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Abstract. Mapping in-situ eddy covariance measurements of terrestrial land-atmosphere fluxes to the globe is a key method

for diagnosing the Earth system from a data-driven perspective. We describe the first global products (called X-BASE) from

a newly implemented up-scaling framework, FLUXCOM-X, representing an advancement from the previous generation of

FLUXCOM products in terms of flexibility and technical capabilities. The X-BASE products comprise of estimates of CO2

net ecosystem exchange (NEE), gross primary productivity (GPP ) as well as evapotranspiration (ET ) and, for the first5

time, a novel fully data-driven global transpiration product (ETT ), at high spatial (0.05°) and temporal (hourly) resolution.

X-BASE estimates the globalNEE at -5.75 � 0.33 PgC �yr�1 for the period 2001-2020, showing a much higher consistency

with independent atmospheric carbon cycle constraints compared to the previous versions of FLUXCOM. The improvement

of global NEE was likely only possible thanks to the international effort to increase the precision and consistency of eddy

covariance collection and processing pipelines, as well as to the extension of the measurements to more site-years resulting in10

a wider coverage of bio-climatic conditions. However, X-BASE global net ecosystem exchange shows a very low inter-annual

variability, which is common to state-of-the-art data-driven flux products and remains a scientific challenge. With 125 � 2.1

PgC � yr�1 for the same period, X-BASE GPP is slightly higher than previous FLUXCOM estimates, mostly in temperate

and boreal areas. X-BASE evapotranspiration amounts to 74.7x103 � 0.9x103 km3 globally for the years 2001-2020, but

exceeds precipitation in many dry areas likely indicating overestimation in these regions. On average 57% of evapotranspiration15

are estimated to be transpiration, in good agreement with isotope-based approaches, but higher than estimates from many

land surface models. Despite considerable improvements to the previous up-scaling products, many further opportunities for

development exist. Pathways of exploration include methodological choices in the selection and processing of eddy-covariance

and satellite observations, their ingestion into the framework, and the configuration of machine learning methods. For this,
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the new FLUXCOM-X framework was specifically designed to have the necessary flexibility to experiment, diagnose, and20

converge to more accurate global flux estimates.

1 Introduction

Energy, water, and carbon exchange between terrestrial surfaces and the atmosphere are key components of the Earth system

and impact ecosystems, ecosystem services, weather, climate, and water availability. The exchange (or flux) can be directly

observed using eddy covariance (EC) measurement systems (Baldocchi, 2019) which are installed on towers overlooking the25

ecosystem of interest. The EC stations typically represent an area of a few hundred square meters to a square kilometer.

One key advantage of the EC methodology is the ability to provide near continuous measurements with some records now

exceeding 20 years (Pastorello et al., 2020), allowing for examination of flux variations from the order of thirty minutes to

decades. EC systems also provide a unique perspective on the magnitude, temporal variability, and environmental sensitivity

of ecosystem CO2 uptake, water use, and local climate regulation (Baldocchi, 2019; Musavi et al., 2017; Bao et al., 2022).30

However, while many of the most pressing scientific knowledge gaps surrounding the delicate land carbon balance and the water

cycle require spatially and temporally resolved flux patterns at continental to global scales, EC observations are confined to

individual locations in space and limited periods in time (Kumar et al., 2016; Papale et al., 2015). Methodologies to transcend

the gap between local and global scales are needed to ultimately support societal relevant activities of building greenhouse

gas monitoring systems, taking informed climate and land management actions, and verifying the effectiveness of mitigation35

strategies (Baldocchi and Penuelas, 2019; Bonan et al., 2011; Novick et al., 2022).

