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Abstract. Surface albedo is an important parameter in radiative transfer simulations of the Earth’s system, as it is fundamental

to correctly calculate the energy budget of the planet. The Moderate Resolution Imaging Spectroradiometer (MODIS) instru-

ments on NASA’s Terra and Aqua satellites continuously monitor daily and yearly changes in reflection at the planetary surface.

The MODIS Surface Reflectance black-sky albedo dataset (MCD43D, version 6.1) gives detailed albedo maps in seven spec-

tral bands in the visible and near-infrared range. These albedo maps allow us to classify different Lambertian surface types5

and their seasonal and yearly variability and change, albeit only in seven spectral bands. However, a complete set of albedo

maps covering the entire wavelength range is required to simulate radiance spectra, and to correctly retrieve atmospheric and

cloud properties from Earth’s remote sensing. We use a Principal Component Analysis (PCA) regression algorithm to generate

hyperspectral albedo maps of Earth. Combining different datasets of hyperspectral reflectance laboratory measurements for

various dry soils, vegetation surfaces, and mixtures of both, we reconstruct the albedo maps in the entire wavelength range10

from 400 to 2500 nm. The PCA method is trained with a 10-years average of MODIS data for each day of the year. We obtain

hyperspectral albedo maps with a spatial resolution of 0.05° in latitude and longitude, a spectral resolution of 10 nm, and a

temporal resolution of 1 day. Using the hyperspectral albedo maps, we estimate the spectral profiles of different land surfaces,

such as forests, deserts, cities and icy surfaces, and study their seasonal variability. These albedo maps shall enable to refine

calculations of Earth’s energy budget, its seasonal variability, and improve climate simulations.15

1 Introduction

The surface albedo of the planet plays a crucial role within the climate system, governing the proportion of reflected solar light

over the incoming solar radiation at the surface. This holds significant importance as it effectively regulates Earth’s surface

energy budget (Liang et al., 2010; He et al., 2014). The role of albedo extends to climate regulation, with snow and ice albedo

feedback exerting a significant influence on climate change dynamics. Snow and ice possess much higher reflectivity compared20

to the surfaces they overlay. As temperatures rise, the diminishing extent of snow and ice cover leads to a decline in the planet’s

albedo. Consequently, this intensifies surface warming through a positive feedback mechanism.
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Land surface albedo displays remarkable variability, both spatially and temporally. Notable fluctuations in surface albedo co-

incide with changes in land cover and surface conditions, including factors like vegetation (Loarie et al., 2011; Lyons et al.,

2008), snow (He et al., 2013), soil moisture (Govaerts and Lattanzio, 2008; Zhu et al., 2011), and urban development (Offerle25

et al., 2005). In addition, soil and vegetation surfaces show different reflectance behaviours as a function of wavelength, which

are usually not incorporated in Earth system models (ESMs).

In the last decades, the advancement of satellite remote sensing techniques has enabled more accurate monitoring of Earth’s

surface, enhancing radiative transfer and climate models. This progress allows for continuous acquisition of extensive land

surface observation data. However, climate models still struggle to capture albedo’s temporal and spatial variations. In partic-30

ular, global and regional climate models often necessitate albedo products with absolute accuracy of 0.02–0.03 (Sellers et al.,

1995; He et al., 2014). Zhang et al. (2010) compared the Moderate Resolution Imaging Spectroradiometer (MODIS) albedo

products with the Coupled Model Intercomparison Project Phase 3 (CMIP3) model results spanning 2000 to 2008, revealing

discrepancies in globally averaged albedo of up to 0.06. In addition, validation of different satellites land surface products,

such as MODIS (Schaaf et al., 2002), GLASS (Global LAnd Surface Satellite, Liu et al. (2013); Qu et al. (2014)), and CGLS35

(Copernicus Global Land Service, Buchhorn et al. (2020)), shows global absolute differences up to 0.02–0.06, with the largest

variation occasionally exceeding 0.1 (Shao et al., 2021).

The divergence of different albedo products is not the only source of uncertainty in ESMs radiative transfer calculations. Most

ESMs use a two-stream approach for the land component, where soil albedo has fixed values in two spectral broadband regions:

the photosynthetically active radiation band (PAR, 400–700 nm) and the near-infrared band (NIR, 700–2500 nm). However,40

broadband radiative transfer schemes show a strong spectral discontinuity at 700 nm (Braghiere et al., 2023). This divergence

in surface reflectance propagates into other radiative partitioning terms, such as absorptance and transmittance at the top of

atmosphere (TOA).

More in general, in cloud-free simulations over land, the dominant factor impacting the TOA visible (VIS) and near-infrared

radiance is surface reflection (Vidot and Borbás, 2014). Varied surface optical properties exhibit distinct spectral signatures45

contingent on the type of surface. Furthermore, within the VIS/NIR range, surface optical properties showcase a robust geo-

metrical reliance that changes according to solar and satellite directions. To elucidate the spectral reliance of the surface, an

assumption of Lambertian behaviour can be made, implying isotropic luminance regardless of the viewer’s angle. The albedo

quantifies the proportion of reflected light under the assumption of isotropic radiation reflection.

Polar-orbiting satellites, like NASA’s Terra and Aqua, provide global albedo maps, which are vital for spectral, temporal, and50

spatial global albedo assessment. The MODIS instrument, on NASA’s Terra and Aqua satellites, offers coverage of Earth’s sur-

face every 1 to 2 days, enhancing our understanding of terrestrial, oceanic, and atmospheric processes. In the VIS/NIR range,

MODIS features seven spectral bands delivering data on land surface characteristics. However, radiative transfer simulations

demand precise radiance calculations across all wavelengths, which necessitates hyperspectral albedo maps. For example, re-

trievals of cloud pressure thickness using the O2A band (760-770 nm), requires precise albedo estimates in this spectral region55

(Li and Yang, 2024). Such comprehensive data are lacking due to the impracticality of obtaining albedo maps from satellites

for every wavelength. As a result, various assumptions are incorporated into radiative transfer codes to overcome this lack of
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information.

The MODIS albedo measurements are derived simultaneously from the Bidirectional Reflectance Distribution Function (BRDF),

depicting radiation discrepancies resulting from the scattering (anisotropy) of individual pixels. This methodology relies on60

multi-date, atmospherically corrected, and cloud-cleared input data obtained over 16 day intervals. The spatial resolution is set

at 30 arc seconds in latitude and longitude (equivalent to 1 km at the equator) using the Climate Modeling Grid (CMG). To

derive climatological averages, the MODIS MCD43D42-48 albedo datasets are averaged over a 10-year span in steps of 1 day,

and albedo maps are built for each day.

In this work, we introduce a novel methodology for creating hyperspectral albedo maps based on the seven representative65

bands of the MODIS instrument. Using a Principal Component Analysis (PCA) regression approach, we combine different

soils, rocks and vegetation datasets representative of different parts of the world, along with the Lambertian surface albedo

maps from the MCD43D (version 6.1) product (Schaaf and Wang, 2021) derived from the Terra and Aqua satellites. These

maps cover the seven bandpasses relevant for land surface albedos. Employing a PCA algorithm, as previously done by Vidot

and Borbás (2014) and Jiang and Fang (2019), enables us to reduce the problem’s high dimensionality and to generate new70

albedo maps by interpolating between the measured bandpasses.

