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Abstract 

In a standard atmosphere, there is a single lapse rate tropopause (in what follows, tropopause) that 

separates the troposphere below from the stratosphere above. However, in certain situations, such as in 

regions of strong vertical wind shear or associated with certain weather phenomena, a second tropopause 

layer may form above the standard tropopause. The presence of a double tropopause (DT) can have 20 

implications for atmospheric and climate studies, as it may be associated with dynamic and complex 

weather patterns. Based on 14 years of temperature profiles retrieved by GNSS radio occultation and the 

resulting DT, a possible relationship between the spatio-temporal distribution of the relative number of 

DT to simple tropopauses (NDT) (or dependent variable) and a set of monthly climate indices (or 

features) is explored with a focus on the methodological approach. A cluster analysis is applied to 25 

geographically associate the DT occurrences with the climate indices. Then a multivariate linear 

regression is constructed using a progression of different models to identify the relevant features for the 

occurrence of DTs. On a global scale, from a hierarchical cluster analysis six sub-regions with different 

location and spread characteristics are identified. In addition to the condition of linearity in the residuals, 

the performance of each model in the train and test populations is evaluated to discard possible 30 

overfitting. The required conditions of non-collinearity, stationarity and cross-correlation between the 

features and the relative number of NDT after the removal of the climatological mean for each month 

(NDT’) are checked. Mean squared errors, adjusted coefficient of determination (adjusted R2) and number 

of degrees of freedom (F-statistic) parameters are evaluated for each model obtained. Taking into account 

the constraints of the present analysis, the most relevant climatic indices for the distribution of NDT' are 35 

identified. 
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1. Introduction 

The atmosphere is conventionally divided into layers based on the vertical structure of the temperature 

field. These layers, the troposphere, stratosphere, mesosphere and thermosphere, are separated by the 40 

tropopause, stratopause and mesopause (e.g. Andrews et al. 1987). The tropopause is the boundary 

between the troposphere, and the stratosphere, the layer above it. It is characterized by a temperature 

inversion, where the temperature stops decreasing with altitude and remains relatively constant. A double 

tropopause (DT) means the presence of two distinct tropopause layers in the Earth's atmosphere. In a 

standard atmosphere, there is a single tropopause that separates the troposphere below from the 45 

stratosphere above. However, in certain situations, such as in regions of strong vertical wind shear or 

associated with certain weather phenomena, a second tropopause layer may form above the standard 

tropopause. The presence of a double tropopause can have implications for atmospheric and climate 

studies, as it may be associated with dynamic and complex weather patterns. At midlatitudes, the higher 

tropical tropopause domain may overlap with the lower high‐latitude tropopause domain and form double 50 

tropopause (DT) occurrences, when the high‐latitude tropopause domain extends equatorward or the 

tropical tropopause domain extends poleward. DTs occurrence is associated with extratropical synoptic 

disturbances, in storm track regions, on the poleward side of the subtropical jet stream frequently during 

winter (Bischoff et al., 2007; Schmidt et al., 2006; Seidel and Randel, 2006). DTs have also been found in 

association with mountain gravity waves (Schmidt et al., 2006), cyclogenesis (Añel et al., 2008), in strong 55 

cyclonic circulation systems (Peevey et al., 2014; Wang and Polvani, 2011), linked to the strength of the 

upward branch of the Brewer‐Dobson circulation (Castanheira et al., 2012) and detected in cloud‐top 

inversion layers (Biondi et al., 2012). There is a general agreement that the existence and understanding 

of DTs distribution provides important knowledge of the global distribution of stratosphere‐troposphere 

exchange. 60 

Since more than two decades, globally distributed measurements from radio occultation (RO) are 

available. This limb sounding technique provides temperature profiles with high accuracy and vertical 

resolution in the troposphere and lower stratosphere for applications in atmospheric and climate research 

(Anthes, 2011; Steiner et al., 2011). Wilhelmsen et al. (2020) presented global and seasonal 

characteristics of DTs from RO observations. They analyzed the relation between DTs and El Niño 65 

Southern Oscillation (ENSO) events and its implication on the tropopause structure based on a multiyear 

RO record. The seasonal distribution of DTs revealed several hotspot locations, such as near the 

subtropical jet stream and over high mountain ranges, where DTs occur particularly often. These authors 

detected a higher number of DTs during the cold La Niña state while warmer El Niño events resulted in 

lower DTs rates. 70 

Machine learning (ML) enables computer systems to learn from information systems, making it possible 

to forecast their variables and to detect patterns. This becomes even more relevant when considering that 

ML can utilize information derived from big data analysis to produce better results. The development of 

big data analysis has proven to be useful for studying various datasets from multiple sources. In terms of 

forecasting of meteorological data, progressive validation is an approach for validating machine learning 75 

models, wherein data is progressively incorporated into the model, and its performance is assessed at each 
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stage. This enables the understanding of how the model's performance evolves as additional data is 

integrated. Multivariate statistical analysis is widely used to analyze atmospheric variables like 

precipitation intensity and its spatial and temporal variability (Sarmadi and Shokoohi, 2015; Koroša and 

Mali, 2022). Cluster analysis enables to provide a physical classification of weather and climate patterns 80 

for several purposes (Strauss 2018), e.g., to provide a classification of the basic surface climates on earth 

(Netzel and Stepinski, 2016), to analyze typhoon tracks (Camargo et al. 2007) or to better understand and 

forecast the occurrence of weather extremes (storms, floods), climate extremes (heat waves, cold snaps) 

and other factors relating to human health (e.g., Cassou et al., 2005; Coleman and Rogers, 2007; Polo et 

al., 2011). In these applications, the aim is to reduce the large nominal dimensionality of the atmospheric 85 

dynamic and thermodynamic space to a manageable and discrete set of weather and climate states with 

predictive value. 

