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Abstract: The Tethyan Orogenic Belt records a long-lived geological cycle 25 

involving subduction and collision along the southern margin of the Eurasian 26 

continent. The West Kunlun Mountains, located at the junction between the 27 

Tibetan and Western Asian Tethyan realm, records multiple orogenic events 28 

from the Paleozoic to the Cenozoic that shape the northwestern Tibetan 29 

Plateau. However, deciphering the complex Mesozoic contractional and 30 

extensional tectonics to interpret the broader Tethyan geodynamics remains 31 

challenging. To address the tectonic transition following the early Cimmerian 32 

(Late Triassic) collision, this study investigates the newly identified Jurassic 33 

sedimentary strata and volcanic rocks in the West Kunlun Mountains. Zircon 34 

geochronological results of basalts and sandstones reveal that this ~ 2.5-km-35 

thick package was deposited at ca. 178 Ma, rather than the previously reported 36 

Neoproterozoic age. The alkaline basalts at the top of the formation exhibit 37 

chemical compositions similar to oceanic island basalts, consistent with the 38 

intracontinental extension environment revealed by the upward-fining 39 

sedimentary pattern. Provenance analysis, integrating conglomerate clast 40 

lithologies with detrital zircons, suggests a substantial contribution from 41 

adjacent basement sources, likely influenced by the normal faulting during initial 42 

rift stage. These findings indicate that the West Kunlun Mountains rapidly 43 

transitioned into an extensional setting after suturing with Cimmerian terranes. 44 

The regional structure, stratigraphy and magmatism suggest that this Early - 45 

Middle Jurassic basin was subsequently inverted during the Late Jurassic and 46 

earliest Cretaceous. We propose that the Mesozoic deformational history in the 47 

West Kunlun Mountains was related to the northward subduction of the Neo-48 

Tethys Ocean, as it transitioned from southward retreat to northward flat-slab 49 
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advancement. Comparing with the entire strike-length of the Eurasian Tethyan 50 

orogen, we find that the subduction mode varied from the west to the east, 51 

reflecting the broad geodynamic changes to, or initial conditions of, the Neo-52 

Tethyan system. 53 

 54 

Keywords: Tethyan Orogenic Belt; West Kunlun Mountains; Jurassic volcanics; 55 

Basin evolution; Subduction retreating and advancing. 56 
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1 Introduction 58 

The Tethyan Orogenic Belt, a trans-Eurasian mountain system spanning 59 

an east-west strike-length of over 15,000 km, is characterized by a series of 60 

mountain chains and orogenic plateaus along its latitudinal extent (Fig. 1a; 61 

Şengör, 1987; Metcalfe, 2013; Wu et al., 2020). The evolution of the Tethyan 62 

Orogenic Belt involved multiple phases of ocean basin opening and closing (i.e., 63 

the Proto-, Paleo-, and Neo-Tethys oceans) throughout the Phanerozoic era, 64 

which resulted in the development of multiple orogenic belts across the 65 

Eurasian continent (Stampfli, 2000; Wan et al., 2019; Metcalfe, 2021). The 66 

complex history of accretionary and collisional orogenesis in the Tethyan realm 67 

is intricately linked to the breakup and formation of the two mega-landmasses, 68 

Gondwana and Laurasia (Şengör et al, 1988; Stampfli and Borel, 2002; Zuza 69 

and Yin, 2017; Li et al., 2018; Wang et al., 2018). Documenting the mode and 70 

nature of the accretionary and collisional events in the Mesozoic history of the 71 

Tethyan orogenic system is, therefore, important for understanding the 72 

continental dynamics of Eurasia. 73 

The Mesozoic Tethyan Orogenic Belt involved a protracted phase of 74 

orogenesis, rifting, and basin evolution, associated with the convergence 75 

between the southern Asian margin and Cimmerian terranes derived from 76 

Gondwana (e.g., Kazmin, 1991; Stampfli and Borel, 2002; Angiolini et al., 2013; 77 

Robinson, 2015). The tectonic evolution of the Tethyan realm during the 78 

Mesozoic exhibits significant variations from the west to the east (Şengör, 1984; 79 

Zhu et al., 2022). In the Western Asian section of the Tethyan Orogenic Belt, 80 

geochronological and geochemical data from diverse magmatic rocks 81 

assemblages suggest a propagating continental rift system in the southern 82 
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margin of the Iran Block during the Early Jurassic to Early Cretaceous (Hunziker 83 

et al., 2015; Lechmann et al., 2018; Azizi and Stern, 2019). This process is 84 

envisioned to have been associated with subduction geodynamics involving 85 

multiple intraoceanic subduction zones, slab tearing, and alternating slab 86 

rollback and advance within Neo-Tethys (Zhang et al., 2018; Jafari et al., 2023). 87 

Conversely, in the Eastern Asian section of the Tethyan Orogenic Belt (i.e. 88 

Tibetan sector), an Andean-type orogeny along the southern margin of Eurasia 89 

from the Early Jurassic to the Early Cretaceous has been proposed to explain 90 

deformation and sedimentation patterns in the southern Tibetan Plateau (Kapp 91 

et al., 2007; Zhang et al., 2012; Xie and Dilek, 2023). This process was 92 

punctuated by Toarcian-Aalenian back-arc rifting event resulting from retreat of 93 

the subducting Neo-Tethyan seafloor (Hou et al., 2015; Wei et al., 2017). 94 

The West Kunlun Mountains, stretching from the northern Pamir to 95 

northwestern Tibetan Plateau, occupy a critical position at the junction between 96 

the western and eastern Tethyan Orogenic Belts (Fig. 1b; Şengör, 1984; Wu et 97 

al., 2016). The Kunlun Mountains involved the closure of the Paleo-Tethyan 98 

Ocean in the Triassic-Jurassic, followed by Cenozoic deformation and uplift 99 

during the Himalayan orogeny (Mattern and Schneider, 2000; Cao et al., 2015; 100 

Li et al., 2019; Xiao et al., 2002). Hence, the Mesozoic geology of the West 101 

Kunlun Mountains documents the plate tectonic history of the junction region 102 

within the Tethyan realm, providing pivotal insights into the formation of this 103 

extensive orogenic system. In particular, the Cimmerian Orogeny in the West 104 

Kunlun region critically represents the collision between the Gondwana- derived 105 

continental fragments and the southern Eurasian margin in the latest Triassic 106 

to late Jurassic (e.g., Şengör, 1979), but the timing and duration of this orogen 107 
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remains equivocal. Existing interpretations of the Jurassic palaeogeography 108 

and evolution vary, ranging from syn-orogenic (Cao et al., 2015), post-orogenic 109 

(Wu et al., 2021), to transtensional (Sobel, 1999), because of the scarcity of the 110 

relevant geological record from this period. Significant challenges also persist 111 

in understanding the Mesozoic evolution of the Pamir terranes (Angiolini et al., 112 

2013), including the timing of suturing and exact kinematics of related 113 

deformation (Robinson, 2015). The Cenozoic contractional deformation 114 

episodes, due the northward subduction of the Neo-Tethyan Ocean and the 115 

collision of India with Eurasia, further complicates our understanding in this 116 

remote region (Burtman and Molnar, 1993; Cowgill, 2010). The limited 117 

knowledge of the Jurassic and Cretaceous evolution of the Pamir interior has 118 

been preliminarily deduced from the timing and nature of regional magmatic 119 

activities (Chapman et al., 2018) that are challenged by the information derived 120 

from the surrounding, fragmented sedimentary basins (Leith, 1985; Wu et al., 121 

2021). 122 

To better understand the regional evolution and tectono-magmatic 123 

processes in the West Kunlun Mountains, we have undertaken a systematic 124 

geochronological and geochemical study and detailed analyses of sedimentary 125 

provenance of volcaniclastic rock suites in a Jurassic basin. By integrating 126 

these new results with existing data from the adjacent region, this study 127 

provides further constraints on the Mesozoic tectonic history of the central 128 

junction of the Tethyan Orogenic Belt, probing the preceding processes that 129 

cause the formation of the broad plateau in central Asia. 130 

  131 
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2 Geological framework and sampling 132 

