

1 *Supplementary material of*

2 **Earthquakes triggered by the subsurface undrained response to reservoir-impoundment**
3 **at Irapé, Brazil**

4 Haris Raza, George Sand França, Eveline Sayão, Victor Vilarrasa

5 Correspondence to: Haris Raza (harisraza90@yahoo.com) and Victor Vilarrasa
6 (victor.vilarrasa@csic.es)

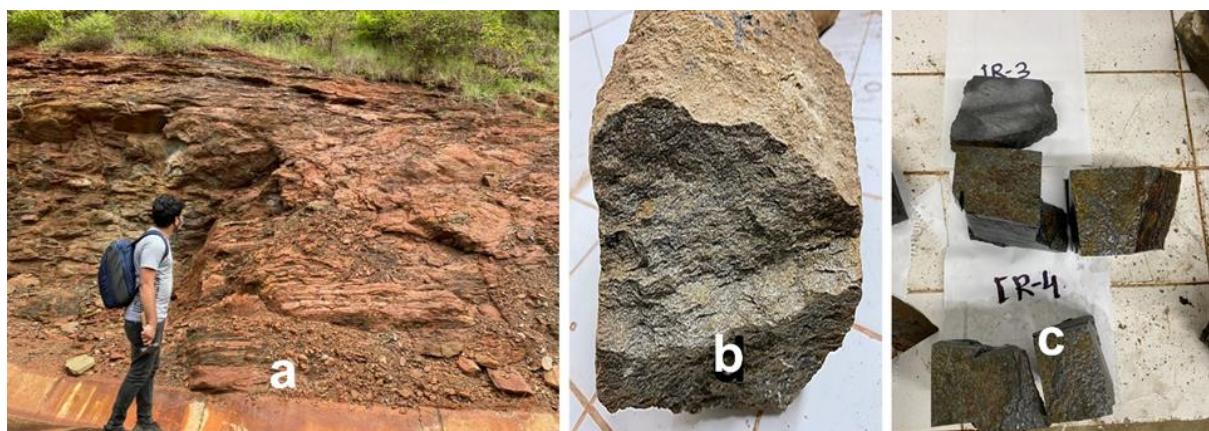
7 **1 Content**

8 This supplementary material contains three tables providing data of seismicity and information
9 on sampling, sample preparation, measurement procedures with equipment details, including
10 three figures and generated data in Tables S2 and S3.

11 **2 Seismicity data**

12 **Table S1.** Hypocentral location of the main earthquakes triggered during the first half of 2006.

No	Date	Hours (UTC)	Latitude	Longitude	EH (km)	Z (km)	Magnitude	Q
1	07/01/2006	03:29:34	-16.73417	-42.59028	1.3	0.26	1.8	D1
2	10/01/2006	03:06:56	-16.72889	-42.60278	0.5	4.02	1.4	C1
3	10/01/2006	03:33:53	-16.73278	-42.60778	0.9	0.04	1.7	C1
4	12/01/2006	06:05:50	-16.73667	-42.60944	2.3	0.01	1.8	C1
5	13/01/2006	02:29:04	-16.72083	-42.61806	2.8	4.09	1.0	C1
6	14/01/2006	05:19:31	-16.73528	-42.60694	0.7	0.07	1.4	C1
7	15/01/2006	17:14:30	-16.73389	-42.60444	0.5	0.03	1.9	C1
8	19/01/2006	04:01:25	-16.73889	-42.54889	6.5	0.47	2.3	D1
9	19/01/2006	13:57:39	-16.71306	-42.58944	1.8	0.08	1.6	C1
10	23/01/2006	08:22:34	-16.75500	-42.61917	1.8	0.43	1.7	C1
11	23/01/2006	12:51:07	-16.75833	-42.60556	2.1	0.13	1.5	D1
12	02/03/2006	07:33:56	-16.75417	-42.61861	2.5	0.44	1.9	C1
13	02/03/2006	09:10:06	-16.73556	-42.55722	2.1	0.5	1.3	D1
14	12/03/2006	06:08:22	-16.69167	-42.60333	2.1	0.51	1.4	C1
15	13/03/2006	08:33:16	-16.75111	-42.60972	2.6	0.12	1.3	D1
16	16/03/2006	01:46:22	-16.70361	-42.62944	1.2	11.42	1.6	C1
17	17/03/2006	00:19:58	-16.73750	-42.62333	1.1	7.47	1.4	C1
18	19/03/2006	02:18:20	-16.77167	-42.62000	2.4	0.07	1.5	C1
19	28/04/2006	08:24:10	-16.77167	-42.61833	1.3	0.44	1.5	D1
20	28/04/2006	09:26:34	-16.76806	-42.64917	2.8	6.84	2.1	C1
21	28/04/2006	16:39:56	-16.75528	-42.60889	1.0	0.14	1.4	D1
22	03/05/2006	10:46:54	-16.77639	-42.65250	3.6	11.08	1.6	C1
23	03/05/2006	21:19:05	-16.77278	-42.62306	3.0	0.1	1.6	C1
24	07/05/2006	15:46:32	-16.71389	-42.58444	1.7	0.02	1.5	D1
25	08/05/2006	18:05:22	-16.73333	-42.61528	2.0	0.02	1.6	C1
26	12/05/2006	21:34:18	-16.75333	-42.61778	1.0	0.45	1.5	C1
27	14/05/2006	14:07:46	-16.73111	-42.57750	2.7	3.88	3.0	D1
28	14/05/2006	15:24:53	-16.72194	-42.57972	1.8	8.42	1.9	D1
29	15/05/2006	09:23:14	-16.72222	-42.56722	1.4	0.37	1.7	D1