In this study, starting from a database of DT obtained from RO observations, we propose to explore a 

possible relationship between the spatio-temporal distribution of DT and a set of monthly climate indices. 

The focus is on the methodological approach. We first apply a cluster analysis to geographically associate 90 

DT occurrences and then construct a multivariate linear regression using a progression of different 

models with train and test populations to identify climate indices relevant for DT occurrence.  In Section 

2, we describe the data and procedure to obtain those series as a function of latitude and longitude. 

Section 3 details the cluster analysis, both hierarchical and K-means, to define the geographical sub-

regions. Section 4 summarises the restrictions, methodology and limitations to be considered in the 95 

multivariate linear regression models. Section 5 describes the applied model and section 6 presents and 

discusses the results obtained. 

 

2. Double tropopause (DT) data 

Global Navigation satellite system (GNSS) Radio Occultation (RO) is a well-established technique for 100 

obtaining global thermodynamic and dynamic information in the atmosphere. RO uses GNSS signals 

received by Low Earth-Orbiting (LEO) satellites for atmospheric limb sounding. Temperature (T) profiles 

are derived with high vertical resolution and global coverage under nearly any weather conditions, 

offering the possibility to carry out the global monitoring of the vertical T structure, in particular the 

thermal tropopause. RO measurements from different missions are combined and used in continuation of 105 

each other (Foelsche et al., 2011). The Wegener Center OPSv5.6 data set (Angerer et al., 2017; EOPAC-

Team, 2021) represents a compilation of most RO satellite missions from 2001 to 2020, enabling us to 

study DTs over a longer time period than previous analyses. In this study, we use temperature profiles 

from September 2006 to August 2020, interpolated to an evenly spaced, fixed vertical grid. 

Following Wilhelmsen et al. (2020), we used the lapse rate tropopause algorithm to compute the first and 110 

second lapse rate tropopause for each RO temperature profile. We define the number of DT occurrences 

as NDT ≡ N2/N1, where N1 and N2 refer to the total number of single and double tropopauses detected in 

each cell. From September 2006 to August 2020 the time series of NDT, i.e., the dependent variable, 
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retrieved from radio occultation vertical profiles, were recorded. These were then pooled in 648 non 

overlapping (10x10 degrees) cells between +/-180 and +/-90 longitude and latitude degrees respectively.  115 

Our study was mainly motivated by exploring the relationship between the observed NDT time and space 

variability and the variability of climate indices. We considered monthly time series of 29 global climate 

indices (the independent variables or features, https://psl.noaa.gov/data/climateindices/list/) starting on 

September 2006 (168 months).  

Prior to carrying out this task, an inspection of NDT series at different geographic positions reveals a 120 

complex pattern with a prevailing temporal variability that depends essentially on the latitude. This is 

illustrated in Fig. 1, where a band of 18 cells centered at -175 deg longitude was chosen as an example:  

 

Figure 1. NDT meridional variability, arbitrarily chosen for the band of 18 cells at successive latitudes, 

centered at -175 deg longitude. 125 

Given this considerable variability and the objective of grouping time series with similar characteristics, 

we developed a classification of NDT time series according to their cell latitude and longitude position, 

applying cluster analysis (CA) techniques.  

 

3. Cluster analysis (CA) 130 

A CA assembles a set of objects (in this case time series) into groups (Andenberg 1973), where the 

objects in the same cluster are similar and objects in different clusters are dissimilar (Balling, 1984). In 

particular, the distance between objects is the similarity used to form the clusters. These distances 

(similarities) are based on single or multiple K-dimensions. Each dimension represents a condition in 

order to group the objects. In our case (see Fig. 1) an early inspection of the spread exhibited by i) mean 135 

time values and ii) standard deviations over the 18 NDT time series suggest the choice of dimensions i) 

and ii) and then K=2. In order to remove the seasonal variability, we computed the climatological 
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monthly means over 2006-2020 and subtracted it from each respective month in the NDT time series. The 

de-seasonalized time series is denoted as NDT'. The mean values of the NDT time series and the standard 

deviations of the NDT' time series are then used for the clustering. CA assigns group memberships at 140 

varying levels of aggregation and clusters should be comprised of points separated by small distances, 

relative to the distances between clusters. There are a wide variety of plausible definitions of distance in 

this context, and the results of a cluster analysis may depend quite strongly on the distance measure 

chosen. A given CA can be hierarchical and nonhierarchical (Wilks, 2006) depending on the way the 

clusters are formed. We briefly summarize both analyses, since we needed to apply them in a 145 

complementary way. 

In a hierarchical agglomerative CA a hierarchy of sets of groups was constructed. Each group was formed 

by merging one pair from the collection of previously defined groups. This procedure begins by 

considering that the n individual observations have no group structure or, equivalently, that the data set 

consists of n groups containing one observation each. The first step is to find the two groups (i.e., data 150 

vectors) that are closest in their K-dimensional space and to combine them into a new group. In particular, 

the clustering in n groups at the beginning of this process and the one-group clustering at the end of it are 

not useful. A natural clustering of the data into a workable number of informative groups will emerge at 

some intermediate stage. There are alternative definitions for the above mentioned distances between 

groups of points if the groups contain more than a single member. We have chosen the so called average-155 

linkage clustering. Each cluster-to-cluster distance is defined by the average distance between all possible 

pairs of points in two groups being compared. In our CA, we expect that the decided intermediate state 

should reveal the optimum number of clusters, each containing a number of cells that best represent the 

space and time patterns of DT time series. 

The intermediate results of a hierarchical CA are illustrated using a dendrogram. An important practical 160 

problem in cluster analysis is the choice of which intermediate stage will be chosen as the final solution. 