Coordinated and consolidated data collections from EC networks are invaluable for the mapping of in-situ fluxes to regional

and global scales. For example, EC measurements aid both the parameterization (Huang et al., 2021) and the validation (Turner

et al., 2006; Heinsch et al., 2006) of mechanistic models of ecosystem productivity and land surface processes. The latter

generate widely used reference data sets for terrestrial carbon cycle applications (Zhao and Running, 2010; Ukkola et al.,40

2022). A complementary approach to modeling terrestrial fluxes at continental and global scales is of empirical nature and

links observations of explanatory variables at the EC stations, particularly meteorological and remote sensing data, to the EC

fluxes via machine learning models. This up-scaling concept does not prescribe any mechanistic formulations and assumes that

the EC observations cover all complexities of ecosystem functioning. Based on a trained machine learning model and globally

gridded input data of the explanatory variables, EC fluxes can be mapped to the global scale.45

First implementations of this flux up-scaling concept emerged in the early 2000s. They focused on net ecosystem exchange

of CO2 (NEE) and utilized the growing EC networks in Europe (Papale and Valentini, 2003) and North America (Xiao et al.,

2008). The release of the FLUXNET La Thuile Synthesis Dataset of harmonized EC data in 2007, as well as methodological

improvements in the training of the machine learning models (Jung et al., 2009), led to the first global products of terrestrial

CO2 and water fluxes at a monthly time step and in 0.5° grids in 2011 (Jung et al., 2011). While good agreement of flux esti-50

mates derived from complementary process-based models with the up-scaled global gross photosynthetic CO2 uptake (gross

primary productivity,GPP ) and energy fluxes demonstrated the potential of the approach, important inconsistencies remained,
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in particular regarding the globally integratedNEE and its year-to-year variability (Jung et al., 2020, 2019, 2011; Zscheis-

chler et al., 2017). A critical component of data-driven methods, including the �ux up-scaling methodologies described here,

is understanding the related uncertainties. The multi-stage process of going from the actual measured values of high frequency55

(10-20 Hz) measurements of three-dimensional wind components, temperature, water vapor and CO2 concentration to the

standard half-hourly, gap-�lled, long-term data records from synthesis datasets such as FLUXNET have multiple associated

potential biases and uncertainties. The well documented issues of gap-�lling (Vekuri et al., 2023; Soloway et al., 2017; Papale

et al., 2006), instrumentation errors (Zhang et al., 2023; Fratini et al., 2014; Vitale et al., 2020; Rannik et al., 2016), and energy

balance non-closure (Mauder et al., 2020; Leuning et al., 2012; Stoy et al., 2013; McGloin et al., 2018; Franssen et al., 2010)60

will likely have an effect on the resulting gridded global datasets.

In an effort to better understand the uncertainties associated with mapping of EC �uxes to larger scales, the FLUXCOM inter-

comparison initiative built an ensemble of �ux estimates as a type of factorial experiment (Tramontana et al., 2016; Jung et al.,

2019, 2020). The ensemble consisted of multiple machine learning algorithms, meteorological forcing data, and combinations

of predictor variables resulting in 120 individual up-scaled estimates per �ux. These were summarized in two overall ensemble65

con�gurations, which differed in the set of predictors and spatial-temporal resolution. Apart from creating a large ensemble,

the FLUXCOM evaluation included a consistent site-level cross-validation analysis as well as cross-consistency checks with

terrestrial �ux estimates from independent approaches, such as complementary modeling concepts or observational surrogates.

From a methodological point of view, the key lessons learned from FLUXCOM were that: (1) the overall approach seems

to be primarily limited by the input information given to the machine learning algorithms rather than to the ability of the70

algorithm to extract the information; (2) the largest qualitative differences among �ux products were related to the set of the

predictor variables rather than to the choice of the machine learning method or meteorological forcing; (3) the cross-consistency

checks with global independent data are essential for supplementing site-level cross-validation; and (4) the largest qualitative

discrepancy with independent data was a very high (strongly negative) tropicalNEE that was shared among all ensemble

members.75

Next to the systematic inter-comparisons in FLUXCOM, the empirical up-scaling concept has been implemented for a

series of regional and global scale applications, each of them adopting disparate and individual methodological choices (e.g.

