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Abstract. Personal weather station (PWS) networks owned by citizens now provide near-surface observations at a spatial

density unattainable with standard weather stations (SWSs) deployed by national meteorological services. This article aims

to assess the benefits of assimilating PWS observations of screen-level temperature and relative humidity in the AROME-

France model, in the same framework of experiments carried out to assimilate PWS observations of surface pressure in a

previous work. Several methods for pre-processing these observations, in addition to the usual data assimilation (DA) screening,5

are evaluated and selected. After pre-processing, nearly 4700 temperature and 4200 relative humidity PWS observations are

assimilated per hour, representing 3 and 6 times more than SWS observations, respectively. Separate assimilation of each

variable in the atmosphere with the 3DEnVar DA scheme significantly reduces the root-mean-square deviation between SWS

observations and forecasts of the assimilated variable at 2m height above ground level up to 3h range. Improvements to the

near-surface temperature and relative humidity fields analysed are shown for a sea breeze case during a heatwave and a fog10

episode. However, degradation of short-range forecasts are found when PWS observations are assimilated with the current

operational 3DVar DA scheme in the atmosphere or jointly in the atmosphere and at the surface with 3DEnVar and Optimal

interpolation DA schemes. These results demonstrate that the benefit of assimilating temperature and relative humidity PWS

observations can be highly dependent on the DA schemes and settings employed.

1 Introduction15

The increase in spatial and temporal resolution of regional numerical weather prediction (NWP) models requires their anal-

yses to be initialized by spatially and temporally dense observations, to represent meteorological phenomena on increasingly

finer scales (Gustafsson et al., 2018). At Météo-France, the operational regional NWP system designed to forecast up to 51 h

lead time such phenomena is AROME-France (Seity et al., 2011; Brousseau et al., 2016). AROME-France currently uses

a three-dimensional variational (3DVar) DA scheme. This scheme is planned to be replaced by a three-dimensional ensem-20

ble variational (3DEnVar) DA scheme, with an up-to-date background error covariance matrix, improving the spread of the

information from the observations (Montmerle et al., 2018; Michel and Brousseau, 2021).

Phenomena whose representation in the analyses needs to be improved are meso-γ to meso-β scale phenomena (2 to 200 km,

Orlanski, 1975) such as thunderstorms, breezes or fog (Stull, 1988) which cause substantial thermodynamic changes, partic-
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ularly in the atmospheric boundary layer(ABL). New observations are emerging to improve analyses in the ABL
:::::
above

:::
the25

::::::
surface, from ground-based microwave radiometers (Caumont et al., 2016; Bell et al., 2022; Vural et al., 2024), water vapour

lidars (Flamant et al., 2021), or aircrafts (Pourret et al., 2022). Even if these instruments provide dense vertical observations,

their horizontal density remains low. Work is underway to exploit horizontally dense satellite observations near the surface,

such as radiances from the Meteosat Spinning enhanced visible and infrared imager (SEVIRI) (Sassi et al., 2019), which are

currently assimilated with a spacing of the order of 30 km and are still difficult to assimilate at full resolution.30

The growth of crowdsourced data, i.e. the data obtained from a range of sensors belonging to the public and shared via the In-

ternet, could play a significant role in improving near-surface analyses of NWP models, in particular data from personal weather

stations (PWSs) (Hintz et al., 2019; Coney et al., 2022). In order to obtain observations comparable with standard weather sta-

tion (SWS) observations, PWS observations should be properly pre-processed, i.e. bias-corrected or quality-controlled or both,

the bias designating the deviation of a PWS observation time series from a reference time series (other observations or a35

modelled field). Indeed, PWSs provide observations that may not comply with World Meteorological Organization (WMO)

methods: PWS sensors have heterogeneous environments of siting, sometimes unsuitable shelters, can be positioned at various

heights above ground level (AGL), and can suffer from time lag compared to sensors following WMO requirements (Bell et al.,

2015; Varentsov et al., 2020; Fenner et al., 2021). After pre-processing, observational studies showed that PWS observations,

when combined with SWS observations, are able to describe near-surface thermodynamic variations associated with mesoscale40

phenomena such as thunderstorms partially visible with SWS observations only (Clark et al., 2018; Mandement and Caumont,

2020).

Various bias correction (BC) methods have been developed. The bias can be computed over a short period (e.g. 6h for Clark

et al., 2018 or approximately 24 h for Mandement and Caumont, 2020). To account for the effects of an inappropriate sheltering

or siting, the bias can be computed as a linear function of solar incident radiation, or by a more sophisticated decomposition,45

e.g. with multilinear functions (Sgoff et al., 2022), generalized additive mixed models (GAMMs) (Cornes et al., 2019), or with

machine learning methods (Beele et al., 2022; Marquès, 2023).

Regarding quality control (QC) methods, CrowdQC (Meier et al., 2017) and CrowdQC+ (Fenner et al., 2021) were de-

signed to remove PWS temperature observations deemed erroneous based on their deviation from neighbouring observations.