2.1 Tethyan history 133 

The Tethyan Orogenic Belt is a vast, east-west-extending mountain system 134 

that separates the main Eurasian cratons and stable platforms in the north from 135 

Gondwana - derived continental terranes in the south (e.g., Şengör et al, 1988; 136 

Stampfli et al., 1991). The development of the Tethyan Orogenic Belt involves 137 

the evolution of multiple ocean basins and their seaways, including the Proto-138 

Tethys, Paleo-Tethys, and Neo-Tethys (Stampfli, 2000; Metcalfe, 2021). These 139 

ancient ocean basins overlapped in time but closed successively as the 140 

Gondwana - derived ribbon continents (i.e., Apulia, Pelagonia, Sakarya, Tauride, 141 

and Lhasa) accreted to the southern margin of Eurasia, creating several sub-142 

parallel suture zones stretching from the circum-Mediterranean region, 143 

Caucasus, Iranian Plateau, and continuing eastward into the Tibetan Plateau 144 

and Southeast Asia (Fig. 1a; Dilek and Moores, 1990; Wu et al., 2020; Metcalfe, 145 

2021). 146 

The Cenozoic indentation of the Pamirs fundamentally affected the 147 

deformation pattern of the Tethyan Orogenic Belt and geographically divided 148 

the belt into western and eastern sectors (Tapponnier et al., 1981). The history 149 

of the Proto-Tethys was linked to the breakup of the Rodinia supercontinent 150 

(Zhao et al., 2018). The western segment of the Proto-Tethys has been defined 151 

as a Cambrian-Silurian ocean existing between Baltica and Gondwana, 152 

whereas the eastern Proto-Tethys appears to have been closed earlier in the 153 

Early Silurian, as a series of Asian blocks collided onto the northern margin of 154 

Gondwana (e.g., Stampfli and Borel, 2002). The opening of the Paleo- and Neo-155 

Tethyan ocean basins was related to slab pull forces that caused the 156 
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detachment of the Hun (including the Tarim, North and South China) and 157 

Cimmerian terrane ribbons from the northern margin of Gondwanaland, 158 

respectively (Stampfli and Borel, 2002; Ruban et al., 2007). These terranes 159 

were successively transferred northward to the Eurasian continent, causing the 160 

closure of these internal seaways during the Cimmerian and Himalayan 161 

orogenies at the end of the Triassic and the beginning of the Cenozoic, 162 

respectively (Dilek and Furnes, 2019; Wan et al., 2019). 163 

The final demise of the Paleo-Tethyan Ocean and the initiation of 164 

subduction in the Neo-Tethyan Ocean occurred simultaneously in the Triassic - 165 

earliest Jurassic, which is of vital importance for comprehension of the cyclical 166 

Tethyan evolution (Wan et al., 2019). The West Kunlun Mountains, situated to 167 

the north of the Pamir syntaxis, forms the western extent of the Tibetan Plateau 168 

(Fig. 1b-c). They constitute an important spatial link between the western and 169 

eastern domains of the Tethyan Orogenic Belt. The formation of the West and 170 

East Kunlun Mountains, involved accretionary and collisional orogeneses 171 

during the closure of the Proto-Tethys and Paleo-Tethys oceans (Mattern and 172 

Schneider, 2000; Xiao et al., 2005; Dong et al., 2018). The East Kunlun 173 

Mountains are deflected to the north relative to the West Kunlun Mountains by 174 

the dextral Altyn-Tagh strike-slip fault (Fig. 1b). During the Early Paleozoic, the 175 

closure of the Proto-Tethys Ocean led to the collision of the Tarim Craton (North 176 

Kunlun) and the South Kunlun terrane along the Kudi suture zone (Fig. 1c; 177 

Zhang et al., 2019a). After splitting from eastern Gondwana in the Devonian - 178 

Carboniferous, the Tianshuihai - Qiangtang blocks travelled northward towards 179 

the Tarim Craton because of the subduction of the Paleo-Tethyan Ocean floor. 180 

These blocks ultimately collided with the Tarim Craton at the latest Triassic, 181 
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forming the Mazar - Kangxiwa suture zone (Fig. 1c; Xiao et al., 2005; Metcalfe, 182 

2021). The Pamir terranes (including the Central Pamir, South Pamir, and 183 

Karakoram), commonly regarded as the western counterpart of the Qiangtang 184 

block, rifted from Gondwana much later, during the Permian (Robinson, 2015; 185 

Angiolini et al., 2015). The major Cimmerian orogenic unconformity between 186 

the Lower Jurassic and the deformed Upper Triassic strata is generally 187 

considered to mark the timing of the integration of these Pamir terranes onto 188 

the Eurasian margin (Angiolini et al., 2013; Li et al., 2022b). 189 

The mid-Mesozoic tectonic evolution of the West Kunlun Mountains and 190 

Pamir is somewhat enigmatic, as the first-order geodynamic mechanisms for 191 

widespread observed deformation remain unclear. The interpretation of 192 

Jurassic molasse deposits has led to differing understandings on the tectonic 193 

setting in the region, such as syn-orogeny or post-collisional rifting (Gaetani et 194 

al., 1993; Wu et al., 2021). Several major exhumation events, including the Late 195 

Triassic and Early Jurassic, Middle-Late Jurassic, Early Cretaceous, and Late 196 

Cretaceous, are documented by low-temperature thermochronology in the 197 

mountain ranges and surrounding basins (Sobel, 2013; Cao et al., 2015; Li et 198 

al., 2019, 2023). Mid-Cretaceous granitoid plutons are widespread in the South 199 

Pamir and Karakoram. A polymetamorphic Jurassic and Cretaceous history of 200 

the mountains is also displayed by monazite ages (Faisal et al., 2014). The 201 

basement cooling as well as magmatic, and metamorphic events have 202 

previously been interpreted as associated with far-field stress effects of 203 

collisional events (Yang et al., 2017) or a high-flux event during an Andean-type 204 

subduction of the Neo-Tethyan Ocean (Chapman et al., 2018). These Mesozoic 205 

structures within the orogenic belts were intensely reworked by the Cenozoic 206 
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deformation during the Himalayan orogeny (Burtman and Molnar, 1993). 207 

 208 

2.2 Regional geology and sampling strategy 209 

This study focused on the central and southern parts of the northwest-210 

trending Jurassic basin within the West Kunlun Mountains (Fig. 1c). The 211 

Kyzyltau region, situated in the central part of this Jurassic basin, preserves the 212 

thickest Early-Middle Jurassic strata. It mainly comprises the Lower Jurassic 213 

Shalitashi and Kangsu formations, and the Middle Jurassic Yangye and Taerga 214 

formations (Fig. 2a). The Shalitashi Formation comprises a massive, thick 215 

conglomerate that overlies the deformed Carboniferous and Permian shallow 216 

marine clastic rocks and limestones along an angular unconformity (Fig. 3a). 217 

The poorly sorted textures and lateral thickness variations in the conglomerate 218 

indicate that its clastic material originated from alluvial fans (Sobel, 1999; Fig. 219 

3b). The Kangsu and Yangye formations form the main part of the Jurassic 220 

strata (Fig. 2a), with total stratigraphic thickness exceeding 1800 meters. The 221 

Kangsu Formation mainly comprises stacked greywackes interbedded with 222 

coal layers. The Yangye Formation consists mainly of interbedded sandstones 223 

and shales exhibiting typical Bouma sequences, indicative of turbidite deposits 224 

in a deepwater environment (Wu et al., 2021). The Middle Jurassic Taerga 225 

Formation is only exposed in the northeastern side of the region and consists 226 

of thinly-bedded shales and siltstones. The Lower to Middle Jurassic 227 

stratigraphy forms an upward-fining sequence, indicating the expanding and 228 

deepening of the basin over time. Structurally, the Jurassic strata exhibit strong 229 

deformation, forming a northwest-trending synclinorium (Fig. 2a). The Cenozoic 230 

contraction in the region extensively deformed the coal-bearing strata, resulting 231 
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in the formation of multi-scale folds and thrusts (Fig. 3c and 3d). Regionally, the 232 