These hyperspectral albedo maps of Lambertian surfaces hold significance in various climate and radiative transfer models for

Earth’s system. Using an ESM with coupled atmosphere-land simulations, Braghiere et al. (2023) demonstrated the impact

of making simplistic assumptions on albedo maps, using only two broadband values, compared to hyperspectral albedo maps.

They combined the Community Land Model version 5 (CLM5) (Lawrence et al., 2019) soil color scheme with the eigenvectors75

calculated from the General Spectral Vector (GSV) decomposition algorithm (Jiang and Fang, 2019) to build hyperspectral soil

reflectance maps to assess their impact on ESMs. Differently from our dataset of hyperspectral albedo maps, their approach is

not based on satellite measurments, so it is less accurate and misses the seasonal and temporal variability of surface reflectance.

However, it holds significance in assessing the impact of the hyperspectral treatment of Lambertian albedo in ESMs. Braghiere

et al. (2023) estimated a divergence of the radiative forcing of 3.55 W m−2, which subsequently impacts the net solar flux at80

TOA (> 3.3 W m−2), cloudiness, rainfall, surface temperature and latent heat fluxes. Braghiere et al. (2023) also highlights

the impact of implementing hyperspectral albedo maps in regional models, where differences in latent heat can be higher than

5 W m−2, showing the implications for regional climate variability and prediction of extreme events.

In the near future, the launch of new satellite missions like NASA’s Earth Surface Mineral Dust Source Investigation (EMIT),

will allow obtaining hyperspectral soils and vegetations data and to benchmark the accuracy of the model generated hyper-85

spectral maps.

2 Data and Methods

2.1 MODIS surface albedo climatology

NASA’s MODIS instruments (Salomonson et al., 1989) aboard the Terra and Aqua satellites, launched in 1999 and 2002,

observe the Earth in 36 spectral bands. Two channels, centred at 645 and 858 nm (see Tab. 1), have a spatial resolution of90
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Table 1. Spectral bands of MODIS in the VIS and NIR providing information about the land surface. For each band, we specify the central

wavelength and the bandwidth.

band central λ [nm] bandwidth [nm]

1 645 620–670

2 858 841–876

3 469 459–479

4 555 545–565

5 1240 1230–1250

6 1640 1628–1652

7 2130 2105–2155

250 m, and five channels (centred at 469, 555, 1240, 1640, 2130 nm), including three in the shortwave infrared, have a spatial

resolution of 500 m. All other channels have a resolution of 1 km.

The science dataset MCD43D (version 6.1), (Schaaf and Wang, 2021), is the combined Aqua+Terra L3 MODIS Surface Re-

flectance product and provides daily global estimates of directional hemispherical surface reflectance (black-sky albedo) and

bihemispherical surface reflectance (white-sky albedo) for the seven (2+5) MODIS bands mentioned above, and for three95

broadband spectral intervals (visible 300–700 nm, near-infrared 700-5000 nm and shortwave 300–5000 nm) with a spatial res-

olution of 30 arc seconds in latitude and longitude (corresponding to roughly 1000 m at the equator). MODIS cloud-free

observations are collected over 16 days and corrected for atmospheric gases and aerosols to derive surface albedo for land

pixels (water bodies are not considered). Data are temporally weighted to the ninth day of the retrieval period, and this day

appears in the file name. Each surface reflectance pixel contains the best possible measurement of the period, selected on the100

basis of high observation coverage, low view angle, the absence of clouds or cloud shadow, and aerosol loading. Usually, due to

the sun-synchronous orbit of the Terra and Aqua satellites (equatorial crossing times at 10:30 AM and 1:30 PM respectively),

only pixels with local solar noon zenith angle up to approximately 80° are provided with an albedo value.

The MODIS land surface products have been validated against in situ measurements and other satellite-based land surface

albedo. Globally, the MODIS product is less accurate for high solar zenith angles (Sánchez-Zapero et al., 2023). We compile105

a black-sky albedo climatology for the seven MODIS spectral bands starting from the MCD43D42-48 products. We average

the daily available MODIS product over a 10 years span, from 2013 to 2022, in steps of 1 day, starting on January 1st, i.e.,

from day of the year (DOY) 1 to DOY 365. This results in 365 climatologically averaged albedo maps for spectral band with

a spatial resolution of 30 arc seconds in latitude and longitude. The aim is a complete surface albedo climatology map for all

grid boxes that are illuminated by the Sun, i.e., up to a local solar noon zenith angle of 90°. Pixels that are in the dark (i.e., the110
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Sun is always below the horizon) during the entire DOY are left unfilled. For the computation of the climatology, we proceed

in the following way:

1. First, we select the MCD43D42-48 albedo retrievals with albedo quality between 0 and 3 (see Tab. 2) and compute the

mean value of the surface albedo for every grid box over the 10 years for a given DOY. After this averaging procedure,

some pixels remain unfilled due, e.g., to cloudiness and because of the local solar noon zenith angle constraints mentioned115

above.

2. Thus, for every DOY we fill the missing values with the mean of the albedo at DOY-n and DOY+n (temporal averages

obtained in 1), with n ∈ [1,40]. The mean value with the smallest n is the one that is used, i.e., the value that is closest

in time.

3. For some DOYs, close to solstices and for local solar noon zenith angle between 80° and 90°, a range of 40 days is not120

enough to have a filled value both in the future and in the past. It might be, for example, that a value is available close in

the future, but to have a corresponding value in the past we should look further than 40 days. The reason why we require,

in the previous step, to have values both in the past and in the future is to balance out seasonal changes and avoid sharp

transitions near the solstices. In this cases, we first search for the closest filled values both in the past and in the future,

even if the two intervals are different or if one of them is larger than 40 days. Then, we average the values of albedo in125

a 10-days interval around the selected future and past available days. Instead of simply assigning to the actual DOY the

mean of these averages, we perform a linear interpolation, to weight more the values closer in time to the actual DOY.

4. In a forth step, remaining missing values for a given DOY are replaced with the spatial average for the same DOY over

an area of m×m grid boxes around each missing value, with m ∈ [3,5,7,9]. The mean value with the smallest m is the

one that is used, i.e., the value corresponding to the smallest surrounding area.130

5. Further remaining missing values are replaced with the mean over longitude of surface albedo in 2° latitude bands for

the same DOY.

6. If missing values still exist at this stage for given grid boxes and a given DOY, the mean value over all DOYs during the

10 years under consideration is used to replace them.

7. Finally, since the MCD43D product only retrieves land properties, we compute an albedo value for the ocean pixels135

in each of the seven MODIS bands using the "deep ocean" spectrum from the old ECOSTRESS library of the US

Geological Survey (USGS) database (Baldridge et al., 2009; Meerdink et al., 2019). To this end, incoming solar spectral

irradiance (Kurucz, 1992) is first convolved with the spectral response function of the given MODIS channels. Then,

under the assumption of no atmosphere, reflected spectral irradiance at the surface is computed upon multiplication with

the spectral ocean albedo and integrated over wavelength. This value is finally divided by the integral of the incoming140

spectral irradiance computed above to obtain the band albedo values for the ocean. These values are used everywhere
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Table 2. Meaning of the MCD43D albedo quality flag.

