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Abstract: The advancement of analytical techniques, such as comprehensive two-dimensional gas 24 

chromatography coupled with mass spectrometry (GC×GC-MS), enables the efficient separation of 25 

complex organics. Developing innovative methods for data processing and analysis is crucial to unlock 26 

the full potential of GC×GC-MS in understanding intricate chemical mixtures. In this study, we proposed 27 

an innovative method for the semi-automated identification and quantification of complex organic 28 

mixtures using GC×GC-MS. The method was formulated based on self-constructed mass spectrum 29 

patterns and the traversal algorithms and was applied to organic vapor and aerosol samples collected 30 

from the tailpipe emissions of heavy-duty diesel vehicles and the ambient atmosphere. Thousands of 31 

compounds were filtered, speciated, and clustered into 26 categories, including aliphatic and cyclic 32 

hydrocarbons, aromatic hydrocarbons, aliphatic oxygenated species, phenols and alkyl-phenols, and 33 

heteroatom containing species. The identified species accounted for over 80% of all the eluted 34 

chromatographic peaks at the molecular level. A comprehensive analysis of quantification uncertainty 35 

was undertaken. Using representative compounds, quantification uncertainties were found to be less than 36 

37.67%, 22.54%, and 12.74% for alkanes, polycyclic aromatic hydrocarbons (PAHs), and alkyl-37 

substituted benzenes, respectively, across the GC×GC space, excluding the first and the last time 38 

intervals. From source apportionment perspective, adamantane was clearly isolated as a potential tracer 39 

for heavy-duty diesel vehicles (HDDVs) emission. The systematic distribution of nitrogen-containing 40 

compounds in oxidized and reduced valences was discussed and many of them served as critical tracers 41 

for secondary nitrate formation processes. The results highlighted the benefits of developing self-42 

constructed models for the enhanced peak identification, automated cluster analysis, robust uncertainty 43 

estimation, and source apportionment and achieving the full potential of GC×GC-MS in atmospheric 44 

chemistry.  45 
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1 Introduction 46 

Improved sampling strategies, coupled with innovative measurement techniques, are imperative to 47 

capture the dynamic nature of atmospheric chemistry, particularly in the context of climate change and 48 

health risks (Franklin et al. 2023, Franklin et al. 2022, Huo et al. 2021, Phillips et al. 2018). 49 

Comprehensive two-dimensional gas chromatography coupled with mass spectrometry (GC×GC-MS) 50 

has emerged as a powerful tool for compound detection and identification, benefiting from the 51 

combination of two columns with orthogonal selectivity (Alam et al. 2013, Franklin et al. 2022). 52 

Despite its capabilities, GC×GC-MS encounters formidable challenges in data analysis, which can be 53 

extremely complicated and demanding. Efforts have been made to handle the deluge of data generated 54 

by GC×GC-MS. Traditionally, mass spectra were deconvoluted and compared to spectra from the 55 

National Institute of Standards and Technology (NIST) library for peak identification with pre-defined 56 

criteria (Guo et al. 2016, Piotrowski et al. 2018). Retention indices (RI) were further introduced to 57 

distinguish homologous compounds with resembling mass spectra. A pioneering and instructive work 58 

for searching criteria to classify GC×GC peaks was published in 2003 (Welthagen, Schnelle-Kreis and 59 

Zimmermann 2003). Welthagen (2003) incorporated the mass fragmentation patterns to classify 60 

compounds in atmospheric aerosol samples. Compounds belonging to the same chemical group related 61 

to one another in the GC×GC space and distributed in a structured pattern. They successfully identified 62 

seven groups of compounds, including alkanes, alkenes and cycloalkanes, alkyl substituted benzenes, 63 

alkyl substituted polar benzenes, hydrated naphthalenes and alkenyl benzenes, alkylated naphthalenes, 64 

and alkane acids, occupying more than 60% of the total peak area. This work set a good example of how 65 

user-defined rules could facilitate the identification of specific compound groups. 66 

Recent advances in chemometric tools for GC×GC-MS analysis involving machine learning and deep 67 

learning renovate multi-dimensional chromatography fields (Stefanuto, Smolinska and Focant 2021). 68 

Bendik (2021) developed a programming suite for high-confidence and fast compound identification 69 

using GC×GC coupled with time-of-flight mass spectrometry (TOF-MS) (Bendik et al. 2021). He (2022) 70 

extracted featured mass spectrometric information of the intermediate-volatility and semi-volatile 71 

organic compounds (I/SVOCs) by integrating algorithmic approaches into GC×GC-MS data (He et al. 72 