That is, we need to choose the level of aggregation in the tree diagram at which to stop further merging of 

clusters. The principle guiding this choice is to find the level of clustering that maximizes similarity 

within clusters and at the same time, minimizes similarity between clusters. In Fig. 2, we note that 

selecting a cutoff distance = 0.07 suggests a reasonable preliminary number of six clusters in the 165 

dendrogram, while retaining a significant number of individual cells. We then proceed with the cluster 

analysis according to this classification in six groups. 
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Figure 2. Dendrogram obtained by grouping 648 objects (or time series) into 6 clusters (to differentiate 

each cluster from the others, different colors were arbitrarily chosen). Each time series corresponds to a 170 

different geographical cell. 

In a nonhierarchical CA we start from this previous preliminary observation. Using K-means, the 648 

cells were pooled into 6 sub-regions. In Fig. 3, the cluster assignments and their respective centroids 

corresponding to each cluster are shown, based on the means of NDT and standard deviations of NDT'. A 

reasonable separation of objects is achieved.  175 

 

Figure 3. K-means clustering the 648 cells were pooled into 6 sub-regions. Here K = 2 dimensions are 

the NDT mean value and NDT’ standard deviation over the 168 months considered. 
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In Fig. 4, the time series belonging to each of the clusters, averaged over the 168 months are shown. A 

clear distinction among the 6 curves evidences a convenient grouping in both K dimensions, according to 180 

diverse geographic sectors.  

 

Figure 4. NDT averaged over all time series within each cluster. 

An inspection of Fig. 4 evidences some characteristics which may be described into two groups: In 

clusters 2, 5 and 6, NDT is dominated by a clear annual oscillation, with the highest mean values, the 185 

highest dispersion and a less evident semiannual contribution. In clusters 1, 3 and 4, NDT exhibits a 

considerably lower dispersion, lower mean values and an annual and semiannual variability in addition to 

a complex superposition of several harmonics.   

Given the variability of NDT for each group, we removed from NDT the climatological mean for each 

month corresponding to the 14-year data set. The anomaly time series NDT’ is shown in Fig. 5.  190 

 

Figure 5. NDT’ time series for each of the 6 clusters, after the removal of the NDT monthly mean 

computed from 14-year data.  
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Here the amplitude variability of NDT’ in sub-regions 2, 5, and 6 is clearly larger than in 1, 3 and 4, 

consistently with Fig. 4 after the elimination of the annual contribution.  195 

The geographic distribution of each cluster is shown in Fig. 6, where the colors used to distinguish each 

of them were preserved.  

 

Figure 6. Cluster distribution obtained after the K-means analysis. 

In Fig. 6, an attempt was made to optimize a balance between i) a significant number of cells belonging to 200 

each sub-region and ii) their connexed structure (here we understand that in a connexed sub-region every 

cell belonging to the sub-region should be ideally connected to the rest of its cells too). A prevailing 

latitudinal stratification of the 6 clusters considerably symmetric with respect to the equator is evident. 

The interconnected nature of each sub-region is highlighted in the polar, sub-polar and equatorial regions 

by clusters 1 and 4. Clusters 3 and 2 are quite symmetrically distributed around the equator, at subtropical 205 

and mid-latitudes respectively, while sub-region 5 is more dispersed between 30° and 50° also in both 

hemispheres and it does not exhibit a homogeneous behavior. There is a prevailing clustering above 

oceanic  areas in subregion 6. 

 

4. Conditions to multivariate regression models and methodology 210 

1. Non-collinearity 

We propose to analyze the possible existence of patterns relating the dependent variable (NDT’) and 

climate indices, by means of a multivariate linear regression.  

To achieve this, we start by checking the condition of non-collinearity among the proposed features. In 

doing so, the Pearson correlation matrix, including the climate indices provided in 215 

https://psl.noaa.gov/data/climateindices/list/, was calculated. Highly correlated features are considered to 

have values above 0.75 and are therefore interpreted as representing the same climate variability. Of the 
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climate indices that show a high correlation, only one is taken into account and retained. The climate 

index finally selected is the one that shows the highest correlation with NDT’. Following this procedure, 

the number of climate indices was reduced from 29 to 18 and they are listed in Appendix A. As an 220 

example, from the climate indices describing El Niño variability, the Meiv2 index was retained. 

2. Stationarity 

A second condition that restricts the application to a multivariate linear regression is the stationarity of the 

time series involved. Time series are considered as stationary when their statistical properties do not 

change over time. The mean, variance, and autocorrelation structure must remain constant across different 225 

time periods exhibiting repeating patterns at regular intervals. However, the presence of periodicity does 

not necessarily indicate stationarity. In some cases, even though a time series has periodic patterns, it 

might still exhibit trends. To determine whether the periodic time series are stationary, we perform a test 

for stationarity to NDT’ and each feature: the Augmented Dickey-Fuller (ADF) test (Dickey and Fuller, 

1979). According to it, the rejection of the null hypothesis allows to discard a non-stationary character of 230 

the series. In our case, by setting a significance level of 0.95, 12 indices succeeded to reject the null 

hypothesis. As mentioned above, the climate indices or features were common to all 6 clusters. However, 

from the same test we observed that those series for clusters 1 to 6 required a relaxation of the 

significance level to 0.90 to reject the null hypothesis. Extending this less restrictive condition also to the 

features, we concluded the suitability of including 3 additional time series, reaching a final number of 15 235 

climate indices (highlighted in italic in Appendix A). 

3. Lagged features 

A third consideration is the following. Time series data often have mutual lags or time dependencies, so it 

is worth considering possible time lags between predictors and response variables. Cross-correlations 

(CC) between each of the features and the NDT’ series in each of the sub-regions are calculated in order 240 

to investigate for which lag (k) ranging from k = +5 to - 5 months these correlations are the highest. 