Flag value Description

0 Best quality, full BRDF inversions

1 Good quality, full BRDF inversions

2 Magnitude inversion (number of observations ≥ 7)

3 Magnitude inversion (number of observations ≥ 2 and < 7)

255 Fill value

for the global water bodies and at every time. Of course, we are aware that water surfaces are better characterised using

a BRDF in order to take care of specular reflection (Cox and Munk, 1954a, b; Nakajima, 1983).

MODIS provides data also over coastal regions covering some ocean pixels. These pixels were filled in the climatology as in

steps 1-6, and not replaced as ocean pixels by step 7. Some of these coastal pixels also exhibit sea ice, which remains included145

also in the climatology.

The percentage of missing land pixels filled after each step of the climatology is shown in Fig. 1. The percentage is calculated

Figure 1. Percentage of land missing pixels as the average over all DOYs. We specify which is the remaining percentage of missing values

after each step of the climatology.

as the average over all DOYs. Step 3 fills most of the remaining missing pixels, but only between 80° and 90° of local solar

noon zenith angle. These pixels receive only almost parallel incoming solar radiation, and thus their impact on radiative transfer

calculations is limited. On the other hand, our methodology allows to give an estimate to these high local solar noon zenith150

angle pixels, which are usually also highly reflective in the visible wavelengths.
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This climatology is the starting point to build the hyperspectral albedo maps, where the average ice and snow cover is automat-

ically included. Our MODIS black-sky albedo climatology from years 2013 to 2022 is available at https://doi.org/10.57970/

pt52a-nhm92. For every pixel, we provide a flag indicating at which step the albedo value was filled. The spatial resolution is

the same as the MCD43D product (30 arc seconds).155

2.2 Soils and Vegetations spectra

To create the hyperspectral albedo maps for each DOY, we use laboratory and in-situ hyperspectral measurements of different

soils, rocks and vegetation surfaces. Jiang and Fang (2019) developed hyperspectral soil reflectance eigenvectors to improve

canopy radiative transfer. Studying the impact of different regional datasets, they found an increase of accuracy and robustness

with a global sample coverage of different soils and vegetations spectra, compared to the performances of regional datasets.160

Following this prescription, we select three dry soils and vegetations datasets, covering different countries and different surface

materials:

1. the ECOSTRESS library (Baldridge et al., 2009; Meerdink et al., 2019) includes 1023 surface spectra from the United

States, among which 487 are vegetations spectra, 62 non-photosynthetic vegetations, 381 rocks, 40 soils, 45 man-made

materials, and 8 are water ice and snow spectra;165

2. the ICRAF–ISRIC dataset (ICRAF-ISRIC, 2021), which is a global dataset with 4440 spectra of different soils from 58

different countries (spanning Africa, Asia, Europe, North America, and South America);

3. the LUCAS dataset (Orgiazzi et al., 2018), which contains 21782 different soils spectra from 28 European Union coun-

tries (including the United Kingdom), where we selected the 30° viewing angle. As shown by Shepherd et al. (2003),

LUCAS spectra are problematic between 400 and 500 nm, where they reach negative values. Following Jiang and Fang170

(2019), we use the multiple linear regression algorithm from scikit learn (sklearn.linear_model.LinearRegression)

(Pedregosa et al., 2011), trained on the ISAC–ISRIC dataset to reconstruct the LUCAS spectra in the 400 to 500 nm spec-

tral range.

All the datasets cover the 400–2500 nm spectral range, with different spectral resolutions. LUCAS dataset has a spectral

resolution of 0.5 nm, while ICRAF–ISRIC and ECOSTRESS of 10 nm. We interpolated the least resolved datasets to obtain175

all spectra with a resolution of 1 nm. Among the water bodies in ECOSTRESS, there are three different snow spectra: coarse

granular snow, medium granular snow and fine snow. In addition, there are also frost and ice spectra, sea foam, sea water and

tap water. All together, they form the 8 water and snow spectra mentioned for the ECOSTRESS library.

In total, we use 26635 dry soils, vegetations, snow and ice spectra from 82 different countries as input to extract the principal

components. In Fig. 2, we show some representative soil and vegetations spectra from the ECOSTRESS library. One limation180

of our approach relies on the fact that vegetation spectra are only present in the ECOSTRESS library, which is a local dataset

from the United States. However, to our knowledge, this is the only available datset showing trees, shurbs and grass spectra

which are fundamental for our purpose. Jiang and Fang (2019) also study the influence of humid soils on the PCA regression
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Figure 2. Albedo spectral signatures of some typical soils, vegetation and water bodies from the ECOSTRESS library.

algorithm. They find that the effect of soil moisture is non-linear, causing a general reduction of reflectance due to a total internal

reflection effect of the water surface. This effect is more prominent in the near infrared (1100–2500 nm). They conclude that to185

treat the dry and humid soils separately leads to a more applicable soil reflectance model. A comprehensive and global database

of humid soils is currently not available in the literature, and the inclusion of humid soils is outside the scope of our work.

2.3 Principal Component Analysis

The vector of the MODIS albedo data (Sect. 2.1) at the seven wavelengths (R) can, in general, be decomposed as

R= cU, (1)190

where R= (r1, ..., rn) is the albedo vector, with n the number of wavelengths, c= (c1, ..., cm) is the coefficient vector, with

m representing the number of surface spectra and U is an m×n matrix with the laboratory spectra of different soils and

vegetation types. In order to calculate the hyperspectral albedo maps, we first need to compute the coefficient vector c at every

pixel, by inverting Eq. 1. Since the U matrix is not square, the correct inverse equation is:

c=RUT (UUT )−1. (2)195

From the MODIS dataset, R is available only for seven spectral bands (see Tab. 1), while the goal of this work is to fill the

spectral gaps between the bands and reconstruct a full spectrum from VIS to NIR, with a fine spectral resolution. Computing

Eq. 2, with a dimensionality of m= 26635 is too computationally expensive. In order to reduce the dimensionality of this

problem, as in Vidot and Borbás (2014), we apply a Principal Component Analysis (PCA) algorithm, which is an unsupervised
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machine learning algorithm, and extract the principal components from the matrix U.200

We need seven principal components (or eigenvectors) to solve our problem. As done by Vidot and Borbás (2014), we generate

six principal components and we use a constant value for the seventh one, because this has been tested and shown to improve

the performances. The other six principal components are generated from the three dry datasets described in the previous sec-

tion. Since these datasets account for different surface types (vegetations spectra are only given in ECOSTRESS), and come

in different numbers, we cannot directly merge the spectra of the three datasets altogether. Thus, we balance the number of205

spectra from the different datasets clustering them using a k-means algorithm sklearn.cluster.KMeans (Pedregosa

et al., 2011), as done in Liu et al. (2023). In this way, we obtain 100 representative soils spectra for the ICRAF–ISRIC and

the LUCAS datasets each, and 128 representative spectra for the ECOSTRESS datasets extracted as follows: 40 vegetations

spectra, 10 non-photosynthetic vegetations spectra, 40 soils spectra, 20 rocks spectra, 10 man-made materials spectra and 8

water bodies spectra. The water bodies spectra, which include snow of different granular sizes, frost, deep ocean, costal ocean210

and tap water, were not reduced in their dimensionality. Without accounting for this number difference, the vegetation and wa-

ter surfaces present in the ECOSTRESS dataset would be outweighed by the number of soils spectra from the other datasets,

resulting in a sensibly lower performance of the algorithm.