2022a, He et al. 2022b). A novel pixel-based multiway principal component analysis method was 73 

employed in Song (2023) to identify key tracers during incense burning (Song et al. 2023). Nevertheless, 74 
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interpreting GC×GC-MS data requires advanced computational tools and expertise, and the investigation 75 

of unknown compounds remains challenging due to the inadequate validation procedures, overreliance 76 

on manual data processing, limited access to computational resources, and the insufficient expertise in 77 

handling complex chromatographic data effectively.  78 

Bridging this gap requires further development of sophisticated algorithms and analytical approaches to 79 

unlock the full potential of GC×GC. This study proposes a bottom-up method for cluster analysis and 80 

quantification of organic vapors and aerosols within complex atmospheric mixtures. The scripts were 81 

initiated with the recognition of the common mass spectral features of specific species and were tailored 82 

to a wide range of compound clusters. The scripts were then trained, iterated, and optimized using real 83 

sample data until robust outputs were achieved. The new strategy reduces the ambiguity often associated 84 

with identifying compounds in complex mixtures. 85 

The proliferation of heavy-duty diesel vehicles (HDDVs) has raised significant concerns due to their 86 

increasing role in freight transport and in various industrial operations (Yan et al. 2022, Cheng et al. 87 

2022). Despite their low retention rate, HDDVs release substantial amounts of particulate matter, 88 

nitrogen oxides, ammonia, and carbon monoxide into the atmosphere compared with other vehicle types 89 

(Wang et al. 2023, Silva et al. 2023, Chang et al. 2022, Stanimirova et al. 2023, Hamilton and Harley 90 

2021, 2021, Kruve et al. 2014). To address this, gas and aerosol samples were collected from 91 

representative HDDV tailpipes and the ambient environment, then analyzed using GC×GC-MS. The 92 

proposed bottom-up method was employed for a comprehensive analysis of the complex organic 93 

mixtures, resulting in the identification of 26 compound categories, including hydrocarbons in multiple 94 

forms, oxygenated components, and species containing heteroatoms. Over 80% of all the 95 

chromatographic peaks were identified and assigned to a compound cluster using the proposed method, 96 

leaving a minor portion of organic matrix unresolved. Different compound clusters occupied separate 97 

positions in the GC×GC space, and distinctive distribution patterns within diverse samples and their 98 

contribution fractions were revealed. Quantification uncertainties were addressed thoroughly and the 99 

significant potential deviation when using n-alkanes as semi-quantification surrogates was highlighted. 100 

Overall, integrating automated algorithms with GC×GC data analysis holds significant implications for 101 

advancing our understanding of atmospheric chemistry, improving secondary organic aerosol (SOA) 102 

estimation, and guiding the formulation of environmental policies. 103 
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2 Materials and methods 104 

2.1 Sample collection, treatment, and instrumental analysis 105 

For the collection of HDDVs tailpipe emissions, chassis dynamometer experiments were conducted at 106 

the China Automotive Technology & Research Center (CATARC) in Guangzhou, China. Exhaust 107 

emissions from HDDVs were diluted in a constant volume sampler (CVS, CVS-ONE-MV-HE, Horiba), 108 

following the China heavy-duty commercial vehicle test cycle for tractor trailers (CHTC-TT) driving 109 

cycles. Two HDDVs equipped with the selective catalytic reduction (SCR) system were recruited. The 110 

two HDDVs met the China IV national emission standard and were manufactured in 2021. More 111 

information is summarized in Table S1. The average temperature in the sampling train was precisely 112 

controlled at 47 °C, while airflow, relative humidity, and pressure were monitored simultaneously. The 113 

speed trace and characteristics of CHTC-TT are shown in Figure S1. 114 

Gaseous exhausts were collected using two adsorbent thermal desorption (TD) tubes in series (Tenax 115 

TA, C1-AXXX-5003, Markes International) after passing through a Teflon filter. Particulate exhausts 116 

were deposited on a 47 mm quartz filter (Grade QM-A, Whatman). Ambient PM2.5 filter samples were 117 

collected on the rooftop of a 5-story building on the campus of Shenzhen University (22.60°N, 114.00°E) 118 

during November 2023 in western Shenzhen, approximately 25 m above the ground. The sampling site 119 

was surrounded by campus, residential areas, greenbelts, and a golf park, as shown in Figure S2. Previous 120 

studies demonstrated that the PM2.5 concentration in this aera represented the average pollution scheme 121 

in Shenzhen (Huang et al. 2018, Yu et al. 2020). The sampling strategy followed a regular schedule of 122 

one 24-h sample every day using a high-volume sampler (Th-1000c II, Wuhan Tianhong Environmental 123 

Protection Industry Co., Ltd). In total, 55 TA tube samples (including 11 field blank samples), 20 HDDV 124 

aerosol samples (including 3 field blank samples), and 6 ambient aerosol samples (including one blank 125 

sample) were collected. The list of ambient samples and the relevant PM concentrations are listed in 126 

Table S2. The sorbent tubes were well sealed and stored dry at room temperature, and quartz filters were 127 

frozen at −18 °C before analysis. All sampling materials were pre-baked thoroughly to remove potential 128 

carbonaceous contamination.  129 

TD samples were injected with 2 µL of deuterated internal standard (IS) mixing solution through a mild 130 