Early-Middle Jurassic strata are unconformably overlain by the Late Jurassic 233 

Kuzigongsu Formation and the Cretaceous Kezilesu Group, which are 234 

characterized by oxidation-colored, massive conglomerate and sandstones 235 

(Fig. 3e). This event was generally interpreted to have been linked to the Middle 236 

- Late Jurassic, large-scale contraction and aridification across central Asia 237 

(Hendrix et al., 1992; Yang et al., 2017). 238 

Documentation and study of the Mesozoic stratigraphy in the southernmost 239 

part of the Jurassic basin have been relatively insufficient. In the Kandilik region, 240 

geological mapping identified a coal-bearing formation, known as the Lower - 241 

Middle Jurassic Yarkant Formation, and a massive conglomerate classified as 242 

the Upper Jurassic Kuzigongsu Formation (Fig. 2b). These Jurassic strata were 243 

strongly deformed and laterally bounded by a mylonitic shear zone to the west 244 

and thrust faults to the east. A stratigraphic unit of gray-black slate interbedded 245 

with fine sandstones and siltstones is exposed to the east of the Yarkant 246 

Formation, with a thickness exceeding 3500 meters (Ma et al., 1991). Abundant 247 

mafic dykes intruded into the lower part of the strata (Fig. 3f), causing local 248 

contact metamorphism. A suite of volcanic strata composed of several basalt 249 

layers are juxtaposed with the thick clastic package along a steeply-dipping 250 

fault. Several eruptive episodes are identified within this unit based on 251 

alternating volcanic horizons, including volcanic breccia (Fig. 3g), amygdaloidal 252 

basalts, and massive basalts (Fig. 3h). These volcanic rocks belong to the part 253 

of upper member deposited above the thick clastic strata (Ma et al., 1991). Due 254 

to the lack of reliable constraints from chronological results, this stratigraphic 255 

unit has long been thought as Precambrian in age (Ma et al., 1991). Structurally, 256 
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the strata were intensely deformed by regional Kashgar-Yecheng transfer faults 257 

(Fig. 2) and bedding dips steeply to the northeast (Fig. 3i). 258 

In the Kandilik region, one basalt sample (AYBL09) was collected near the 259 

thrust fault for geochronological dating (Fig. 2b). Six fresh, undeformed basalt 260 

samples were also obtained away from faults for geochemical analysis. These 261 

basaltic rock samples consist primarily of plagioclase with a fine columnar 262 

texture and anhedral Ti-Fe oxides (Fig. 3j). Plagioclase is locally altered into 263 

chlorite. Additionally, one quartz-lithic sandstone sample (AYBL13) was 264 

collected for detrital zircon age analysis. This sample exhibits poor sorting and 265 

is composed mainly of quartz (~ 30%) with angular shapes, feldspar (<10%), 266 

and lithic fragments (> 60%) (Fig. 3k). For regional comparison, two sandstone 267 

samples were collected from the Kangsu (KZLT1601) and Yangye formations 268 

(KZLT1602) in the Kyzyltau region (Fig. 2a). These sandstones show similar 269 

textures and compositions to the clastic sample from the Kandilik region (Fig. 270 

3I). 271 

 272 

3 Methodology 273 

One basalt sample (AYBL09) was collected from the Kandilik region for 274 

zircon U‐ Pb geochronology and in-situ trace element analysis. Zircon 275 

separation and cathodoluminescence (CL) imaging were done at Yuheng Rock 276 

& Mineral Technology Service Co., LTD., Langfang, China. Zircons were 277 

analyzed for U‐Pb geochronology using an Agilent 8900 ICP-QQQ equipped 278 

with an ESI New Wave NWR 193UC (Two Vol2) laser ablation system at Beijing 279 

Quick-Thermo Science & Technology Co., Ltd, China. Concordia plots were 280 

constructed using IsoplotR (Vermeesch, 2018). 281 
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To analyze the petrogenesis and tectonic setting of magmatism, six fresh 282 

basalt rocks were collected from the same section for determining their major 283 

and trace element chemistry. Samples were first crushed, and powdered in an 284 

agate mill. Elemental analyses were conducted at Wuhan SampleSolution 285 

Analytical Technology Co., Ltd. Major-element analyses were performed by X-286 

ray fluorescence spectrometry (ZSXPrimusII), with analytical uncertainties 287 

generally better than 1%. Trace-element contents were determined using an 288 

Agilent 7700e ICP-MS. 289 

To compare the detrital age patterns and sedimentary provenance, we 290 

have conducted zircon U-Pb dating on two sandstones (KZLT1601 and KZLT1602) 291 

exposed in the Kyzyltau section, and one sandstone (AYBL13) exposed in the 292 

Kandilik section (Fig. 2B). Zircons from samples KZLT1601 and KZLT1602 were 293 

analyzed for U‐Pb geochronology using a Thermofisher iCAP RQ ICP-MS 294 

equipped with a Cetea Analyte HE laser ablation system at School of Earth 295 

Sciences, Zhejiang University. Zircons from sample AYBL13 were analyzed for 296 

U‐Pb geochronology using an Agilent 8900 ICP-QQQ equipped with an ESI 297 

New Wave NWR 193UC (Two Vol2) laser ablation system at Beijing Quick-298 

Thermo Science & Technology Co., Ltd. The Common Pb was corrected with 299 

the method proposed by (Andersen, 2002). Concordia plots and Kernel Density 300 

Estimate (KDE) plots were constructed using IsoplotR (Vermeesch, 2018) and 301 

Density Plotter 8.5 (Vermeesch, 2012), respectively. 302 

The details of the analytical procedures and the information of the 303 

analytical methodologies, as explained above, are presented in Table S1. 304 

The data from the conglomerate in the Shalitashi Formation were collected 305 

at eight different sections. Analysis of conglomerate clasts was conducted 306 
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within a designated 1 square meter area. Our focus was on documenting the 307 

lithological compositions of the clasts, with at least one hundred gravels 308 

randomly counted at each site. 309 

 310 

4 Analytical Results 311 

4.1 Morphology and geochronology of zircons from basalt samples 312 

The results of zircon U-Pb dating of the basalt sample are presented in 313 

Table S2. Approximately one hundred and seventy zircon grains have been 314 

successfully separated from the basalt sample. Zircon crystals are mostly 315 

transparent and colorless, displaying varying lengths ranging between 50-200 316 

μm with elongation ratios of 1:1-5:1 (Fig. 4). Upon examination of their 317 

cathodoluminescence (CL) images, we have sub-categorized these zircons into 318 

two groups based on the presence of oscillatory zoning. The grains showing 319 

well-defined growth zoning are generally sub-euhedral in shape (no.3 in Fig. 4), 320 

which imply their magmatic origin (Fig. 4; Hoskin and Schaltegger, 2003). 321 

Another type of zircon displays inconspicuous zoning texture or yields only 322 

faintly visible zoning patterns (no.15 in Fig. 4). Morphological analysis of these 323 

zircons reveals a range from needle-shaped and elongated crystals (no.13 in 324 

Fig. 4) to stubby and equant forms (no.12 in Fig. 4). A common feature of these 325 

varying grains is their subrounded external appearance. This may result from 326 

moderate resorption either during the evolution of the magma chamber when 327 

the magma is oversaturated with respect to zircon or a certain degree of 328 

metamorphism (Corfu et al., 2003). In addition to their "polished" shape, these 329 

zircons commonly display nebulous or patchy-zoned centers, without distinct 330 

core-rim structures (no.11-13 in Fig. 4). 331 
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We have conducted a total of thirty-six spot analyses on various types of 332 

zircons, resulting in thirty-three analyses with a > 90% concordance (Fig. 5a). 333 