We use the scikitlearn.decomposition.PCA implementation of PCA, which follows a Singular Value Decomposi-

tion (SVD) of the data as in Halko et al. (2009). From this process, we end up with a matrix Ũλ with the same spectral resolution215

as the laboratory spectra, where λ represents the hyperspectral nature of this matrix. To combine it with the albedo data vector

R, which is only given at the seven MODIS bands, we need to convolve the full matrix Ũλ with the average satellite response

function of Terra and Aqua satellites of each band. This convolution is necessary to correctly estimate the measured albedo for

the central wavelength of each band, crucial to generate the hyperspectral albedo maps with the PCA.

The result of the convolution is a square matrix Ũ at the seven MODIS wavelengths available from satellites data. Since Ũ is220

a square matrix, we can simply calculate

c=RŨ
−1

. (3)

In this way, we have seven equations for seven coefficients, which allow us to estimate the coefficient vector c. Once c is

known, it is possible to calculate the albedo maps at all selected wavelengths as

Rλ = cŨλ, (4)225

where the λ subscript indicates the hyperspectral nature of the elements. The same process is applied to all the pixels in the

map to generate a final albedo map with a spatial resolution of 0.05° in latitude and longitude, and to all the different days of

the year, taking into account also Earth’s seasonal variability.

Vidot and Borbás (2014) created BRDFs maps using a PCA algorithm for their radiative transfer code. They use the ASTER

library (today called ECOSTRESS library), which at the time contained much fewer soils and vegetations spectra, to create230

average maps to include hyperspectral reflectivity of the soils in their radiative transfer simulations. Jiang and Fang (2019)

demonstrated that increasing the sample of different soils from various countries of the world helps to validate several dataset
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among each other. Without accounting for satellite data to create Earth’s albedo maps, Jiang and Fang (2019) calculated

eigenvectors, using a SVD algorithm, to study the hyperspectral properties of canopy trees in radiative transfer simulations, also

including small humid soils local datasets. For the scope of this work, it was not possible to directly use the three eigenvectors235

generated by Jiang and Fang (2019), as we regress the hyperspectral albedo maps from the seven MODIS bands, thus seven

eigenvectors are needed.

As a result of the method explained above, we obtain an hyperspectral climatology of black-sky surface albedo over the

Figure 3. Eigenvectors generated by the PCA starting from the LUCAS, ICRAF–ISRIC and ECOSTRESS datasets. These eigenvectors are

used to build the hyperspectral albedo maps. Eigenvectors are plotted in order of importance as calculated from the PCA.

entire globe from a wavelength range of 400 to 2500 nm in steps of 10 nm. While the interpolation is done with a 1 nm

resolution of the hyperspectral albedo maps, the final HAMSTER dataset has a spectral resolution of 10 nm to reduce the size240

of the single maps. We also reduce the spatial resolution of the hyperspectral albedo maps from the MCD43D 30 arc seconds

resolution to 180 arc seconds, which correspond to 0.05° in latitude and longitude, again for size constraints. HAMSTER

can be generated at the same spatial resolution of the MODIS MCD43D product and at a spectral resolution down to 1 nm,

and higher spatial and spectral resolutions hyperspectral albedo maps are available upon request. The temporal resolution

of the hyperspectral climatology is of 1 day and it incorporates the information contained in the MODIS climatology and245

extends it to wavelengths that were not available before. HAMSTER is available at its finer spatial resolution (0.05° in latitude

and longitude) at https://doi.org/10.57970/04zd8-7et52, while a coarser sparial resolution version, more suitable to global

applications, is available at https://doi.org/10.5281/zenodo.11459410.

10

https://doi.org/10.57970/04zd8-7et52
https://doi.org/10.5281/zenodo.11459410


3 Validation

As a first test, we use the hyperspectral albedo maps to reconstruct the MODIS channels black-sky albedo of the climatology.250

We multiply the hyperspectral maps by the satellite spectral response function and we estimate the Root Mean Square Error

(RMSE) for all the seven channels. For all MODIS channels (see Tab. 1), the RMSE is less than 0.0003. This confirms that the

computed hyperspectral albedo maps are able to reconstruct the original MODIS climatology with great accuracy.

To validate the PCA retrieved maps (HAMSTER dataset), we compare them with the land surface albedo product of the SE-

VIRI instrument aboard the geostationary Meteosat Second Generation (MSG) satellite (Schmetz et al., 2002). SEVIRI has255

three channels in the VIS/NIR range, which are reported in Tab. 3. As MSG is a geostationary satellite, we cannot compare the

entire world map, but only the Earth’s "disk" that includes Africa and parts of Europe, South America and the Middle East.

SEVIRI channels have spectral response functions that are broader than the analogous MODIS bands and are centred at slightly

different wavelengths, and thus we convolved the hyperspectral maps to account for that. In particular, the SEVIRI channel

centred at 810 nm touches the vegetation "ramp" starting from 700 nm and is expected to show higher albedo values than the260

first SEVIRI channel.

The SEVIRI land surface albedo product MDAL (Geiger et al., 2008; Juncu et al., 2022, product identifier LSA-101) is of-

Table 3. Spectral bands of SEVIRI in the VIS and NIR providing information about the land surface. For each band, we specify the central

wavelength and the bandwidth.

band central λ [nm] bandwidth [nm]

1 635 600–680

2 810 775–850

3 1640 1550–1750

fered daily by the Land Surface Analysis (LSA) Satellite Application Facility (SAF) on the native SEVIRI grid with a spatial

resolution of 3 km at the sub-satellite point, and is similar to the MODIS-based MCD43D product, against which it has been

evaluated (Carrer et al., 2010). As for MCD43D, both the bi-hemispherical (white-sky) and directional-hemispherical (black-265

sky) albedo are available. In order to compare with the HAMSTER hyperspectral albedo maps constructed from MODIS, we

reprojected the SEVIRI data to the MCD43D grid, downscaled to 0.05° resolution in latitude and longitude, to allow for a

consistent comparison. We selected two different DOYs, one in the late boreal winter (March 5th, DOY 065) and one in the

middle boreal summer (July 30th, DOY 209) both in 2016 to compare the surface reflectivity during two different vegetation

stages with possible snow cover in winter and no snow in summer over Northern Europe. The results are shown in Figures 4270

and 5.

We compare the three solar satellite channels offered by SEVIRI with the reconstructed channels from the HAMSTER clima-

tology and HAMSTER single day (first three columns in Figs. 4 and 5). SEVIRI’s channel 3 has the same central wavelength
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Figure 4. Comparison between HAMSTER climatology, HAMSTER single day and SEVIRI in the late boreal winter (March 5th 2016, DOY

065) for the three SEVIRI VIS/NIR channels. The first three columns show the albedo value for (a) the HAMSTER climatology and (b) the

HAMSTER single day integrated over each SEVIRI channel, and (c) the SEVIRI albedo product. In the last three columns, we display the

albedo difference between the three different albedo products or reconstructions between -0.10 to 0.10.