N2 blow (CSLR, Markes International). The list of deuterated IS is shown in Table S3. A precise portion 131 

of 1 cm2 (1 cm × 1 cm) filter sample was isolated and cut into strips. They were spiked with 2 µL of IS 132 
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mixing solution and inserted into a passivated quartz tube. All TD samples and quartz tubes were loaded 133 

onto a thermal desorption autosampler (ULTRA-xr, Markes International), thermally desorbed (UNITY-134 

xr, Markes International), and subjected to GC×GC separation (Agilent 8890, Agilent Technologies; 135 

Solid State Modulator1810, J&X Technologies) and mass spectrometry detection (Agilent 5977B, 136 

Agilent Technologies). 137 

The thermal desorption system heated the TD tubes to 320 °C (quartz tubes to 330 °C) for 20 min, while 138 

the trap remained at 20 °C. Following tube desorption, the trap temperature was raised to 330 °C (340 °C 139 

for quartz tubes) for 5 min at the maximum heating rate, and the vaporized analytes were purged into the 140 

1st GC column with a desorb split flow of 6 mL/min. Separation of the analytes was carried out using a 141 

DB-5ms capillary column (30 m × 0.25 mm × 0.25 μm, Agilent Technologies) as the primary column 142 

and a DB-17ms capillary column (1.2 m × 0.18 mm × 0.18 μm, Agilent Technologies) as the secondary 143 

column. The modulation column consisted of a VF-1ms capillary column (0.7 m × 0.25 mm × 0.10 μm, 144 

Agilent Technologies) connecting to the 1st column and an Ultimate Plus deactivated fused silica tubing 145 

(0.6 m × 0.25 mm, Agilent Technologies) connecting to the 2nd column.  146 

Initially, the GC oven was set at 50 °C for 3 min, followed by a gradual increase at a rate of 5 °C/min 147 

until it reached 310 °C, where it was maintained for an additional 5 min. The entry and exit hot zones 148 

were set +10 °C higher than the GC oven temperature, while the trap zone was maintained at -50 °C. The 149 

modulation cycle had a period of 4 s. Carrier gas flow was set at 1.2 mL/min. The MS had an integer 150 

resolution and was conducted in electron impact positive (EI+) mode (70 eV). It was operated over a 151 

range of 20–350 amu, and the temperature of the transfer line, ion source, and MS quadrupole was 300 °C, 152 

250 °C, and 170 °C, respectively. 153 

2.2 Data collection, alignment, and parsing 154 

GC×GC-MS data acquisition was performed using Enhanced MassHunter (version 10.0, Agilent 155 

Technologies) and SSCenter (version 2.4.0.0, J&X Technologies). All data utilized to develop and test 156 

the scripts were processed by Canvas Browser (version 2.5, J&X Technologies), which included baseline 157 

correction, mass spectra deconvolution, and peak smoothing. Baseline correction and peak smoothing 158 

enhanced the signal-to-noise ratio (S/N) and improved overall data quality. 159 

Chromatographic peaks were filtered using the following criteria: baseline noise = 150, S/N > 50. For 160 

each individual sample, after isolating all compounds of interest, a peak table was exported with 1st 161 
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retention time (RT) and 2nd RT, peak area, peak height, peak width, and deconvoluted mass spectra, 162 

arranged in 1st RT sequential order. These quantitative variables were further processed for targeted and 163 

non-targeted “omics”-oriented analysis. 164 

As expected, the chromatographic variables experienced RT shifts due to column degradation, routine 165 

maintenance (e.g., cutting column), and system fluctuations (e.g., variations in carrier gas pressure). The 166 

initial tolerance for RT shifts in adaptive cluster matching was set at 1 period of modulation in the 1st 167 

dimension and 0.1 s in the 2nd dimension. Additionally, a 2D shift cluster consisting of C16D34, C24D50, 168 

and C32D66, was configured, with the merit of correcting 2nd RT shift. Data correction or data alignment 169 

is critical for accurate and consistent peak integration. 170 

2.3 Algorithmic development 171 

EI spectra are typically characterized by a molecular ion (M+) peak plus a collection of fragment ion 172 

peaks. The M+ may dominate the mass spectrum in some cases (e.g., unsubstituted polycyclic aromatic 173 

hydrocarbons (PAHs)), but more frequently presents at a relatively low intensity. The EI spectra are 174 

highly comparable among different instrument systems and experimental conditions, making them an 175 

excellent measure for identifying compounds. The characteristic ions and their relative intensities depend 176 

on the intrinsic nature of the targeted compounds, necessitating knowledge of basic rules and common 177 

fragmentation routes to interpret EI mass spectra. Figure 1 illustrates the workflow for establishing 178 

computational strategies for robust and reproducible GC×GC-MS data processing. 179 