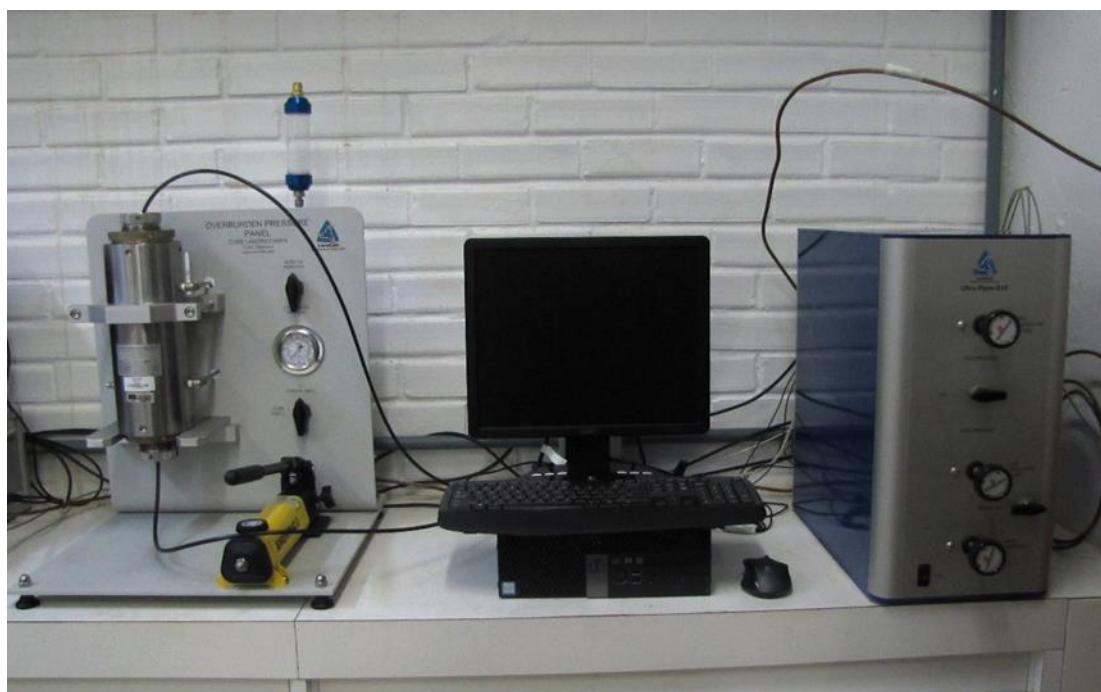

13 (UTC: Coordinated Universal Time, **EH (km)**: Horizontal location error, **Z (km)**: HYPO71
14 Program output hypocentral depth of events, **Q**: Quality of events, where C1 and D1 have two
15 family groups which refer to the family-based events subsequently).

16 The quality of events has been classified based on Root mean square error. The earthquake
17 quality of C1 is more accurate than D1, so these events are classified into two groups that show
18 the class of events. Nevertheless, D1 has generally 0.1 of the root mean square residual in-
19 depth errors, so these values of uncertainty are generally accepted. However, the analysis of
20 seismograms went through a double-check routine (Silva et al., 2014). The uncertainty of
21 earthquakes was generally less than 0.1 of the roots mean square residual in depth errors. In
22 this work, we did not consider this factor as an influencing element.