Ichii et al., 2017; Yao et al., 2018; Joiner and Yoshida, 2020; Virkkala et al., 2021; Dannenberg et al., 2023; Burton et al.,

2023; Zhu et al., 2024). These potentially important choices relate to data treatment (quality control, gap-�lling, processing

pathways), ingestion (sampling, as well as matching EC and space-born observations), and methodological con�gurations80

(machine learning methods and their training con�guration, choice of predictor variables, resolution). The disparity of the

set-ups and implementations of the empirical up-scaling approach impedes any direct comparisons among products and valid

conclusions as to where potential differences originate from. Hence, �exibility to explore the large methodological space, as

well as the ability to diagnose and evaluate global products in parallel to site-level cross-validation, are required to understand

the importance of individual methodological choices and to make progress in empirical up-scaling of EC �uxes.85

We are developing a modeling framework that allows experimenting with many of these methodological choices. We coin

this extended up-scaling environment FLUXCOM-X. Compared to the FLUXCOM inter-comparison initiative and the prod-
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ucts produced therein, it follows the same overall principles. The key innovation of FLUXCOM-X is that it represents a

�exibly adjustable up-scaling environment to systematically explore different methodological avenues. Lessons learned from

FLUXCOM and other up-scaling exercises further imply striving for enhancing the information content of the training data90

with aspects related to coverage and quality of EC measurements as well as complementarity, completeness, and quality of

predictor variables. The �exibility of the way FLUXCOM-X is implemented will considerably reduce the latency with which

innovations in the related �elds of machine learning and spacebased Earth observations as well as novel EC data can �nd their

way to empirical �ux up-scaling. This in turn allows faster progress towards more accurate and �t-for-the-purpose global bio-

genic �ux estimates. Here, we introduce and evaluate the initial “basic” set of products from this �exible framework, which we95

refer to as FLUXCOM-X-BASE products (or X-BASE for short, see Appendix A for an overview on the naming conventions).

X-BASE products were comparably generated to the original FLUXCOM ensemble using qualitatively similar predictor

variables, i.e. remotely sensed vegetation indices and land surface temperatures from the Moderate Resolution Imaging Spec-

troradiometer (MODIS) along with meteorological variables. In contrast to FLUXCOM, the remotely sensed and the mete-

orological predictors are combined in the X-BASE products, and the subdaily variability is resolved. We furthermore made100

efforts to provide more and improved information to the machine learning models by enhancing coverage and quality of the

training data, and by further developing the processing of satellite predictor variables (Walther and Besnard et al., 2022). In this

manuscript, we show results for X-BASENEE , GPP, evapotranspiration (ET ), and for the �rst time transpiration (ETT ),

for the period 2001-2020 at 0.05° spatial and hourly temporal resolution. We are focusing here on the evaluation and cross-

consistency checks of X-BASE with previous FLUXCOM products and independent data streams. Our speci�c objectives105

are:

1. to describe the production of X-BASE products;

2. to evaluate the X-BASE setup using site-level cross-validation;

3. to assess qualitative differences of global patterns compared to previous FLUXCOM products with reference to inde-

pendent �ux estimates where possible; and110

4. to synthesize lessons learned from this basic exercise to guide future FLUXCOM-X developments.

X-BASE products are freely available and serve as a baseline for future FLUXCOM-X developments (see data availability

statement). Any future product releases originating from FLUXCOM-X will follow the naming convention X-[speci�c name].

2 Data and Methods

The following section gives an overview on the essential methodological implementations and data choices adopted in the115

generation of X-BASE products.
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2.1 Eddy Covariance Data

Eddy covariance data consisted of 294 sites from around the world though skewed towards higher representation from tem-

perate forests from North America and Europe. All EC data were collected, processed, analyzed for quality by the station

teams, before being processed using state-of-the-art approaches in the ONEFLUX data processing pipeline (Pastorello et al.,120

2020). ONEFLUX provides consistent quality checks, gap-�lling, and carbon �ux partitioning. The data included was col-

lected between 2001-2020 and available with a CC BY 4.0 license. Based on this criterion, data for each site came from one

of �ve different sources based on most recent availability: FLUXNET 2015 (Pastorello et al., 2020), ICOS Drought 2018

(Team and Centre, 2020), ICOS Warm Winter 2020 (Team and Centre, 2022), or the most recent Ameri�ux or ICOS release

as of December 2022. Table 1 lists all sites included as well as the associated digital object identi�er speci�c to the associated125

release.