CrowdQC was used in numerous studies of urban temperatures (Feichtinger et al., 2020; Venter et al., 2020; Potgieter et al.,50

2021; Zumwald et al., 2021). Another QC for PWS temperature observations, used operationally in post-processing algorithms

by MET Norway, is called Titan (QC-Titan hereafter, Båserud et al., 2020; Nipen et al., 2020). CrowdQC+ and QC-Titan

are comparable in a way as they both use the information from their neighbours to remove inconsistent observations, e.g. the

m5 procedure of the CrowdQC+ is comparable to the spatial buddy check of QC-Titan (Fenner et al., 2021). In addition, as

CrowdQC+ uses local climate zones, it is challenging to use on a scale larger than a city. For both temperature and relative55

humidity PWS observations, Mandement and Caumont (2020) have developed a QC (QC-MC hereafter) using an adaptive

rejection threshold based on a comparison to interpolated SWS observations. Both QC-Titan and QC-MC are tested in this

study.
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Once PWS observations have been pre-processed, the opportunity of their assimilation arises. Sgoff et al. (2022) carried

out experiments assimilating pre-processed (bias-corrected and quality-controlled) PWS temperature and relative humidity60

observations – using the �ow-dependent local ensemble transform Kalman �lter(LETKF) DA scheme of the Icosahedral

non-hydrostatic model with 2km resolution (ICON-D2). They showed that the assimilation of PWS observations is bene�-

cial; however, no experiments assimilating at the same time both SWS and PWS observations were conducted. On the other

hand, Demortier et al. (2024, hereafter D24) carried out experiments assimilating simultaneously pre-processed PWS and

SWS observations of surface pressure with both 3DVar and 3DEnVar DA schemes in AROME-France. Statistically signi�cant65

improvements of mean sea level pressure forecasts up to 9h range were found with the 3DEnVar scheme.

This article extends Sgoff et al. (2022) and D24 works by simultaneously assimilating pre-processed PWS and SWS ob-

servations of screen-level temperature and relative humidity, and address the following questions. What are the most effective

pre-processing methods for assimilating PWS data? Are AROME-France's analyses and forecasts improved by assimilating

pre-processed PWS temperature and relative humidity observations? What impact does the choice of the DA scheme have?70

The remainder of this article is organized as follows. Section 2 describes the AROME-France NWP system and its DA

schemes in the atmosphere and at the surface, as well as the observations used and the pre-processing methods of these

observations. Section 3 describes the assimilation experiments. Objective results of these experiments are given in Sect. 4 and

results for case studies are detailed in Sect. 5. Finally, results are summarized and discussed in Sect. 6.

2 Datasets and methods75

The assimilation experiments run from 6 September to 5 October 2021, as in D24. This one-month study period encompasses

a diverse range of meteorological events. It includes two periods of anticyclonic conditions, during which a heatwave (from 2

to 8 September) and fog (from 22 to 24 September) were observed. It also includes disturbed weather episodes such as squall

lines on 8 September in the south-west of France, a mesoscale convective system in the south-east of France on 14 September,

and heavy precipitation events from 2 to 4 October.80

2.1 AROME-France NWP system

AROME-France is the limited area NWP model developed by Météo-France, operational since December 2008 (Seity et al.,

2011; Brousseau et al., 2016). AROME-France is a spectral model coupled to the global NWP system ARPEGE (Courtier

et al., 1998). AROME-France (AROME hereafter) has a 1.3km grid spacing on the horizontal and has 90 vertical levels in the

atmosphere ranging from 5m height AGL (lowest atmospheric model level) up to 10hPa.85

AROME uses a mass-�ux shallow convection scheme (Pergaud et al., 2009). Its associated surface scheme is SURFEX

(Masson et al., 2013). AROME and SURFEX exchange �ux and near-surface variables such as temperature, humidity, and

wind. Surface variables are computed over tiles representing four types of surfaces: nature, town, inland water, and ocean. The

surface layers have a dedicated assimilation system, which is described at Sect. 2.1.2.
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AROME has a 1h DA cycle for the atmosphere, and a 3h DA cycle for the surface. From the analysis, the experiments in90

this study produce 24h forecasts at 00:00, 06:00, 12:00 and 18:00 UTC.

::
In

::::::::
AROME,

:::
an

:::::::
average

::
of

::::::
49253

::::::::::
observations

:::::::
(active,

:::
see

:::::::
below)

:::
are

:::::::::
assimilated

::::
per

::::
hour

::::::
during

:::
the

::::::::::
one-month

:::::
study

::::::
period.

::
A

::::
total

::
of

:::
�ve

::::::::::
observation

:::::::
systems

:::::::
account

:::
for

:::
99%

:
of

:::::::::
incoming

:::::
active

:::::::::::
observations:

:::::
radar

:::::
(56.5%

:
),

::::::
SWSs

:::::
(17.0%

:
),

::::::
satellite

::::
(9.8%

:
),

:::::::::::::
radiosoundings

::::
(9.6%

::
),

:::
and

::::::
aircraft

::::
(6.1%

:
).

::::::
Among

:::
the

::::::::
variables

::::::::
observed

::
by

::::::
SWSs,

:::
the

::::
ones

::::::::::
assimilated

::
in

:::::::
AROME

:::
are

::::::::::
screen-level

:::::::::::
temperature

:::
and

:::::::
relative

::::::::
humidity,

:::::
zonal

:::
and

:::::::::
meridional

:::::
wind

::
at

:::
10m

:::::
height

:::::
AGL

:::
and

:::
the

:::::::
surface95

::::::::::
geopotential.

:::::
More

::::::
details

:::
are

:::::
given

::
in

::::
Sect.

:::::
2.2.1.