23 **3 Field sampling, sample preparation, and measurement procedures with equipment** 24 **details**

25 Rock samples in this study comprise core plugs from bulk samples of mica-schist rock
26 collected around the reservoir by pitting of 0.10 m at different locations. Mica-schist is
27 metamorphic rock, its colour is shiny, blackish to medium grey, and textures are foliated, fine
28 to medium-grained.

29 All collected samples are close to the dam as well as to seismic stations since the epicenter
30 of the main event was encountered about 1 km from the dam (Figure 3 in manuscript). We
31 collected a total of seven sets of samples. Nonetheless, we could only test three sets, from
32 which we could prepare a total of 11 cores of hard and intact samples (Figure 4 in manuscript).
33 The rest of the samples were fragile and fractured during the coring from bulk samples. We
34 extracted the core samples in shape of cylindrical plugs perpendicular to the bedding plane of
35 rocks (Figure S1).



36 **Figure S1. a.** Outcrop of mica-schist near the Irapé dam (photos taken during the field trip) **b.**
37 bulk sample extracted from the dam area **c.** cutting and washing of bulk samples to retrieve the
38 core plugs.
39

40 All samples are in the form of cylindrical plugs that have length ranging from 3.8 to 5.0 cm
41 and diameter is of 2.50 cm, which meets the standard criteria to test the core plugs samples by
42 Ultra-Pore 300 and Ultra-Perm 610 (see the equipment descriptions).

43 **Ultra-Perm 610 (Core Lab Instruments)**

44 The permeability tests have been performed using UltraPerm-600 (Figure S2). UltraPerm-
45 600 is a steady-state air permeameter, in which backpressure control allows constant rate or
46 constant mean pressure. The instrument allows the determination of permeability in the range
47 of 0.01 to 3.0 mD. Thus, permeability values lower than 0.01 mD are below the detection limit
48 and 0.01 mD is assigned (Table S2). The Ultra-Perm 610 Permeameter uses advanced precision
49 mass flow meters and pressure transducers to measure absolute permeability of rock. The core
50 plugs should be around 2.5 cm in diameter and around 4.0 cm in length. By combining
51 automated data acquisition and real-time graphics with mass flow determinations, greater
52 accuracy and precision of the data are obtained (Haskett et al.,1988). The operating software
53 allows permeability data to be easily related to historical and current databases generated by
54 different techniques. More information about this equipment in accordance with international
55 standards can be access at <http://www.lpfr.igd.unb.br/infraestrutura/permeametro> and
56 www.corelab.com/cli/routine-rock/ultraperm-gas-permeameter.

57

58 **Figure S2.** Ultra-Perm 610 gas permeameter with pressure sample saturator (Core Lab
59 Instruments).

60

61 **Ultra-Pore 300 (Core Lab Instruments)**

62 We have measured porosity values using Ultra-Pore 300 (Core Lab Instruments) (Figure S3
63 and Table S3). The models of the equipment are made by Core lab Instruments, in Texas, USA.
64 UltraPore-300 is a gas expansion helium pycnometer for the determination of grain volume or
65 pore volume of core plug and full diameter samples.

66

67
68
69

70

71 **Figure S3.** Ultra-Pore 300 Porosimeter with matrix cup and analysis plugs.

72 Matrix cups for the 2.5-3.8 cm diameter of samples with Setra 204 transducer rated for 0-1.72
73 MPa. The pore volume hypothesizes through the nitrogen gas (N₂) expansion technique. The
74 system can be used in grain volume or pore volume measurement mode, depending on sample
75 holder configuration. It has multiple volumes built into the system, which allow it to be used
76 for small discs (cuttings), plugs and full diameter samples. More information about this
77 equipment in accordance with international standards can be accessed at
78 www.lpfr.igd.unb.br/infraestrutura/porosimetro and www.corelab.com/cli/routine-rock/ultrapore-porosimeter.