These k values may be positive or negative. For a given k,  in general different for each feature, a relative 

maximum positive or negative CC is evidenced between NDT’ and each lagged feature. In Fig. 7, CC is 

illustratively shown for sub-region 1 after the shifting process (see in Appendix B the corresponding CC 

plots for the remaining sub-regions).  245 
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Figure 7. CC between the selected 15 features and DT in sub-region 1, after the shifting process (see 

text). 250 

After having shifted each feature, a relative maximum cross-correlation at zero lag is found. The time lags 

detected on the basis of shifted CC in the 6 sub-regions are detailed in Table 1. We observed that in some 

clusters some features were not shifted. 

 

Sub-

region 

Aao Amo Ao Ea Epo Jonesnao Meiv2 Pacwarm Pdo Pna QBO Tna Tsa Whwp Wp 

1 -4 -2 +2 0 0 +2 -5        0 -5 +1 -4 -2 +2 -3 +2 

2 +4 +1 -4 -1 0 -1 +5 +1 +1 +2 0 +1 +4 +1 +2 

3 -5 -1 -1 0 0 -1 0 +4 +2 +4 0 0 +4 +1 0 

4 +4 +2 -1 0 0 +1 5 0 0 +4 +5 -4 -2 +3 +1 

5 +5 -4 0 -2 0 -2 +5 0 +2 +2 0 +2 0 +1 0 

6 +3 -4 +1 +1 0 +1 +5 0 0 +2 0 +2 +4 +1 0 

 255 
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Table 1. The time lags considered on the basis of the shifted CCs between the features and NDT’ in the 6 

sub-regions (see text). 

From Table 1, we see, e.g., that QBO maximizes its CC with NDT’ for lag=+5 in sub-region 4. This 

means that the Quasi-biennial Oscillation (QBO) is 5 months ahead of NDT' in this sub-region. 

We propose below a linear model for each cluster considering each feature shifted in time backward or 260 

forward up to 5 months, consistently with the lag that maximizes the positive or negative CC within +5 

and -5. We interpret a lag greater or less than 0 in a sub-region as maximising the CC between the 

respective feature and NTD’, k months shifted earlier or later respectively.  

In Fig. 8, the Pearson correlation matrix for sub-region 1 with NDT’ and the selected 15 climate indices 

detailed in Appendix A is illustratively shown to provide a first inspection of a possible relationship 265 

between NDT’ and each feature. As mentioned before, the remaining rejected climate indices are strongly 

correlated with at least one of the features already included in Table 1 and Fig. 8. As can be seen in Fig. 

8, there is a non-high correlation between any pair of features (it always remains below/above +/-0.75). 

Similar values are obtained from a Spearman correlation matrix (not shown). In this sub-region, no single 

correlation between any feature and NDT’ is better than -0.30. As it will be shown below, a progressive 270 

addition of climatic indices to the model improves its performance.  

 

 

Figure 8. The Pearson correlation matrix for sub-region 1, retaining 15 climate indices and NDT’ (= 

“cluster 1”). 275 
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4. Linear hypothesis 

A final restriction, whose accomplishment is to be later verified, requires that in any multivariate linear 

regression the residuals (the differences between the observed values and the predicted values) must 

follow a multivariate normal distribution. The assumption of normally distributed residuals is important 

for making valid statistical inferences and conducting hypothesis tests. Normally distributed residuals are 280 

indicative of a well-fitting model. Deviations from normality may suggest that the model is not capturing 

all of the underlying structure in the data (Wilks et al 2006).  

5. Building up the model 

We first split each data set at random into two distinct sets: training and testing (70% -30%).  The basic 

idea behind this data grouping strategy is, that we learn the model parameters on the training set, and then 285 

we use the test data set (a data set that was not involved at all during parameter estimation) to determine 

the goodness of fit of our model and evaluate the generalization properties of the model (Hartmann et al 

2023). It is expected that a progressive addition of climatic indices to the model improves its 

performance, reducing the root mean squared error (RMSE) obtained in training and testing sets, defined 

as: 290 

𝑅𝑀𝑆𝐸 = √
∑ (𝑝𝑟𝑒𝑑𝑖 −𝑜𝑏𝑠𝑖)2𝑛

𝑖=1

𝑛
            (1) 

where predi and obsi refer to each of n observations.  

We write the model as: 

𝑦𝑖 = 𝛽0 + ∑ 𝑥𝑖𝑗𝛽𝑗
𝑑
𝑗=1 + 𝜀𝑖        

= 𝛽0 + 𝑥1𝑖𝛽1 + 𝑥2𝑖𝛽2 + … . +𝑥𝑑𝑖𝛽𝑑 + 𝜀𝑖,          (2) 295 

i =1, 2,….n and d is the number of features considered. εi is the error of each observation. The β 

coefficients are obtained by minimizing the residual sum of squares, thus obtaining: 

�̂� = (𝑿𝑇𝑿)−1𝑿𝑇𝒚            (3) 

Given new data Xnew, the least squares prediction is: 

�̂� = 𝑿𝑛𝑒𝑤�̂� = 𝑿𝑛𝑒𝑤 (𝑿𝑇𝑿)−1𝑿𝑇𝒚.            (4) 300 

We must use just as many features as necessary to achieve the best out-of-sample performance. The 

strategy to find the most useful feature sets constitutes our selection of features (Hartmann et al 2023). 