Functional groups significantly affect the fragmentation patterns observed in mass spectrometry, and 180 

some ions are typical of given structures. Isotopic peaks (e.g., hydrogen and chlorine) provide additional 181 

information about the molecules (Du and Angeletti 2006, Fernandez-de-Cossio et al. 2004). These pieces 182 

of information form the foundation for building up the model for cluster analysis, which is addressed in 183 

greater detail in the supporting information (S1). These indicative reaction schemes have been 184 

incorporated into the model development. Each critical step of model construction and validation is 185 

described thoroughly. The quantitative variables in the data alignment table, combining the 186 

chromatographic and MS information, are properly exploited and determine the overall speciation 187 

capacities.  188 

Traditionally, compound identification relies on the electron ionization-based fragmentogram and the 189 

deconvoluted mass spectra. Empirically, one-by-one compound identification can be greatly intervened 190 
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by neighbouring peaks, especially those with similar structures, and introduce considerable uncertainties. 191 

A good example is the assignment of homologous n-alkanes, of which the fragmentograms bear a close 192 

resemblance (Figure S6). In such cases, the similarity score (the measure of similarity between the 193 

observed mass spectrum and the NIST library hit) could be erroneously inflated to 850 (out of 999) or 194 

higher. In contrast, cluster analysis involves the comprehensive analysis of a specific type of compounds 195 

on a large scale, aiming to provide a holistic understanding of the distribution and transformation of the 196 

specific compound cluster being investigated.  197 

Due to the complexity and remarkable peak capacities, sophisticated and detailed scripts for cluster 198 

identification were constructed. Heteroatom-containing species, e.g., amides and amines, were carefully 199 

examined. The scripts began by recognition of the common mass spectra features of compound cluster 200 

of interest and are addressed in more details in the following descriptive framework: 201 

1. The Boolean value of characteristic ions. 202 

2. The intensity sequence of abundant ions in the whole spectra. 203 

3. The retention time window restriction for certain compound groups. 204 

4. The pattern of mass spectrometry variation with the increased number of substituents or the 205 

extension of the carbon chain. 206 

5. An iteration framework that involved repetitive cycles among all the tested samples. 207 

The scripts were then trained, iterated, and optimized incorporating real sample data, and the parameters 208 

were adjusted accordingly until a robust output was achieved. The extractor function built into the Canvas 209 

software was activated, and all the scripts were imported to facilitate automated cluster analysis. The 210 

scripts parsed all the files in the given directory into the required structure and generated three reports in 211 

the form of .pdf, .csv, and .bmp. The .csv file contained key information including the compound name, 212 

compound cluster, 1st and 2nd RTs, and peak area (based on total ion current (TIC)). 213 

For (i = 1 to m) # m equals the number of all tested samples. 

  Load the sample 

  Peak identification 

  Baseline correction 

  Mass spectra deconvolution 

  Peak smoothing 

    For (j = 1 to 26) # In total, 26 compound clusters were isolated with high accuracy and 

repeatability. 

      Execute the extraction rule of cluster (j)  
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      Export peak number, 1st RT and 2nd RT, peak area, peak height, peak width, and deconvoluted 

mass spectra 

    Next j 

Next i 

Once exported, the peaks were further processed for quantification/semi-quantification following the 214 

steps below. First, calibration curves were prepared by spiking different volumes of the standard solution 215 

mixture onto the blank TD tubes and blank filters, respectively. Peak area ratios, i.e., peak area of 216 

authentic standards over that of the internal standards, were used to build the linear relationship, with the 217 

merit of correcting system fluctuations. The selection of authentic standards prioritized their wide 218 

distribution across the entire chromatogram space, ranging from high to low volatility and weak to strong 219 

polarity, and meanwhile encompassing a broader range of functional groups and heteroatoms. The 220 

distribution and performance of all authentic standards are summarized in Table S4 and Figure S7. 221 

Second, for the un-quantified peaks, their complied information (X, Y, Z) corresponding to (1st RT, 2nd 222 

RT, compound cluster) is looped through the list of all authentic standards in the following descriptive 223 

pseudo-codes until the optimal authentic standard to semi-quantify the target peak is exported. It should 224 

be emphasized that the un-quantified peak and the corresponding authentic standard to semi-quantify it 225 

must belong to the same group due to their physicochemical similarities. 226 

For (i = 1 to n) # n equals the number of authentic standards and is a known variable. 

  If (ZM = Zi) # M is the un-quantified peak and i refers to the authentic standard that is selected in a 

certain loop.  

    Ai = Min (an array of ((XM – Xi)2 + (YM – Yi)2)) # This sentence dose not conform to the 

grammar rule of Visual Basic for Applications in Excel, and it is for illustrative purposes only.  

    Export Zi, (Xi, Yi, Zi), its peak area, and its linear calibration relationship. 

