

1 **Earth Science for all? The economic barrier to European**
2 **Geoscience conferences**

3 Francyne Bochi do Amarante¹ & Mauricio Barcelos Haag²

4 ¹ Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

5 Corresponding author. Francyne; email: francyneb@gmail.com

6 ² Department of Earth Sciences, University of Toronto, Toronto, Canada

7 Email: mauricio.haag@mail.utoronto.ca

8

9 **Abstract**

10 Scientific meetings are vital for research development and networking. However, these
11 events often reflect unconscious biases and barriers to diversity, particularly affecting
12 **marginalized groups**. The future success of geosciences depends on diversity, which
13 enhances problem-solving and innovation through varied perspectives. This study
14 examines the attendance diversity at the European Geosciences Union (EGU) General
15 Assembly from 2005 to 2024, focusing on the impact of economic factors, distance,
16 and population size on participation. Using publicly available data from the World Bank
17 and EGU, this study finds that gross national income (GNI) is the primary determinant
18 of attendance, especially post-COVID. Distance also influences attendance but to a
19 lesser extent, while population size shows a weak correlation. To improve diversity in
20 academic conferences, we suggest facilitating donations, offering affordable
21 accommodations, establishing additional travel funds, and rotating the conference
22 location. Our actions must go beyond the EGU General Assembly and other
23 geoscience conferences, as these actions can also help dismantle barriers to
24 inclusivity in other areas of our community. By addressing these financial and
25 systemic barriers, geoscience conferences can become more inclusive, benefiting the
26 entire scientific community.

28 **1. Introduction**

29 Academic conferences are crucial for researchers to promote their work,
30 establish new connections and collaborations through networking, and be informed of
31 the up-to-date research that is taking place across the globe. Such events are also
32 places where the identities of scientists are constructed and how scientists are
33 perceived within their community, often inadvertently reinforcing unconscious biases.
34 Scientific conferences tend to reproduce barriers to diversity in the geosciences,
35 meaning there is an underrepresentation of people from **marginalized groups** (i.e.
36 **communities excluded or disadvantaged due to systemic discrimination based on**
37 **identity factors like race, gender, or socioeconomic status**) and citizens from **low- and**
38 **middle-income countries (LMICs)**; King et al., 2018; Talavera-Soza, 2023), who are
39 therefore more likely to face barriers to their career progress.

40 Diversity is essential to the future success of geoscience. As a community, we
41 tackle complex global problems that transcend artificial geographical boundaries
42 imposed by historical biases (Raja et al., 2022). Some of these problems, such as
43 natural resource depletion, disaster risk reduction, and climate change, are urgent,
44 and failure to tackle them will have dramatic negative consequences (Rogers et al.,
45 2022). Addressing these subjects requires scholars with diverse backgrounds,
46 including a representative mixture of cultures and ethnicities. Different perspectives
47 and life experiences lead to unique questions and approaches to problem-solving, and
48 inspire more creative alternatives to relevant challenges, ultimately leading to higher
49 levels of scientific innovation (Medin and Lee, 2012; Hong and Page, 2004).

50 Within this context, scientific meetings play an important role in bringing
51 together and promoting knowledge exchange among scholars from diverse
52 backgrounds. But how diverse are geosciences meetings? Here, we probe into
53 attendance figures for Europe's largest geoscience meeting, the European
54 Geosciences Union (EGU) General Assembly, held in Vienna (Austria) since 2005.
55 We selected EGU because it integrates all geosciences subjects and ranks among the
56 biggest international conferences in the world with participants from over 110
57 countries. Using publicly available historical data (EGU, 2024), we highlight the
58 persistence of economic factors as the primary control for conference attendance (Fig.
59 1). From our perspective of participating in the 2024 EGU assembly, we note that while

60 the theme of Equality, Diversity, and Inclusion (EDI) is significantly featured in the
61 conference program, the actual diversity observed falls short of ideal standards.

62

63 **2. Dataset and Methodology**

64 We examine geographical diversity and representation at the EGU General
65 Assembly (hereafter referred to as the *EGU meeting, assembly, or conference*), one
66 of the largest geosciences meetings in the world. For each country, we analyze
67 attendance figures from 2005 to 2024 relative to three variables: (i) distance to the
68 event, (ii) gross national income (GNI) per capita, and (iii) population size. We chose
69 distance to assess whether geography was the principal driver of attendance variability
70 and GNI to assess the impact of income on participation. Given the lack of precise
71 demographic data on the number of geoscientists per country, we use population as
72 a proxy assuming the rate of geoscientists per capita is the same. All demographics
73 are publicly available and derived from the World Bank and EGU's website (EGU,
74 2024 – see supplementary data). We favor these metrics because they are simple and
75 not codependent/derived from each other (e.g., the human development index and
76 Henley passport index, which derive from a series of political and economic factors).
77 Because the selected metrics vary over several orders of magnitude, we calculate the
78 Spearman's rank correlation coefficient (ρ) rather than a linear regression to examine
79 their relative impact on EGU's conference participation.