:

2.1.1 AROME atmospheric DA system

The atmospheric DA procedure is composed of two main steps, which are the screening, which is a series of QC checks, and

the minimization of the cost function used for variational DA (see D24). During both steps, modelled variables are compared

to observed variables by an observation operator. AROME has 13 prognostic variables and 5 control variables, which include100

temperature and speci�c humidity. Relative humidity is a diagnostic variable computed from speci�c humidity, temperature,

and pressure. The formula used in AROME is given in Appendix A. The model equivalents of observed screen-level tem-

perature (T) and relative humidity (RH) are 2m height AGL temperature (T2m ) and relative humidity (RH 2m ), described by

Vasiljevic et al. (1992) and ECMWF (2023). Computation ofT2m uses the temperature from the lowest atmospheric model

level and the surface temperature, based on the Monin–Obukhov theory – with separated solutions for stable and unstable con-105

ditions (Cardinali et al., 1994).RH 2m is computed using only the lowest level �elds of the atmospheric model.
:::::
Thus,

:::
the

:::::
effect

::
of

:::
the

::::
type

::
of

::::::
surface

:::
on

:::::::::::
observations

:
is

:::::
taken

::::
into

:::::::
account

::
by

:::::
these

::::::::::
observation

:::::::::
operators,

:::::
either

::::::
directly

:::::
when

::
it

:::::::
includes

::
a

::::::
surface

:::::::
variable

::::::::
modelled

::
by

::::::::
SURFEX

::::
(for

:::::
T2m ),

::
or

::::::::
indirectly

:::::
when

::
it

::::
only

:::::::
includes

::::::::::
atmospheric

::::::::
variables,

::::::::
modi�ed

:::::::
through

::
the

:::::::::::::::::
surface-atmosphere

::::::::
exchanges

::::::
during

:::
the

:::::::
forecast

:::
(for

::::::::
RH 2m ).

The difference between the observation and the model equivalent from the background (1h forecast starting from the previ-110

ous analysis), i.e., the observation minus the background, is further called OmB. In the same way, the difference between the

observation and its corresponding value in the analysis is further called OmA.

One of the main QC checks of the screening reject observations verifying:

kOmBk >
�

� coef

q
� 2

o + � 2
b (1)

with � = 4 and� coef = 0 :9, two coef�cients;� o is the standard deviation of observation errors set to 1.4 °C and 10%, for115

screen-levelT andRH
:
T

::::
and

:::
RH

:
observations;� b is the standard deviation of background errors,

::::
and

:::
the

:::::::::
right-hand

::::
term

::
is

::::::
referred

::
to

:::
as

:::
the

:::::::
rejection

::::::::
threshold. As an example, forT2m , during the �rst hour of the assimilation experiments (i.e., the

6 September 2021 at 01:00 UTC), the average� b equals 0.5 °C and the rejection threshold is up to 6.5 °C. For RH 2m , the

average� b equals 10% and the rejection threshold is up to 70%. These rejection thresholds are high because current near-

surface observations assimilated (SWS observations) are considered as anchor observations for the model, and screening has120

been designed to keep as much of these observations as possible.
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All active observations, i.e. those that have passed the screening, are combined with the background to produce the analysed

state of the atmosphere. AROME currently uses a 3DVar DA scheme to constitute the atmospheric analysis �elds. The only

difference between the 3DVar and the 3DEnVar DA schemes comes from the background error covariance matrixB which

is static (prescribed) for the 3DVar and dynamic for the 3DEnVar, estimated at each hour from the AROME Ensemble Data125

Assimilation system(EDA). To illustrate the difference between the two schemes, the increments (i.e. the analysis minus the

background) at the lowest atmospheric model level when single screen-levelT andRH
::
T

:::
and

::::
RH observations are assimilated

in two idealized experiments are shown in Fig. 1. The propagation of the information from an observation is isotropic with the

3DVar DA scheme (Fig. 1a and c), whereas with the 3DEnVar DA scheme it is anisotropic and localized within 25km around

the observation (Fig. 1b and d). At the observation location, the values of the increments differ. From an identical OmB of130

3.4 °C in both experiments, the increment at the observation location reaches 1 °C with the 3DVar DA scheme, and is reduced

to 0.4 °C with the 3DEnVar DA scheme. Similarly, the assimilation of a singleRH 2m observation results in an increment of

3.3% (resp. 1.1%) with the 3DVar (resp. 3DEnVar) DA scheme. The relative observation weight is diminished from the 3DVar

to the 3DEnVar DA scheme due to lower� b on average during the study period for temperature observations. Further details

on the 3DVar and the 3DEnVar DA schemes con�gurations are provided by D24.135

2.1.2 AROME surface DA system

AROME has a dedicated surface DA scheme for the initialization of the soil prognostic variables, which consist of two ground

temperatures and two ground water contents (Giard and Bazile, 2000). The surface DA scheme has its own screening, which

uses the same formulation as the atmospheric one (Eq. 1) with, forT2m (resp.RH 2m ), � set to 5 (resp. 2.5),� coef set to 1,� o

set to 1.3 °C (resp. 10%) and� b set to 1.6 °C (resp. 10%).140

The surface DA scheme is based on atmospheric increments ofT2m andRH 2m . First,T2m andRH 2m are computed with

the observation operator described in Sect. 2.1.1. Then, a univariate optimal interpolation (OI) scheme combines screen-level

observations withT2m andRH 2m background, using isotropic structure functions. The characteristic distanceD used in the OI

scheme is set to 100km for T2m andRH 2m observations, which is a compromise between the resolution of the NWP model,

the scale of the weather phenomenon represented and the density of the weather stations. ThenT2m andRH 2m increments are145

used to correct the soil variables with linear interpolations. More details on the surface DA are given by Sassi et al. (2019).

2.1.3 A posteriori diagnostics

A number of diagnostic tools exist to understand a posteriori the way in which the DA schemes use the observations. Both the

Desroziers diagnostic of observation error and the spatial Desroziers diagnostic (also used in D24) are used (Desroziers et al.,

2005). The spatial Desroziers diagnostic is computed to de�ne a minimum thinning length� , from which the correlated obser-150

vation errors are found to be signi�cantly low. Then, the observation network is thinned by selecting one random observation

per mesh from a horizontally-spaced� grid (D24).
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Figure 1. Increments at the lowest atmospheric model level of (a, b) temperature and (c, d) speci�c humidity, resulting from the assimilation

of screen-levelT
:
T

:
andRH

:::
RH observations, respectively, at Blagnac SWS on 6 September 2021 at 01:00 UTC with the (a, c) 3DVar and

(b, d) 3DEnVar DA schemes. The black circle indicates a 25km distance around the observation location.

