

duration in March, April, and May are 0.85, 0.04, and 0.41, respectively.  368 



 

12 
 

 369 

3.2. Statistical relationships of ODEs with meteorological/air mass history variables 370 

The relationships between the ODEs, ozone mixing ratios, and meteorological/air mass history variables 371 

were investigated. This was accomplished by grouping the meteorological variables into bins and summing 372 

the number of ODE hours for each bin which were normalized by the total number of monthly hours within 373 

the same bin and the median ozone mixing ratio for each bin was calculated for each month separately. The 374 

results are shown in Figure 4, the distribution (median and interquartile range) of these variables for ODEs 375 

and Non-ODEs are displayed in Fig. 5, and wind roses for ODEs and Non-ODEs for the spring months are 376 

displayed in Fig. S5. It should be noted that this analysis simply considers the statistical relationship 377 

between a given meteorological variable and ozone/ODEs and not the causal relationship. All available 378 

data for a given meteorological parameter collocated with ozone measurements was used in this analysis. 379 

It should be kept in mind that the air mass history variable, time spent over sea ice, does not give information 380 

about the presence of snow cover and only if the underlying surface was classified as sea ice or not.  381 

For RH, during March, the lowest median ozone mixing ratio and highest normalized ODE hours 382 

are mainly confined in the 65-90 % range (midpoints 68-88 %) (Fig. 4a), while lower median ozone mixing 383 

ratios occur at higher RHs, which are infrequent. During April and May, lower median ozone mixing and 384 

higher normalized ODE hours are observed at higher RH values (75-90 %, midpoints 78-88 %) (Fig. 4a). 385 

There is little difference between the distribution for RH when comparing ODEs and Non-ODEs during 386 

March, while for April and May, consistently higher RH is observed during ODEs (Fig. 5a).  387 

For wind direction, there is a clear effect of northerly wind directions during all spring months, 388 

with the lowest median ozone mixing ratios and highest normalized ODE hours occurring in the 315°-45° 389 

sector (Fig. 4b). Wind roses for each spring month show a lack of northerly winds for Non-ODE periods 390 

and wind more frequently arriving from the north and northwest during ODE periods (Fig. S5).  391 

For wind speed, during March, there is little effect on ozone mixing ratios and the normalized ODE 392 

hours display no discernable pattern across the range of wind speeds (Fig. 4c). The distribution of wind 393 

speeds shows a higher median during ODEs compared to Non-ODEs (Fig. 5b). During April, the median 394 

ozone mixing ratios show little variation with wind speed although the normalized ODE hours show a 395 

tendency for ODEs to occur more often at higher wind speeds (midpoints 9-15 m s-1), however, these values 396 

seldomly occur (Fig. 4c). The distribution of wind speeds during ODEs in April is shifted towards higher 397 

values compared to Non-ODEs (Fig. 5b). During May, a clearer picture for the effect of wind speed is 398 

presented; median ozone mixing ratios and normalized ODEs hours show two modes, one at low wind 399 

speeds and one at high wind speeds, although it should be noted that the mode at higher wind speeds 400 

(midpoints 15-18 m s-1) seldomly occurs (Fig. 4c). Interestingly, during May, the distribution of wind 401 

speeds was lower for ODEs compared to Non-ODEs (Fig. 5b). 402 

For temperature, median ozone mixing ratios show a slight decreasing pattern for colder 403 

temperatures during March and April. The normalized ODE hours showed a slight increase with colder 404 

temperatures during March although for April values increased from freezing, peaked in the -25 to -20 °C 405 

range (midpoint -22.5 °C), and decreased thereafter (Fig. 4d). During May, median ozone shows a stark 406 

decrease with colder temperatures and the normalized ODE hours sharply increases with decreasing 407 
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temperatures. The -25 to -20 °C bin (midpoint -22.5 °C) displayed the lowest median ozone mixing ratios 408 

and the largest normalized ODE hours during May (Fig. 4d). The distribution of temperatures is similar for 409 

ODEs compared to Non-ODEs during March and April while ODEs in May experience substantially colder 410 

temperatures compared to Non-ODEs (Fig. 5c).  411 

For solar radiation, there are large differences in the magnitude between different spring months. 412 

During March, median ozone mixing ratios (normalized ODE hours) experienced a minimum (maximum) 413 

in the 100 to 150 W m-2 range (midpoint 125 W m-2). The distribution of solar radiation values is 414 

substantially higher during ODEs in March compared to Non-ODEs and the medians are significantly 415 

different on the 95th % CL (Fig. 5d). During April, median ozone mixing ratios display a decrease from the 416 

lowest bin to the 50 to 100 W m-2 bin (midpoint 75 W m-2), afterwards they plateau until the 300 to 350 W 417 

m-2 bin (midpoint 325 W m-2), and finally decrease afterward and the normalized ODE hours displayed a 418 

similar, yet opposite, pattern (Fig. 4e). During May, median ozone mixing ratios are consistently < 22 ppbv 419 

across the range of solar radiation values (Fig. 4e). The normalized ODE hours display a maximum in the 420 

0 to 50 W m-2 bin (midpoint 25 W m-2 ) although these values seldomly occur), and display similar values 421 

afterward.  422 

For pressure, during March and April, there is little variation in the median ozone mixing ratios 423 

and normalized ODE hours, however, during May, there is a clear dependency of lower (higher) median 424 

ozone mixing ratios (normalized ODE hours) with higher values of atmospheric pressure (Fig. 4f). 425 

Interestingly, the distribution of pressure during ODEs is substantially higher compared to Non-ODEs for 426 

each spring month, with median values being significantly different on the 95th % CL (Fig. 5e).  427 

For time spent over sea ice, every spring month displays a decreasing (increasing) pattern of median 428 

ozone mixing ratios (normalized ODE hours) with increasing time spent over sea ice (Fig. 4g), which 429 

supports the results shown earlier for ODEs corresponding to northerly wind directions (Figs. 4b and S5). 430 

Trajectories during all spring months consistently spent more time over sea ice during ODEs compared to 431 

Non-ODEs (Fig. 5f). 432 

For the time air masses spent over snow on land, no clear impact on median ozone mixing ratios is 433 

observed for March and April, while May displays higher ozone mixing ratios for 90-100 % of time spent 434 

over snow on land (Fig. 4h). During each spring month, the normalized ODE hours displays no discernable 435 

pattern over the range of time spent over snow on land (Fig. 4h). Interestingly, the distribution of time spent 436 

over snow on land during ODEs is consistently lower compared to Non-ODEs for each spring month and 437 

the median is significantly different at the 95th % CL (Fig. 5g).  438 

For time spent above the mixed layer (i.e., free troposphere), each spring month displays a similar 439 

pattern, with a general tendency of decreasing (increasing) ozone mixing ratios (normalized ODE hours) 440 

with less time spent above the mixed layer (Fig. 4i). The distribution of time spent above the mixed layer 441 

for ODEs is consistently lower than for Non-ODEs and the median is significantly different at the 95th % 442 

CL (Fig. 5h).  443 

 444 

 445 
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 449 

Figure 4. Median ozone and normalized ODE hours binned in predefined intervals of (a) RH, (b) wind 450 

direction, (c) wind speed, (d), temperature, (e) radiation, (f) pressure, time air masses spent over (g) sea ice, 451 

(h) snow on land, and (i) time above the mixed layer for March, April, and May. The number associated 452 

with each bar represents the number of total observations in that bin. All available data for each variable 453 

collocated with ozone measurements was used, resulting in different years used for each variable, with the 454 

minimum number of years included being 5 for radiation.  455 
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 456 

 457 

 458 

Figure 5. Distribution of meteorological and air mass history variables during the spring months for ODEs 459 

(dark colors) and Non-ODEs (light colors) including (a) RH, (b) wind speed, (c) temperature, (d) radiation, 460 