80 Additionally, to avoid post-COVID biases in travel patterns and truthfully
81 represent historical attendance trends, we exemplify these relationships using data
82 from the last pre-COVID edition of EGU's meeting (2019). In addition to correlation
83 coefficients, we compute income-independent over- and underrepresentation by
84 dividing the normalized attendance by the product of population and the distance to
85 the conference.

86

87 **3. Results**

88 **3.1. Gross national income over time**

89 Over the years, EGU's assembly attendance exhibits a strong correlation GNI,
90 as illustrated in Figure 1, where the correlation coefficient (ρ) typically exceeds 0.6.
91 Notably, these correlation values have consistently been significant at the 99%
92 confidence level (they are between 10^{-8} to 10^{-13} , below the minimum value for the y-
93 axis in Fig. 1b), demonstrating remarkable stability throughout the EGU meeting's
94 history. This strong relationship between attendance and income is only disrupted by
95 countries with large populations, such as China and India (Fig. 2b). In other words,
96 these countries exhibit higher-than-expected participation based on their GNI values.
97 While there has been a decreasing trend in the correlation between attendance and
98 GNI since the inception of the EGU assembly (2005) until 2015; from the latter half of
99 the 2010s (2015 until 2024) there is a reversal of this trend, with a notable increase in
100 the correlation between attendees and GNI. Post-COVID metrics (2022 to 2024)
101 reveal the strongest correlation ever recorded, with a ρ exceeding 0.8. In the virtual
102 versions of the event (held from 2020 onwards), this correlation between attendance
103 and GNI is less strong ($\rho < 0.6$; Fig. 1a).

104

105 3.2. Distance to conference site over time

106 The impact of distance to the conference site on attendance emerges as a
107 secondary factor, with low correlation coefficients typically hovering around 0.35 (Fig.
108 1). Although this correlation is relatively weak, it remains stable and statistically
109 significant at the 99% confidence level over the years. Despite its independent
110 influence, distance often interacts with GNI as a combined socioeconomic limiting
111 factor, since individuals from more distant countries have higher travel expenses. This
112 pattern is disrupted by distant, wealthy countries, such as Australia, Japan, and New
113 Zealand, which have all maintained robust participation throughout EGU assembly's
114 history (Fig. 2a). In virtual versions of the event, distance shows the weakest
115 correlation with attendance (Fig. 1a, $\rho < 0.4$).

116

117 3.3. Population over time

118 In contrast to gross national income, the total population of a country typically
119 shows a poor correlation with attendance for the majority of EGU assembly's history,

120 with ρ values consistently below 0.3 from 2005 to 2017 (Fig. 1). Despite that, there
121 has been a steady increase in the correlation coefficient for population until 2018, with
122 2015 marking the first instance of statistical significance at the 99% confidence
123 interval. This is particularly noticeable by examining the change in attendance figures
124 for populous countries such as India, China, and Indonesia during a 10-year pre-
125 COVID period (2009-2019; Fig. 2). Nonetheless, post-COVID figures for 2022 to 2024
126 indicate a significant drawback in this correlation, as evidenced by a ρ below 0.2,
127 representing the lowest value ever recorded in EGU assembly's history. In the virtual
128 versions of the assembly, held between 2020 and 2024, the population shows a
129 stronger correlation ($\rho \sim 0.4$) when compared with the in-person format of the event (ρ
130 < 0.2).

131

132 **Figure 1.** Correlation between the EGU General Assembly participants and distance to the conference,
133 total population, and GNI per capita. (a) Spearman's rank correlation coefficient (ρ) and (b) their
134 respective significance (p-values); whenever a p-value is not visible it indicates that the p-value $< 10^{-5}$
135 (p-values for the GNI correlation are between 10^{-8} to 10^{-13}).

136

137 **Figure 2.** EGU's General Assembly attendance for the last pre-COVID meeting in 2019. a, participation
138 vs. distance to the conference; b, attendance vs. Gross national income per capita. Gray shading
139 regions in b denote 95% confidence intervals for a best-fit power-law regression of the data.

140

141 4. What controls the in-person EGU assembly participation?