2.2 Screen-level observations of temperature and relative humidity

A distinction is made here between standard weather stations(SWSs)and personal weather stations(PWSs): the former are

bought, operated and maintained by national meteorological and hydrological services(NMHS), while the latter are managed155

by private individuals or third-party organizations. Behind this distinction, it is important to keep in mind that citizens or third-

party organizations can acquire stations identical toNMHSs
::::::::::::
meteorological

:::::::
services, just asNMHSs

::::::::::::
meteorological

:::::::
services

can use low-cost stations dedicated to citizens.

2.2.1 Standard weather station(SWS)observations

This study uses only SWS observations assimilated in AROME, which constitute a subset of all SWS observations.These160

observationsoriginatefrom threetypesof reports:manualland SYNOP,automaticland SYNOPandthe FrenchRADOME

(Tardieu and Leroy, 2003). Thenumberof temperature(resp.relativehumidity ) observationsfrom SWSs
::
In

::::::
average

::::
over

::::
one

::::::
month,

:::
the

::::::
number

:::
of

:::::
SWSs

:::::::::
providing

::
at

::::
least

:::
one

::::::::::
observation

:::
per

:::::
hour

::
of

::::::::::
temperature

::::
and

::::::
relative

::::::::
humidity

:
is 2440(resp.
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Figure 2. Number of (a) SWSs measuring temperature, (b) SWSs measuring relative humidity, (c) Netatmo PWSs and (d) StatIC PWSs

providing at least one observation during the one-month study period over France. Observation counts are binned into approximately 0.15�

0.1� bins. The dashed rectangles delimit the 4 domains used in the cases studied: (1) Paris, (2) Toulouse, (3) along the Atlantic coast for the

heatwave case, and (4) the Saône Valley for the fog case.

:::
and

:
1600) in averageperhour in AROME

:
,
::::::::::
respectively. Only 65% of SWS temperature observations entering the AROME

DA system are located in France. This is only 48% for relative humidity. Over France, there are more than twice as many165

observations of temperature as there are observations of relative humidity, and both are fairly evenly distributed (Fig. 2).

Regarding the height of observation, air temperature and relative humidity should be and are generally measured between 1.25

and 2m height AGL (World Meteorological Organization, 2023), the rule being 1.5m in France, often a little higher up in

mountainous areas with heavy snowfall. For SWS wind speed observations used in Sect. 4, wind speed is generally measured

at 10m height AGL.170

2.2.2 Personal weather station(PWS) observations

Three networks of PWSs are used in this study: Netatmo PWSs, StatIC PWSs and Toulouse Métropole PWSs. In contrast to

SWS observations, PWS observations are not currently assimilated operationally in AROME.
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The Netatmo PWS network is the largest available in near-real time in France (Mandement and Caumont, 2020). As they

are owned by citizens, PWSs are unevenly distributed in France (Fig. 2). The outdoor module of the Netatmo PWS contains175

temperature and relative humidity sensors.
::
In

:::::::
average

::::
over

:::
one

::::::
month,

:::
the

:::::::
number

::
of

:::::
PWSs

::::::::
providing

::
at

:::::
least

:::
one

::::::::::
observation

:::
per

::::
hour

::
of

:::::::::::
temperature

:::
and

:::::::
relative

::::::::
humidity

::
is

:::::
63099

::::
and

::::::
63117,

:::::::::::
respectively.

:
With appropriate sheltering, these sensors

have a median and a 95% range of departures from a reference sensor of about0°C � 0:9°C in temperature and3% � 7%in

relative humidity, showing their correct intrinsic quality (Mandement and Caumont, 2020). However, the stations as they are

sold are not sheltered according to WMO recommendations: short-wave and long-wave radiation affectT andRH , causing180

departures to sheltered reference sensors (Büchau, 2018). For temperature, these departures are generally overestimations of

warm temperatures and underestimations of cold temperatures. These departures are complex depending on the location of the

station in relation to its close environment (e.g. wall, balcony, garden; Varentsov et al., 2020), and its actual height AGL.

The StatIC PWS network from the Infoclimat association gathers 880 stations in 2023 (Garcelon et al., 2023), of which

almost 600 stations are freely downloadable over the period via their open data portal. It gathers Davis Instruments Vantage185

Pro2 and Vantage Vue PWSs, and also sensors from Dragino or Talkpool companies in shelters, owned by citizens or by

the association itself. To join the network, each station should follow the WMO recommendations adapted by Météo-France

(Leroy, 2014), wherever possible:T andRH
::
T

:::
and

::::
RH observation in a normalized shelter, in a clear environment and at 1.5m

height AGL. However, in enclosed urban environments (with low air circulation), the recommended height is 1.5m above the

roof, i.e. various heights AGL depending on the height of the roof. StatIC PWS are set up in meteorologically interesting190

locations such as La Chapelle-en-Vercors which is a cold hole, or areas not well covered by SWS. The accuracy given for the

Davis Instruments Vantage Pro2 or Vue PWS is 0.3 °C for temperature and 2% for relative humidity (Garcelon et al., 2023).

Toulouse Métropole has deployed Davis Vantage Pro2 PWSs around the city of Toulouse for the study of the urban heat

island (Dumas et al., 2021). During the study period, 33 PWSs are available.

Figure 3 shows the average OmB distributions for the two largest PWS networks and the SWS network. For temperature195

over the study period, there are only one �fth as many StatIC PWS observations as SWS observations, while there are about

25 times as many Netatmo PWS observations. However, the heterogeneous siting of the PWSs, seen by the OmB standard

deviation, increases from SWSs to StatIC PWSs to Netatmo PWSs. The results are similar for relative humidity.