(e) pressure, (f) time over sea ice, (g) time over snow on land, and (h) time above the mixed layer. The line 461 

in the middle of the box represents the median, the boxes represent the interquartile range, and the medians 462 

of boxes whose notches do not overlap differ with 95% confidence. For a description of how the time spent 463 

over different surface types is calculated see the methods section. All available data for each variable 464 

collocated with ozone measurements was used, resulting in different years used for each variable, with the 465 

minimum number of years included being 5 for radiation. 466 
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 467 

3.3. Air mass history of ODEs 468 

To understand the air mass origin of ODEs and Non-ODEs, source regions were investigated through 469 

trajectory frequency maps (see Methods Sections for details). Figure 6 displays the trajectory frequency for 470 

only steps below the mixed layer for ODE hours (Fig. 6a-c), Non-ODE hours (Fig. 6d-f), and the difference 471 

between ODE and Non-ODE hours (Fig. 6g-i) for each spring month. Air masses arriving at Villum have 472 

been shown to predominantly reside above the mixed layer (~75 %) during March and April whilst during 473 

May this value decreases to ~50 % (Pernov et al., 2022), hence the smaller air mass footprint for March 474 

and April. During March, the main source regions for ODE air masses appear to be the Chukchi Sea while 475 

for Non-ODE air masses the main source regions are is Greenland with a minor contribution from the 476 

central Arctic Ocean and Greenland (Fig. 6a and d). The difference between these trajectory frequency 477 

maps during March reveals ODE trajectories air masses are spending relatively more time over in the 478 

Chukchi Sea and Canadian Archipelago and less time over Greenland (Fig. 6g). During April, ODE air 479 

masses are originating from the central Arctic Ocean and especially the Beaufort and Chukchi Seas while 480 

Non-ODE air masses are arriving from the central Arctic Ocean and Greenland (Fig. 6b and e). The 481 

difference between ODEs and Non-ODE air masses during April shows the ODEs are preferentially coming 482 

from the central Arctic Ocean (Beaufort and Chukchi Seas) and are spending comparatively less time over 483 

Greenland (Fig. 6h). During May, ODE trajectories air masses experience the most time over the central 484 

Arctic Ocean with a minor contribution from the west coast of Greenland which is similar to the source 485 

regions of Non-ODE trajectories air masses although with increased contribution from Greenland (Fig. 6c 486 

and f). The difference between May ODE and Non-ODE trajectory frequencies shows the central Arctic 487 

Ocean is the main source region for ODE air masses and Non-ODE air masses are related to more southerly 488 

regions origins are related to Non-ODE trajectories (Fig. 6i). 489 

 490 

 491 
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 492 

 493 

Figure 6. Trajectory frequency maps for trajectory steps below the mixed layer for (a-c) March, April, May 494 

ODEs, (d-f) March, April, May Non-ODEs, and (g-i) difference between ODE and Non-ODE trajectories 495 

frequencies during March, April, and May at Villum (indicated by the red and white circle). 496 

 497 

To investigate the geographic extent of the different surface types experienced during ODEs and 498 

Non-ODEs, the trajectory frequencies for steps below the mixed layer and over sea ice and snow on land 499 

during ODEs and Non-ODEs were also calculated, the frequencies are displayed in Figs. S6 and S7, 500 

respectively, while the difference is displayed in Fig. 7. For brevity, only the difference between ODE and 501 

Non-ODE trajectory frequencies for each spring month will be discussed. The air mass history variable, 502 

time spent over sea ice, does not give information about the presence of snow cover and only if the 503 

underlying surface was classified as sea ice or not. 504 

During March, ODE trajectory steps over snow on land preferentially arrive from the Canadian 505 

Archipelago whilst they arrive less often from Greenland compared to Non-ODEs (Fig. 7a). Trajectory 506 

steps over sea ice during ODEs in March arise from the Chukchi Sea and less often arrive from the central 507 

Arctic Ocean compared to Non-ODEs (Fig. 7d). During April, ODE trajectory steps over snow on land 508 

display a similar pattern to March (Canadian Archipelago) although now with minor contributions from 509 

other continental regions (Greenland, Alaska, and Siberia) compared to Non-ODE air masses (Fig. 7b). 510 
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Trajectory steps over sea ice during ODEs in April preferentially arrive from the Beaufort and Chukchi 511 

Seas and less often from Baffin Bay compared to Non-ODEs (Fig. 7e). During May, ODE trajectory steps 512 

over snow on land preferentially arrive from the Canadian Archipelago, similar to March and April, but 513 

now with increased contributions from Greenland compared to Non-ODEs (Fig. 7c). Trajectory steps over 514 

sea ice during May ODEs more often arrive from the central Arctic Ocean and less often from more 515 

southerly areas (Baffin Bay, Greenland Sea, and Barents Sea) compared to Non-ODEs (Fig. 7f). 516 

Interestingly, certain areas of the central Arctic Ocean experience more trajectory steps over sea ice during 517 

Non-ODEs compared to ODEs (Fig. 7f), this is likely due to the central Arctic Ocean being a common 518 

source area for air masses below the mixed layer during May (Fig. S7), however, the results point to the 519 

central Arctic Ocean overall being a major source region for ODEs during May.  520 

 521 

Figure 7. Difference between ODE and Non-ODE trajectory frequencies for (a-c) trajectory steps below 522 

the mixed layer and over snow on land during March, April, May and for (d-f) trajectory steps below the 523 

mixed layer and over sea ice during March, April, May at Villum (indicated by the red and white circle). 524 

 525 

The above analysis investigated the geographic extent and surface types experienced by ODE and 526 

Non-ODE air masses, although does not give any temporal information. To further investigate the temporal 527 

relationships between ODEs and air mass history, the relative occurrence of each surface type (sea, sea ice, 528 

or snow on land) and time spent above the mixed layer for each hourly step backward along the trajectories 529 

were calculated. Figure 8 shows the results of this analysis for ODEs on the top (a-c), Non-ODEs in the 530 

middle (d-f), and the difference between ODEs and Non-ODEs on the bottom row (g-i).  531 

For ODEs during March and April, air masses spend a similar amount of time above the mixed 532 

layer and over sea ice. However, during March, trajectories experience slightly more time spent over snow 533 

on land and the sea and during April begin their descent later along the trajectory compared to March (Fig. 534 

8a and b).  During May, ODE trajectories spend less time above the mixed layer and more time over sea 535 
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ice, sea, and snow on land compared to March and April (Fig. 8c). For Non-ODEs during March and April 536 

a similar picture is presented, air masses spent a majority of the time above the mixed layer, followed by 537 

sea ice, snow on land, and sea, with no contributions from land without snow and the occurrence of each 538 

surface type is relatively constant throughout the length of the trajectory until they begin their descent into 539 

the boundary layer (Fig. 8d and e). For Non-ODEs during May, different air mass history conditions are 540 

presented compared to March and April. Air masses no longer spend a majority of the time overall above 541 

the mixed layer (45 % on average) and start to descend later along the trajectory compared to March and 542 

April (Fig. 8f). Instead, air masses experience increased time below the mixed layer and over sea ice and 543 

snow on land with minor increases in time spent over the sea. The time air masses spend over snow on land 544 

is relatively constant throughout the trajectory length until air masses start to descend. This pattern for Non-545 

ODEs largely reflects the typical air mass history for the spring months observed at Villum (Pernov et al., 546 

2022). The difference in the occurrence of each surface type between ODEs and Non-ODEs reveals ODE 547 

air masses experience more time over sea ice and less time above the mixed layer during March and April 548 

(Fig. 8g and h). Air masses experience more time over snow on land during ODEs compared to Non-ODEs 549 

when contrasting March and April, while less time over the sea is experienced during April compared to 550 

March (Fig. 8g and h). During May, the main differences between ODEs and Non-ODEs are more time 551 

over sea ice and less time over the sea and snow on land, interestingly, there is little difference between 552 

time spent above the mixed layer except for several hours before arrival at Villum when ODEs air masses 553 

experience more time above the mixed layer (Fig. 8i).  554 

 555 

Figure 8. The occurrence of each surface type trajectories experienced in the previous 168 hours backward 556 

for (a-c) ODEs, (d-f) Non-ODEs, and (g-i) the difference between ODEs and Non-ODEs for March, April, 557 

and May. Note the differences in the y-axis scale for (g-i).  558 

 559 

3.4. Machine Learning Modelling of ODEs 560 



 