The Th/U ratios of these zircons range from 0.04 to 1.52 (Fig. 5d). We cannot 334 

assert that all of them are primary crystals without modification simply based 335 

on the evaluation of Th/U ratios. However, all of these results yielded 336 

concordant ages spanning a broad range from the Early Neoproterozoic to the 337 

Jurassic. Twenty youngest zircons with the concordant ages define a weighted 338 

mean 206Pb/238U age of 178±2 Ma (MSWD = 0.99) (Fig. 5b). We interpret this 339 

Toarcian age as the crystallization age of the zircons in this rock sample. The 340 

remaining older zircons yield primarily middle Paleozoic and Neoproterozoic 341 

ages, which we interpret as inherited from the country rock. 342 

 343 

4.2 Detrital zircon U–Pb ages from Jurassic sandstone 344 

The zircon U-Pb geochronological dataset for the detrital zircons is 345 

presented in Table S2. A total of 101 spot analyses were conducted on zircon 346 

grains from sample AYBL13. After filtering grains with greater than 10% age 347 

discordance, 98 of them met the criteria for inclusion in the Kernel Density 348 

Estimate (KDE) visualization (Fig. 6a). The analyzed results reveal that the 349 

Th/U ratios of most effective zircons range between 0.12 and 2.61, with only 350 

four zircons yielding extremely low values below 0.1 (Fig. 5d). The results 351 

suggest that most detrital zircons from sample AYBL13 are of igneous origin 352 

(Belousova et al., 2002). The youngest zircon grain from this sandstone yielded 353 

an apparent 206Pb/223U age of 429 ± 5Ma, whereas the oldest grain has 354 

revealed an apparent 206Pb/207Pb age of 3080 ± 22 Ma. The KDE plot reveals 355 

four main age populations with peaks at approximately 446 Ma, 820-955 Ma, 356 
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1553 Ma, and 2484 Ma (Fig. 6b). 357 

For analyzing regional detrital provenance, two Jurassic samples from 358 

Kyzyltau were analyzed for age comparison. The Early Jurassic sample 359 

KZLT1601 underwent one hundred spot analyses on randomly selected zircon 360 

grains. These measured grains exhibit Th/U ratios ranging from 0.09 to 1.49 361 

(Fig. 5d), consistent with an igneous origin. Eighty-nine zircon ages were 362 

plotted on or near the concordant curve (Fig. 6c), providing zircon ages ranging 363 

from 369 ± 6 Ma to 3314 ± 15 Ma. The detrital age spectrum was obtained using 364 

the KDE method and revealed similar peaks at approximately 444 Ma, 807 Ma, 365 

1823 Ma, and 2566 Ma (Fig. 6d). 366 

Similarly, one hundred zircon grains from the Middle Jurassic sample 367 

KZLT1602 exhibit characteristics indicative of a magmatic origin, with high Th/U 368 

ratios ranging between 0.11 and 2.63 (Fig. 5d). Ninety - eight concordant results 369 

display consistent age population with the sample KZLT1601, ranging from 345 370 

± 4 Ma to 3029 ± 15 Ma (Fig. 6e). These age populations on the KDE plot also 371 

display four main peaks at approximately 435 Ma, 782-988 Ma, 1829 Ma, and 372 

2480 Ma (Fig. 6f). 373 

 374 

4.3 Analysis of Jurassic conglomerate clast lithologies 375 

The field provenance analysis of the Lower Jurassic conglomerate 376 

(Shalitashi Formation) reveals significant variations in composition across 377 

different sections. In the Kangsu and Wulagen sections, located in the 378 

northernmost region of the West Kunlun Range, clasts are composed 379 

predominantly of green sandstones (80-51%) and low-grade metamorphic 380 

rocks like schist (0-46%), with minor occurrences of light-colored siliceous rock 381 
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(14-3%) and granitoid (6-0%). In the northwestern sector of the Pamir, a 382 

variegated sandstone (22-46%) and a recycled siliceous rock (29-46%) 383 

predominantly constitute major clasts in the Oytag and Gaizi sections, 384 

respectively. Additionally, minor limestone (11-2%) and diverse igneous rocks 385 

(38-6%), including granitoids, rhyolite, and basalts occur characteristically in 386 

the same stratigraphic horizon. In the Kyzyltau section, the clasts of the 387 

Jurassic conglomerate are dominated by green-colored sandstone (28%) and 388 

granites (50%) with subordinate schist (13%) and siliceous rock (9%). To the 389 

south of Kyzyltau, the Tamu and Qimugen sections present a provenance 390 

source dominated by sedimentary rocks. Clasts of limestone and green 391 

sandstone account for 85% and 61% in the neighboring sections, respectively. 392 

The proportion of reddish sandstone in the Qimugen section (33%) surpasses 393 

that in the Tamu section (15%). The Kusilafu section, located to the north of the 394 

Kandilik region, exhibits similar clast lithologies in the conglomerate to the 395 

Qimugen section, with a predominance of green sandstone (34%) and recycled 396 

siliceous rock (45%), along with minor occurrences of reddish sandstone (16%). 397 

Detailed clast lithologies and counting results are presented in the Table S4. 398 

 399 

4.4 Whole-rock major and trace elements of basalts 400 

The chemical compositions of the basalt samples from the Kandilik section 401 

are provided in Table S5. Except for one sample (AYBL11D), the majority of our 402 

samples displays similar geochemical compositions, characterized by low SiO2 403 

(45.7-51.0 wt.%) and MgO (4.78-7.18 wt.%) contents, and Mg#s ranging 404 

between 45 and 52. These samples possess high TiO2 (2.42-3.34 wt.%) and 405 

total alkali (Na2O+ K2O = 5.17-6.35 wt.%) contents, exhibit moderate Al2O3 406 
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contents ranging from 11.1 to 14.4 wt.% and total Fe2O3 ranging from 12.6 to 407 

13.7 wt.%. In comparison, the sample AYBL11D displays relatively high 408 

contents of SiO2 (55.5 wt.%) and TiO2 (4.76 wt.%) with a low total alkali content 409 

(4.80 wt.%). All basalt samples fall within the alkaline series field as depicted in 410 

the total alkali-silica diagram (Fig. 7a). However, it is worth noting that all 411 

analyzed samples exhibit varying Lost-on-Ignition (LOI = 1.51-9.81 wt.%) 412 

values, attributed to weathering and alteration effects, with the presence of 413 

chlorite and calcite (Fig. 3j). Hence, it is crucial to assess the alteration effects 414 

on the chemical compositions of the analyzed samples. The high-field-strength 415 

elements (HFSE, such as Nb, Ta, Ti, and Hf) and rare earth elements (REE) 416 

are typically immobile during alteration. This is supported by the consistent 417 

elemental variations against the most immobile element Zr, as shown in the Fig. 418 

S1. Additionally, Cr and Ni in these samples (except AYBL11D) also 419 

demonstrate strong correlations with Zr, suggesting that these elements were 420 

essentially immobile during alteration. Based on the Nb/Y vs. Zr/TiO2 diagram 421 

proposed by Winchester and Floyd (1977), all samples plot in the alkaline series 422 

(Fig. 7b). Therefore, we posit that these rocks are best classified as alkaline 423 

basalt. 424 

All analyzed samples display consistent chondrite-normalized rare earth 425 

element patterns (Fig. 7c), characterized by an enrichment of LREE relative to 426 