In this study, the only PWS observations assimilated are from Netatmo PWS, hereafter referred to as PWS. StatIC and

Toulouse Métropole PWS observations are used to evaluate pre-processing methods of PWS observations of temperature. For200

the evaluation, Netatmo PWS observations are interpolated at the location of StatIC and Toulouse Métropole PWSs, providing

an estimate which is compared to the StatIC and Toulouse Métropole PWS observations. The linear interpolation method takes

into account the vertical pro�le of temperature. The use of independent (i.e. non-assimilated) PWS observations allows to

verify the absence of bias in the model.

2.3 Satellite observations205

Observations of top of the atmosphere bidirectional re�ectance from the High resolution visible (HRV) channel from the

SEVIRI radiometer, onboard the Meteosat second generation 3 (MSG-3) satellite (also called Meteosat-10) in Rapid Scanning

8



Figure 3. Histograms of average OmB over the one-month study period for (a, d) Netatmo PWSs, (b, e) StatIC PWSs, and (c, f) SWSs

observations of (a–c) temperature and (d–f) relative humidity. Boxes indicatenb the number of OmB time series,� the average OmB for all

time series, and� the standard deviation of average OmB for all time series.

Service(RSS)at 1km horizontal resolution every 5min are used in Sect. 5.2 to locate clouds. The HRV channel is a broadband

channel which is sensitive to wavelengths between 0.4 and 1.1� m (Schmetz et al., 2002). Re�ectance observations from

EUMETSAT are corrected depending on the solar angle following the method of Li and Shibata (2006) applied to visible210

channels in Météo-France operational products (Derrien and Le Gléau, 2010).

An estimate of the global solar radiation at each PWS location has been derived from the spatialized global solar radiation

product made by Météo-France in near-real time. This product uses both in situ observations and surface solar irradiance from

MSG satellites (EUMETSAT, 2017). Nighttime values are set to zero. The hourly global solar irradiance is cumulated over

each hour and is used as a predictor for one of the bias correction methods of PWS observations.215

2.4 Pre-processing methods

In the article, PWS observations used are interpolated to round hours and PWSs with identical coordinates are removed, as

in the step preparation of D24. Hereafter, these observations, prepared but not pre-processed, are referred to as raw PWS

observations.

2.4.1 Bias correction (BC) methods220

The bias correction (BC) ensure that possible biases (i.e. a systematic departure to a reference) in PWS observation time series

do not propagate to the model. In this study, raw PWS observations of screen-level temperature and relative humidity have
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been monitored, i.e.T2m andRH 2m OmB time series are computed, in the operational AROME 3DVar con�guration, which

is called the Monitor experiment (as in Sgoff et al., 2022 and D24). Four types of BC methods that can be applied in real-time,

because they use past OmB statistics, are tested. They are named as follows:225

– BC-D removes the average OmB of the last 24h (average of 24 hourly OmBs, D for daily), in a manner close to

Mandement and Caumont (2020).

– BC-M removes the average OmB of the last 30d (M for monthly).

– BC-S uses the BC method developed by Sgoff et al. (2022); S for Sgoff. The bias is computed from �ve predictors

composed of trigonometric basis functions from the hour of the measured observations with 2d inertia.230

– BC-R uses a random forest method trained with the hour of the day and cumulative hourly global solar irradiance

predictors from the last 30d, close to the BC used by Beele et al. (2022), but with fewer predictors (R for radiation).

2.4.2 Quality control (QC) methods

Quality control (QC) methods are used in this study to remove PWS observations judged erroneous, because the current

screening for near-surface observations has not been designed to deal with observations with OmB statistics so different from235

those of SWS (Sect. 2.2.2).

Titan or titanlib (QC-Titan,Båserud et al., 2020), is an open-source library composed of various checks or tests. In this

article, as in Nipen et al. (2020), Titan-QC designates the combination of three main spatial tests which are the buddy check,

the spatial consistency test(SCT), and the isolation test. The buddy check consists in removing observations if their deviation

from the average is more than twice the standard deviation of the observations in the neighbourhood within a 15km radius.240

TheSCT
:::::
spatial

::::::::::
consistency

:::
test

:
consists in an iterative cross-validation procedure. For each observation,theSCT

::
it adjusts

a vertical pro�le, and computes an estimation of a true observation, and the standard deviation of the observations in the

neighbourhood. The observation is removed if the ratio of the squared deviation from the observation estimation divided by

the standard deviation is greater than 4 (or 8 for negative values). The process is repeated until no observations are removed.

The isolation test removes observations which have less than 5 stations within a 15km radius and 200m elevation difference.245

QC-MC (Mandement and Caumont, 2020) has been adapted for use on a larger scale, throughout France, even though it

was designed for the scale of a French region: computations are done simultaneously for 11 selected climatological areas.

The second main adaptation is the use, for each PWS observation, of OmB statistics from AROME instead of comparisons

between this PWS observation and an estimate derived from neighbouring SWS observations. In QC-MC, every hour, in every

climatological area, for each PWS, the rms of PWS OmBs are computed on the last 6h, to separate observations that differ250

from the background at a given time due to physical reasons (e.g. a phenomenon not well positioned in the background) to the

observations that differ all the time from the background. PWS having rms OmB exceeding an adaptive threshold, computed

according to Mandement and Caumont (2020), are removed.
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Figure 4. (a) Distributions of PWSs OmB for each hour of the study period: thick lines indicate the mean, thin lines indicate the mean� one

standard deviation. The area between thick and thin lines is shaded. (b–e) Screen-level temperature observations around Paris on 7 September

2021 at 10:00 UTC from (coloured triangles with black contours) SWSs, (coloured stars) StatIC PWSs. Coloured circles are either (b–d) PWS

screen-level temperature observations or (e)T2m AROME background at PWS location. PWS observations are (b) raw or quality-controlled

by (c) QC-Titan, (d) QC-MC. Boxes indicate the mean deviation (MD) and the rms deviation (RMSD) of PWS observations compared with

StatIC PWS independent observations.