21 
 

The statistical analysis of ODEs, meteorological variables, and air mass history variables examines 561 

the relationships between ozone/ODEs and each variable individually and does not consider interactions 562 

between, nor does it give any information about which variables are most important for ODEs. To address 563 

this shortcoming and quantitatively investigate the most important variables for ODEs and how they affect 564 

ODEs, we utilized an ML model in our analysis (see Methods section for further details).  565 

The evaluation metrics of the ML for all spring months combined and individual months are 566 

displayed in Table 1. We use three common metrics for evaluating a binary classification ML model: 567 

accuracy, recall, and AUC ROC (Area Under Curve Receiver Operating Characteristics). Briefly, accuracy 568 

is the fraction of correctly predicted observations regardless of label (ODE vs Non-ODE), recall is the 569 

fraction of ODEs correctly predicted, and AUC ROC evaluates how well a model can discriminate between 570 

positive and negative labels across all decision thresholds for binary classification (see Sect. 2.6 for a 571 

detailed description of the evaluation metrics). In general, the ML model can accurately reproduce ODEs 572 

over all spring months combined as evidenced by how all three metrics are close to unity (their maximum 573 

value). However, when evaluating the results on an individual monthly basis, there is an increase in model 574 

performancethe recall metric and decrease in the accuracy and AUC ROC from March to May (Table 1), 575 

which is likely connected to the increasing occurrencefrequency of ODEs from March to May., With 576 

increased ODE occurrence, the recall metrics would increase as eventspositive labels (ODEs) are easier 577 

more likely to be identifiedy when they occur more often and the accuracy and AUC ROC metrics would 578 

decrease with the increased occurrence of positive labels due to a concurrent increase in number of 579 

incorrectly labeled ODEs. The ML model is also free from over-fitting given the close agreement between 580 

the train and test sets. Overall, this ML model is sufficiently accurate, robust, and suitable for the 581 

investigation of ODEs.  582 

 583 

Table 1. Evaluation metrics of the ML model for the spring months, together and individually. AUC ROC 584 

stands for Area Under Curve Receiver Operating Characteristics. For each metric, the top value represents 585 

the mean of the 10-fold cross-validation score and the value below in parenthesis represents the standard 586 

deviation (see Sect. 2.6 for a description of cross-validation). The shaded column represents the test set 587 

evaluation metrics for clarity. The accuracy gives an overview of the model performance for both labels 588 

(ODEs vs Non-ODEs), recall gives the model performance only for positive labels (ODEs), and AUC ROC 589 

evaluates the model performance over different decision thresholds, together, these three metrics give a 590 

comprehensive view of the model's performance. The three metrics range from 0 (worst) to 1 (best).  591 

 March-May March April May 

  Train Test Train Test Train Test Train Test 

Accuracy 
0.886 

(0.007) 

0.870 

(0.010) 
0.964 

(0.005) 
0.955 

(0.010) 
0.909 

(0.013) 
0.870 

(0.017) 
0.858 

(0.013) 
0.809 

(0.026) 

Recall 
0.811 

(0.028) 

0.738 

(0.034) 

0.608 

(0.070) 

0.504 

(0.128) 

0.770 

(0.044) 

0.642 

(0.078) 

0.896 

(0.024) 

0.856 

(0.047) 

AUC 

ROC 

0.936 

(0.008) 

0.905 

(0.012) 

0.954 

(0.019) 

0.911 

(0.042) 

0.939 

(0.014) 

0.865 

(0.034) 

0.944 

(0.010) 

0.897 

(0.021) 
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 592 

The most important variables in the ML model are explored using SHAP values (see S1 Machine 593 

learning modeling methodology for a description of SHAP values)(Lundberg and Lee, 2017). The SHAP 594 

approach is designed to estimate the importance of each input variable to the model output based on 595 

coalitional game theory (Molnar, 2022) (see Sect. 2.6 for a more detailed description). SHAP values 596 

represent the marginal contribution of each input variable to the model output, or in other words: how each 597 

observation for each variable affects the model’s prediction. SHAP values can be positive or negative, with 598 

positive values indicating a variable is more likely to contribute to an observation being predicted as an 599 

ODE while negative values mean a variable is more likely to contribute to an observation being labeled as 600 

a Non-ODE. The SHAP methodology can produce both local and global explanations. The global 601 

importance gives an overview of the most important variables to the model output. The local importance of 602 

each observation can give information about the relationship between the SHAP and input values (positive 603 

or negative relationship, linear or non-linear), or in other words how does the model output vary over the 604 

range of input values.  605 

The mean (± standard deviation) SHAP values for each variable during all spring months and 606 

individual months is displayed in Fig. 9. The most important variables overall are time spent over sea ice, 607 

radiation, temperature, pressure, and RH, which are the top variables during all spring months combined 608 

and each month individually, although the order differs slightly, w (Fig. 9). While wind direction, wind 609 

speed, time spent above the mixed layer, and time spent over snow on land are consistently ranked near the 610 

bottom (Fig. 9a-d). For all spring months combined, the most important variables are time spent over sea 611 

ice, radiation, temperature, pressure, and RH (Fig. 9a). During March, the most important variables are 612 

radiation, time spent over sea ice, and pressure (Fig. 9b). During April, time spent over sea ice, pressure, 613 

radiation, and RH are indicated as the most important variables (Fig. 9c). During May, the most important 614 

variables are temperature, time spent over sea ice, pressure, and radiation (Fig. 9d).  615 

 616 

 617 
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 618 

Figure 9. Overall importance of each feature in the ML model during (a) all spring months combined, (b) 619 

March, (c) April, and (d) May. The bars represent the mean of the absolute SHAP value while the lines 620 

represent the standard deviation.  621 

 622 

While the overall importance of each variable in the ML model gives information about which 623 

variable has the biggest largest influence on the model output, it does not give information about the nature 624 

of the relationship between the SHAP and ambient values for each variable (i.e., how the model output 625 

(SHAP values) vary over the range of input values). Here, ambient values refer to the observed values of 626 

each variable or in other words, i.e.,  the input data into the ML model. To address this, wWe binned the 627 

ambient values of each variable into fifteen equally spaced bins and calculated the median SHAP value for 628 

each bin, as displayed in Fig. 10. A similar figure is presented in Fig. S9 which shows each month as its 629 

own subpanel with the 25th and 75th percentiles included and Figure S10 shows all spring months combined 630 

with the 25th and 75th percentiles included. Overall, the results largely agree with the results of the statistical 631 

analysis but reveal unique information about each variable during each month and how it affects the model 632 

prediction of ODEs. Notably, the presence of certain threshold ranges where the relationship between 633 

ambient and SHAP values differs above and below this range. The ranges reported here indicate the lower 634 

and upper bin limits for one or more bins.  635 

Ambient values of RH are normally distributed in each month and the median SHAP values are 636 

negative for RHs below the mode of the distribution and near zero for above-average RH values (Fig. 10a). 637 

This indicates that when RH is below average it has a negative effect on the model prediction of ODEs (i.e., 638 

the model is more likely to predict a Non-ODE) and above average RH values have little effect on the 639 

model output.  640 

Ambient values of wind speed are usually low at Villum (< 5 m s-1), with values rarely exceeding 641 

11 m s-1, and median SHAP values are only positive for the lowest bin during April and May (Fig. 10b). 642 
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With higher values of wind speed, the median SHAP values are mostly negative except for the 13-19 m s-1 643 

range during May and only the 17 m s-1 bin during March, although these high speeds rarely occur.  644 