142 Based on the variables investigated here, our results indicate that attendance
143 at EGU's General Assembly is primarily and consistently controlled by income metrics
144 (GNI), with the strongest correlation ever recorded in the past three years (Fig. 1,
145 2022-2024). Distance to the conference site also influences attendance, albeit with a
146 weaker correlation. In contrast, a country's total population has historically shown a
147 poor correlation with attendance (Figs. 1 and 2).

148 When comparing countries with similar populations and distances to the
149 conference site, it becomes evident that income stands out as the main influencing
150 factor in attendance (Fig. 2a). Nations with similar distances to the conference tend to
151 exhibit higher participation rates with increasing GNI (Fig 2a). Examples include, from

152 lower to higher GNI, Pakistan, South Korea, and the USA. This pattern is disrupted by
153 populous countries such as India and China. Similarly, a similar trend is observed
154 among countries with comparable populations. For instance, Ethiopia and the
155 Philippines have significantly fewer participants compared to Japan (Fig 2b). In this
156 context, our compilation reveals that attendance is dictated by a power-law
157 relationship with income, with wealthier nations having two to three orders of
158 magnitude more participants than poorer countries (Fig. 2b).

159 Under an income-independent participation scenario, participation would
160 depend on distance and population. To identify the impact of income, the map in Figure
161 3 shows the relative representation of each country in the EGU assembly of 2019 after
162 normalizing for distance and population. Notably, countries in Europe, northern North
163 America, and Oceania (the Global North) exhibit the highest representation. Not
164 coincidentally, these are the countries with the highest GNI per capita values (Fig. 2b;
165 World Bank, 2024). Conversely, numerous countries in Latin America, Africa, and Asia
166 are moderately to highly underrepresented in the conference. Based on correlation
167 metrics (Fig. 1) and attendance plots (Fig. 2a), the distance from the conference venue
168 can be ruled out as the primary reason behind representativity. From a global
169 perspective (Fig. 3), curves of equidistance reveal that countries located at
170 comparable distances from Austria present varying levels of representation. For
171 instance, despite all being approximately 7,500 km away, India and nations in central
172 Africa are notably underrepresented, while Canada stands out as overrepresented in
173 conference attendance (Fig. 3). Additionally, Australia, despite being one of the most
174 distant countries from Austria, maintains a high level of representation in the event
175 (Figs. 2b and 3).

176

177 **Figure 3.** Representation attendance map for EGU General Assembly 2019 corrected for both distance
178 and population. Dashed lines represent the distance to EGU's conference site in Vienna, Austria.

179 Ultimately, attendance in the in-person EGU assembly is largely controlled by
180 income. With registration fees ranging from €525 to €765 for non-students in 2024, the
181 economic burden varies significantly across countries. For instance, in our home
182 country Brazil, registration costs can amount to nearly three times the monthly
183 minimum wage, or about half the monthly wage of a full professor (World Salaries,

184 2024). In African nations like Angola, Nigeria, and the Democratic Republic of Congo,
185 fees can exceed ten times the monthly minimum wage, or roughly twice to three times
186 the monthly wage of a full professor (World Salaries, 2024). In contrast, in Canada,
187 fees equate to roughly half of the monthly minimum wage, or about one-tenth of the
188 monthly wage of a full professor (World Salaries, 2024). In addition, travel expenses
189 are generally much higher than registration fees, which are only a fraction of the total
190 cost. Additional expenses including transportation, accommodation, and meals, priced
191 in the local currency (euros), significantly add to the overall financial commitment of
192 participation.

193 Another significant barrier to in-person attendance for researchers from LMICs,
194 countries with less political stability, and nations facing geopolitical tensions, is the
195 challenge of obtaining a visa to enter Austria. The process is often both costly and
196 time-consuming, often requiring extensive paperwork, letters of support, and
197 sometimes in-person appointments which may involve travel costs. Scientists from
198 countries like Iran, Afghanistan, Yemen, and Bangladesh frequently face more
199 stringent visa requirements and higher rejection rates compared to those from
200 countries like Canada, Australia, or Japan (Passport Index, 2024). To address this
201 issue, the EGU has implemented measures to support visa applications by providing
202 detailed invitation letters (EGU, 2024).

203

204 **5. What can be done about it?**

205 It is clear that the European Geoscientists Union (EGU) acknowledges the
206 importance of diversity and is actively working towards a more equitable future. In
207 2018, the EGU Council established an equality, diversity, and inclusion (EDI)
208 Committee to raise awareness and promote EDI initiatives (EGU, 2024b). Similar
209 efforts have been observed in other geoscience conferences and societies. For
210 instance, the American Geophysical Union Meeting, the world's largest geoscience
211 conference, also adopted a Diversity & Inclusion Strategic Plan in 2018 (AGU, 2024).
212 The Geological Society of London has recently established a new Equity, Diversity,
213 Inclusion and Accessibility Committee in 2024 (The Geological Society of London,
214 2024).