The price we have to pay by introducing feature selection approaches is that we loose the availability to 

judge the importance of particular features. Then, to find which features should be included in the model 

we look for a criterion that allows to assess which combination of features gives the best model 305 

performance and, in order to counteract overfitting issues, penalizes the number of free parameters in our 

model (Hartmann et al 2023). 
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In doing so, we apply a model selection criterion, the Akaike Information Criterion (AIC). According to 

it, the relative quality of statistical models for a given set of data is measured. Given a collection of 

models built up with different number of features, AIC estimates the quality of each model, relative to 310 

each of the other models. It provides a means for model selection. Under the framework of step-wise 

model selection a criterion, AIC is used for weighing the choices of adding (or excluding) model features, 

taking into account the numbers of features to be fitted. At each step, an add or drop is performed, that 

minimizes the criterion (AIC) score. 

A forward-stepwise selection starts with the intercept (baseline model), and then sequentially adds into 315 

the model the predictor that most improves the fit. Forward-stepwise selection is a greedy algorithm, 

producing a nested sequence of models (Hartmann et al 2023). A backward-stepwise model selection is 

very similar to the forward-stepwise model selection. It starts with the full model, and sequentially deletes 

the predictor that has the least impact on the fit. 

The evaluation of each one of the models’ performance is made based on the following: 320 

1)  RMSE for training and testing sets. 

If any of the models performs well on the training data set, but performs poorly on the test data set 

(RMSEtest >> RMSEtrain), this is an indication for model overfitting (an out of proportion between the 

number of features and observations). This is because we do not want our model to memorize the training 

data set, but we want to find a model that accounts for the unknown data generation process generating 325 

our observations. 

2)  R2, the coefficient of determination. It is the proportion of variance in the observed values explained 

by the regression equation. It is a statistical measure of how well the regression hyperplane approximates 

the real data points: a measure of the goodness of fit of the model: 𝑅2 = 𝑆𝑆𝑅
𝑆𝑆𝑇⁄ , where 𝑆𝑆𝑅 =

∑(�̂�𝑖 − �̅�)2 is the regression sum of squares representing the “explained” variance by the model, and 330 

𝑆𝑆𝑇 = ∑(𝑦𝑖 − �̅�)2 is the total sum of squares or total variance. �̂�𝑖 and yi are, respectively, the modeled 

and measured NDT’ values for each month. 0 < R2 < 1. A value of near 0 suggests that the regression 

equation is not capable of explaining the data. An R2 of 1 indicates that the regression model perfectly fits 

the data. The addition of features to the model inflates the value of R2. The addition of d features to a 

regression model with n observations will increase the value of R2, no matter how worthless the feature is. 335 

This issue is addressed by penalizing R2 when parameters are added to the model. The result is an 

adjusted R2, defined as: 

𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 = (𝑅2 −
𝑑

𝑛−1
) (

𝑛−1

𝑛−𝑑−1
)          (5) 

When R2 and adjusted R2 are close to each another, this implies that the penalty for an increased number 

of features is not very high. In our case, n is the number of months. 340 
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3) The F-statistic is the number of degrees of freedom. When the F-statistic is large, the explained 

variance (SSR) is large relative to the unexplained variance (SSE). It is an indicator that the selected 

features are useful variables to explain the response variable. 𝑆𝑆𝐸 = ∑(𝑦𝑖 − �̂�𝑖)2. 

 

        6. Model results and discussion 345 

We proceed with two steps: i) we build the best NDT’ model for each cluster and, from the best model 

found, ii) we detect which features are particularly relevant in each sub-region.  Based on the 

methodology described in the previous section and the AIC criteria, in each sub-region we build a 

hierarchy of models applied to training and testing data to select the more appropriate features in each 

cluster.  350 

We then repeat the following process for the 6 sub-regions. After splitting the data set for each cluster 

into training and testing sub-sets we consider the baseline model as a reference. This is the simplest 

model we may construct in terms of RMSE. Any additional model from Eq. (2) should always perform 

better than the baseline model. In our example the baseline model is just the arithmetic mean of the 

response variable. This arithmetic mean produces the same number as β0 in Eq. (2).  355 

To construct and compare with the rest of the models, the AIC model selection criterion is used for the 

case of forward-stepwise selection, which starts from the baseline model (β0). The set of features in Eq. 

(2) that minimizes RMSE is detected, considering all possible linear models and combinations. This 

model is called "with ALL" (Fig. 9 and Table 2). Once the optimal set of hi (i=1 to 6) features (different 

for each cluster) has been found, the relative influence of each of the climate indices in each sub-region is 360 

identified. For every cluster, additional hi models are constructed, but each containing hi-1 features. These 

are respectively referred to as "without [feature removed]", given the disregard of each of hi features 

alternatively. Both the model with ALL and the models built from the removal of each of the features are 

produced from the training and test data sets to detect possible overfitting effects (Fig. 9). 

 365 
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Figure 9. Baseline model, model with ALL features, and remaining models after disregarding each of 

features contained in with ALL model alternatively. 1) to 6) refer to clusters 1 to 6 respectively. 

Figure 9 shows, as expected, the highest RMSE values corresponding to the baseline model. Different 370 

features were selected in each of the models by the AIC criteria and contrasted with the baseline and with 

ALL models for each cluster. Those features selected by the AIC criteria in each cluster are assumed to 

have a relationship with NDT’ in that sub-region. The coefficients in Eq. (2) corresponding to the forward 

step-wise model in clusters 1 to 6 are shown in Appendix C. RMSE is shown for the training and test 

samples. As explained before, this is an indication of the degree of possible model overfitting  (RMSEtest 375 

>> RMSEtrain ) . Although the predictive capacity of the model in the context of a different NDT’ data 

series is not a priority objective of this work, from an inspection of Fig. 9 we can point out that a possible 

indication of overfitting appears in clusters 2, 4 and 5.  
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It is important to underline that the present analysis is based on different assumptions, one of which is the 

proposed number of clusters. This arises from the hierarchical analysis, which was performed taking into 380 

account the available time span of the data series. Any increase in the number of clusters and the length of 

the time series would reduce the geographical extent of each sub-region, perhaps allowing the influence 

of each climate index on each cluster to be better specified. Moreover, from Fig. 8 and the corresponding 

ones for the remaining clusters (not shown), although some features individually have a non-negligible 

correlation with NDT' they are not necessarily selected to build the best model with ALL.  385 

Bearing in mind the constraints of the present analysis, some considerations can be made: 

By inspection of Fig. 9, we observe the enhanced relevance of QBO to the variability of NDT' in clusters 

4, 5 and 6, based on the relative increase in RMSE when this feature is removed from the model. 