For temperature, the ambient values are normally distributed in each month, and interestingly, a 645 

threshold value for temperature is observed during all months, with negative median SHAP values observed 646 

in the (-10 to -13 °C bin (midpoint of -12 °C) and values centered around zero towards lower temperatures 647 

after this bin (Fig. 10c).  648 

The distribution of radiation during each month is skewed towards lower values and a threshold 649 

value for positive median SHAP values is also displayed for this variable as well. At values below the 112 650 

to 153 W m-2 bin range (midpoint 133 W m-2) radiation makes a negative contribution to the model output 651 

and at values above this bin range it contributes positively and the relationship appears to be nearly linear 652 

(Fig. 10d).  653 

For pressure, the ambient values are all normally distributed in each month. Similar to RH, the 654 

relationship between ambient and SHAP values is negative for below-average ambient values, although, 655 

for above-average ambient values, the median SHAP value is only positive for the next several bins and 656 

becomes negative at very high values of pressure (which rarely occurs though) (Fig. 10e).  657 

The most common wind direction at Villum is from the southeast, as observed in previous studies 658 

(Nguyen et al., 2016), although only northerly wind directions (288 ° to 72° bins) exhibit positive median 659 

SHAP values (Fig. 10f). This observation is congruent with the statistical analysis of wind direction (Fig. 660 

4b) and the origin of ODEs being the central Arctic Ocean (Figs. 6 and 7). 661 

The distribution of time air masses spend over sea ice is skewed towards lower values for all three 662 

spring months and only during May do values above 50 % occur regularly. The relationship between 663 

ambient and SHAP values for time spent over sea ice is almost linear, with higher values of time spent over 664 

sea ice increasing the likelihood of an ODE occurring (Fig. 10g). A threshold value for average positive 665 

SHAP values for time spent over sea ice is observed at 13 to 19 % bin range (midpoint 17 %) and 666 

interestingly, only after 30 % of the time spent over sea ice does the average relationship begin to differ for 667 

each month, although still follows a linear pattern indicating a slightly different sensitivity towards exposure 668 

to sea ice and ODEs.  669 

For time spent over snow on land, the distribution is more skewed towards lower values when 670 

compared to time spent over sea ice. The relationship between ambient and SHAP values for time spent 671 

over snow on land is complex and non-linear (Fig. 10h). The mode of time spent over snow on land is also 672 

the lowest value and appears to have little effect on the model output, however, the second most often 673 

occurring bin for time spent over snow on land shows a strongly negative effect. After the third bin, SHAP 674 

values increase almost linearly and on average become positive at 32-39 % bin range (midpoint 36 %) 675 

during March and April and 26 to 32 % bin range (midpoint 29 %) during May. During all spring months, 676 

the SHAP values reach a plateau around 56 % of time spent over snow on land, after which, increasing time 677 

spent over snow on land has little effect on the model prediction of ODEs (Fig. 10h).  678 
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The relationship between ambient and SHAP values for time spent above the mixed layer shows 679 

negative contributions until a threshold range of 46 to 53 % (midpoint 50 %) is reached after which slightly 680 

positive is observed (Fig. 10i).  681 

 682 

 683 
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 684 

Figure 10. The relationships between SHAP and ambient values for (a) RH, (b) wind speed, (c), 685 

temperature, (d) radiation, (e) pressure, (f) wind direction, time air masses spent over (g) sea ice, (h) snow 686 

on land, and (i) time above the mixed layer for each month. Fifteen equally spaced bins were calculated for 687 

each variable, and the median of the SHAP values was computed for each bin, as represented by the colored 688 

lines. The value listed on the x-axis is the midpoint of each bin. The colored bars represent a histogram of 689 

the ambient values for each month. The relative frequency of each histogram bin counts for each variable 690 

are omitted for clarity is displayed on the right axis. The legend is the same for the colored lines and bars. 691 

 692 

  693 
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4. Discussion 694 

4.1. Overview of ozone and ozone depletion events 695 

Overall, the seasonal cycle of ozone at Villum displays a similar pattern observed at other coastal High 696 

Arctic sites that experience ODEs (Barrie et al., 1988; Eneroth et al., 2007; Law et al., 2023; Schroeder et 697 

al., 1998; Whaley et al., 2023), with elevated values during winter, highly variable and minimum values 698 

during spring, low values during summer, and increasing values during the autumn. The elevated values 699 

during winter are due to the efficient transport of anthropogenic pollution from the mid-latitudes (Stohl, 700 

2006), descending air masses bringing ozone-rich air into the boundary layer (Hirdman et al., 2010), and 701 

inefficient removal mechanisms (absence of sunlight, reduced dry deposition due to a stably stratified 702 

atmosphere, snow coverage, and minimal wet scavenging). The minimum values observed during spring 703 

are due to ozone depletion events (ODEs) (Helmig et al., 2007a; Simpson et al., 2007b) caused by reactions 704 

with halogen species (Simpson et al., 2015; Yang et al., 2020). The maximum ozone values occurring in 705 

April are likely due to the maximum transport efficiency of anthropogenic pollution from the mid-latitudes 706 

during this period (Stohl, 2006) as well as stratospheric intrusions of dry, ozone-rich air (Helmig et al., 707 

2007b; Liang et al., 2009). 708 

The ODE frequency and duration display an increasing pattern from March to May which is likely 709 

due to air masses spending more time within the mixed layer and over sea ice coupled with increased 710 

amounts of radiation, as these variables are all important for ODEs (Fig. 9) and show a similar seasonal 711 

progression from March to May (Fig. 5). The geographic origin of ODEs within the mixed layer also shows 712 

a seasonal progression from March to May, with sources being more distant during March and progressively 713 

moving closer to Villum during April and May (Figs. 6 and 7). The ODE frequency at Zeppelin follows a 714 

similar season progression with ODEs occurring more often in late spring compared to early spring (Solberg 715 

et al., 1996; Zilker et al., 2023).  716 

 717 

The ODE frequency and duration trends are increasingpositive during May (0.49 [-0.23,1.2] % yr-718 
1, >85th % CL) and April (0.2 [0,0.53] h yr-1, >95th % CL), respectively (Fig. 3). There appears to be no SS 719 

trends in the start, end, or range of ODE days for any spring month (Fig. S3). SS increasing positive trends 720 

in ODE frequency of 0.54 [± 0.26] (slope [± 95 % CI]) have been observed at Utqiaġvik (formerly known 721 

as Barrow), Alaska only during March over the period 1973-2010 (Oltmans et al., 2012). A tendency for 722 

increasing positive ODE frequencies trends throughout the lowest level of ozonesonde measurements has 723 

also been observed at Canadian Arctic sites at Alert (0.19 [±0.53] % yr-1, 1987-2020), Eureka (0.79 [±0.83] 724 

% yr-1, 1991-2020) and Resolute (0.60 [±0.30] % yr-1, 1966-2020 ) (Law et al., 2023; Tarasick and 725 

Bottenheim, 2002), which are similar in magnitude to the positive trend observed in this study. These 726 

positive trends in ODE frequencies around the Arctic and the trends in ODE frequency and duration at 727 

Villum could be connected to multiple causes: an increase in springtime tropospheric BrO in the Arctic as 728 

observed from satellites (Bougoudis et al., 2020), the increase in Arctic sea salt aerosol due to multi-year 729 

ice being replaced with first-year ice (Confer et al., 2023), changing transport patterns (Heslin-Rees et al., 730 

2020; Koo et al., 2014), increasing frequency of re-freezing leads (Yang et al., 2020), or increasing salinity 731 

of surface snow which release halogen compounds to the atmosphere (Peterson et al., 2018; Pratt et al., 732 

2013; Simpson et al., 2005). Further research is required to elucidate the underlying causes of these trends 733 

as well as the positive trends in ozone mixing ratios observed at Villum (Law et al., 2023).  734 
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 735 