(λc = 1640 nm) as MODIS’s band 6, which offers an almost direct comparison between MODIS and SEVIRI land surface

products. However, the hyperspectral nature of the retrieved HAMSTER maps is still used to convolve around the 1640 nm275

MODIS band. The same happens for SEVIRI’s channel 1 and MODIS’s band 1, for which there is only a 10 nm difference

in the central wavelength. On the other hand, SEVIRI’s channel 2 (λc = 810 nm) is outside any MODIS band. This last case

allows us to make a comparison between the reconstructed albedo maps and the SEVIRI measurements, rather than between

the land surface products of the two instruments.

In addition, in Figures 4 and 5, we also assess the difference between the HAMSTER climatological average (first column)280

and a single day HAMSTER reconstruction (second column), without accounting for the 10-year average of the climatology.

White pixels in the HAMSTER single day correspond to pixels without any albedo value from the MODIS MCD43D product.

The climatological average shows less features, in particular over Europe, which might be due to the fluctuations of a single

day, while in the HAMSTER single day we notice a larger dependence on the seasonality. The effect of the climatology is

shown in the forth column, where we plot the albedo difference between HAMSTER climatology and HAMSTER single day.285

In Fig. 4 we clearly see discrepancies of the order of 0.10 in the first two channels, while in SEVIRI’s channel three we notice

a lower albedo over Southern Africa for the HAMSTER climatology. Less differences are found for DOY 209, in the boreal

summer (Fig. 5). To conclude, the last two columns of Figs. 4 and 5 display the difference between HAMSTER (climatology
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Figure 5. Comparison between HAMSTER climatology, HAMSTER single day and SEVIRI in the boreal summer (July 30th 2016, DOY

209) for the three SEVIRI VIS/NIR channels. The first three columns show the albedo value for (a) the HAMSTER climatology and (b) the

HAMSTER single day integrated over each SEVIRI channel, and (c) the SEVIRI albedo product. In the last three columns, we display the

albedo difference between the three different albedo products or reconstructions between -0.10 to 0.10.

and single day) integrated over the SEVIRI channels minus the SEVIRI land surface product. We notice an overestimation of

the order of 0.05 for the reconstructed HAMSTER hysperspectral albedo maps in the first two channels over the Sahara desert,290

while vegetated areas over Africa and part of Europe and South America show a negative (SEVIRI channel 1) and positive

(SEVIRI channel 2) discepancy compared to SEVIRI of around the same order. On the other hand, SEVIRI channel 3 (λc

= 1640 nm) is mostly underestimated by HAMSTER, with a smaller albedo difference compared to the other two channels.

Since HAMSTER is built from the MODIS land surface product, our results are in accordance to the discrepancies found by

Shao et al. (2021), which points towards difference between various land surface products of up to 0.06. While we describe the295

different offset arising from this comparison, we can conlude that the reconstructed maps are consistent, in their validation, to

the discrepancies arising from different satellite data products.

In Figs. 6 and 7, we show the probability density function (pdf), calculated as the Kernel Density Estimation (KDE) (i.e., a

Gaussian-kernel-based probability density, Scott, 1992) between HAMSTER (climatology and single day) and the SEVIRI

land surface products for the two DOYs selected. For each comparison, we estimate the RMSE and we represent the discrep-300

ancies between the different albedo products with the KDE.

We notice that the RMSE is always very small, compatible with intrinsical differences between different retrieval of the albedo

products. The RMSE is larger for SEVIRI channel 2 (centred at λc = 810 nm) for both DOYs, which is also the SEVIRI chan-
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Figure 6. Kernel Density estimation (KDE) between HAMSTER climatology, HAMSTER single day and SEVIRI albedo data March

5th 2016 (DOY 065) for the three central wavelengths of SEVIRI channels (different columns). The first row accounts for HAMSTER

climatology hyperspectral albedo maps, while the second row for the single day reconstruction. The soild line represent a perfect linear fit,

while the dashed lines show linear fit with an offset of 0.06.

nel furthest from any MODIS channel. We also notice that the comparison with the hyperspectral maps built on the single day

albedos have always a slightly smaller RMSE, since the climatology can only reproduce a climatological vegetation state and305

snow coverage pattern of a certain DOY.

In addition, we also calculate the RMSE between HAMSTER climatology and all three SEVIRI channels for each DOY is

2016 (Fig. 8). We can conclude that the two DOYs we selected for a more in depth analysis (DOY 065 and DOY 209) are rep-

resentative of the general trend. We notice that the comparison with SEVIRI channel 2 is, as expected, the one resulting in the

larger RMSE, being outside MODIS bands. However, the performace of the hyperspectral albedo maps are still in agreement310

with the discrepances among different albedo products.

As a last test, we compare the hyperspectral albedo maps with the TROPOMI Lambertian Equivalent Reflectivity (LER)

product from https://www.temis.nl/surface/albedo/tropomi_ler.php (Tilstra et al., 2021, 2023). TROPOMI LER product (sub-

satellite pixel size of 0.125° x 0.125°) is remarkably different from MODIS MCD43D product, as it provides surface albedo

for snow/ice-free and snow/ice conditions separately. The snow/ice conditions are also averages over a month, which do not315

allow for a direct comparison with MODIS, which provides daily snow coverages. Due to the high reflectivity of snow and

ice in the visible wavelengths, the large discrepancy among the two products does not come from the PCA retrieved albedo,

but from the different approaches in assessing the snow-coverage by the different products. On the other hand, TROPOMI

bands are very narrow, of just 1 nm, and they provide many channels in the Vegetation Red Edge (VRE) rump. For this reason,

we validate our hyperspectral albedo maps with the TROPOMI product only for the African continent and the Middle East,320
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Figure 7. Kernel Density estimation (KDE) between HAMSTER climatology, HAMSTER single day and SEVIRI albedo data on July

30th 2016 (DOY 209) for the three central wavelengths of SEVIRI channels (different columns). The first row accounts for HAMSTER

climatology hyperspectral albedo maps, while the second row for the single day reconstruction. The soild line represent a perfect linear fit,

while the dashed lines show linear fit with an offset of 0.06.

Figure 8. Root Mean Square Error (RMSE) of the comparison between HAMSTER climatology and all three SEVIRI channels. The com-

parison is done for each DOYs in 2016.

since this region exhibits the least snow coverage and allows for a direct and consistent comparison of land surface albedo

among the two products. In this way, we avoid comparisons with snow/ice products which are not fully consistent. Due to the

narrow satellite bands of TROPOMI, it was not needed to convolve for its satellite response function, and we estimated the
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Figure 9. Comparison between HAMSTER climatology (first column) and TROPOMI in the late boreal winter (month of March) for

three selected wavelengths among the TROPOMI VIS/NIR channels. The third column shows the albedo difference between HAMSTER

climatology and TROPOMI LER albedo product.