3 Assimilation experiments design

3.1 Choice of bias correction and quality control255

In the literature, some authors carry out a QC without a BC (Nipen et al., 2020). To evaluate this choice, we compare QC-

MC and QC-Titan. Note, however, that QC-MC was designed to be used after a BC. Every hour, the observations considered

incorrect by the two QCs are removed. The hourly mean OmB for the PWS temperature observations are shown in Fig. 4a.

The average OmB exhibits a systematic bias following a diurnal cycle: it varies from about 0.7 °C during the day to 1.3 °C

11



Figure 5. Mean diurnal cycle of OmBs during the 1-month study period of (a) temperature and (b) relative humidity for (blue) raw PWS

observations, for PWS observations quality-controlled with QC-MC and bias-corrected with (brown) BC-D, (green) BC-M, (orange) BC-S,

(purple, only in a) BC-R, and for (black) SWS observations. Lines and colour shades are as in Fig. 4a.

during the night. The systematic warm bias could be due to site effect as the PWSs are placed close to heating environments260

such as windows or balconies (Bell et al., 2015; Sgoff et al., 2022). For relative humidity (Fig. 5b), the raw PWS observations

exhibit a diurnal bias composed of a drier nighttime and a wetter daytime. Its variations are close to what was reported by

Sgoff et al. (2022). Regarding the observations after the two QC, the mean OmB is reduced throughout the day when using

QC-MC, while it still shows a diurnal bias with QC-Titan (Fig. 4a). QC-MC takes into account a reference, which is here the

model background, allowing the QC to remove spatially incoherent observation in relation to the model background. A map of265

quality-controlled temperature observations near Paris at 12:00 LT is shown in Fig. 4b–e. Without QC, no regional pattern could

be seen on the temperature observations from PWSs, explaining a high rms deviation to StatIC PWS observations of 1.5 °C

(Fig. 4b). QC-Titan has the ability to remove observations which are too far from their neighbours. After QC-Titan, every

single PWS observation is closer to its neighbours, but PWS observations have a mean deviation to StatIC PWS observations

of 2.0 °C. When using QC-MC, more stations are removed, but only the observations close to the background are kept (QC-MC270

PWS OmB threshold is equal to� 1 °C at the time of the �gure). QC-MC will therefore be chosen for the next part of the study.

However, QC-MC does not ensure by itself a zero bias of PWS observations: Fig. 4a shows a slight positive bias, and a BC is

necessary to remove it.

To remove the remaining bias, the 4 BC methods described in Sect. 2.4.1 are tested, in association with the selected QC-MC.

Figure 5 shows the diurnal cycle of mean OmBs for both the PWS observations after applying the 4 BC methods, and the SWS275

observations. For temperature observations (Fig. 5a), mean OmBs for all choices of BC are close to zero and are in the order

of magnitude of SWS observations OmBs. By construction, BC-M mean OmBs are near zero throughout the diurnal cycle;

BC-R mean OmBs are very close: the addition of hourly global solar irradiance as a predictor does not seem to make any

12



Figure 6. As in Fig. 4b–e, around the city of Toulouse on 7 September 2021 21:00 UTC (23:00 LT). Coloured circles are either (a–e) PWS

screen-level temperature observations or (f)T2m AROME background at PWS location. PWS observations are (a) raw, quality-controlled

with QC-MC and bias-corrected with (b) BC-M, (c) BC-R, (d) BC-S, (e) BC-D. Coloured squares,
::::
stars

:::
and

::::::
triangles

:
are Toulouse Métropole

PWS,
:::::
StatIC

:::::
PWS

:::
and

::::
SWS screen-level temperatureobservations

:::::::::
observation,

:::::::::
respectively. Boxes indicate the mean deviation (MD) and

the rms deviation (RMSD) of PWS observations compared with Toulouse Métropole PWS independent observations.

substantial improvement. For relative humidity observations (Fig. 5b), all BCs tested exhibit a reduced diurnal cycle compared

to raw PWS observations. BC-D and BC-S mean OmBs are close, as they both use 24 or 48h rolling periods to estimate biases,280

respectively. Still, BC-S OmBs are slightly closer to zero during the night. Once again, the BC-M mean OmBs are near 0%

throughout the diurnal cycle, as SWS OmBs.

Figure 6 shows how the 4 BC methods modify PWS observations of screen-level temperature on 7 September 2021 23:00 LT

around the city of Toulouse (centre of the map). Raw PWS temperature observations are close to observations of SWSs,

Toulouse Métropole PWSs or StatIC PWSs networks, even if some PWS observations are warmer north-west of the city.285

However, BC-M and BC-R which uses monthly rolling periods to estimate biases reduce PWS temperatures in the suburbs

of the city, which is inconsistent with other observation networks. In contrast, BC-S and BC-D, which use 24 or 48h rolling

periods to estimate biases, keep observations in agreement with other observations networks: the RMSD of PWS observations

compared with Toulouse Métropole PWS independent observations reaches only 0.4 °C and 0.2 °C, respectively.T2m of the

AROME background (Fig. 6f) are close to Toulouse Métropole observations (RMSD of 0.3 °C), while unfortunately none are290

available north-east of the city to support the colder temperatures indicated by the background.
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Figure 7. Spatial Desroziers diagnostic of PWS observations of (blue) temperature and (red) relative humidity after BC-M and QC-MC on 6

September 2021 at (plain lines) 03:00 UTC and (dashed lines) 15:00 UTC. In grey, the number of pairs of equidistant stations (in 1km bins).