 736 

4.2. Dynamics of ODEs in relation to meteorological variables and air mass history 737 

Our investigation into the dynamics of ODEs at Villum, through a statistical analysis and ML modeling 738 

approach, indicates that ODEs are connected to clear (high amounts of radiation), calm conditions (cold 739 

temperatures, high pressures, and low wind speeds) with air masses arriving from a northerly direction 740 

having experienced surface contact with sea ice (northerly wind directions and air masses experiencing a 741 

high amount of time over sea ice in the central Arctic Ocean). Our ML model revealed the most important 742 

variables are similar throughout each month (time air masses spent over sea ice, radiation, temperature, and 743 

pressure) but exhibit different orders (Fig. 9). This indicates that the ML model can discern the overall 744 

conditions leading to ODEs but also reveal distinct circumstances in each month. For instance, the time air 745 

masses spent over sea ice was consistently among the top variables for each month, which likely indicates 746 

the release of halogen species from sea ice (or snow on top of sea ice) is a key condition for the observation 747 

of ODEs at Villum. During March, the most important variable is radiation, whilst during May it is 748 

temperature. Interestingly, these two variables (radiation and temperature) are often limited during these 749 

months (March and May), with low values of radiation during March and temperatures closer to 0 °C during 750 

May (Fig. 5d and c, respectively). In the following paragraphs, we discuss each variable’s relation to ODEs 751 

for each spring month through our statistical analysis, ML modeling, and back-trajectory source regions.  752 

Solar radiation is required for the photolysis of molecular halogen species (Peterson et al., 2018; 753 

Pratt et al., 2013; Raso et al., 2017; Wang et al., 2019). The results presented in Fig. 4e show that ODEs 754 

can occur across all values of radiation during April and May whilst March shows a more clearer 755 

dependency. and oOnly during March were solar radiation medians significantly different during ODEs 756 

and Non-ODEs (Fig. 5d) and solar radiation appears to be a limiting factor. During April and May, sunlight 757 

is omnipresent, therefore a clear lack of dependency for ozone mixing ratios and normalized ODE hours 758 

with radiation is not unexpected. This is supported by the high importance of radiation in the ML model 759 

during March compared to April and May (Fig. 9b). The results from the statistical analysis suggest that 760 

while the presence of solar radiation is required, the intensity is not a limiting factor for the occurrence of 761 

ODEs. However, the relationships between ambient and SHAP values of radiation indicate there is a near-762 

linear relationship (Fig. 10d), which highlights the added value of ML modeling. Alternatively, this could 763 

be due to ODEs resulting from the advection of previously depleted air masses, and in situ solar radiation 764 

measurements are not indicative of conditions along the trajectory path (although solar radiation exhibits a 765 

high degree of autocorrelation over all relevant lags) or in regions where depletion is occurring (Bottenheim 766 

and Chan, 2006; Halfacre et al., 2014). It should be noted that solar radiation measurements started in the 767 

autumn of 2014 thus only five years of data are included in the statistical analysis while the ML model was 768 

supplemented with radiation from ERA5 (see Methods), this could also contribute to the discrepancy 769 

between analysis methods.  770 

Cold temperatures have been shown to be an important factor influencing ODEs (Simpson et al., 771 

2007b, 2015), indeed reactions on acidic, frozen heterogeneous surfaces can lead to the release of bromine, 772 

which is known from studies using reanalysis products (Seo et al., 2020; Zilker et al., 2023), laboratory 773 

experiments (Abbatt et al., 2012; Halfacre et al., 2019), and mesocosm/field studies (Gao et al., 2022; Pöhler 774 
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et al., 2010; Pratt et al., 2013; Swanson et al., 2020). Cold temperatures also facilitate calcium carbonate 775 

precipitation from sea ice which acidifies and lowers the buffering capacity of the salty sea ice surface thus 776 

promoting halogen release (Sander et al., 2006). Observational evidence has shown halogen activation 777 

ceases at above-freezing temperatures (Burd et al., 2017; Jeong et al., 2022). While several studies have 778 

reported a temperature dependency of ODEs (Koo et al., 2012; Pöhler et al., 2010; Tarasick and Bottenheim, 779 

2002; Zeng et al., 2006), other studies have not (Halfacre et al., 2014; Jacobi et al., 2010; Neuman et al., 780 

2010; Solberg et al., 1996). Any relationship between ODEs and temperature is likely a result of air masses 781 

having surface contact with the cold Arctic Ocean before arriving at Villum, where cold temperatures aid 782 

in the re-freezing of leads as well as formation of sea ice and frost flowers (Kaleschke et al., 2004; Yang et 783 

al., 2020), all of which are known halogen sources. Cold temperatures could also indicate the presence of 784 

a temperature inversion, which traps oxidants and ozone near the surface and inhibits vertical mixing, which 785 

replenishes ozone and terminates ODEs (Moore et al., 2014). Temperature has the greatest influence on 786 

ODEs during May (Fig. 9d), which is the only month which regularly experiences temperatures above the 787 

threshold range of -10 to -13 °C found through our ML model analysis (Figs. 4, 5, and 10). Similar to 788 

radiation, the temperature used in this analysis does not necessarily represent the temperature where ozone 789 

depletion occurred, although temperature is usually highly correlated to previous days' measurements and 790 

therefore gives a good indication of the temperature upwind of Villum. Therefore, this temperature 791 

threshold range should not be interpreted as absolute but rather as the existence of a threshold where 792 

temperature has little effect below and a negative contribution to ODEs above. This observation could help 793 

explain the contradictory evidence about a temperature dependence for ODEs. Depending on the local 794 

conditions of the measurement site, ODEs might be observed at temperatures below this threshold range 795 

(which would indicate no relationship) or above this threshold range (where ODEs show a negative 796 

relationship with temperature). This threshold range would be site specific and emphasizes the need for 797 

Pan-Arctic assessments of the temperature dependency of ODEs.  798 

Above-average values of RH are revealed to be conducive to ODEs through our statistical and ML 799 

model analysis (Figs. 4, 5, and 10). A relationship between RH and ODEs in the Arctic has not been reported 800 

in the literature before (to the authors' knowledge) and the physical mechanism behind this observation 801 

remains unclear. However, the relationship between RH and ozone has been explored in Antarctica by Frieß 802 

et al. (2023), who showed negative correlations at Neumayer and Arrival Heights, supporting observations 803 

made in this study. We hypothesize that the higher normalized ODE hours (Fig. 4a) and positive SHAP 804 

values (Fig. 10a) for above-average RH values during ODEs are likely connected to air masses spending 805 

time over the central Arctic Ocean where RH would be higher due to the cold temperatures and escape of 806 

water vapor through open leads and polynya (Bintanja and Selten, 2014; Boisvert et al., 2015). The lower 807 

values of normalized ODE hours (Fig. 4a) and negative SHAP values (Fig. 10a) for below-average RH 808 

could also be related to drier air masses having experienced higher altitudes during transport to Villum, 809 

which are ozone-rich and less influenced by the surface (Moore et al., 2014).  810 

Northerly wind directions are more common during ODEs compared to Non-ODEs (Fig. S6), 811 

corresponding to low ozone values, high normalized ODE hours, and positive SHAP values (Figs. 4b and 812 

10f). A similar observation was made at Utqiaġvik/Barrow, AlaskaK, for low ozone mixing ratios showing 813 

a clear minimum when wind arrived from northerly directions (Helmig et al., 2012). Halfarce et al. (2014) 814 

used buoy measurements from the Beaufort Sea of ozone and air mass direction to show that northerly 815 

directions were dominating but easterly and westerly directions also made a contribution, showing that in 816 

the central Arctic Ocean wind direction has less of an influence due to the omnidirectional presence of sea 817 
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ice. These observations are directly related to the presence of sea ice in a northerly direction relative to 818 

these land-based stations (Fig. 1).  819 

Wind speed can have dual effects on ozone variability, with low wind speeds corresponding to a 820 

stable boundary layer where reactants are confined to a small volume and high wind speeds generating 821 

blowing snow, which acts as a source of reactive halogen species as well as favoring advection of air masses 822 

previously depleted in ozone (Jones et al., 2009; Swanson et al., 2020).  The distribution of wind speeds 823 

during March and April were consistently higher for ODEs compared to Non-ODEs, this relationship is 824 

reversed for May (Fig. 5b) but in all months relatively low wind speeds prevailed (< ~3 m s-1). Our statistical 825 

analysis revealed no relationship between wind speeds and ozone mixing ratios/normalized ODE hours 826 

during March, a tendency for high normalized ODE hours with higher wind speeds during April (although 827 

little effect on ozone mixing ratios), and two modes during May (one at low and one at high wind speeds) 828 