RMSE between TROPOMI LER and our HAMSTER hyperspectral albedo product (at 1 nm spectral resolution). The results

are shown in Tab. 4. The RMSE is comparable to what we find for SEVIRI and with known discrepancies among different325

surface albedo products, and it remains relatively small in the TROPOMI bands between 670 and 772 nm, inside the VRE

and far from MODIS bands. This confirms good performances of the hyperspectral albedo maps also far from the MODIS

bands on which they have been retrieved from. In Fig. 9, we select three TROPOMI bands and we compare the albedo value

over Africa between HAMSTER climatology (first column) and the TROPOMI albedo product (second column). We select the

TROPOMI monthly product for the month of March (average from 2018 to 2023), and we compare it with the average of the330

HAMSTER from DOY 061 to DOY 091 (corresponding to all DOYs in March). In the third column, we again plot the albedo

difference between the two products. For λc = 463 nm, we notice a very good agreement, with discrepancies of around 0.019

over Africa. For λc = 747 nm, inside the VRE, the discrepancies are larger, with a general albedo overestimation of HAMSTER
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Figure 10. Root Mean Square Error (RMSE) of the comparison between HAMSTER climatology and all TROPOMI channels. The compar-

ison is done for each month.

compared to TROPOMI, reaching differences of up to 0.10, but a overall RMSE of 0.055). We also compared the two products

with a band in the far NIR (λc = 2314 nm) and we found an overestimation of dry and desert areas and an underestimation335

of vegetated regions in HAMSTER. Also in this last band, albedo products reach differences of up to 0.10, in particular over

deserts, but with a small RMSE (0.033).

As done for SEVIRI, we also validate HAMSTER climatology against TROPOMI for each month, estimating the RMSE

Table 4. Spectral bands of TROPOMI LER product in the VIS and NIR, and RMSE of the comparison with the HAMSTER hyperspectral

albedo maps over Africa.

λ [nm] 402 416 425 440 463 494 670 685 697 712 747 758 772 2314

RMSE 0.019 0.018 0.020 0.019 0.019 0.020 0.031 0.030 0.037 0.039 0.055 0.052 0.049 0.033

for each TROPOMI band. Since TROPOMI offers monthly albedo products, we took the monthly averages of HAMSTER

climatology over Africa and the Middle East to perfom the comparison. In Fig. 10, we show the monthly validation results. For340

TROPIMI bands between 400 and 500 nm, the RMSE is always very small, of the order of 0.02. Moving into the VRE (from

700 to 800 nm), the RMSE is between 0.05 and 0.07, still comparable with discrepancies among different albedo products. For

the NIR TROPOMI band (λc = 2314 nm), the RMSE is of the order of 0.03-0.04 among all months.

4 Results

In this section we present the two main results of this paper: the MODIS black-sky surface albedo climatology for the seven345

bands and, building on that, the extended HAMSTER hyperspectral surface albedo dataset.
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Figure 11. Yearly cycle of the MODIS climatology data black-sky albedo between 67°N and 67°S. The different curves represent the different

MODIS channels indicated by their central wavelength.

4.1 MODIS climatology dataset

As described in Sect. 2.1, we have derived a 10-year climatology of surface albedo for different DOYs as a starting point to

generate the hyperspectral albedo maps. This climatological average, with a temporal resolution of 1 day, allows studying the

temporal variability of the albedo of the planet, as shown in Fig. 11. Since albedo values are not available for every pixel of350

Earth’s surface during the year due to missing solar illumination during winter, we study the temporal evolution of the mean

global albedo between 67° N and 67° S. Among these latitudes, we always have an estimate of the albedo of every single pixel

for all DOYs. As a consequence, we are excluding from the mean albedo estimation both the Arctic and Antarctica regions,

as well as other high latitude land surface in the Northern Hemisphere. For this reason, the mean albedo value should not be

intended as a global estimate for Earth, but more as an indicator of its temporal variation.355

In Fig. 11, we notice that the mean albedo is higher in the NIR bands, after the vegetation red edge (VRE) peaks. At 858 nm,

which peaks right after the VRE, we notice the largest albedo value for the planet, followed by 1240 nm. Continuing in the

NIR, with 1640 and 2130 nm, the albedo values decrease. On the contrary, in the VIS range there is a very small variation in the

albedo among the three bands. The VIS bands show a clear seasonal trend due to the melting of ice and snow in the Northern

Hemisphere, followed by a subsequent blossoming of vegetation. Thus, Earth’s albedo is peaking in the late boreal winter in360

the VIS and then decreasing in the boreal summer. This large variability trend can be interpreted with seasonal differences in

snow coverage, and it mainly follows the variability of the Northern Hemisphere since it host almost 80% of all the land in the

globe. However, in the NIR bands, we notice other features around boreal late spring and autumn which are due to blossoming

of flowers and reddening of leaves, which decrease the general reflectivity of green leaves.

In Fig. 12, we study the spatial variability of the albedo throughout the year for a particular wavelength for the entire 10 years365

climatological average. Here we selected MODIS band 1 centred at the 645 nm. In particular, we plot the difference between

the maximum and minimum albedo values during the entire year, independently of when the maximum and minimum are

18



Figure 12. Spatial variation of the MODIS climatology, showing the difference between the maximum and minimum albedo value for each

pixel during the year.

reached. For instance, the maximum of reflectivity over high latitudes in the Northern Hemisphere is reached during the boreal

summer, while over the coast around Antarctica it happens during the austral summer, due to ice melting. It is important to

note that the MCD43D product does not contain sea surface albedo product, and thus sea ice albedo. However, coastal regions370

exhibit albedo values and they are subject to large seasonal differences. Moreover, since albedo data are not available during

boreal winter (summer) for the Northern (Southern) Hemisphere, for high latitude regions (north and south of 67°) the differ-

ence between the maximum and minimum albedo is calculated over a shorter time period, corresponding to the data coverage

of the region.

Calculating this reflectivity variation for every pixel, the map in Fig. 12 highlights those regions that carry the largest variations.375

In particular, Arctic and Antarctic regions exhibit high reflectivity variations due to snow, ice and sea ice over coastal regions

melting, clearly visible in the map. Mainland Greenland also shows more variability than mainland Antarctica, possibly point-

ing towards melting of Greenland’s glaciers during boreal summer. Deserts all over the world, like the Sahara and Australian

deserts, show the least variability, remaining almost constant throughout the year. Also, tropical rainforests, like the Amazon

rainforest, do not exhibit a significant seasonal variability. On the contrary, temperate and boreal forests show a pronounced380

variation due to the difference between the snow cover during winter and the summer months.

19



4.2 Hyperspectral albedo maps

From the MODIS climatology data, we build the hyperspectral albedo maps with a PCA regression algorithm, as described in

Sect. 2.3. The hyperspectral albedo maps allow us to combine the spectral features of different soils, vegetations and water sur-

faces with the high spatial and temporal resolution of the MODIS climatology data. This could potentially have many possible385

applications, from the implementation in climate models (where Braghiere et al. (2023) already demonstrated its feasibility)

to the improvement of remote sensing retrieval frameworks. The new hyperspectral albedo maps have been implemented in

the radiative transfer software package libRadtran (http://www.libradtran.org/doku.php, Mayer and Kylling (2005), Emde et al.

(2016)).

As a first application, we use the hyperspectral maps to calculate the mean global albedo value close to the equinoxes. In this390

way, we have almost all pixels filled with an albedo value and it is possible to assess a mean albedo value for the entire globe

as a function of wavelength (see Fig. 13). The main difference between the spring and autumn equinoxes relies on the snow

coverage over the Northern Hemisphere, which increases the reflectivity during the spring boreal equinox. This affects mostly

the VIS wavelengths, following the typical albedo profile of snow and frost (see Fig. 2). From these hyperspectral albedo maps,

we could recover that the mean global albedo is around 0.21 in the VIS during March and around 0.17 over autumn, while395

it decreases below 0.10 in the NIR. The dots in Fig. 13 represent the average over the MODIS channels, without taking into

account the hyperspectral albedo maps.