Table 1:Citation data for the 294 sites used in the X-BASE products.

AR-SLu (Garcia

et al., 2016)

AR-TF1

(Kutzbach, 2021)

AR-Vir (Posse

et al., 2016)

AT-Neu

(Wohlfahrt et al.,

2016)

AU-ASM

(Cleverly and

Eamus, 2016b)

AU-Ade

(Beringer and

Hutley, 2016c)

AU-Cpr (Meyer

et al., 2016)

AU-Cum (Pendall

and Griebel,

2016)

AU-DaP

(Beringer and

Hutley, 2016b)

AU-DaS

(Beringer and

Hutley, 2016f)

AU-Dry (Beringer

and Hutley,

2016e)

AU-Emr

(Schroder et al.,

2016)

AU-Fog (Beringer

and Hutley,

2016a)

AU-Gin

(Macfarlane et al.,

2016)

AU-RDF

(Beringer and

Hutley, 2016d)

AU-Rob (Liddell,

2016)

AU-TTE

(Cleverly and

Eamus, 2016a)

AU-Tum

(Woodgate et al.,

2016)

AU-Wac

(Beringer et al.,

2016b)

AU-Whr

(Beringer et al.,

2016a)

AU-Wom (Arndt

et al., 2016)

AU-Ync

(Beringer and

Walker, 2016)

BE-Bra (Team

and Centre, 2022)

BE-Dor (Team

and Centre, 2022)

BE-Lcr (RI, 2021) BE-Lon (Team

and Centre, 2022)

BE-Maa (Team

and Centre, 2022)

BE-Vie (Team

and Centre, 2022)

BR-Npw

(Vourlitis et al.,

2022)

BR-Sa1 (Saleska,

2016)

BR-Sa3

(Goulden, 2016d)

CA-Cbo

(Staebler, 2022)

CA-DB2 (Knox,

2022)

CA-DBB

(Christen and

Knox, 2022)

CA-ER1

(Wagner-Riddle,

2021)

CA-Gro

(McCaughey,

2016)

CA-LP1 (Black,

2021)

CA-Man (Amiro,

2016b)

CA-NS2

(Goulden, 2016a)

CA-NS3

(Goulden, 2016b)

CA-NS4

(Goulden, 2016c)

CA-NS5

(Goulden, 2016g)

CA-NS6

(Goulden, 2016e)

CA-NS7

(Goulden, 2016f)

CA-Oas (Black,

2016b)

CA-Obs (Black,

2016a)

CA-Qfo

(Margolis, 2016)

CA-SF1 (Amiro,

2016c)
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Table 1:Citation data for the 294 sites used in the X-BASE products.

CA-SF2 (Amiro,

2016a)

CA-SF3 (Amiro,

2016d)

CA-TP1 (Arain,

2016b)

CA-TP2 (Arain,

2016a)

CA-TP3 (Arain,

2022b)

CA-TP4 (Arain,

2016c)

CA-TPD (Arain,

2022a)

CG-Tch

(Nouvellon, 2016)

CH-Aws (Team

and Centre, 2022)

CH-Cha (Team

and Centre, 2022)

CH-Dav (Team

and Centre, 2022)

CH-Fru (Team

and Centre, 2022)

CH-Lae (Team

and Centre, 2022)

CH-Oe1

(Ammann, 2016)

CH-Oe2 (Team

and Centre, 2022)

CN-Cha (Zhang

and Han, 2016)

CN-Cng (Dong,

2016)

CN-Dan (Shi

et al., 2016)

CN-Din (Zhou

and Yan, 2016)

CN-Du2 (Chen,

2016k)

CN-Du3 (Shao,

2016b)

CN-HaM (Tang

et al., 2016)

CN-Qia (Wang

and Fu, 2016)

CN-Sw2 (Shao,

2016a)

CZ-BK1 (Team

and Centre, 2022)

CZ-BK2 (Sigut

et al., 2016)

CZ-KrP (Team

and Centre, 2022)

CZ-Lnz (Team

and Centre, 2022)

CZ-RAJ (Team

and Centre, 2022)