215 Additionally, since the COVID-19 pandemic in 2020, the EGU introduced a
216 virtual version of the meeting. This version offers lower fees, and free enrollment for
217 (i) undergraduate or master students and (ii) low- & lower-middle-income countries.
218 These initiatives are readily observed in correlation metrics for the virtual version of
219 the EGU assembly, which show record-breaking increased ranked correlation (ρ) for
220 population and decreased ρ for GNI and distance (Fig. 1a). Clearly, the virtual event
221 increased accessibility and diversity by reducing the cost. However, in our and others'
222 personal experience, the virtual event shows limited engagement and interaction with
223 presentations and reduced networking opportunities between attendees. Furthermore,
224 the EGU offers financial assistance to encourage participation in the in-person event.
225 The Roland Shllich travel support includes a waiver of registration fees, reimbursement
226 of the abstract processing charges, and travel expenditure aid up to €300. Even
227 though this initiative is commendable and impactful, the overall cost of attending
228 remains prohibitive for scholars from low-income countries.

229 To increase diversity at events like the EGU assembly and other geoscience
230 events, we must alleviate financial barriers for attendees from lower-income countries.
231 Here we explore some possibilities to achieve that goal. Firstly, establish a dedicated
232 travel fund aimed at supporting attendees from lower-income countries and
233 underrepresented regions (Fig. 3). This fund could help cover visa costs and offset
234 exchange rate disparities. It could be financed through donations from attendees,
235 companies, universities, and patrons. Secondly, consider rotating the conference's
236 host country within Europe, making it more accessible to participants from various
237 regions. Besides changing the distance to other countries outside of Europe, costs of
238 accommodation and meals vary significantly across European countries (ranging from
239 approximately €36 to €136 per day; Price of Travel, 2024). Lastly, facilitate affordable
240 accommodation options for scholars from lower-income countries through
241 partnerships with hotels and hostels, or university housing.

242 Our discussion around increasing diversity and representation cannot be limited
243 to the EGU General Assembly or geoscience conferences in general; rather, it must
244 extend to acknowledging how conference attendance perpetuates barriers to
245 inclusivity within our community. The attendance patterns in the EGU assembly
246 highlight the prevalence of the Global North countries, which reflects the historical
247 dominance of these societies in shaping the field of geosciences until the present.

248 Ethnic and cultural underrepresentation not only hinders the career
249 advancement of marginalized groups but also underscores the persistent dominance
250 of the Global North in many scientific fields, including geosciences (Rogers et al.,
251 2022; Raja et al., 2022). Academic neo-colonialism is not only reflected in conference
252 participation patterns, but it also extends to the selective prestige accorded to
253 universities and journals and the imposition of curricula, educational systems,
254 languages, and epistemologies on formerly colonized societies (Nagtegaal and de
255 Bruin, 1994; Rogers et al., 2022).

256 To promote equal research opportunities and equitable conference attendance,
257 structural changes are necessary. We need to recognize and praise the true
258 achievements and potential of scholars from outside the Global North. North-South
259 scientific collaborations must become more symmetrical and founded on mutual
260 respect, ensuring that knowledge production is collaborative, rather than extractive
261 (Jeffrey, 2013; North et al., 2020; Rogers et al., 2022; Garland et al., 2024). Funding
262 disparities ought to be tackled by the development of multi-partner and multi-national
263 co-funded research projects (Jeffrey, 2013). Biases inherent in the peer review
264 process of both papers and grant applications must be acknowledged and addressed
265 (Rogers et al., 2022). Geoscience conferences need to be accessible to all, allowing
266 scholars from underrepresented regions to share their research and perspectives, and
267 to expand their networking opportunities. By recognizing and valuing the contributions
268 of scientists from diverse backgrounds, we can move towards a more inclusive and
269 equitable scientific community.

270

271 **Author contribution**

272 **Francyne Bochi do Amarante:** Conceptualization, Formal analysis, Investigation,
273 Project administration, Visualization, Writing – original draft preparation. **Maurício**
274 **Barcelos Haag:** Conceptualization, Data curation, Formal analysis, Investigation,
275 Methodology, Visualization, Writing – original draft preparation

276

277 **Competing interests**

278 The authors declare that they have no conflict of interest.

279

280 **Acknowledgements**

281 We gratefully acknowledge Christopher Jackson and the anonymous reviewer for their
282 constructive insights, and Shahzad Gani for his editorial handling.