80 .
81
82
83
84

Table S2. List of permeability data measured from cylindrical plug samples (Barometric pressure (PSI) atm, Upstream Pressure=psig, Gas viscosity=cp, Q = Gas flow rate at cc/sec)

No	Sample ID	Depth (m)	Length (cm)	Diameter (cm)	Temp (°C)	Barometric Pressure (PSI)	Confining Pressure	Upstr Pres (psig)	P1 (atm)	P2 (atm)	Q (cc/sec)	K-air (md)	P mean (atm)	K-inf (md)	b (atm)	Beta	Visc (cP)	Q unadj (cc/s)
1	IR-1a	0.1	4.90	2.50	22	14.70	500	2.78	1.1894	1.000 3	0.000	0.002	1.0949	0	0	0	0.017 56	0.0000
2	IR-1b	0.1	4.90	2.50	22	14.70	500	2.64	1.1799	1.000 3	0.000	0.002	1.0902	0	0	0	0.017 56	0.0000
3	IR-1c	0.1	4.90	2.50	22	14.70	500	2.42	1.1649	1.000 3	0.000	0.002	1.0827	0	0	0	0.017 56	0.0000
4	IR-1d	0.1	4.00	2.50	22	14.70	500	2.66	1.1813	1.000 3	0.000	0.0098	1.0907	0	0	0	0.017 56	0.0005
5	IR-2a	0.1	4.10	2.50	22	14.70	500	2.69	1.1833	1.000 3	0.000	0.002	1.0919	0	0	0	0.017 56	0.0000
6	IR-2b	0.1	3.80	2.50	22	14.70	500	2.61	1.1779	1.000 3	0.000	0.0038	1.0890	0	0	0	0.017 56	0.0002
7	IR-2c	0.1	3.80	2.50	22	14.70	500	2.61	1.1779	1.000 3	0.000	0.0038	1.0892	0	0	0	0.017 56	0.0002
8	IR-3a	0.1	5.00	2.50	22	14.70	500	2.65	1.1806	1.000 3	0.000	0.002	1.0904	0	0	0	0.017 56	0.0000
9	IR-3b	0.1	5.00	2.50	22	14.70	500	2.61	1.1779	1.000 3	0.000	0.002	1.0890	0	0	0	0.017 56	0.0000
10	IR-3c	0.1	4.60	2.50	22	14.70	500	2.71	1.1847	1.000 3	0.000	0.002	1.0923	0	0	0	0.017 56	0.0000
11	IR-3d	0.1	4.00	2.50	22	14.70	500	2.71	1.1847	1.000 3	0.000	0.002	1.0923	0	0	0	0.017 56	0.0000

⊥ Experiments loaded perpendicular to bedding plane

Table S3. List of porosity data measured from cylindrical plug samples

NO.	Sample ID	Depth (m)	Dry Weight (g)	Grain Volume (cc)	Grain Density (g/cc)	Pore Volume (cc)	Porosity (%)	Hg Bulk Vol. (cc)	Length (cm)	Diam. (cm)	Calliper Bulk Vol (cc)
1	IR-1a	0.1	57.56	22.2416	2.588	1.811	7.529	0	4.90	2.50	24.053
2	IR-1b	0.1	58.03	22.4214	2.588	1.632	6.785	0	4.90	2.50	24.053
3	IR-1c	0.1	57.46	21.9409	2.619	2.112	8.781	0	4.90	2.50	24.053
4	IR-1d	0.1	47.62	18.3480	2.595	1.287	6.555	0	4.00	2.50	19.635
5	IR-2a	0.1	50.82	18.2157	2.790	1.910	9.490	0	4.10	2.50	20.126
6	IR-2b	0.1	45.86	16.7010	2.746	1.952	10.465	0	3.80	2.50	18.653
7	IR-2c	0.1	36.91	12.9748	2.845	2.242	14.734	0	3.80	2.50	15.217
8	IR-3a	0.1	60.30	22.8400	2.640	1.704	6.943	0	5.00	2.50	24.544
9	IR-3b	0.1	58.79	21.2745	2.763	3.270	13.323	0	5.00	2.50	24.544
10	IR-3c	0.1	55.48	20.9707	2.646	1.609	7.126	0	4.60	2.50	22.580
11	IR-3d	0.1	49.87	18.8501	2.646	1.276	6.340	0	4.10	2.50	20.126

† Experiments loaded perpendicular to bedding plane

References

Haskett, Steven E., Narahara, Gene M., and Stephen A. Holditch. "A Method for Simultaneous Determination of Permeability and Porosity in Low-Permeability Cores." SPE Form Eval 3 (1988): 651–658. doi: <https://doi.org/10.2118/15379-PA>

Silva, G. F., J. O. Araújo Filho, M. G. Von Huelsen, C. N. Chimpliganond, and G. S. França (2014). Influence of Brazilian structures on the reservoir-induced seismicity case of Irapé Hydroelectric Plant, Minas Gerais, Brazil, Braz. J. Geol. 44, no. 3, 375–386, DOI: 10.5327/Z2317-4889201400030004.