  End if 

Next i 

 227 
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 228 
Figure 1. Flow diagram illustrating the multistep data processing for establishing computational strategies 229 

for cluster analysis and quantification of organic vapors and aerosols using GC×GC-MS data. 230 

2.4 Quality assurance/control and uncertainty evaluation 231 

It is common for thermal decomposition to occur in analytical methods involving heating processes, 232 

potentially leading to the erroneous detection of compounds that are either not present in real samples or 233 

present in low concentrations. Such artifacts need careful scrutiny, and the availability of authentic 234 

standards covering the GC×GC space range is essential for validation. Nevertheless, the possibility that 235 

some observed analytes are decomposition products cannot be entirely ruled out. Peaks of ISs were traced 236 

across all samples to monitor the variations across several modules, and the results are presented in Figure 237 

S8. Excellent stability was clearly observed, demonstrating the robustness of the testing system. Strong 238 

linear correlations were achieved for this set of authentic standards between the peak area ratio and the 239 

spiked mass, with Pearson’s R ranging from 0.97 to 0.99. 240 
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3 Results and discussion 241 

3.1 Overall performance of the algorithm and compound identification 242 

The optimization of component identification remains challenging, and this work involves converting 243 

known chemical compounds into molecular descriptors and utilizing cluster analysis to predict the 244 

relationship between these descriptors and structural information. After continuous trials to improve 245 

reliability and data processing speed, a final solution of 26 compound clusters stands out with high 246 

accuracy and repeatability: 247 

− Aliphatic hydrocarbons, including n-/i-alkanes and alkenes 248 

− Cycloalkanes 249 

− Alkyl-substituted benzenes, including C1 – C6 alkyl-substituted benzenes 250 

− Adamantanes 251 

− Hopanes 252 

− 2 – 5 ring PAHs 253 

− Acids 254 

− Aliphatic alcohols 255 

− Aliphatic aldehydes and ketones 256 

− Oxy-PAHs 257 

− Phthalates 258 

− Phenols and alkyl-substituted phenols 259 

− Phenol ethers 260 

− Amides 261 

− Amines 262 

− Pyridines 263 

− Nitro compounds, including organic nitrates and organic nitrites 264 

Validation of the model output using field diesel samples has been conducted and has shown high 265 

estimation accuracy and integrity. Generally, over 82% of the peaks have been successfully classified 266 

and assigned to the corresponding compound groups, and their distribution in an example GC×GC plot 267 

is shown in Figure 2. To confirm the tentatively identified heteroatom groups, their raw chromatogram, 268 

mass spectra, and chemical structures of representative species are displayed in Figures S10-S16. Less 269 



12 

 

than 18% of the chromatographic peaks were identified as unresolved components. Aliphatic 270 

hydrocarbons were generally located in the lowest positions in the GC×GC space, except for column 271 

bleedings (Figure 2a-c and Figure S9), and their 2nd RT drifted less than 1s from the far-left to the far-272 

right side. Nitrogen-containing compounds in oxidized and reduced valences, including amides, amines, 273 

pyridines, and nitro compounds, were resolved simultaneously under respective filtering rules and 274 

occupied slightly higher positions in the GC×GC space (Figure 2f). Amines and pyridines, being more 275 

volatile, eluted at early stages, whereas nitro compounds and amides eluted at middle and late stages 276 

sequentially. Due to their high volatility, C2-C6 alkyl-substituted benzenes also appeared at the beginning 277 

of the GC×GC space and predominantly partitioned into the gas phase. Their 2nd RTs were comparable 278 

to those of pyridines and amides, with negligible drift in 2nd RT. Aliphatic oxygen-containing compounds, 279 

including acids, alcohols, and ketones, were found to be in the middle region and covered a wide 280 

volatility range. There aliphatic oxygen-containing compounds affect the acidity of the atmosphere, 281 

participate in aqueous phase reactions, and contribute significantly to the formation of SOA (Cope et al. 282 

2021, Xu et al. 2022). Phenols with one or more hydroxyl groups attached to an aromatic benzene ring 283 

were observed in the middle of the GC×GC space. Oxy-PAHs and PAHs were present in the upper-284 

middle of the GC×GC space, with their volatility range extending towards the low volatility end. A clear 285 

trend tilting towards the upper right corner was observed, suggesting that aromaticity plays a significant 286 

role in the retention in the secondary dimension. 287 
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 288 

Figure 2. The distribution of the 26 compound groups in an example GC×GC plot. For clear visualization, 289 

different compound groups are displayed separately, except for 2–5 ring PAHs, C2–C6 alkyl-substituted 290 

benzenes, and nitrogen-containing species. Nitro compounds include organic nitrates and organic nitrites, 291 

due to the co-existence of the characteristic ions at m/z 30 (NO+) and m/z 46 (NO2
+). 292 

3.2 Estimation of the uncertainty associated with the (semi-) quantification 293 

We conducted a systematic evaluation of the model output, and the results are shown in Figure 3 and 294 