CZ-Stn (Team

and Centre, 2022)

CZ-wet (Team

and Centre, 2022)

DE-Akm (Team

and Centre, 2022)

DE-Geb (Team

and Centre, 2022)

DE-Gri (Team

and Centre, 2022)

DE-Hai (Team

and Centre, 2022)

DE-HoH (Team

and Centre, 2022)

DE-Hte (Team

and Centre, 2020)

DE-Hzd (Team

and Centre, 2022)

DE-Kli (Team

and Centre, 2022)

DE-Lkb

(Lindauer et al.,

2016)

DE-Lnf (Knohl

et al., 2016)

DE-Obe (Team

and Centre, 2022)

DE-RuR (RI,

2022)

DE-RuS (Team

and Centre, 2022)

DE-RuW (Team

and Centre, 2022)

DE-Seh

(Schneider and

Schmidt, 2016)

DE-SfN (Klatt

et al., 2016)

DE-Spw

(Bernhofer et al.,

2016)

DE-Tha (Team

and Centre, 2022)

DE-Zrk (Sachs

et al., 2016)

DK-Eng

(Pilegaard and

Ibrom, 2016)

DK-Fou (Olesen,

2016)

DK-Gds (RI,

2022)

DK-Sor (Team

and Centre, 2022)

ES-Abr (Team

and Centre, 2022)

ES-Agu (Team

and Centre, 2022)

ES-Amo (Poveda

et al., 2016)

ES-Cnd (Team

and Centre, 2022)

ES-LJu (Team

and Centre, 2022)

ES-LM1 (Team

and Centre, 2022)

ES-LM2 (Team

and Centre, 2022)

ES-LgS (Reverter

et al., 2016b)

ES-Ln2 (Reverter

et al., 2016a)

FI-Hyy (Team

and Centre, 2022)

FI-Jok (Lohila

et al., 2016)

FI-Ken (Team and

Centre, 2022)

FI-Let (Team and

Centre, 2022)

FI-Lom (Aurela

et al., 2016a)

FI-Qvd (Team

and Centre, 2022)

FI-Sii (Team and

Centre, 2022)

FI-Sod (Aurela

et al., 2016b)

FI-Var (RI, 2022)

FR-Aur (Team

and Centre, 2022)

FR-Bil (Team and

Centre, 2022)

FR-EM2 (RI,

2022)

FR-FBn (Team

and Centre, 2022)

FR-Fon (Team

and Centre, 2022)

FR-Gri (Team and

Centre, 2022)

FR-Hes (Team

and Centre, 2022)

FR-LBr

(Berbigier and

Loustau, 2016)

FR-LGt (RI,

2022)

FR-Lam (Team

and Centre, 2022)

FR-Pue (Ourcival,

2016)

FR-Tou (RI,

2022)
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Table 1:Citation data for the 294 sites used in the X-BASE products.

GF-Guy (Team

and Centre, 2022)

GH-Ank

(Valentini et al.,

2016b)

GL-Dsk (RI,

2022)

GL-NuF (Hansen,

2016)

GL-ZaF (Lund

et al., 2016b)

GL-ZaH (Lund

et al., 2016a)

IE-Cra (Team and

Centre, 2022)

IL-Yat (Team and

Centre, 2022)

IT-BCi (Team and

Centre, 2022)

IT-BFt (RI, 2022) IT-CA1

(Sabbatini et al.,

2016c)

IT-CA2

(Sabbatini et al.,

2016a)

IT-CA3

(Sabbatini et al.,

2016b)

IT-Col

(Matteucci, 2016)

IT-Cp2 (Team and

Centre, 2022)

IT-Cpz (Valentini

et al., 2016a)

IT-Isp (Gruening

et al., 2016b)

IT-La2 (Cescatti

et al., 2016)

IT-Lav (Team and

Centre, 2022)

IT-Lsn (RI, 2022) IT-MBo (Team

and Centre, 2022)

IT-Noe (Spano

et al., 2016)

IT-PT1 (Manca

and Goded, 2016)

IT-Ren (Team and

Centre, 2022)

IT-Ro1 (Valentini

et al., 2016c)