Similarly, QBO appears, in both linear correlation with NDT’ (Pearson index=0.48 in cluster 4) and AIC 

analyses, as a significant feature mainly in tropical latitudes. An influence of QBO on the extratropical 390 

region has been referred to as the Holton–Tan effect, manifested as a weaker and warmer winter Arctic 

polar vortex during the easterly phase of the QBO (Holton and Tan 1980; Silverman et al 2021). 

According to AIC, Meiv2 influences the variability of NDT' at subtropical and middle latitudes in both 

hemispheres (cluster 3 in Fig. 9). Also a correlation between them is found in clusters 5 and 6 (Pearson 

index=-0.38 and -0.33 respectively). A clear signal of QBO and ENSO from reanalyses and radio 395 

occultation data was previously reported in NDT on a global scale (Castanheira et al. 2012; Wilhelmsen 

et al. 2020). Some of the DTs detected in the tropics are related to changing QBO phases (e.g., Kedzierski 

et al., 2016). A relationship between DTs and ENSO was detected along -40°S and 40°N as well as north 

of 40°N between 60°E to 60°W (Wilhelmsen et al., 2020; Fig. 3), which is in agreement with our clusters 

5 and 6. Pacwarm is included by AIC in all clusters, however, it has the highest Pearson correlation with 400 

NDT' in sub-regions 5 and 6. From AIC, the Arctic oscillation (Ao) is relevant in region 6 while the 

tropical southern Atlantic index (Tsa) appears relevant in regions 2. These features, together with those 

selected by the AIC analysis in Fig. 9 are considered to be linearly related to the distribution of NDT'. 

As for the remaining features not mentioned in Section 4 and not reported in the AIC analysis, we 

consider them not relevant in relation to the variability of NTD’. To summarize, Table 2 shows, in 405 

addition to those features included according to the AIC forward step-wise method, R2, adjusted R2 and 

F-statistic for with ALL models (AIC selection) and each cluster.  

 

 

 410 
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Sub-

region 

Aao Amo Ao Ea Epo Jones-

nao 

Meiv2 Pac-

warm 

Pdo Pna Qbo Tna Tsa Whwp Wp R2 Adj- R2 F-st 

1 X       X  X X  X  X 0.36 0.32 9.75 

2        X   X  X   0.35 0.33 14.37 

3 X     X X X  X X X   X 0.29 0.24 5.24 

4 X       X  X X  X X X 0.49 0.45 13.86 

5 X       X  X X  X X X 0.42 0.38 9.25 

6   X     X X  X X X  X 0.43 0.39 11.12 

 

Table 2. Features included in “with ALL” models in clusters 1 to 6 and the resulting R2, adjusted R2 and 

F-statistic parameters. 

It may be observed that in general, the relative difference between R2, adjusted R2 reveals a low penalty 

for an increased number of features. The highest values of the adjusted R2 are in clusters 4, 5 and 6. The 415 

F-statistic, in general is high. Accordingly, the explained variance is large relative to the unexplained 

variance and the selected features are useful variables to explain NDT’. Finally we observe that the 

RMSE of the test sample in clusters 1 and 3 in Fig. 9 is lower than that of the training sample. To explain 

this, if the test data are similar to the training data but without as much noise, the model may perform 

better in the test population, resulting in a lower RMSE. Moreover, if the training data contain many 420 

outliers that negatively affect the model, and those outliers are not present in the test data, the RMSE may 

be higher in the training data than in the test data. 

Figure 10 shows the residual distributions obtained from with ALL models. A fair Gaussian distribution 

supporting the linear hypothesis of these models is observed in clusters 1, 2 and 3 and some bias is 

evident in sub-regions 4, 5 and 6. 425 
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Figure 10. Residual distributions obtained from the with ALL models. 1) to 6) refer to clusters 1 to 6 

respectively. 

Finally, in Fig. 11 the corresponding Q–Q (quantile–quantile) plot to each cluster to reject possible 

departures from the theoretical normal distribution is shown. These departures appear as evident only in 430 

clusters 5 and 6. As it is known, a Q–Q plot is a scatterplot where each coordinate pair consists of a data 

value and the corresponding estimate for that data value derived from the quantile function of the fitted 

(here Gaussian) distribution. It may be used to compare the shapes of distributions, providing a graphical 

view of how properties such as location, scale and skewness are similar or different in both distributions 

(Wilks et al., 2006). It is worth mentioning that the application of the backward rather than forward step-435 

wise model to the clusters does not reveal significant differences to Fig. 9 (not shown). 

1 2 

3 4 

5 6 
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Figure 11. Q-Q plots in sub-regions 1 to 6 to detect departures from the theoretical normal distribution.  