HREE, with (La/Yb)N ratios ranging from 6.24 to 7.96. Moreover, their REE 427 

patterns exhibit slight negative Eu anomalies (δEu = 0.7-1.0). The primitive 428 

mantle-normalized multi-element diagram illustrates that the analyzed samples 429 

are characterized by the enrichment of highly incompatible trace elements 430 

relative to low incompatible elements (Fig. 7d). The samples present significant 431 
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depletion of Sr and slight enrichment in Zr and Hf. No negative Zr-Hf-Ti 432 

anomalies are observed in any of the analyzed basalts. 433 

 434 

5 Identification and age constraints for the Lower Jurassic strata 435 

Identified Jurassic strata are largely exposed in the eastern edge of the 436 

West Kunlun Mountains and on the southern side along the Talas-Fergana 437 

Fault (Fig. 1c). The Jurassic sequences are comprised of coal-bearing 438 

siliciclastic rocks with variable thicknesses (Wu et al., 2021). Jurassic volcanic 439 

strata have not been previously identified in the West Kunlun Mountains, 440 

although a Jurassic tuffaceous succession and Upper Triassic - Lower Jurassic 441 

volcanic rocks crop out in the Hindu Kush along the western edge of the Pamir 442 

(Brookfield and Hashmat, 2001). Our study has focused on a package of thick 443 

clastic rocks intercalated with basaltic lavas, are exposed in the southermost 444 

part of the Jurassic Kyzyltau syncline (Fig. 2). This stratigraphic package was 445 

previously considered to be of Mesoproterozoic or Neoproterozoic age due to 446 

the lack of fossil records and the presence of low-degree metamorphism (Ma 447 

et al., 1991). Lithologically, the monotonous clastic member is composed 448 

primarily of gray-black slate and fine - grained sandstone to siltstone, rich in 449 

iron and carbonaceous components (Ma et al., 1991). The overlying basalts 450 

vary significantly in their thickness and lithological makeup, composed primarily 451 

of basaltic volcanic breccia, amygdaloidal, and massive layers (Fig.3g and 3h). 452 

Our new results of zircon U-Pb dating of basalts and sandstones suggest 453 

that this rock assemblage is not Precambrian in age, given the widespread 454 

appearance of Phanerozoic ages. We suggest that the weighted mean 455 

206Pb/238U age (~178 Ma) of the youngest group of zircons separated from the 456 
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basalt sample could define the eruptive age of this magmatic episode based on 457 

the following lines of evidence. First, these zircons exhibit similar morphological 458 

and CL imaging characteristics (Fig. 4), with the majority of the analyzed grains 459 

displaying Th/U ratios indicating their igneous origin (Fig. 5d). Secondly, the 460 

results of our in-situ trace elemental composition of the zircons (Table S3) 461 

indicate that the chondrite-normalized rare earth elements consistently exhibit 462 

left-sloping pattern with positive anomalies in Ce and Sm, and negative 463 

anomalies in Eu, similar to those of typical igneous zircons (Fig. 5c; Hoskin and 464 

Schaltegger, 2003). Thirdly, according to the Y vs. Yb/Sm plot proposed by 465 

Belousova et al. (2002), these Jurassic zircons are consistent with the basic or 466 

ultrabasic igneous origin (Fig. 5e). Thus, we posit that the crystallization age of 467 

the basalt is Toarcian. 468 

To refine the depositional age of the clastic member of the stratigraphy, we 469 

have compared the detrital zircon results from the feldspar lithic sandstones 470 

with those from the Lower and Middle Jurassic strata, exposed in the Kyzyltau 471 

region. The sandstone collected from the Kangsu Formation displayed similar 472 

texture and composition to the rocks from the Kandilik region, both composed 473 

of immature and poorly sorted quartz and lithic fragments (Fig. 3k and 3i). The 474 

age patterns of detrital zircons display remarkably similar populations with Early 475 

Silurian (~440 Ma) and Tonian (~800-950 Ma) dominated peaks, indicating that 476 

sediments of the two investigated areas shared a common exhumed 477 

provenance. The Lower and Middle Jurassic sedimentary rocks were previously 478 

suggested to have been deposited within structural half grabens and mostly 479 

sourced from the West Kunlun Mountains (Chen et al., 2018). This 480 

interpretation is consistent with our findings. Furthermore, we infer that this 481 
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stratigraphic package resembles a turbidite sequence, exhibiting relatively 482 

proximal, deep-water depositional features. 483 

Accordingly, we propose reassigning this thick package of clastic rocks to 484 

the Early - Middle Jurassic age. Hereon, we demonstrate the structural 485 

compatibility of this new stratigraphic scheme. The Lower - Middle Jurassic 486 

strata of the Yarkant Formation in the studied region comprise a lacustrine 487 

association rich in coal beds, and it delineated structurally by a mylonite zone 488 

to its west (Fig. 2b). The redefined sequences are rich in carbonaceous 489 

components and are closely bounded by Jurassic coal-bearing strata along 490 

several reverse faults. These two units successfully extend into the NW-SE-491 

striking Jurassic graben, which surprisingly narrows rapidly towards the south 492 

without any obvious facies transition (Fig. 1c). The basin-ward dipping of the 493 

strata constituted the western limb of the Jurassic syncline, which has a 494 

comparable thickness that may extend into the southern area of the Kyzyltau 495 

syncline (Fig. 2). 496 

 497 

6 Discussion 498 

6.1 Generation and geological setting of the Early Jurassic volcanism 499 

The basalt samples are characterized by varying SiO2 (45.7-55.5 wt.%) 500 

and low Mg# values (45-52), suggesting that they were not derived from the 501 

primary magmas, and that they likely experienced crustal assimilation and 502 

fractional crystallization (AFC) processes. Generally, mantle - derived magmas 503 

suffer various degrees of crust contamination en-route from magma chambers 504 

to the surface (Aitcheson and Forrest, 1994). The presence of inherited 505 

Paleozoic and Neoproterozoic zircons in these basalts suggests the potential 506 
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interactions between the ascending magmas and the country rocks (Fig. 5a). 507 

However, these basaltic rocks exhibit no negative anomalies of Nb, Ta, and Ti, 508 

which are typically depleted in the crust (Fig. 7d). They exhibit low La/Nb ratios 509 

(0.53 - 1.15) and mostly have high Nb/U ratios (37 - 45), similar to the range of 510 

oceanic lavas (La/Nb <1.2 and Nb/U >39; Krienitz et al., 2006). Additionally, all 511 

basalt samples exhibit low Th/Nb ratios (0.09-0.15), plotting along the 512 

MORB−OIB array of oceanic basalts within the Th/Yb-Nb/Yb diagram (Fig. 7e; 513 

Pearce, 2008). These signatures, with little indication of crustal components, 514 

suggest that these basalts experienced negligible contamination during their 515 

journey to the surface. They are characterized by extremely low concentrations 516 

of Ni (27.4–61.2 ppm) and Cr (25.4–108 ppm). They also exhibit slight negative 517 

anomalies of Eu and Sr on the whole-rock normalized REE patterns and spider 518 

diagram (Fig. 7c and 7d). These features could be caused by varying degrees 519 

of fractional crystallization processes involving olivine, clinopyroxene, and 520 

plagioclase. 521 

The Early Jurassic episode of volcanism in the West Kunlun Mountains 522 

temporally followed the Cimmerian Orogeny. Regionally, the eruption of basalts 523 

at 178 Ma was slightly later than the peak metamorphism of high-pressure 524 

granulite facies that has been proposed to have occurred between 200 and 185 525 

Ma (Qu et al., 2021). Collisional orogeny commonly transitions from syn-526 

collisional metamorphism to post-collisional unroofing (Dilek and Altunkaynak, 527 

2007, 2010; Zheng et al., 2019). The unroofing phase could generate 528 

geochemically varying granitoids with extrusion of mafic magma (Harris et al., 529 