IT-Ro2 (Papale

et al., 2016)

IT-SR2 (Team and

Centre, 2022)

IT-SRo (Gruening

et al., 2016a)

IT-Tor (Team and

Centre, 2022)

JP-MBF (Kotani,

2016b)

JP-SMF (Kotani,

2016a)

MX-Tes (Yepez

and Garatuza,

2021)

MY-PSO (Kosugi

and Takanashi,

2016)

NL-Hor (Dolman

et al., 2016a)

NL-Loo (Team

and Centre, 2020)

PA-SPn (Wolf

et al., 2016b)

PA-SPs (Wolf

et al., 2016a)

PE-QFR (Grif�s

and Roman, 2021)

RU-Che (Merbold

et al., 2016)

RU-Cok (Dolman

et al., 2016b)

RU-Fy2 (Team

and Centre, 2022)

RU-Fyo (Team

and Centre, 2022)

RU-Ha1 (Belelli

et al., 2016)

SD-Dem (Ardö

et al., 2016)

SE-Deg (Team

and Centre, 2022)

SE-Htm (Team

and Centre, 2022)

SE-Lnn (Team

and Centre, 2020)

SE-Nor (Team

and Centre, 2022)

SE-Ros (Team

and Centre, 2022)

SE-Svb (Team

and Centre, 2022)

SJ-Adv

(Christensen,

2016)

SJ-Blv (Boike

et al., 2016)

SN-Dhr

(Tagesson et al.,

2016)

US-A32

(Billesbach et al.,

2022)

US-AR1

(Billesbach et al.,

2016b)

US-AR2

(Billesbach et al.,

2016a)

US-ARM (Biraud

et al., 2022)

US-ARb (Torn,

2016b)

US-ARc (Torn,

2016a)

US-Atq (Zona

and Oechel,

2016a)

US-BZB

(Euskirchen,

2022b)

US-BZF

(Euskirchen,

2022c)

US-BZS

(Euskirchen,

2022d)

US-BZo

(Euskirchen,

2022a)

US-Bi1

(Rey-Sanchez

et al., 2022b)

US-Bi2

(Rey-Sanchez

et al., 2022a)

US-Blo

(Goldstein, 2016)

US-CF1

(Huggins, 2021)

US-CF2

(Huggins, 2022c)

US-CF3

(Huggins, 2022a)

US-CF4

(Huggins, 2022b)

US-CRT (Chen

and Chu, 2016b)

US-CS1 (Desai,

2022a)

US-CS2 (Desai,

2022c)

US-CS3 (Desai,

2022d)

US-CS4 (Desai,

2022b)

US-Cop

(Bowling, 2016)

US-EDN

(Oikawa, 2021)
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Table 1:Citation data for the 294 sites used in the X-BASE products.

US-GBT

(Massman, 2016)

US-GLE

(Massman, 2022)

US-Goo (Meyers,

2016b)

US-HB1

(Forsythe et al.,

2021)

US-HWB

(Goslee, 2022)

US-Ha1 (Munger,

2016)

US-Hn3 (Liu

et al., 2022)

US-Ho2

(Hollinger, 2022)

US-IB2

(Matamala, 2016)

US-ICs

(Euskirchen et al.,

2022a)

US-ICt

(Euskirchen et al.,

2022b)

US-Ivo (Zona and

Oechel, 2016b)

US-Jo2 (Vivoni

and Perez-Ruiz,

2022)

US-KFS

(Brunsell, 2022a)

US-KLS

(Brunsell, 2022b)

US-KS1 (Drake

and Hinkle,

2016a)

US-KS2 (Drake

and Hinkle,

2016b)

US-KS3 (Hinkle,

2022)

US-LWW

(Meyers, 2016a)

US-Lin (Fares,

2016)

US-Los (Desai,

2016c)

US-MMS

(Novick and

Phillips, 2022)

US-MOz (Wood

and Gu, 2022)

US-Me1 (Law,

2016c)

US-Me2 (Law,

2022)

US-Me3 (Law,

2016a)

US-Me4 (Law,

2016e)

US-Me5 (Law,

2016d)