Figure 4. To address this issue comprehensively and accurately, we selected three types of standards 295 

including C7–C37 n-alkanes, C2–C6 alkyl-substituted benzenes, and 2–4 ring PAHs, representing a full 296 

range of polarities and functionalities. The quantification deviation was computed according to the 297 

principles of the model. Chromatographic peaks were quantified either by their authentic standards or 298 

the surrogates within the same compound category after being classified into one of the 26 compound 299 

classes. For example, if the mass spectrum of a chromatographic peak resembled the pattern of the 300 

compound class of alkanes, it would be assigned to the alkane group and quantified by its authentic 301 

standard if available, or by the n-alkane (n-alkane serving as the semi-quantification surrogate in this 302 
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case) that was closest to it spatially. Similarly, if the mass spectrum of a chromatographic peak followed 303 

the pattern of Cx alkyl-substituted benzenes, it would be assigned to the Cx alkyl-substituted benzene 304 

group and quantified by its authentic standard if available, or by the alkyl-substituted benzene (with 305 

alkyl-substituted benzenes serving as the semi-quantification surrogate) that was closest to it spatially. 306 

In light of this explanation, the deviation of the slopes of the calibration curves of any pair of adjacent 307 

authentic standards within the same compound category was computed to represent the ceiling of the 308 

semi-quantification uncertainty. Uncertainties are calculated using the following Eq. (1): 309 

𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 (%) =
𝐴𝑏𝑠(𝑆𝑝−𝑆𝑠)

𝑆𝑚𝑎𝑙𝑙𝑒𝑟 (𝑆𝑝, 𝑆𝑠)
∗ 100                                               (1) 310 

where 𝑆𝑝 and 𝑆𝑠 are the slopes of the previous and subsequent compounds, respectively. 311 

The slopes increased rapidly from 3.13 (C7 n-alkane) to 8.21 (C9 n-alkane), fluctuated slightly from 8.85 312 

to 11.8 in the range of C9 to C27 n-alkanes, and decreased gradually after C28 n-alkane to the end of C37 313 

n-alkane. Throughout the volatility range of C9–C37 n-alkanes, uncertainties were less than 37.67%, 314 

except for one interval between C8 and C9 n-alkanes, where the quantification deviation reached 142%. 315 

A similar trend was observed for PAHs, with uncertainties less than 22.54%, except for the first and last 316 

intervals, where the quantification deviations were 55.44% and 81.59%, respectively, as shown in Figure 317 

3. Stable responses of C2–C6 alkyl-substituted benzenes were monitored, and the uncertainties were less 318 

than 12.74%. In other words, for any given peak, it would be quantified or semi-quantified by one 319 

authentic standard, and the upper limit of quantification uncertainty, originating from any pair of adjacent 320 

authentic standards, was as discussed earlier. 321 

It is reasonable that the uncertainty ranges of alkyl-substituted benzenes were less than those of n-alkanes 322 

and PAHs, given that alkyl-substituted benzenes eluted early in the front half, whereas alkanes and PAHs 323 

covered the entire volatility range. These trends illustrated that the responses of GC×GC to the analysts 324 

were sensitive to the volatility distribution, with accurate quantification being more reliable in the middle 325 

region. This also highlighted the utility of introducing more authentic standards and the benefits of 326 

enriching compound categories. It can be speculated that the quantification uncertainty would be further 327 

reduced with the addition of more standard compounds. 328 

Furthermore, we explored the uncertainty estimation of dividing the whole chromatogram into bins based 329 

on retention time, and all the species in the same bin were quantified, referring to the mass-to-signal 330 

responses of the Cn n-alkanes (Zhao et al. 2015, Zhao et al. 2014). This approach corrected the signal 331 
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variation of hydrocarbons in the GC-MS and was widely adopted for quantifying unresolved complex 332 

mixtures (UCMs) (Shen et al. 2023, Zhao et al. 2022). We chose four types of standards belonging to 333 

different compound categories with similar 1st RTs and different 2nd RTs, including C19H40 (1st RT = 34.6 334 

min, 2nd RT = 1.03 s), 9,10-anthracenedione (1st RT = 36.07 min, 2nd RT = 3.85 s), C19H40 (1st RT = 36.54 335 

min, 2nd RT = 1.07 s), and fluoranthene (1st RT = 37.00 min, 2nd RT = 3.04 s), and assessed the deviation 336 

of slopes between each pair of the standards. Results shown in Figure 4 indicate that the deviation 337 

between the three pairs of standards was 1809% (C19 n-alkane vs. 9,10-anthracenedione), 1903% (9,10-338 

anthracenedione vs. C20 n-alkane), and 105% (C20 n-alkane vs. fluoranthene), respectively. Quantitative 339 

errors in measuring unidentified chromatographic peaks using n-alkanes responses could reach three 340 

orders of magnitude, especially for oxygen-containing species. Errors in quantifying aromatic 341 

components, e.g., PAHs, also exceeded 100% in some cases. 342 

 343 
Figure 3. Slope and Pearson correlation variation of (a) C7–C37 n-alkanes, (b) C2–C6 alkyl-substituted 344 

benzenes, and (c) 2–4 ring PAHs. Brown diamond dots represent slopes of different species and are referenced 345 

to the left axis. Green circles denote the Pearson correlation of individual species and are referenced to the 346 

right axis. Pearson correlation values for n-alkanes, C2–C6 alkyl-substituted benzenes, and 2–4 ring PAHs 347 

range from 0.936 to 0.999, 0.994 to 0.998, and 0.952 to 0.992, respectively. Uncertainties are computed using 348 

the equation provided in the main text.  349 
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 350 