(Fig. 4c). The ML model also showed a similar relationship during May (positive SHAP values at low and 829 

high wind speeds), although these high wind speeds did not occur very often. Overall, wind speeds are 830 

usually low at Villum (Figs. 4c, 5b, and 10b; Nguyen et al. (2016)). Low ozone mixing ratios concurrent 831 

with low wind speeds have also been observed at Utqiaġvik/Barrow, AlaskaK, at Zeppelin Observatory on 832 

Svalbard, and from buoy measurements in the Arctic Ocean (Bottenheim et al., 2009; Halfacre et al., 2014; 833 

Helmig et al., 2012; Solberg et al., 1996). Conversely, enhanced BrO events at Zeppelin, Eureka, and Alert 834 

as well as for the Arctic region have been connected to high wind speeds, mostly likely related to stormy 835 

conditions that generate blowing snow (Seo et al., 2020; Swanson et al., 2020; Zhao et al., 2016; Zilker et 836 

al., 2023). In the Antarctic, positive correlations between wind speed and surface ozone were observed 837 

during spring at Arrival Heights but not at Nuemayer, likely due to Arrival Heights being more influenced 838 

by local topography effects (Frieß et al., 2023). The results of our statistical and ML model analysis suggest 839 

that ODEs at Villum occur mainly under stable conditions with low wind speeds and are likely not 840 

connected to the generation of halogen species through blowing snow and Arctic cyclones. High wind 841 

speeds can also enhance vertical mixing of ozone enriched air masses from aloft, which could mask the 842 

contribution of halogen activation from blowing snow. Only during May does high wind speeds regularly 843 

make a positive contribution to the model output, and the magnitude of this contribution is small (Fig. 10b). 844 

Overall, the rare occurrence of high wind speeds (Fig. S4b) hinders any definitive conclusions about their 845 

effect on ODEs.  846 

Distributions of pressure are consistently higher for ODEs compared to Non-ODEs during each 847 

spring month (Fig. 5e) and above-average pressure is related to the occurrence of ODEs as shown through 848 

our statistical analysis (Fig. 4f) and our ML model (Fig. 10e). High-pressure systems could indicate the 849 

presence of a stably stratified lower troposphere and low-pressure systems could signal the passage of 850 

frontal systems which are conducive for strong vertical mixing (which bring ozone rich down from aloft) 851 

and a break up of inversion layers (Hopper et al., 1998; Jacobi et al., 2010; Simpson et al., 2015). Ozone 852 

and atmospheric pressure have been shown to be anti-correlated during spring in the Arctic Ocean (Jacobi 853 

et al., 2010). Conversely, low pressures have been associated with ODEs at Zeppelin (Zilker et al., 2023) 854 

and BrO enhancement events over the Arctic region (Blechschmidt et al., 2016; Seo et al., 2020) and at 855 

Eureka, CanadaA (Zhao et al., 2016), where they were related to polar storms and blowing snow generation 856 

of reactive halogens. The pressure dependence of ODEs found at Villum is congruent with the relationship 857 

for wind speed (Fig. 10b) and further suggests that Arctic cyclones and blowing snow do not have an 858 

important effect on ODEs at Villum. Furthermore, very high values of pressure are likely associated with 859 

descending air masses from aloft which are often enriched in ozone and contain few sources of halogen 860 
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species (Simpson et al., 2007b; Peterson et al., 2015; Swanson et al., 2020), which could explain the 861 

negative SHAP values at high values of pressure although it should be noted that these values do not occur 862 

often (Fig. 10e).     863 

Heterogeneous, photochemical reactions on the snowpack have been demonstrated to be a source 864 

of reactive halogen species (Pratt et al., 2013; Raso et al., 2017; Peterson et al., 2018; McNamara et al., 865 

2020; Custard et al., 2017), as well as the generation of blowing snow at high wind speeds and subsequent 866 

release of reactive halogens (Jones et al., 2009; Marelle et al., 2021; Chen et al., 2022; Swanson et al., 2022; 867 

Zilker et al., 2023; Frieß et al., 2023). Air masses spend little time over snow on land during each spring 868 

month (Fig. S4g) and on average ODEs actually experience less time over snow on land compared to Non-869 

ODEs (Fig. 5h). Non-ODEs experiencing more time over snow on land is likely tied to the different regions 870 

of snow on land contact for Non-ODEs (southern half of Greenland) (Fig. S6d-f), while source regions of 871 

air mass contact with snow on land during ODEs are consistently in the Canadian Archipelago and 872 

Greenlandic coasts during the spring months (Fig. S6a-e). The Canadian Archipelago has been 873 

demonstrated to be a hotspot for BrO enhancements (Bognar et al., 2020; Bougoudis et al., 2020; Seo et al., 874 

2020), which has been connected to low pressure and high wind speeds suggesting blowing snow to be a 875 

source of halogen species in this region.  Contributions from other continental regions (Alaska and Siberia) 876 

to snowpack exposure only appear in April (Fig. 7b), which could reflect the greater extent of the polar 877 

dome during this month (Stohl, 2006). Snowpack located on the west coast of Greenland only appears to 878 

contribute to ODEs during May (Fig. 7c), this could be related to air masses spending more time below the 879 

mixed layer during May compared to other months (Fig. 5h). Our statistical analysis suggests there is no 880 

clear dependency of ozone mixing ratios and normalized ODE hours on varying amounts of times spent 881 

over snow on land (Fig. 4h). Our ML model revealed that low values of time spent over snow on land 882 

contributes negatively whereas after a threshold range of 26-39 % (depending on the month), time spent 883 

over snow on land makes a small positive contribution to the model output that varies little with increasing 884 

values (Fig. 10). This is supported by the back-trajectory analysis, which showed that ODE air masses are 885 

not preferentially experiencing more time over snow on land during any particular point along the trajectory 886 

length compared to Non-ODEs (Fig. 8g-i). High amounts of time spent over snow on land are uncommon 887 

during each spring month, therefore, it is difficult to assess the importance of snowpack mechanisms on 888 

ozone depletion at Villum. Generation of halogen species in the Canadian Archipelago, either through 889 

snowpack emissions or blowing snow at higher wind speeds, appears to consistently make a minor influence 890 

on ODEs during each spring month.  891 

Sea ice sourced halogens have been indicated to be responsible for halogen generation necessary 892 

for ozone depletion in the Arctic (Simpson et al., 2007b; Halfacre et al., 2014; Simpson et al., 2015; Burd 893 

et al., 2017; Yang et al., 2020; Marelle et al., 2021; Brockway et al., 2024) and Anatarctic (Frieß et al., 894 

2023). It should be noted that the snowpack on top of sea ice is the likely source of these halogens, given 895 

that the surface of sea ice is not conducive for halogen activation (Abbatt et al., 2012), although the satellite 896 

product used in this study cannot differentiate between snow covered sea ice and bare sea ice (see Methods). 897 

The amount of time spent over sea ice increases from early to late spring (Fig. S4f) and ODE air masses 898 

experience higher values of time over sea ice during each spring month compared to Non-ODEs (Fig. 5f). 899 

Our statistical analysis displays increased (decreased) normalized ODE hours (ozone mixing ratios) with 900 

higher values of time spent over sea ice (Fig. 4g), which is congruent with the ML model showing higher 901 

SHAP values for more time spent over sea ice. This relationship is linearly, positive and on average 902 

becomes positive after the 13 to 19 % threshold range (Fig. 10g). Indicating that air masses need to spend 903 
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only a fraction of time over sea ice for it to increase the probability of observing an ODE at Villum. The 904 

back-trajectory analysis shows that ODE air masses experience more time over sea ice closer to the 905 

measurement site compared to Non-ODEs (Fig. 8g-i). It has been found that ODEs can be the result of the 906 

transport of previously depleted air masses, where ozone depletion was occurring relatively far (several 907 

hundred kilometers) from the observation point (Halfacre et al., 2014; Tarasick and Bottenheim, 2002; 908 