In addition, we apply the hyperspectral maps to study the VRE, which shows a steep increase in the reflectivity of vegetation

due to chlorophyll, as shown in Fig. 13 at around 700 nm. In Fig. 14, we show the progression from 700 nm to 850 nm (with

steps of 50 nm) of vegetation reflectivity for DOY 065 (March 5th). We notice a substantial increase of the albedo for all kinds400

of forests, from tropical to boreal ones, with the largest increase between 700 and 750 nm, as expected for the VRE. This

comparison is only possible having albedo maps which account for their hyperspectral dimension. Using only the MODIS

wavelengths, we would have missed the entire VRE transition because the closest bands are only at 645 and 858 nm.

As a last application, we study the spectral profile of different regions of the world, accounting also for their seasonal variabil-

ity. We select different examples of rainforests, boreal forests, deserts, urban areas, and ice-covered regions as shown in Fig. 15.405

Inside the boundaries of the selected areas highlighted in Fig. 15, we average the spectra of all pixels in the region in order

to obtain an average spectrum representative of the entire region. The averages are made for the four seasons separately. The

first comparison pertains to forest spectra (dark green regions in Fig. 15). We selected three different rainforests, the Amazon,

Borneo and Congo rainforests, two different boreal forests, over Canada and Russia, and a Savanna region over Kenya and

Tanzania. The selection of the different areas is made by maximizing the possible land area hosting the same properties, but410

avoiding mixing the region with urbanized soils and different lands.

Fig. 16 shows the comparison between the spectrum of different forests. We notice a similar trend among all kind of forests,

with similar spectral features. In particular, all forest shows three jumps in reflectivity of decreasing amplitude. The main dif-

ference between tropical rainforests and boreal forests resides, as expected, in their seasonal variability. Tropical rainforests do

not exhibit almost any seasonal change, being very similar among each other. On the other hand, boreal forests experience an415
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Figure 13. Mean global albedo as a function of wavelength over the entire globe. We select the two DOYs closest to the equinoxes, where

we almost have all pixels filled with an albedo value. The seven dots show the albedo value of the seven MODIS bands, while the curves are

built from the average of all pixels of the HAMSTER hyperspectral albedo maps for a given wavelength.

Figure 14. Spectral evolution of the surface albedo for March 5th (DOY 065). From λ= 700 nm to λ= 850 nm, there is a steep increase of

the albedo over forests, due to the VRE.

important decrease of reflectivity from boreal winter to boreal summer. This is due to the melting of snow over boreal forests,

which also happens with different timescales. There are also some small differences within tropical rainforests. Borneo shows
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Figure 15. Regions of the world investigated. The green boxes represent the forests, the orange boxes the deserts, the blue boxes the ice

sheets, and the purple circles the cities.

the least seasonal variation, while Congo shows the smallest reflectivity.

The final spectra are always combinations of different soils and vegetations, and the small differences we find are due to the

different trees soils grounds and tree coverage of the different forests. If we compare the obtained spectra with Fig.2, we find an420

overall agreement with their main spectral features, but our final spectra are modulated by the combination of many different

soils and averaged over seasons and different pixels.

We extend the comparison to desert areas (orange regions in Fig. 15). We select the Sahara desert, the Australian desert, the

Gobi desert and the Atacama desert to extract the spectral properties from the hyperspectral albedo maps. Fig. 17 shows the

comparison among different arid regions. We find that, among deserts, the reflectivity profile can greatly vary, depending on425

the mineralogy and composition of different soils and sands. In addition, as already discussed in Fig. 12, Sahara and Australian

deserts do not display any significant seasonal change. This is not the case for the Gobi desert, which shows an enhanced

reflectivity in the winter months, due to partial snow coverage.

In general, deserts exhibit common spectral shape, with a steep increase of reflectivity up to 750 nm, similar spectral features

until the NIR, and a more or less steep decrease of reflectivity around 2150 nm. Different desert areas show larger discrepancies430

among themselves than forests.

The same methodology is applied to study the Greenland and Antarctica ice sheets (blue areas in Fig. 15). We select two re-

gions which are always snow-covered to study their spectral features and seasonal patterns (see Fig. 18). As expected for fully

snow covered surfaces, their reflectivity is very high, reaching almost 1 in the VIS, and it decreases in the NIR range. During

Greenland and Antarctica’s winters not all the pixels where always available, thus we averaged on less DOYs and less pixels to435

estimate their winter seasonal spectra. In Fig. 2, we see that snow and frost show different patterns in reflectivity, in particular

in the NIR. This can explain the spread in the NIR spectra of both Antarctica and Greenland. This also needs to be combined
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Figure 16. Spectra of different forests of the world obtained by averaging over all pixels in the corresponding region using the hyperspectral

albedo maps. Seasonal variability is shown averaging the spectra over three-month periods, indicated with different colours. Gray bands

represent the MODIS bandwidths.

with the formation of clear liquid water lakes on the surface of the glaciers during the melting season, which lowers the total

reflectivity of the surface. For Greenland and Antarctica, we find similar behaviours in the NIR, with winter seasons exhibiting

a higher reflectivity than summer seasons. We also notice that in the VIS there is almost no seasonal spectral variability over440

Antarctica, while Greenland shows two distinct trends between boreal autumn and winter and boreal spring and summer.

To conclude, we also extracted spectral profiles of two different cities: the urban areas of Beijing and Mexico City. Among the

45 man-made spectral material from ECOSTRESS, there are general construction materials, road materials, roofing materials

and reflectance targets. Urban areas are treated as a linear combination of different components, like man-made materials, veg-

etation, and soils, and the PCA handles them as all other soils and vegetations spectra. MODIS albedo performances over cities445

has not been quantitatively assessed, and MODIS might underestimate surface reflectivity (Coddington et al., 2008), thus city

spectra should be used with caution. Fig. 19 shows Beijing having a larger seasonal variability than Mexico City. In general,

the spectra of the two cities look different, but with some common spectral features. Urban areas show a lower albedo than

the other regions investigated, pointing towards the use of asphalt and concrete spectra in the PCA, and their general spectral
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Figure 17. Spectra of different deserts of the world obtained from the average over different pixels from the hyperspectral albedo maps.

Seasonal variability is shown averaging spectra over three-month periods, indicated with different colours. Gray bands represent the MODIS

bandwiths.

Figure 18. Spectra of different ice surfaces of the world obtained from the average over different pixels from the hyperspectral albedo maps.