Figure 4. Slopes and uncertainty estimation for example compounds with close 1st RTs and different 2nd RTs: 351 

C19H40 (1st RT = 34.6 min, 2nd RT = 1.03 s), 9,10-anthracenedione (1st RT = 36.07 min, 2nd RT = 3.85 s), C20H42 352 

(1st RT = 36.54 min, 2nd RT = 1.07 s), and fluoranthene (1st RT = 37.00 min, 2nd RT = 3.04 s). Brown diamond 353 

dots represent the slopes of different species and are referenced to the left axis. Gray bars denote the 354 

uncertainty estimation for these compounds and are referenced to the right axis. 355 

3.3 Cluster analysis in organic vapor and aerosol samples 356 

The model was applied to organic vapor samples from HDDV tailpipe emissions (referred to as HDDV 357 

vapors), aerosol samples from HDDV tailpipe emissions (referred to as HDDV aerosols), and 358 

atmospheric aerosol samples (referred to as ambient aerosols) for cluster analysis. The results are shown 359 

in Figure S17, which displays the distribution of the top few species with a contribution fraction 360 

exceeding 5%, and in Figure 5, which shows the mass stacking. Overall, the identified chromatographic 361 

peaks accounted for 85%, 82%, and 99% for HDDV vapors, HDDV aerosols, and ambient aerosol 362 

samples, respectively. The unidentified peaks were less than 20% and are addressed in greater detail in 363 

the supporting information (S2). 364 

Distinct cluster distribution features can be extracted. For ambient aerosol samples, aliphatic ketones 365 

were the most abundant cluster, contributing to 27% of all the peak signals, followed by alkanes and 366 

alkenes. A notable fraction of 15.2% of nitro compounds was observed exclusively in ambient samples, 367 

indicating significant secondary nitrate formation processes under atmospheric conditions. Aliphatic 368 

acids and oxy-PAHs were also detected at high levels, with the top six groups accounting for over 95% 369 

of the total classified peak signals. Minor but non-negligible fractions included cycloalkane, aliphatic 370 

alcohols, and phenols and alkyl-substituted phenols. 371 

Similarly, aliphatic ketones ranked first for HDDV aerosol samples, with mass intensity reaching 46% 372 

of the total signals, followed by alkanes. Aliphatic alcohols and oxy-PAHs were also detected at high 373 

levels, and the top four groups accounted for over 88% of the total classified peak signals. Cycloalkanes, 374 
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amides, phenols and alkyl-substituted phenols, and alkenes were compound clusters with lower 375 

abundance, ranging from 1% to 4%.  376 

For HDDV vapors, the most abundant group was phenols and alkyl-substituted phenols, constituting 34% 377 

of the total peak signals. Compared with previous results, where the most abundant group was reported 378 

to be alkanes (Wang et al. 2022, Alam et al. 2019), the adoption of the innovative model contributed to 379 

resolving the oxygenated fractions and reduced inaccuracies in SOA simulation due to the lack of species 380 

information. The compound cluster is confirmed by 1) the retention time window, including 1st RT and 381 

2nd RT, and 2) the mass spectra. Detailed information is displayed in Figure S16. The 2nd RTs of the 382 

identified phenols and alkyl-substituted phenols range from 1.45 to 1.78 s, well above the hydrocarbon 383 

regions, where the 2nd RTs fall within the range of approximately 1.0 to 1.15 s. Their mass spectra also 384 

feature the typical phenol ions at m/z = 94, 107, 121, 135, 149, and 191. Alkanes ranked as the second 385 

top species, followed by C1 alkyl-substituted benzene. C1–C6 alkyl-substituted benzenes were negligible 386 

in both ambient and HDDV aerosol samples but were present in notable abundance in HDDV vapor 387 

samples. This distribution aligned with their placement in the GC×GC plot, indicating they were 388 

relatively volatile species and partitioned predominantly into the gas phase. Oxy-PAHs and aliphatic 389 

ketones contributed 6% of the total identified peak intensities, followed by minor fractions including C2 390 

alkyl-substituted benzene, cycloalkanes, and alkenes. 391 

The model output illustrates the overall distribution of compound clusters in various gas and aerosol 392 

samples, providing comparative insights. Carboxylic acids indicated a higher oxidation state than other 393 

compound clusters and were exclusively observed at a notable level in ambient samples compared with 394 