In this analysis, the resulting NDT’ clustering was defined on the basis of two measures of location and 

spread in the time series: mean and standard deviation. Higher order moment that would account for the 440 

symmetry of NDT’ could also have been included too. Additional variations may be considered, such as 

non-linear models, different values for the significance thresholds of the stationarity condition, maximum 

lags, a different proportion of data between the training and test populations, and possible relaxation of a 

strictly linear model. In this case, polynomial, hybrid, ridge or Lasso regressions could be addressed in 

the analysis of groups 5 and 6. 445 
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Appendix A: Climate indices (those highlighted in italic were detected as stationary). 

1. Aao: (Antarctic oscillation) is a low-frequency mode of atmospheric variability of the southern 

hemisphere that is defined as a belt of strong westerly winds or low pressure surrounding 

Antarctica which moves north or south as its mode of variability 530 

2. Amo: (Atlantic Multidecadal Oscillation) (obtained from 

http://www.esrl.noaa.gov/psd/data/correlation/amon.us.long.data). The time series are 

calculated from the Kaplan SST dataset which is updated monthly. It is basically an index of the 

N Atlantic temperatures. Time series are created; a smoothed version and an unsmoothed 

version. In addition, two files starting at 1948 are produced to be used in the Correlation 535 
webpages.  

3. Ao: (Artic Oscillation) The daily AO index is constructed by projecting the daily (00Z) 1000mb 

height anomalies poleward of 20°N onto the loading pattern of the AO. The loading pattern of 

the AO is defined as the leading mode of Empirical Orthogonal Function (EOF) analysis of 

monthly mean 1000mb height during 1979-2000 period. 540 

4. Ea: The positive phase is associated with positive height anomalies located over Europe and 

northern China, and negative height anomalies located over the central North Atlantic and north 

of the Caspian Sea. 

5. Epo (or Ep): The East Pacific - North Pacific (EP- NP) pattern is a Spring-Summer-Fall pattern 

with three main anomaly centers. The positive phase of this pattern features positive height 545 
anomalies located over Alaska/ Western Canada, and negative anomalies over the central North 

Pacific and eastern North America. 

6. Gmmsst. Gaussian Global Model Sea Surface Temperature. 

7. Jones NAO. North Atlantic Oscillation (by Jones). The Jones index is the difference in 

atmospheric pressure between Gibraltar, situated within the zone of impact of the  Azores’ 550 
anticyclone, and south-western Iceland (Stykkisholmur/Reykjavik) (Jones et al. 1997). Jones P. 

D., Jonsson T., Wheeler D., 1997,  Extension  to  the North Atlantic Oscillation using early 

instrumental pressure observations from Gibraltar and South-West Iceland. Int J. Climatol. 17: 

1433-1450. 

8. Meiv2. Leading combined Empirical Orthogonal Function (EOF) of five different variables (sea 555 
level pressure (SLP), sea surface temperature (SST), zonal and meridional components of the 

surface wind, and outgoing longwave radiation (OLR)) over the tropical Pacific basin (30°S-

30°N and 100°E-70°W). 

9. Pacwarm. 1st EOF timeseries of SST (60°E-170°E, 15°S-15°N) SST EOF, all months 

10. Pdo: (Pacific Decadal Oscillation). PDO is the leading PC of monthly SST anomalies in the 560 
North Pacific Ocean. 

11. Pna.  is one of the most prominent modes of low-frequency variability in the Northern 

Hemisphere extratropics. 

12. Qbo. Zonally averaged equatorial wind data at 50 hPa from the NCEP/NCAR R-1 reanalysis.  

13. Solar. Solar Flux (10.7cm). 565 

14. Tna: Tropical Northern Atlantic Index. Anomaly of the average of the monthly SST from 5.5N to 

23.5N and 15W to 57.5W. HadISST and NOAA OI 1x1 datasets are used to create index. 

15. Tni. Trans Niño index. 

16. Tsa: Tropical Southern Atlantic Index. Anomaly of the average of the monthly SST from Eq-20S 

and 10E-30W. HadISST and NOAA OI 1x1 datasets are used to create index 570 

17. Whwp: Western Hemisphere Warm Pool. Monthly anomaly of the ocean surface area warmer 

than 28.5° C in the Atlantic and eastern North Pacific. 

18. Wp: Western Pacific Index. The WP pattern is a primary mode of low-frequency variability over 

the North Pacific in all months. 

 575 
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Appendix B: CC between the selected 15 features and DT in sub-regions 2 to 6 (Figures A1 to A5 

respectively), after the shifting process. 

 

Figure A1. CC between the selected 15 features and DT in sub-region 2, after the shifting process (see 580 

text). 
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Figure A2. Same as in Fig. A1, in sub-region 3. 

 585 
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Figure A3. Same as in Fig. A1, in sub-region 4. 

 590 
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Figure A4. Same as in Fig. A1, in sub-region 5. 
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Figure A5. Same as in Fig. A1, in sub-region 6. 600 
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Appendix C: Coefficients and features corresponding to the “with ALL” model in clusters 1 to 6. 

 
  cluster1 ~ tsa + qbo + pacwarm + aao + pna + wp 

 

Residuals: 625 
      Min        1Q    Median        3Q       Max  

-0.036895 -0.010484  0.000123  0.011318  0.046354  

 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     630 
(Intercept)  0.0194782  0.0034257   5.686 1.18e-07 *** 

tsa         -0.0208061  0.0051643  -4.029 0.000106 *** 

qbo          0.0004799  0.0001098   4.369 2.94e-05 *** 

pacwarm     -0.0341242  0.0090960  -3.752 0.000288 *** 

aao         -0.0039275  0.0016474  -2.384 0.018918 *   635 
pna         -0.0037843  0.0017543  -2.157 0.033278 *   

wp           0.0022488  0.0015611   1.440 0.152704     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 640 
Residual standard error: 0.01714 on 105 degrees of freedom 