1986; Zhou et al., 2021). However, distinguishing post-collisional from syn-530 

collisional magmatism may present challenges, because the post-collisional 531 
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mafic rocks could inherit whole-rock geochemical fingerprints from the 532 

preceding subducted materials (Zhao et al., 2013). Conversely, intraplate 533 

magmas are typically dominated by low-degree partial melting and silica-534 

unsaturated alkaline magmas, which is distinct from syn- and post-collisional 535 

igneous rocks (Dilek and Altunkaynak, 2010; Xu et al., 2020). 536 

The Jurassic alkali basalts exhibit enrichment of LREE and HSFEs without 537 

obvious crustal signatures (e.g., Nb-Ta depletion; Fig. 7c-d), different from the 538 

syn- and post-collisional magmas in the West Kunlun Mountains (Liao et al., 539 

2012; Chen et al., 2021). Their compositions resemble those of intraplate OIBs 540 

and could have been generated by low-degree partial melting (~5%) of a garnet 541 

lherzolite mantle source (Fig. 7e-f). All tectonic discrimination plots using 542 

immobile trace elements indicate that the Jurassic basalts formed within an 543 

intraplate setting (Fig. 8). 544 

The generation of these magmas can be attributed to one of two 545 

mechanisms. The first explanation is that the North Kunlun region experienced 546 

rapid orogenic collapse after Late Triassic collisional orogeny, during which 547 

intra-plate collapse-related volcanism generate the observed basalt flows. We 548 

do not find this hypothesis plausible given the implied rapid transition from peak 549 

collisional orogeny, including ca. 185 Ma prograde metamorphism, to collapse 550 

and volcanism recorded at ca. 175 Ma (Wu et al., 2021). Many arc-continent or 551 

continent-continent collisional orogens, evolving from peak orogenic 552 

metamorphism, to orogenic collapse, to intraplate stage, collectively persist for 553 

tens of millions of years (Dewey, 2005; Weller et al., 2021). 554 

Conversely, a broad plate-boundary extensional process may have 555 

impacted this orogenic belt and its hinterland region in the Early Jurassic. 556 
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Support for this model includes the expansive extensional rifts developed 557 

across the interior Eurasia during the Early-Middle Jurassic (e.g., Amu–Dar’ya, 558 

Afghan–Tajik and Fergana basins; Otto, 1997). The opening of the Greater 559 

Caucasus - proto-South Caspian Sea back-arc basin at the southern Eurasian 560 

margin nearly at the same time has been ascribed to a slab retreat event within 561 

the Neo-Tethys (Golonka, 2004). Back-arc transgression and MORB-liked 562 

magmas have been also identified in the Tianshuihai terrane (Fig. 7; Jian et al., 563 

2019), suggesting the slab-pull effect on the studied region in the West Kunlun 564 

Mountains. In this scenario, the Early Jurassic basalts were generated during 565 

regional extension across the region, accompanied by intra-plate volcanism. 566 

 567 

6.2 Jurassic basin formation and implications for sedimentary 568 

provenance 569 

The closure of the Paleo-Tethyan Ocean led to collision of the Cimmerian 570 

terranes with Eurasia that caused the development of a regional unconformity 571 

across the central Asia during the Triassic to Early Jurassic (Gaetani et al., 1993; 572 

Schwab et al., 2004; Fürsich et al., 2017). This orogenic unconformity 573 

separates the imbricated Triassic flysch strata below from the overlying Middle 574 

Jurassic limestones in the Tianshuihai-Qiangtang block (Zhao et al., 2000). In 575 

the studied area, the deformed Upper Paleozoic strata are unconformably 576 

overlain by a Lower Jurassic conglomerate (Fig. 9). Analysis of the Lower 577 

Jurassic deposits suggests a regional transtension following the Cimmerian 578 

collision (Sobel, 1999). Analysis of the available seismic data identifies the 579 

Jurassic horst-graben patterns, favoring the extensional setting within basin 580 

interior (Zhao et al., 2020; Li et al., 2022a). 581 

https://doi.org/10.5194/egusphere-2024-1670
Preprint. Discussion started: 10 June 2024
c© Author(s) 2024. CC BY 4.0 License.



25 

 

The Kyzyltau basin preserves the most comprehensive record of the 582 

formation and evolution of a post-Cimmerian rift, spanning from its initiation in 583 

the Early Jurassic to its inversion in the Late Jurassic (Wu et al., 2021). The 584 

basement of this basin varies along its lateral extent, indicating its strong 585 

tectonic reworking prior to Jurassic deposition. It comprises four subdivisions 586 

from the north to the southeast: (1) An Early Devonian metasedimentary rock 587 

terrane in the Kashgar depression (1-4 in Fig. 9), (2) The Carboniferous island-588 

arc crust and Permian back-arc basin successions in the northwestern segment 589 

of the West Kunlun orogenic belt (5-6 in Fig. 9), (3) An Upper Carboniferous to 590 

Middle Permian platform successions in the middle segment (7-11 in Fig. 9), 591 

and (4) An Upper Permian clastic formation in the southern part (12-17 in Fig. 592 

9). 593 

The massive conglomerate of the Shalitashi Formation indicates rapid 594 

infilling of the Jurassic basin during its initial opening stage in the West Kunlun 595 

orogenic belt. Analysis of conglomerate clast lithologies suggests that different 596 

sites exhibit sharp variations in their compositions, consistent with the presence 597 

of local basement rocks (Fig. 9). For example, the gravels in the Kashgar 598 

depression are mainly derived from sandstone strata, pointing to the source of 599 

the underlying Devonian (Wulagen) uplift. The gravels from the Oytag and Gaizi 600 

sections show complex compositions, with abundant igneous and siliceous rock 601 

fragments, which might have been provided by the local arc and back-arc basin 602 

lithologies. Contrastively, gravels from the Tamu section are composed 603 

predominately of limestones, implying their origin from the underlying 604 

Carboniferous marine strata. Gravels from the Qimugen and Kusilafu sections 605 

share a similar arenaceous source region, which exists in the Devonian and 606 
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Permian strata in the core of the Kashgar-Yecheng syncline (Fig. 2a). 607 

The Lower Jurassic strata rapidly transition from alluvial fan deposits into 608 

fluvial sedimentary environment, which is indicated by the Middle Jurassic, 609 

stacked coal-bearing sandstones of the Kangsu Formation (Fig. 9). During the 610 

Middle Jurassic, extensional faulting across the half-grabens further deepened 611 

the basin and facilitated the deposition of a turbidite sequence of the Yangye 612 

Formation (Wu et al., 2021). Provenance analysis based on detrital zircon age 613 

dating suggests that the source region for these sandstones was dominated by 614 

Late Ordovician-Early Silurian (~ 446 - 435 Ma) and Neoproterozoic (~ 980 - 615 

780 Ma) igneous rocks, with minor Neoarchean-Paleoproterozoic and 616 

Mesoproterozoic ages (Fig. 6). Early Paleozoic (~ 480 - 440 Ma) granitoids, 617 

with a peak intrusive at ~ 440 Ma (Fig. 1c; Tao et al., 2024), are exposed 618 

extensively in the South Kunlun terrane. However, the South Kunlun terrane is 619 

unlikely to be the source for these Jurassic depositions because the South 620 

Kunlun region contains extensive Triassic (~ 240 - 210 Ma) granitoids, intruded 621 

into the early Paleozoic rock units (Fig. 1c; Chen et al., 2021). Yet, Triassic 622 

detrital zircons are absent in the Lower - Middle Jurassic strata (Fig. 6). 623 

Therefore, we instead suggest that the potential source area was most likely 624 

the North Kunlun terrane, which consists mainly of Paleozoic strata and 625 

Precambrian metamorphic basement lithologies. A provenance study has 626 

revealed that the age patterns of detrital zircons from the Ordovician - Devonian 627 

strata contain main age peaks at 430 - 445 Ma, 930 - 800 Ma, and 790 - 760 628 

Ma, with subordinate Neoarchean to Mesoproterozoic ages (Yan, 2022). Our 629 

results are consistent with this detrital zircon age information from the Lower 630 