“freshly emitted” source samples. The oxidation state of dominant compounds in HDDV samples was 395 

comparatively low. For example, a significant ketone fraction was observed in HDDV samples, with the 396 

majority partitioning into the aerosol phase due to the long carbon chain skeleton and thus low volatility. 397 

Phenols and alkyl-substituted phenols were the leading species in HDDV gas samples. He (2022) 398 

reported that the oxygenated I/SVOCs accounted for over 20% of the total I/SVOCs mass in HDDV 399 

tailpipe emissions (He et al. 2022a).With the refinement and improvement of model performance, e.g., 400 

further splitting mixed mixtures, the oxygenated fraction was elevated to over 50%. 401 

This study highlighted the systematic presence and distribution of nitrogen-containing compounds in 402 

both oxidized valences (including nitro compounds) and reduced valences (including amides, amines, 403 

and pyridines). Among them, amines and amides were key precursors for new particle formation 404 
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processes in a polluted atmosphere (Saeki et al. 2022, Cai et al. 2021), and pyridines, with the nitrogen 405 

atom in the aromatic ring, were readily dissolved in water, participating in the global nitrogen cycle in 406 

ecosystems (Kosyakov et al. 2020). Nitro compounds, which include a wide range of organic compounds 407 

with NO or NO2 substituents, served as critical tracers for secondary nitrate formation processes. Amines 408 

and pyridines were volatile species occupying the early section of the GC×GC space, while nitro 409 

compounds and amides were distributed in the middle and rear space. Individual nitrogen-containing 410 

species were present at trace levels under atmospheric conditions and were difficult to detect. Moreover, 411 

authentic standards or high-resolution mass spectrometry were required to identify and quantify each 412 

compound (Zhang et al. 2018). With the establishment of an algorithmic solution, we were able to 413 

conduct a comprehensive scan of nitrogen-containing compound clusters.  414 

In addition to common features, specific compounds were identified in separate samples and could 415 

potentially serve as markers or tracers for primary emissions. Adamantane and its derivatives, with the 416 

fusion of three cyclohexane rings (chemical structure and mass spectrum shown in Figure S18a), are 417 

natural products in petroleum (Stout and Douglas 2004). They were volatile and had previously been 418 

isolated using GC×GC-ToF-MS in crude oil (Wang et al. 2013). Adamantanes were observed in HDDV 419 

vapor samples, contributing 1.4% to the identified peaks. Hopane (chemical structure and mass spectrum 420 

shown in Figure S18b) is also a natural product in petroleum and bitumen and serves as an important 421 

marker for vehicle emissions due to its persistency and stability (He et al. 2022b, Wong et al. 2021). 422 

Hopane was reported to survive heat treatment up to 460 °C and was exclusively detected in HDDV 423 

aerosol samples, with an intensity fraction of 0.3% (Wu and Geng 2016).  424 
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 425 

Figure 5. Fractional distributions of different compound clusters in ambient aerosol samples, HDDV tailpipe 426 

vapors, and HDDV tailpipe aerosols. Numbers labelled on each column represent the fractions of the top few 427 

groups in different samples. Identified clusters are outlined in light purple. 428 

4 Conclusions and outlook 429 

We presented an innovative method for optimizing the separation and identification of organic vapors 430 

and aerosols, focusing on establishing molecular descriptors and cluster analysis algorithms. The model 431 

outputs were validated using field samples with high accuracy and integrity. Less than 20% of the peaks 432 

were unresolved components. The retention patterns of various compound groups and their distribution 433 

in the GC×GC plot were resolved, and the influence of functional groups on fragmentation was 434 

thoroughly addressed. We also provided a comprehensive analysis of the quantification uncertainties of 435 

this new approach and highlighted the significant quantitative errors when using n-alkanes as semi-436 

quantification surrogates. This model was applied to various types of field samples, and the results 437 

revealed distinctive distribution patterns of compound clusters and contribution fractions, providing 438 

valuable insights into the compositions of organic vapors and aerosols, and offering potential markers 439 

for specific emission sources. 440 

Compound speciation in atmospheric chemistry continues to be a dynamic and challenging field. 441 

Speciated compounds enable models to consider the diversity of organic species and dynamic chemical 442 

transformations in the atmosphere, contributing to more accurate SOA simulation results. This approach 443 

also allows for a more refined description of the dispersion of pollutants, thereby assisting in the 444 

development of localized air quality management strategies as we strive for a more accurate and 445 

comprehensive understanding of atmospheric chemistry.  446 
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Filtering:
❑ Baseline
❑ Signal-to-noise

Iteration

Export 2DGC information
✓ 1st RT

✓ 2nd RT

✓ peak area

✓ peak height

✓ deconvoluted mass spectra 
...

...

❖ Compound classification
❖ Cluster distribution
❖ Mass contribution

Automatic matching and speciation