3.2 Choice of observation error covariances and thinning

In variational DA schemes, the observation error covariance matrixR has to be speci�ed. As in D24, the part ofR allocated

to PWS observations is prescribed diagonal, as for the part allocated to SWS observations, and the diagonal values (� o) are

the same as for SWS observations: 1.4 °C for T2m and 10% for RH 2m . This is done for simplicity's sake, as modelling the295

non-diagonal terms is an open research question (Guillet et al., 2019), and a study of sensitivity to a change in� o is beyond the

scope of this article. The diagonal assumption demands to verify that observations errors are not correlated, and if they are, the

reduction of the spatial density of the observations, may diminish the correlation between observation errors.

Figure 7 shows the spatial Desroziers diagnostic for PWS observations after BC-M and QC-MC. This diagnostic is com-

puted using OmA and OmB of these PWS observations assimilated without thinning in a cycled 3DEnVar DA experiment300

launched on 6 September 2021 00:00 UTC. This diagnostic decreases when the distance between the observations increases.

Two observations being far from each other have less probability of having correlated observation errors, reducing the in�uence

of their local environment. The spatial Desroziers diagnostic decreases up to distances of 1 to 6km, depending on the variable

and the hour of the day. To reduce the probability of having correlated observation errors, a thinning is applied, selecting one

random observation per mesh in an approximately 8km horizontally spaced regular Gaussian grid (8km thinning hereafter).305

One of the limit of the method is the fact that two observations may have correlated errors independently of the distance, for

example if they are subject to similar anomalous siting conditions, and these observations are not corrected nor removed by the

pre-processing.

Two pre-processing methods of PWS observations are selected for the DA experiments: P-M composed of BC-M, QC-MC

and a 8km thinning, and P-S composed of BC-S, QC-MC and a 8km thinning. One of the points to bear in mind when310

using pre-processing methods based on comparisons with the background of the model into which we want to assimilate
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Table 1. Overview of the experiments. The Monitor experiment is launched on 6 August 2021 00:00 UTC. All cycled experiments are

launched on 6 September 2021 00:00 UTC.In thenameof the
::
All experiments,

:::
use

::
the

:::
OI

:::::
surface

:::
DA

::::::
scheme.

:
X corresponds to the variable

of PWS observations assimilated
::
in

::
the

:::::::::
atmospheric

:::
DA

::::::
scheme

::::
only

:::::
unless

:::::::
otherwise

:::::::
indicated

:
: T for T2m or RH forRH 2m .

Experiments Duration Cycling Atmospheric

DA scheme

Use of PWS observations

Monitor 2 months No 3DVar Raw observations monitored

3DVar 1 month Yes 3DVar No

3DVarX 1 month Yes 3DVar VariableX assimilated after P-M (BC-M, QC-MC, 8km thinning)

3DEnVar 1 month Yes 3DEnVar No

3DEnVarX 1 month Yes 3DEnVar VariableX assimilated after P-M (BC-M, QC-MC, 8km thinning)

3DEnVarXS 1 month Yes 3DEnVar VariableX assimilated after P-S (BC-S, QC-MC, 8km thinning)

3DEnVarX-surf 1 month Yes 3DEnVar VariableX assimilated after P-M (BC-M, QC-MC, 8km thinning) in both

atmospheric (3DEnVar) and surface (OI) DA schemes

these observations is that pre-processed PWS observations can over�t the model background (see the triple collocation method

shown in Appendix B).

3.3 Overview of the experiments

All experiments are described in Table 1. The bene�t from assimilating PWS observations of a variableX (T for T2m or315

RH for RH 2m ) is evaluated using the observing system experiment (OSE) framework, comparing a reference experiment

(3DVar, 3DEnVar) to an experiment where PWS observations are assimilated (Pourret et al., 2022; D24). To explore the

role of the pre-processing (or bias correction, since this is the only part that changes), PWS observations after P-M and P-

S are assimilated using the 3DEnVar DA scheme (3DEnVarX and 3DEnVarXS, respectively). To explore the role of the DA

scheme, PWS observations after P-M are assimilated using the 3DVar DA scheme (3DVarX). Finally, the impact of assimilating320

simultaneously PWS observations after P-M at the surface using the OI DA scheme and in the atmosphere with the 3DEnVar

DA scheme is tested (3DEnVarX-surf). Monitor, 3DVar and 3DEnVar experiments are the same as in D24. Except Monitor,

they are cycled, which means that the assimilation of PWS observations at timet in�uences the background at timet + 1h ,

used to make the new analysis. During one month, 719 analyses are made, and 119 forecasts are launched.

4 Results of the assimilation experiments325

The experiments are evaluated using statistics of one-month OmB and OmF (observation minus forecast) where observations

are systematically SWS observations. The relative evolution of the rms OmX (X being B or F) of an experiment (XP) w.r.t.

another (CTRL) is given by:

� rmsOmX =
rms(OmXXP ) � rms(OmXCTRL )

rms(OmXCTRL )
(2)
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Table 2. � rms OmB (%) of surface pressure,T2m , RH 2m and 10m zonal and meridional wind for SWSs over the one-month study period.

Negative values of an experiment (XP) w.r.t. another (CTRL) indicate that the backgrounds (1h forecasts) of XP are closer than CTRL to

SWS observations, i.e. improvement and positive values indicate degradation. Signi�cant values are in bold.