Yang et al., 2020). As the spring progresses from March to May, it appears that the main ODE geographic 909 

source regions for sea ice contact are moving closer to Villum each month (Fig. 7d-f). During March, ODEs 910 

are initiated over the Chukchi Sea, which is usually covered by first-year sea ice (FYI) (Fig. 1). During 911 

April, ODE air mass source regions are initiatedlocated over the Beaufort and Chukchi Seas but also over 912 

the central Arctic Ocean, which represents a mix of FYI and multi-year sea ice (MYI). During May, ODE 913 

air mass source regions occur are in closer proximity to Villum, mainly arriving from the central Arctic 914 

Ocean, which contains the highest concentration of MYI. This source region analysis is supported by the 915 

wind sector/speed analysis, which displays a northerly wind direction dependency for ODEs during each 916 

spring month (Figs. 4b, S5, and 10f). During March and April, wind speeds during ODEs are consistently 917 

higher compared to Non-ODEs whilst, during May, wind speeds are lower (Fig. 5b). This could indicate 918 

that in March ODEs likely result from the transport of ozone-depleted air masses from FYI regions, April 919 

experiences a mixture of transport-related ODEs and ODEs occurring closer to Villum from FYI and MYI 920 

regions, whilst May ODEs occur in proximity to the measurement site, arriving mainly from regions with 921 

MYI but also with influences from FYI in the central Arctic Ocean. This is supported by Herrmann et al. 922 

(2022), who suggested that MYI makes important contributions to ozone depletion at Villum, and by 923 

Marelle et al. (2021) who showed that both snowpack emissions and blowing snow can contribute to ozone 924 

depletion, although sea ice surfaces were responsible for regional ozone depletion and halogen activation. 925 

It should be noted that this analysis is based on trajectory frequency maps and average sea ice age over the 926 

observation period and a more detailed investigation of sea ice age would help elucidate the exact 927 

contribution of FYI and MYI on ODEs.   928 

While this and previous work point towards ODEs being a surface-related process through the 929 

generation of reactive halogen species from sea-ice and snowpack mechanisms, the activation of halogen 930 

species on aerosol particles aloft has also been demonstrated in the Arctic (Bognar et al., 2020; Peterson et 931 

al., 2017; Seabrook and Whiteway, 2016; Solberg et al., 1996). In the Antarctic, strong, positive correlations 932 

between aerosol extinction and BrO mixing rations have been observed during spring (Frieß et al., 2023).  933 

A general feature of the distributions for ODEs and Non-ODEs when progressing from March to May is 934 

that trajectories spend increasingly less time above the mixed layer (Fig. 5h). Our statistical analysis 935 

indicates that, in general, ODEs are more likely to occur and ozone mixing ratios are more likely to be 936 

lower when air masses spend more time near the surface (Fig. 4i). Although ODE trajectories spend less 937 

time above the mixed layer compared to Non-ODEs trajectories (Figs. 5h and 8g-i), they are still spending 938 

a considerable amount of time aloft as the median time spent above the mixed layer only drops below 50 939 

% during May (Fig. 5h). The recycling of halogen species on lofted aerosol particles could explain the 940 

ODEs experiencing a significant amount of time above the mixed layer., tThis would be especially relevant 941 

for the earlier spring months (March and April) given the burden of acidic, tropospheric aerosols (i.e., Arctic 942 

Haze) is greatest during these months (Flyger et al., 1980; Heidam et al., 1999, 2004; Nguyen et al., 2013, 943 

2016) and the increased amount of time air masses spend above mixed layer during these months. Our ML 944 

model revealed on average a positive contribution at > 46 to 53 % threshold range of time spent above the 945 

mixed layer (Fig. 10i). A physical explanation for our ML results for the time above the mixed layer SHAP 946 
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values could be that ozone is initially depleted within the boundary layer, depleted air masses  followed by 947 

lifting are lifted above the boundary layer and remain depleted either through inhibited mixing with ozone 948 

rich air (Moore et al., 2014), decreaseding mixed layer height with frequently occurring surface temperature 949 

inversions (Pilz et al., 2024), or halogen recycling on acidic aerosol particles aloft (Peterson et al., 2017). 950 

This could also be due to the time spent over mixed layer being calculated over the entire trajectory length 951 

and therefore is not time resolved. It is also important to note that SHAP values represent how well these 952 

variables explain the behavior of our target variable in our ML model and not how well the input variables 953 

explain the behavior of our target variable in the natural environment.  954 

To understand the conditions leading to a correct model prediction for the input variables and 955 

investigate the cause of the relationship between ambient and SHAP values for time spent above the mixed 956 

layer, we calculated the distribution of ambient and SHAP values for correctly and incorrectly labeled 957 

observations of ODEs and Non-ODEs for all spring months combined and each month individually. The 958 

results for the ambient and SHAP value distributions are displayed in Fig. S11 and S12, respectively. The 959 

variables with the largest differences in the distribution of correct vs incorrect ODEs are time spent above 960 

the mixed layer, time spent over sea ice, and radiation, whilst RH, time spent over snow on land, wind 961 

direction, and wind speed showed little differences (Fig. S11). The variables with the largest differences 962 

are also indicated as the most important variables and variables with little differences were shown to be the 963 

least important (Fig. 10), except for time above the mixed layer. Temperature displays a large difference 964 

between correct and incorrectly labeled ODEs when evaluating all spring months combined but when 965 

analyzing individual spring months, this difference is diminished, which likely is a result of the seasonal 966 

progress of warmer temperatures later in the spring (Fig. 5c). The distributions for SHAP values between 967 

correctly and incorrectly labeled ODEs shows that time spent over sea ice SHAP values experienced the 968 

largest difference for all spring months combined and each individual month (Fig. S12). Other variables 969 

showing large differences in the distribution of SHAP values include pressure, temperature, radiation, and 970 

wind direction. Time spent above the mixed layer did not show large differences between correctly and 971 

incorrectly labeled ODEs, likely a result of the small magnitude of the SHAP values for time spent above 972 

the mixed layer, indicating this variable does not largely contribute to the model output (Fig. 9), therefore, 973 

while this relationship is counterintuitive it is not affecting the accurate prediction of ODEs in our ML 974 

model. The large differences between the distribution of time spent above the mixed layer for correctly vs 975 

incorrectly labeled ODEs could be the underlying cause of the counterintuitive relationship between 976 

ambient and SHAP values for this variable displayed in Fig. 10, this could also be a result of ODE 977 

trajectories experiencing a majority of time above the mixed layer further back along the trajectory length 978 

(Fig. 8a-c). Other factors that could contribute to this relationship include the length of the back-trajectory 979 

(trajectories  could be too long and experience comparatively more time above the mixed layer further 980 

backward), misrepresentation of the mixed layer height from the HYSPLIT model (too low of a mixed layer 981 

height would result in a larger fraction of air masses above this altitude), the uncertainty of HYSPLIT 982 

increases proportionately with the trajectory length, and the starting altitude of the back-trajectories being 983 

too high (higher starting altitude would result in a larger fraction of air masses residing above the mixed 984 

layer). Proper representation of air mass history therefore is an important aspect of evaluating ODEs and 985 

other atmospheric phenomena and future studies should evaluate this in more detail including the effects of 986 

varying trajectory lengths, the accuracy of the mixed layer height from HYSPLIT, and starting altitude at 987 

the receptor location. Overall, this shows the ability of ML to identify the appropriateness of input variables 988 

for modeling atmospheric phenomena and suggests that the importance of time spent above the mixed layer 989 
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and time spent over sea ice might be over- and under-estimated, respectively, as the ML model mis-990 

characterizes their effect on ODEs.   991 

 992 

  993 
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5. Summary and Outlook  994 