Multiple R-squared:  0.3579, Adjusted R-squared:  0.3212  

F-statistic: 9.753 on 6 and 105 DF,  p-value: 1.587e-08 

 

 645 
 cluster2 ~ qbo + tsa + pacwarm + epo 

 

Residuals: 

      Min        1Q    Median        3Q       Max  

-0.072798 -0.017904 -0.000591  0.020900  0.080895  650 
 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept)  0.0335452  0.0055860   6.005 2.72e-08 *** 

qbo          0.0012358  0.0001995   6.196 1.13e-08 *** 655 
tsa         -0.0493305  0.0105276  -4.686 8.32e-06 *** 

pacwarm     -0.0326702  0.0153436  -2.129   0.0355 *   

epo          0.0001765  0.0001111   1.589   0.1151     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 660 
 

Residual standard error: 0.02817 on 106 degrees of freedom 

Multiple R-squared:  0.3516, Adjusted R-squared:  0.3271  

F-statistic: 14.37 on 4 and 106 DF,  p-value: 2.097e-09 

 665 
 

 cluster3 ~ qbo + pacwarm + meiv2 + aao + jonesnao +  

    pna + tna + wp 

 

Residuals: 670 
       Min         1Q     Median         3Q        Max  

-0.0262363 -0.0053534 -0.0004189  0.0055748  0.0285033  

 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)   675 
(Intercept) -2.375e-03  1.729e-03  -1.373   0.1726   

qbo          1.426e-04  6.104e-05   2.336   0.0214 * 

pacwarm      9.171e-03  5.124e-03   1.790   0.0765 . 

meiv2        2.054e-03  9.667e-04   2.124   0.0361 * 

aao         -2.120e-03  9.762e-04  -2.172   0.0322 * 680 
jonesnao     9.833e-04  4.462e-04   2.204   0.0298 * 
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pna         -1.679e-03  8.620e-04  -1.948   0.0542 . 

tna          5.139e-03  2.850e-03   1.803   0.0743 . 

wp           1.239e-03  8.188e-04   1.513   0.1333   

--- 685 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.008747 on 102 degrees of freedom 

Multiple R-squared:  0.2914, Adjusted R-squared:  0.2359  

F-statistic: 5.244 on 8 and 102 DF,  p-value: 1.657e-05 690 
 

 

 cluster4 ~ qbo + pacwarm + aao + pna + whwp + tsa + wp   

Residuals: 

       Min         1Q     Median         3Q        Max  695 
-0.0241264 -0.0068213  0.0008309  0.0065308  0.0214588  

 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept)  9.505e-03  2.029e-03   4.685 8.60e-06 *** 700 
qbo          4.643e-04  6.565e-05   7.073 1.88e-10 *** 

pacwarm     -2.963e-02  6.248e-03  -4.742 6.82e-06 *** 

aao         -4.236e-03  9.916e-04  -4.272 4.33e-05 *** 

pna         -4.256e-03  1.094e-03  -3.888 0.000179 *** 

whwp         1.533e-03  5.363e-04   2.858 0.005163 **  705 
tsa         -6.994e-03  3.223e-03  -2.170 0.032304 *   

wp           1.517e-03  9.401e-04   1.613 0.109766     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 710 
Residual standard error: 0.01017 on 103 degrees of freedom 

Multiple R-squared:  0.485, Adjusted R-squared:   0.45  

F-statistic: 13.86 on 7 and 103 DF,  p-value: 1.54e-12 

 

 715 
 cluster5 ~ pacwarm + qbo + pna + wp + tsa + tna +  

    aao + amo 

 

Residuals: 

      Min        1Q    Median        3Q       Max  720 
-0.068777 -0.018276  0.002122  0.019003  0.053377  

 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept)  0.0325184  0.0056697   5.736 9.99e-08 *** 725 
pacwarm     -0.0410161  0.0159533  -2.571  0.01158 *   

qbo          0.0009835  0.0002028   4.849 4.45e-06 *** 

pna         -0.0064672  0.0028895  -2.238  0.02739 *   

wp          -0.0069884  0.0025421  -2.749  0.00707 **  

tsa         -0.0212969  0.0103254  -2.063  0.04169 *   730 
tna         -0.0166577  0.0083008  -2.007  0.04742 *   

aao          0.0042951  0.0028774   1.493  0.13860     

amo         -0.0282182  0.0190517  -1.481  0.14165     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 735 
 

Residual standard error: 0.02682 on 102 degrees of freedom 

Multiple R-squared:  0.4204, Adjusted R-squared:  0.375  

F-statistic: 9.248 on 8 and 102 DF,  p-value: 1.658e-09 

 740 
 cluster6 ~ pacwarm + tsa + qbo + ao + tna + wp +  

    pdo 
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Residuals: 

      Min        1Q    Median        3Q       Max  745 
-0.081610 -0.015697  0.002089  0.012517  0.093024  

 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept)  0.0344383  0.0054041   6.373 5.31e-09 *** 750 
pacwarm     -0.0223392  0.0174548  -1.280  0.20348     

tsa         -0.0484257  0.0098959  -4.894 3.67e-06 *** 

qbo          0.0008939  0.0001897   4.713 7.67e-06 *** 

ao          -0.0073251  0.0024063  -3.044  0.00296 **  

tna         -0.0258922  0.0084980  -3.047  0.00294 **  755 
wp          -0.0046411  0.0024391  -1.903  0.05986 .   

pdo         -0.0047650  0.0027319  -1.744  0.08411 .   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 760 
Residual standard error: 0.02618 on 103 degrees of freedom 

Multiple R-squared:  0.4304, Adjusted R-squared:  0.3917  

F-statistic: 11.12 on 7 and 103 DF,  p-value: 2.075e-10 
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