Paleozoic sedimentary rocks and with the paleocurrent results of previous 631 
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studies (Wu et al., 2021). The findings from detrital zircon analyses are also 632 

compatible with the constraints from clast lithologies in the Lower Jurassic 633 

conglomerate, indicating a proximal feature of the source- to-sink system 634 

developed in the half grabens. 635 

A Late Jurassic contractional event affected this region, as evidenced by 636 

the intense deformation and metamorphism displayed by various formations 637 

and rock units (Robinson et al., 2007; Groppo et al., 2019), and by the uplift 638 

and inversion of the earlier basin (Yang et al., 2017). The Middle Jurassic 639 

shallow marine sequences in Qiangtang and Pamir were uniformly eroded 640 

during this time period. The Upper Jurassic strata are either entirely absent or 641 

locally replaced by conglomerate deposits (Fig. 10). In the southern Tarim Basin, 642 

the Upper Jurassic strata are dominated by brownish reddish conglomerate of 643 

the Kuzigongsu Formation. Previous studies have suggested that these 644 

redbeds may have signalled a regional increase in aridity and the cessation of 645 

the monsoons as a result of the uplift of the surrounding mountain belts 646 

(Hendrix, 2000). A Late Jurassic uplift event, which significantly impacted the 647 

basinal tectonostratigraphy, has been corroborated by numerous 648 

thermochronologic ages (170-155 Ma) within the West Kunlun Mountains and 649 

Pamir (Fig.1c; Yang et al., 2017). The inferred uplift event also resulted in 650 

significant changes in basin and range patterns, and influenced the potential 651 

provenance of sediments. The emergence of juvenile detrital zircons in these 652 

Upper Jurassic and Lower Cretaceous deposits indicates the exhumation and 653 

erosion of a late Paleozoic to Mesozoic arc system (Fig. 10). The Triassic 654 

batholiths were thrust onto the southwestern margin of the Tarim Basin creating 655 

an elevated topography, which in turn provided abundant clastic material into 656 
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the Cretaceous depocenters in the region. 657 

 658 

6.3 Switching extensional and contractional tectonics related to the 659 

subduction of Neo-Tethys 660 

The Mesozoic era records the transition from the closure of the Paleo-661 

Tethys Ocean to the initiation of subduction within Neo-Tethys (Wan et al., 2019). 662 

These processes are influenced by complex plate tectonic conditions, as the 663 

evolution of the Paleo- and Neo-Tethys Oceans varies significantly in their time-664 

space patterns. The two Tethyan seaways diverge into several branches 665 

extending from Iran to Pamir, then eastward into the Tibetan Plateau (Fig. 1a). 666 

Deciphering the history of the Pamir Tethyan segment, therefore, improves our 667 

knowledge of the geodynamic evolution of the entire Tethyan realm. 668 

Two major tectonic events profoundly affected the sedimentary patterns of 669 

the Mesozoic successions in this region. Episodic collisions along the southern 670 

Asian margin in the Late Triassic and then in the Late Jurassic resulted in major 671 

deformation (Jolivet, 2017). The regional magmatic history and the results of 672 

the provenance studies of the Jurassic basin necessitate a geodynamic 673 

scenario to explain the mechanism of an extensional tectonic event between 674 

two major contractional events. Although a flat subduction model has recently 675 

been proposed to explain the regional Cretaceous magmatism in the Pamir, the 676 

mode of Jurassic tectonic processes remains poorly constrained (Chapman et 677 

al., 2018). As discussed above, the history of the Neo-Tethyan subduction 678 

events significantly varies spatially. The initiation of subduction along the 679 

Tibetan margin occurred during the Middle Triassic, leading to volcanic 680 

activities in the southern Lhasa (Wang et al., 2016; Xie et al., 2021), whereas 681 
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the subduction in the Iran sector in the same orogenic belt farther west initiated 682 

later in the Early Jurassic (Wan et al., 2023). The extensive Early-Middle arc 683 

Jurassic magmatism along both continental margins indicates a synchronous 684 

flare-up of continental arcs (Fig. 11a and 11c). The bimodal volcanism (195-174 685 

Ma) in the Gangdese arc was associated with the subsequent opening of a 686 

back-arc basin (174-156 Ma) (Fig. 11c; Kapp and DeCelles, 2019). The 687 

magmatic arc of the Sanandaj–Sirjan belt (180-140 Ma) in SW Iran was 688 

facilitated by a simultaneous progressive back-arc rift (Fig. 11a; Hassanzadeh 689 

and Wernicke, 2016; Azizi and Stern, 2019). 690 

By comparison, compiled magmatic detrital zircons in the Pamir segment 691 

reveal that Early-Middle Jurassic magmatism was almost absent there (Fig. 11b; 692 

Chapman et al., 2018). Available geochronological data indicate that Jurassic 693 

igneous rocks surrounding the Pamir are also limited, with only basalts exposed 694 

in the North Kunlun (Kandilik) and Tianshuihai regions (Jian et al., 2019) and 695 

bimodal volcanic rock suites found in the east of Karakoram (Zhou et al., 2019). 696 

Geochemical studies reveal that these coeval basaltic lavas (178-174 Ma) 697 

exhibit distinct features in their major and trace element compositions (Fig. 7 698 

and 8). Magmas of the basaltic lavas in the North Kunlun were dominated by 699 

within-plate basalts that shared similar compositions with typical OIB. In 700 

contrast, basalts in the Tianshuihai to the south were dominated by back-arc 701 

MORBs, characterized by distinct Nb-Ta depletions. The scarcity of zircon-rich 702 

felsic magmas in this region evidently differs from the conditions in the western 703 

and eastern segments of the Eurasian Tethyan margins where arc magmatism 704 

developed upon continental basement. To date, the exact timing of the onset of 705 

subduction-related magmatism in the Pamir Tethyan margin remains unclear. 706 
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The geochronological dataset for the Karakoram arc and the Kohistan Ladakh 707 

arc indicates that magmatic activity may have occurred as early as the Late 708 

Jurassic (Fig. 11b; Jagoutz et al., 2018; Saktura et al., 2023). 709 

While the spatial continuity of the Tethyan suture zones from Iran into Tibet 710 

remains enigmatic, we propose that the regional Early to Middle Jurassic 711 

extension expressed across the southern Eurasian continental margin was a 712 

consequence of retreating subduction of the Neo-Tethyan Ocean floor. First, 713 

the transition from Cimmerian orogenic build-up (200-185 Ma) to large-scale 714 

continental extension (178-174 Ma) suggests the involvement of additional 715 

external extensional stresses, different from the classic cases of continent - 716 

continent collision (Weller et al., 2021). No typical post-collisional mafic igneous 717 

rock has been identified in the West Kunlun Orogenic Belt as of now. Secondly, 718 

the 195 Ma bimodal volcanic rocks in Karakoram and the 174 Ma MORB-like 719 

basalts in Tianshuihai have been suggested as associated with the initial 720 

opening of a back-arc basin, based on their geochemical signatures of crustal 721 

material metasomatism (Jian et al., 2019; Zhou et al., 2019). The magmatism 722 

in Pamir and Karakoram was quite similar to the extensional episodes that 723 

occurred in the southern margin of the Lhasa block, caused by accelerated slab 724 

rollback (Kapp and DeCelles, 2019). Thirdly, deposition of shallow marine 725 

carbonates was prevalent in the Pamir and Karakoram during the Middle 726 

Jurassic (Fig. 10), indicating an expansive extensional continental platform 727 

facing the ocean (Yang et al., 2017). These scenarios are analogous to the 728 

active margin of the western Pacific rim, which is characterized by a broad 729 

marginal sea with an outboard trench - subduction chain (Fig. 1a). Additionally, 730 

the Middle Jurassic extension occurred across the broad hinterlands of central 731 
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Asia, which cannot be easily explained by the collapse of the Paleo-Tethyan 732 

orogenic belt (Otto, 1997). 733 

During the Late Jurassic, this marginal extensional basin started to invert, 734 

with extensive contractional deformation of the Lower-Middle Jurassic 735 

carbonate strata and the development of a major angular unconformity (Gaetani 736 

et al., 1993; Robinson, 2015). Available basement thermochronological data 737 

show widespread exhumation across the West Kunlun Mountains (Fig. 1c), as 738 

well as the reactivation of the Paleo-Tethyan sutures within the Pamir terranes 739 