Our results show that ODEs occur every spring with an increasing frequency from early to late spring. This 995 

seasonal pattern is the result of higher amounts of radiation, air masses spending more time within the 996 

mixed layer and over sea ice, and source regions for air mass contact with sea ice (and thus ozone depletion) 997 

moving closer to Villum from March to May. ODE duration and frequency displayed positive trends during 998 

April and May, respectively, however, we have low confidence in the frequency trend. Positive trends in 999 

ODE frequency at other Arctic sites suggest this is a Pan-Arctic phenomenon. Possible causes for the 1000 

increasing positive trends in duration and frequency of ODEs include increasing more FYI, BrO, saltier 1001 

snowpack, changing transport patterns, and increased occurrence of refreezing leads.  1002 

ODEs are likely to occur during clear (high amounts of radiation), calm (cold temperatures, high 1003 

pressure, low wind speeds) conditions with air masses arriving from northerly wind directions with sea ice 1004 

contact (high time over sea ice, high RH). Time spent over sea ice, radiation, temperature, and pressure are 1005 

shown to be the most important factors affecting ODEs. The most important variable affecting ODEs 1006 

changes as spring progresses are radiation during March, sea ice during April, and temperature during May. 1007 

During March and May, radiation and temperature are often the limiting factors, with smaller amounts of 1008 

radiation observed during March and warmer temperatures observed during May. The source regions for 1009 

ozone depletion also change as spring progresses. During March, sea ice (likely FYI) in the Chukchi Sea is 1010 

the main source region for ODE air masses. During April, a mix of FYI and MYI in the Chukchi and 1011 

Beaufort Seas and the central Arctic Ocean are the main source regions for ODEs. During May, sea ice 1012 

(likely a mix of FYI and MYI) in the central Arctic Ocean is the main ODE source region. Air masses 1013 

experiencing Ssnowpack emissionscontact within the mixed layer from the Canadian Archipelago make a 1014 

consistent yet minor contribution during each spring month. The back-trajectory and wind speed analysis 1015 

indicate that ozone depletion occurs upwind of Villum during early spring and moves progressively closer 1016 

towards Villum during late spring.  1017 

We show that ODEs can be accurately predicted using ML modeling, with physically interpretable 1018 

results. We also show that ML can be a useful tool for investigating atmospheric phenomena, by quantifying 1019 

the importance of each variable, identifying threshold ranges for positive contributions, and investigating 1020 

the appropriateness of input variables. Of the sources leading to halogen emission (sea ice or snow on top 1021 

of sea ice, snowpack on land, and recycling on aerosol particles aloft), our results suggest that emissions 1022 

from sea ice regions are the most important.  1023 

While this work has made progress in understanding the dynamics of ozone depletion in the Arctic, 1024 

further investigation is warranted. Recent research has shown that ozone mixing ratios are increasing around 1025 

the Arctic (Christiansen et al., 2022, 2017; Cooper et al., 2020; Law et al., 2023), coupled with the positive 1026 

trend in Pan-Arctic ODE frequencies and the positive trend in ODE duration observed in this study, suggest 1027 

that the factors controlling ozone variability are being altered and warrant a detailed investigation into the 1028 

underlying causes. Recently, iodine has been shown to be as important as bromine to ozone destruction in 1029 

the central Arctic Ocean (Benavent et al., 2022), further studies investigating this discovery at Pan-Arctic 1030 

stations are needed to evaluate iodine’s role in ozone depletion over the entire Arctic region, ML could aid 1031 

in this task. Future studies investigating ozone and ODE dynamics would benefit from the incorporation of 1032 

direct measurements of halogen species to investigate different chemical regimes of ozone destruction, 1033 

which will help predict the response of springtime ozone dynamics in a future climate. Direct halogen 1034 
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measurements will also help elucidate the cause of ODE initiation, duration, and termination as well as 1035 

determine if ODEs are the result of the transport of already depleted air masses or if ODEs are occurring 1036 

locally at Villum. Incorporating time-resolved air mass history variables and air-mass exposure to first- and 1037 

multi-year ice sea ice concentration would help clarify the role of different cryosphere environments in 1038 

ozone destruction. Analyzing meteorological conditions along the trajectory path (e.g., temperature and 1039 

radiation) would help extrapolate the observations from individual stations to the larger Arctic region. 1040 

Future studies should also consider the vertical structure of the lower atmosphere (i.e., the mixed layer 1041 

height and its variability) when initializing trajectory calculation as this can have an effect on the air mass 1042 

history, although this can be computationally challenging for a multi-decadal dataset. While this and many 1043 

other studies investigate ozone at the surface, the radiative forcing of ozone is largely determined by its 1044 

vertical distribution (Lacis et al., 1990; Stevenson et al., 2013), therefore, studies investigating the vertical 1045 

as well as the horizontal distribution are needed. This could be accomplished through the use of tethered 1046 

balloons deployed at ground-based stations or directly on the sea ice (Pilz et al., 2022; Pohorsky et al., 1047 

2024). 1048 

The added value of ML modeling over classical statistical analysis is highlighted by identifying 1049 

variable importance, quantitative relationships, threshold ranges, and input variable deficiencies. While a 1050 

statistical analysis can qualitatively identify relationships, ML can identify synergistic efforts regarding 1051 

interactions between variables, indicating the right mix of conditions is necessary for ODEs to occur – high 1052 

sea ice contact, high amounts of radiation, cold temperatures, and high pressure. The ML methodology 1053 

could be applied to other Arctic stations, either individually or utilizing multi-station (e.g., ground-based, 1054 

ship-based, buoys) merging techniques for Pan-Arctic modeling of ODEs, where the environmental drivers 1055 

of ODEs could be investigated from a geographic perspective. This would be especially pertinent for 1056 

measurements performed over sea ice, where the actual ozone destruction is likely occurring. ML modeling 1057 

could also be used to investigate other atmospheric phenomena such as AMDEs and BrO enhancement 1058 

events and for bias-correcting chemical transport models.  1059 

The results from our ML model largely agree with our statistical analysis and are physically 1060 

meaningful/interpretable but also reveal threshold ranges for certain variables that are not evident otherwise 1061 

and can help predict the response of ODEs in a future climate. Rising temperatures in the Arctic (Rantanen 1062 

et al., 2022) could affect ODEs through earlier onset of melt days by ceasing halogen emissions. The 1063 

temperature relationship displayed in this study (Fig. 10c) indicates that rising temperatures would have the 1064 

biggest effect in May and would not start to negatively affect ODEs until they rise above the threshold 1065 

range of -10 to -13 °C. Arctic sea ice is rapidly diminishing (Kwok, 2018; Stroeve and Notz, 2018) and the 1066 

Arctic Ocean is projected to be completely ice-free during summer in the coming decades (Kim et al., 2023; 1067 

Notz and Community, 2020), which will have profound effects on ODEs (Simpson et al., 2007b, 2015). 1068 

Retreating sea ice would have a major effect on ODEs when sea ice loss is propagated into the springtime 1069 

and these effects would be most profound in May. Conversely, retreating sea ice would also increase sea 1070 

salt aerosol emission through increased areas of open water, which is a source of bromine emission and 1071 

recycling, therefore the competing effects of sea ice retreat require further investigation through coupled 1072 

cryosphere-atmosphere modeling approaches. Changes in cloud cover, especially low-level liquid 1073 

containing clouds, would affect the amount of solar radiation reaching the surface. Previous studies have 1074 

presented evidence for positive and negative trends in low cloud cover for the Arctic region (Boccolari and 1075 

Parmiggiani, 2018; Jenkins and Dai, 2022; Lelli et al., 2023; Sviashchennikov and Drugorub, 2022; Wang 1076 

et al., 2021). Increases in cloud cover would affect the amount of radiation received at the surface, which 1077 
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would affect ODEs mainly in March when radiation is lower compared to the later spring months. How the 1078 

Arctic and the nature of ODEs evolve with climate change remains an open question and should be the 1079 

focus of future research endeavors.  1080 

  1081 
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