Seasonal variability is shown averaging the spectra over three-month periods, indicated with different colours. Gray bands represent the

MODIS bandwiths.

shape appears different from all other regions. The steep increase in the VIS might be due to vegetation, while other features450

in the NIR come from man-made materials and different soils present in the training dataset. The peak of the reflectivity for

urbanized areas is low, as expected. In general, extracting the spectra of different surface types, we found a good agreement

among the typical spectral features of soils and vegetations expected to dominate the different surface types. For instance, dif-

ferent kind of forests all have the typical shape due to the VRE. However, the spectra of the various land types host much more

information than the single spectrum of a tree or of a particular soil, and we can clearly see that they are a linear combination455
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Figure 19. Spectra of two different cities (Beijing and Mexico City) of the world obtained from the average over different pixels from the

hyperspectral albedo maps. Seasonal variability is shown averaging spectra over three-month periods, indicated with different colours. Gray

bands represent the MODIS bandwidths.

of different spectra in the sample with varying weights. In fact, forests are the combination of trees with their typical spectral

shape, but modulated by different soils reflectivities. As a result, the retrieved albedo of an entire forest is sensibly lower than

the one of single trees in the dataset. This is in agreement with Jiang and Fang (2019), who generated different spectra for

canopy tree radiative transfer simulations and studied the soils influence on the total reflectivity of the vegetated area. While

typical vegetated features are always present in the spectrum, they are sensibly modulated depending on the properties of the460

background soil.

5 Conclusions

In this work, we create hyperspectral albedo maps to study the wavelength-dependent characteristics of the black-sky albedo

of the Earth’s surface. We select various soils, vegetations, snow, water bodies, and man-made materials spectra from three

different datasets: the ECOSTRESS library, which has soils, vegetations, man-made materials, snow and water bodies spectra,465

LUCAS dataset, which contains different soils of many countries in the world, and the ICRAF–ISRIC dataset, a catalogue of

thousands of soils of European Union countries. In total, we end up with 26635 spectra of different soils and vegetations from

82 countries of the world.

Due to the huge dimensionality of the final training dataset, we use a PCA regression algorithm to extract the principal compo-

nents of the dataset. These principal components serve as eigenvectors to recover the albedo reflectivity of different pixels over470

Earth, starting from the MODIS land surface product. In particular, MODIS measures land surface properties in seven different

bands in the VIS/NIR wavelength range. These seven MODIS bands are used as the starting point to build the hyperspectral

albedo maps. With the PCA, we extract six principal components as in Vidot and Borbás (2014), and, with the addition of a

seventh constant eigenvector, we combine them with the seven bands of MODIS data, for which the albedo of all single pixels

is known. From this computation, it is possible to extract the spectral albedo value in the entire wavelength range pixel by475

pixel.
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To generate climatological hyperspectral albedo maps, we use the 1 day land surface product from MODIS MCD43D product,

and we average every DOY from 2013 to 2022. This allows us to get a climatological average of surface properties of the

planet, to fill missing pixels which might be cloudy during a particular year, and to disentangle from the yearly variability

patterns. As a final outcome, we obtain the HAMSTER hyperspectral albedo maps dataset with:480

– a spectral resolution of 10 nm, in the range from 400 to 2500 nm;

– a spatial resolution of 0.05° in latitude and longitude;

– a temporal resolution of 1 day averaged in the time period between 2013 and 2022.

As demonstrated by Vidot and Borbás (2014) and Jiang and Fang (2019), PCA or SVD algorithms are powerful tools to com-

bine a huge sample of soils and vegetations spectra and to reconstruct the albedo profile of different areas of the world. In our485

work, apart from generating hyperspectral albedo maps from the PCA as in Vidot and Borbás (2014), we also include Jiang and

Fang (2019) advice to train the PCA with a much larger dataset, accounting for different countries of the world. In addition,

our hyperspectral albedo maps are given for all 365 DOYs, thus making it possible to retain all the seasonal variability patterns

present in MODIS’s data.

Our MODIS climatological maps and hyperspectral albedo maps are validated against SEVIRI and TROPOMI land surface490

products. To perform this comparison, we adapted SEVIRI’s dataset to MODIS projection, and we find that there is a good

agreement between both MODIS climatology and the HAMSTER hyperspectral maps with SEVIRI observations, up to dis-

crepancies of 0.06, which is a typical order of magnitude for land surface product comparisons (Zhang et al., 2010; Shao et al.,

2021). Similar results are found in the comparison with TROPOMI.

Already the MODIS climatological dataset displays interesting temporal and spatial patterns. Thanks to both high spatial and495

temporal resolution, we study Earth’s temporal variability for different wavelengths, and we display the maximal albedo dif-

ference of each pixel, highlighting regions with high temporal variability. The mean spectral albedo of the planet peaks at

wavelegths larger than the VRE, while it shows a larger variability in the VIS wavelengths than the NIR ones, where the

seasonal variation between snow covered high latitudes land in the Northern Hemisphere displays an increase of the surface

albedo in the boreal winter.500

We combine the information coming from temporal and spatial resolution of the MODIS climatology data with the possibility

to spectrally extend the information about different regions to create typical spectra of different land surface type. We find that:

– forests, as expected, show typical vegetated spectral features, such as the VRE. Tropical rainforests do not undergo much

seasonal change, while boreal forests have an increased reflectivity in the winter, when they get partially snow covered.

Savanna regions experience a drying of the land after the end of the summer, which flatten the typical vegetation-induced505

spectral features.

– deserts show almost no seasonal variability, apart from those with occasional snow coverage. Depending on the properties

of the soils, its colour and mineralogical composition, and the presence of sand, the overall reflectivity of the desert can

greatly vary.
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– ice and snow covered surfaces, like Greenland’s and Antarctica’s ice sheets, reflect almost entirely in the VIS, with a510

steep decrease in the NIR. During summer months, their albedo is slightly lower than late winter or spring months due

to the melting of surface ice, which creates lakes on the top of the icy surface.

– urbanized areas, such as Beijing and Mexico City, are the combination of many different man-made materials, soils and

vegetations spectra and their spectral shape host features from all of them. The total reflectivity of a city is lower than

20%.515

These hyperspectral albedo maps dataset can be used for many different applications, from improving climate models to

Earth’s remote sensing, and to correctly simulate the disk-integrated spectra of Earth (Emde et al., 2017), and correctly model

Earthshine observations (Sterzik et al., 2012, 2019). Only using the full spectral variations of land surfaces, it is possible to

correctly establish Earth’s energy budget. Braghiere et al. (2023) studied the impact of assuming only two broadband albedo

values, as done in ESMs, versus using hyperspectral albedo maps. While the general radiative forcing is sensibly smaller than520

the one from doubling of CO2, omitting the hyperspectral nature of Earth’s surface causes deviation in many climatological

patterns, such as precipitation and surface temperature, in particular over regional scales.

Data availability. The HAMSTER dataset is available at its finer spatial resolution (0.05° in latitude and longitude) at https://doi.org/10.

57970/04zd8-7et52. A coarser spatial resolution (0.25° in latitude and longitude) and lighter version of HAMSTER, useful for global applica-

tions like ESMs simulations, is available on Zenodo at the following link: https://doi.org/10.5281/zenodo.11459410. The MODIS climatology525

used as the initial step to generate HAMSTER from the MODIS MCD43D product can be found at https://doi.org/10.57970/pt52a-nhm92.

Finer spatial and spectral resolutions of the dataset, up to 30 arc seconds and 1 nm, respectively, are available upon request to the correspond-

ing author.

Video supplement. A video supplement of this work is available at https://av.tib.eu/media/66248, where we show the spectral and spatial

evolution of HAMSTER for four different DOYs.530
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