283

284 **References**

285 American Geophysical Union.: Diversity, Equity, and Inclusion at AGU. 2024.

286 <https://www.agu.org/learn-about-agu/about-agu/diversity-and-inclusion> (Accessed on March
287 22nd, 2024).

288 European Geosciences Union (EGU).: List of General Assemblies. 2024.

289 <https://www.egu.eu/meetings/general-assembly/meetings/> (Accessed on March 19, 2024).

290 European Geosciences Union (EGU).: Structure Equality, Diversity, and Inclusion

291 Committee. 2024b. <https://www.egu.eu/structure/committees-and-working-groups/edi/>
292 (Accessed on March 22, 2024).

293 Garland, R. M., Altieri, K. E., Dawidowski, L., Gallardo, L., Mbandi, A., Rojas, N. Y., Touré,
294 N. E.: Opinion: Strengthening research in the Global South – atmospheric science
295 opportunities in South America and Africa. *Atmospheric Chemistry and Physics*, 24(10),
296 5757–5764, <https://doi.org/10.5194/acp-24-5757-2024>, 2024.

297 Geological Society of London. Our new Equity, Diversity, Inclusion and Accessibility
298 Committee. 2024. <https://www.geolsoc.org.uk/About/Diversity/EDIA-Committee> (Accessed
299 on August 13, 2024).

300 Hong, L. & Page, S. E.: Groups of diverse problem solvers can outperform groups of high-
301 ability problem solvers. *Proceedings of the National Academy of Sciences*, 101(46), 16385–
302 16389, <https://doi.org/10.1073/pnas.0403723101>, 2004.

303 Jeffery, R.: Authorship in multi-disciplinary, multi-national North-South research projects:
304 issues of equity, capacity and accountability. *Compare: A Journal of Comparative and*
305 *International Education*, 44 (2), 208–229, <https://doi.org/10.1080/03057925.2013.829300>,
306 2023.

307 King, L., MacKenzie, L., Tadaki, M., Cannon, S., McFarlane, K., Reid, D., Koppes, M.:
308 Diversity in geoscience: Participation, behaviour, and the division of scientific labour at a
309 Canadian geoscience conference. *FACETS*, 3, 415–440, <https://doi.org/10.1139/facets-2017-0111>, 2018.

311 Medin, D. L. & Lee, C. D.: Diversity makes better science. Association for Psychological
312 Science <https://www.psychologicalscience.org/observer/diversity-makes-better-science>,
313 2012. (Accessed on March 22, 2024)

314 Nagtegaal, L. W., & de Bruin, R. E.: The French connection and other neo-colonial patterns
315 in the global network of science. Research Evaluation, 4, 119-127,
316 <https://doi.org/10.1093/rev/4.2.119>, 1994.

317 North, M.A., Hastie, W.W., Hoyer, L.: Out of Africa: The underrepresentation of African
318 authors in high-impact geoscience literature. Earth-Science Reviews, 208, 103262,
319 <https://doi.org/10.1016/j.earscirev.2020.103262>, 2020.

320 Passport index. Welcoming Countries Rank. 2024
321 <https://www.passportindex.org/> (Accessed on August 20, 2024).

322 Price of Travel. 54 European cities by price: Europe Backpacker Index for 2024.
323 <https://www.priceoftravel.com/> (Accessed on August 13, 2024).

324 Raja, N.B., Dunne, E.M., Matiwane, A., Khan, T.M., Nätscher, P.S., Ghilardi, A.M.,
325 Chattopadhyay, D.: Colonial history and global economics distort our understanding of deep-
326 time biodiversity. Nature Ecology and Evolution, 6(2), 145–154),
327 <https://doi.org/10.1038/s41559-021-01608-8>, 2022.

328 Rogers, S.L., Lau, L., Dowey, N., Sheikh, H., Williams, R.: Geology uprooted! Decolonising
329 the curriculum for geologists. Geoscience Communication 5 (3), 189–204,
330 <https://doi.org/10.5194/gc-5-189-2022>, 2022.

331 World Bank.: GNI per capita, PPP (current international \$). 2024.
332 <https://data.worldbank.org/indicator/NY.GNP.PCAP.CD> (Accessed on March 20, 2024).

333 World Salaries.: Average salaries of University Professors. 2024.
334 <https://worldsalaries.com/> (Accessed on August 13, 2024).

335 Talavera-Soza, S., 2023. Citizenship a determining factor in a geoscientist's career. Nat.
336 Geosci. <https://doi.org/10.1038/s41561-023-01221-3>