Surface pressure T2m RH 2m Zonal wind Meridional wind

AROME France AROME France AROME France AROME France AROME France

domain domain domain domain domain

3DVarT w.r.t. 3DVar 0:2 0:7 1:8 2:4 � 0:1 � 0:3 � 0:3 � 0:5 � 0:1 � 0:2

3DEnVarT w.r.t. 3DEnVar 0:1 1:6 � 0:7 � 0:9 � 0:2 � 0:2 � 0:1 � 0:2 0:0 0:0

3DEnVarTS w.r.t. 3DEnVar 1:3 3:7 � 0:6 � 0:8 � 0:1 � 0:2 0:1 0:1 0:0 0:0

3DEnVarT-surf w.r.t. 3DEnVar 0:1 0:9 0:5 0:7 0:3 0:5 0:1 0:4 0:0 0:1

3DVarRH w.r.t. 3DVar � 0:3 � 0:8 � 0:6 � 0:9 2:7 4:5 � 0:2 � 0:2 � 0:1 � 0:2

3DEnVarRH w.r.t. 3DEnVar 0:2 0:3 0:2 0:3 � 1:0 � 1:5 0:0 0:0 0:1 0:2

3DEnVarRHS w.r.t. 3DEnVar 0:5 0:7 0:5 0:8 � 0:8 � 1:2 0:1 0:2 0:0 0:2

3DEnVarRH-surf w.r.t. 3DEnVar 0:1 0:1 0:3 0:4 � 0:9 � 1:3 0:1 0:2 0:1 0:2

As in D24, � rmsOmX is considered signi�cant if 0 is not in the 95% con�dence interval around it. This interval is com-330

puted by bootstrap with the "percentile" method (scipy.stats.bootstrap function, Virtanen et al., 2020):OmXXP time series is

randomly sampled with replacement, giving a new time series of the same size. This is done 1000 times, providing 1000 time

series, giving 1000 rms values forming a distribution, from which the con�dence interval is estimated.

4.1 Impact of the bias correction with the 3DEnVar DA scheme

When PWST2m observations are assimilated in 3DEnVarT or 3DEnVarTS (Table 2),T2m rms OmBs decrease signi�cantly for335

both experiments in comparison with 3DEnVar, which is an improvement. The improvement is slightly larger with 3DEnVarT

(� rms OmB of � 0:7%) than with 3DEnVarTS (� 0:6%) over the AROME domain. The improvement is larger (� 0:9%

and� 0:8%, respectively) over France, as it is the area where PWS observations are assimilated. Surface pressure rms OmB

signi�cantly increases over France for 3DEnVarT (+1 :6%) and 3DEnVarTS (+3 :7%). Other variables show no signi�cant

evolution.340

For PWSRH 2m observation assimilation in 3DEnVarRH or 3DEnVarRHS,RH 2m rms OmBs also decrease signi�cantly

over the AROME domain (� rms OmB of� 1:0% and� 0:8%, respectively). The improvement is larger over France (� 1:5%

and � 1:2%, respectively). However, a slight but signi�cant degradation ofT2m rms OmBs is found in the 3DEnVarRHS

experiment both over France and the AROME domain (0:8% and0:5%, respectively). Other variables show no signi�cant

evolution.345

For experiments assimilating PWS observations either ofT2m or RH 2m , the lowest rms OmBs are obtained with the P-M

pre-processing for all variables over France.
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Figure 8. � rms OmF of (a)T2m and (b)RH 2m for SWSs over France every 3h between 0 and 24h forecast range over the one-month study

period. Negative values indicate improvement and positive values indicate degradation. Points (respectively crosses) indicate improvement

(resp. degradation) of XP w.r.t. CTRL at 90% statistical signi�cance level.

Scores for forecasts up to 24h are shown in Fig. 8. When PWST2m observations are assimilated (3DEnVarT and 3DEnVarTS

in Fig. 8a), an improvement ofT2m rms OmFs is found up to 3h forecast range; beyond 3h forecast range, the rms OmF

evolution are neutral to slightly degraded. Similar results are found in 3DEnVarRH and 3DEnVarRHS when PWSRH 2m350

observations are assimilated. These results are consistent with Sgoff et al. (2022) results showing improvements vanishing or

not signi�cant beyond 5 to 6h forecast range when assimilating bias-corrected PWS observations only.

No signi�cant evolution of rms OmBs or rms OmFs of other observing systems is noticed (not shown), which could be

explained by the small impact ofT2m andRH 2m above theABL
::::::::::
atmospheric

::::::::
boundary

:::::
layer (Brousseau et al., 2014). Also, for

observing systems such as radiosoundings, the low number of observations over France makes it dif�cult to show signi�cance355

(D24).

4.2 Impact of the DA scheme

When compared to 3DVar, 3DVarT signi�cantly degrades by+2 :4%over France theT2m rms OmBs (Table 2). For 3DVarRH

compared to 3DVar, this degradation reaches+4 :5% . The degradation is very large at the analysis and remains signi�cant

between 6 to12h forecast range forT2m andRH 2m , respectively (Fig. 8). As it was found by D24 for PWS surface pressure360

observation assimilation, the 3DVar DA scheme with its operational settings is not able to take advantage of these PWS

observations with the pre-processing (including the thinning) which is selected.

When PWST2m observations are concomitantly assimilated by the atmospheric and surface DA systems (3DEnVarT-surf),

the improvement found in 3DEnVarT turns off to a signi�cant degradation forT2m rms OmBs (Table 2). The degradation is

signi�cant up to9h forecast range (Fig. 8). When PWSRH 2m observations are concomitantly assimilated by the atmospheric365

and the surface DA system (3DEnVarRH-surf),RH 2m rms OmBs and OmFs are very similar to 3DEnVarRH, showing an
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