(Schwab et al., 2004). The exhumation of the Triassic plutons in the South 740 

Kunlun Mountain led to the transport of debris material from the magmatic arc 741 

into the Tarim basin through braided fluvial network systems (Fig. 11b). This 742 

broad uplift event has been interpreted as retro-arc deformation and shortening 743 

related to the advancing subduction of the Neo-Tethyan Ocean (Robinson, 744 

2015).  745 

The subduction style along the broader strike-length of the Tethyan orogen 746 

varied from the west to the east in the Late Jurassic - Early Cretaceous. Similar 747 

to the West Kunlun Mountains, the Lhasa block to the east experienced basin 748 

inversion and contractional deformation starting by ca. 155 Ma and throughout 749 

the Early Cretaceous (e.g., Murphy et al., 1997; Ding and Lai, 2003; Kapp and 750 

DeCelles, 2019). Geological mapping has documented significant shortening 751 

strain (~ 60%) across Lhasa at this time (Murphy et al., 1997). Although the 752 

cause of this event has been debated, the magmatic lull since the earliest 753 

Cretaceous and subsequent flare-up in the Mid-Cretaceous in both regions 754 

imply that they shared a similar geodynamic setting (Fig. 11; Chapman et al., 755 

2018). Conversely, the Iranian segment to the west experienced continuous 756 
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extension at the same time (Hunziker et al., 2015; Lechmann et al., 2018; 757 

Maghdour-Mashhour et al., 2021). These along-strike variations likely reflect 758 

broad geodynamic changes to, or initial conditions of, the Tethyan Ocean 759 

system that warrant future investigations. For example, variable plate 760 

convergence rates related to global tectonic configurations or the oceanic-plate 761 

age variations could result in unique tectonic events along the strike-length of 762 

the entire Tethyan orogen. Alternatively, the closure of the Bangong-Nujiang 763 

Ocean, another branch of the Tethyan system between the Lhasa and 764 

Qiangtang blocks, might have also played a significant role in along-strike 765 

variations within the Tethyan orogenic belt (Fig. 11; Yang et al., 2017; Kapp and 766 

DeCelles, 2019). 767 

 768 

7 Conclusion 769 

This study has concentrated on the stratigraphy and provenance of 770 

Jurassic strata in the West Kunlun Mountains to better understand the 771 

Mesozoic geological evolution of the Eurasian margin within the framework of 772 

the Tethyan geodynamics. Our investigations of the Jurassic sedimentary 773 

successions, combined with new geochronological and geochemical data from 774 

coeval basaltic lava intercalations, led to the following conclusions: 775 

(1) A newly identified, thick sedimentary package with basaltic lava 776 

interlayers in the southern end of the Kyzyltau basin bears similarities to the 777 

Lower and Middle Jurassic sequences in their clastic compositions and 778 

structures. Zircon U-Pb dating results from basaltic lavas suggest an Early 779 

Jurassic age (~ 178 Ma) for this stratigraphic member, in contrast to a 780 

Precambrian age previously reported. This is a significant change that strongly 781 
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affects the current tectonic interpretations and models. 782 

(2) Our new geochemical data from the Early Jurassic basaltic extrusive 783 

rocks show that magmas of these basalts had typical OIB affinities, and that 784 

they lacked crustal contamination. Thus, the related magmatism likely occurred 785 

in an intraplate rifting setting and was facilitated by extensional fault systems, 786 

which significantly reduced the residence time of the ascending magmas in the 787 

crust avoiding contamination. 788 

(3) Provenance analysis, integrating conglomerate clast lithologies with 789 

detrital zircons, indicates a significant source contribution from local basements 790 

(North Kunlun) for the Early to Middle Jurassic rift basins. In comparison, the 791 

Late Jurassic contractional event caused an uplift of the surrounding mountains 792 

in the South Kunlun and Pamir, significantly influencing the basin 793 

tectonostratigraphy and source- to -sink system. 794 

(4) The alternating extensional and contractional tectonic episodes in the 795 

West Kunlun Mountains and a wider region across the southern Eurasian 796 

margin are related to changes in the subduction style of the Neo-Tethyan Ocean 797 

floor, transitioning from retreating in Early - Middle Jurassic to advancing in Late 798 

Jurassic - Early Cretaceous. 799 
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Figure 1 (a) Tectonic plate framework in the Northern Hemisphere and the suture zones within the Tethyan Realm (modified from 

Wu et al., 2020); (b) Structural framework of central Asia showing main blocks and orogenic belts, with locations of major sutures 

and boundary faults: TFF-Talas-Fergana Fault, BNS-Bangong-Nujiang suture, IYS-Indus-Yalu suture, ATF-Altyn-Tage Fault; (c) 

Simplified geologic map of the Western Kunlun Mountains including major units and suture zones (modified from Wu et al., 2021; 

cooling ages of basements refer to Yang et al., 2017): ①-  Early Paleozoic Kudi suture, ②-  Triassic Mazar-Kangxiwa suture, ③-  

Triassic Tanymas suture separating the North and Central Pamirs, ④- Rushan-Pshart zone separating the Central and South 

Pamirs; (d) A section across the east part of the Western Kunlun Mountains showing the deformed and fragmented Jurassic basin. 

The section location is presented in Fig.1 (b).
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Figure 2 (a) Geological map in the Kyzyltau region showing the stratigraphic information and sampling 
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strata. The red stars mark sampling locations in this work, and the grey stars mark the locations of published data 

(Zhang et al., 2019b).
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Figure 3 Photographs showing the observation from field and binocular microscope. (a) Early Jurassic Shalitash Formation 

overlying on the deformed Carboniferous strata with angular unconformity; (b) Conglomerate clast lithologies in the 

Shalitash Formation; (c) Early Jurassic Kangsu Formation with strongly deformed sandstone layers; (d) Strong deformation of the 

turbidite sequences in the Middle Jurassic Yangye Formation; (e) Conglomerate clast lithologies in the Late Jurassic Kuzigongsu 

Formation; (f) Mafic dyke within newly identified Jurassic strata in the Kandilik region; (g) Basaltic volcanic breccia; (h) Massive basalt 

layer; (i) Jurassic bedded feldspar lithic sandstones with great thickness, which was previously assigned to be Precambrian 

age; (j) Micrograph of basalt under plane-polarized light; (k) Micrograph of Jurassic sandstone under cross-polarized light from 

Kandilik section; (l) Micrograph of Jurassic sandstone under cross-polarized light from Kyzyltau section.
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Figure 10 Late Jurassic basin inversion based on the provenance variation through the Early Jurassic to Early Cretaceous and the 

stratigraphic correlation in the northwestern China. Late Jurassic and Early Cretaceous sandstone samples are according to Zhang et al. 

(2019b), stratigraphic correlation is modified from Yang et al. (2017).
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Figure 11 Illustrative cartoons indicating the tectonic variation of the southern Eurasian margin in Jurassic. The subduction of the Neo-Tethys 

Ocean resulted in persistent rifting along the Iran Tethyan segment, generating massive magmatism during the Early Jurassic to 

Early Cretaceous. The far-field subduction causing the Early-Middle Jurassic extension along the Pamir Tethyan segment without 

magmatic flare-up. The changes in subduction style along the Pamir and Tibet Tethyan segments induced the extension-

contraction transition. The spatial magmatic datasets are according to Zhang et al. (2018), Chapman et al. (2018), Ma et al. (2017) 

and Zhu et al. (2017), and the map of paleogeographic reconstruction is modified from Cao et al. (2017). Abbreviation: SaSZ- 

Sanandaj-Sirjan zone; TSH-Tianshuihai block; WKL-West Kunkun Mountains; KL Arc- Kohistan Ladakh Arc; Ir-Iran; K-Karakoram; Pa-

Pamir; Ta-Tarim; Qt-Qiangtang; Lh-Lhasa; BN Ocean-Bangong-Nujiang Ocean.
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