US-Me6 (Law,

2016b)

US-Mpj (Litvak,

2021)

US-Myb

(Sturtevant et al.,

2016)

US-NGB (Torn

and Dengel, 2021)

US-NR1 (Blanken

et al., 2022)

US-Ne1 (Suyker,

2022)

US-Ne2 (Suyker,

2016b)

US-Ne3 (Suyker,

2016a)

US-ONA

(Silveira, 2021)

US-ORv (Bohrer,

2021)

US-OWC (Bohrer

and Kerns, 2022)

US-Oho (Chen

et al., 2016)

US-PFa (Desai,

2016d)

US-Prr

(Kobayashi and

Suzuki, 2016)

US-Rms

(Flerchinger,

2022c)

US-Ro1 (Baker

et al., 2022)

US-Ro4 (Baker

and Grif�s,

2022a)

US-Ro5 (Baker

and Grif�s, 2021)

US-Ro6 (Baker

and Grif�s,

2022b)

US-Rwe

(Flerchinger and

Reba, 2022)

US-Rwf

(Flerchinger,

2022a)

US-Rws

(Flerchinger,

2022b)

US-SRC (Kurc,

2022)

US-SRG (Scott,

2016a)

US-SRM (Scott,

2016b)

US-Sne (Shortt

et al., 2022)

US-Snf (Kusak

et al., 2022)

US-Sta (Ewers

and Pendall,

2016)

US-Syv (Desai,

2016b)

US-Ton

(Baldocchi and

Ma, 2016)

US-Tw1 (Valach

et al., 2021)

US-Tw2

(Sturtevant et al.,

2022)

US-Tw3

(Chamberlain

et al., 2022)

US-Tw4 (Sanchez

et al., 2016)

US-Tw5 (Valach

et al., 2022)

US-Twt

(Baldocchi, 2016)

US-UM3 (Bohrer,

2022)

US-UMB (Gough

et al., 2016)
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Table 1:Citation data for the 294 sites used in the X-BASE products.

US-UMd (Gough

et al., 2022)

US-Var

(Baldocchi et al.,

2016)

US-WCr (Desai,

2016a)

US-WPT (Chen

and Chu, 2016a)

US-Whs (Scott,

2016d)

US-Wi0 (Chen,

2016g)

US-Wi1 (Chen,

2016e)

US-Wi2 (Chen,

2016j)

US-Wi3 (Chen,

2016b)

US-Wi4 (Chen,

2016d)

US-Wi5 (Chen,

2016a)

US-Wi6 (Chen,

2016h)

US-Wi7 (Chen,

2016i)

US-Wi8 (Chen,

2016c)

US-Wi9 (Chen,

2016f)

US-Wjs (Litvak,

2022)

US-Wkg (Scott,

2016c)

US-xBR

(Network), 2022)

Meteorological data measured at each site consisted of incoming shortwave radiation, air temperature and vapor pressure

de�cit, of which all data were gap-�lled using the Marginal Distribution Sampling method (Reichstein et al., 2005), as well

as the computed potential shortwave incoming radiation (top of atmosphere theoretical maximum radiation) for every hour.

Carbon dioxide �ux data consisted of gap-�lled net ecosystem exchange (NEE , variable ustar threshold 50th percentile i.e.,130

NEE_VUT_50) and the corresponding gross primary productivity (GPP, nighttime partitioning method after Reichstein et al.

(2005)). Water �ux data consisted of evapotranspiration (ET , no energy balance correction) which was converted from the

latent energy and transpiration estimates based on the Transpiration Estimation Algorithm (TEA, Nelson et al. (2018); Nelson

(2021)). The TEA algorithm estimates transpiration based on the relationship between GPP and ET under conditions where

surface and soil evaporation are expected to be minimal and accounting for residual non-transpiration evaporation. Note that135

estimates of GPP and transpiration are not direct measurements but instead based on statistical relationships localized to each

station and time period and thus contain their own assumption and uncertainties. All data were aggregated to a common hourly

time resolution, an overview of which can be found in Table 2.

Table 2:Fluxes to be predicted and predictor variables used in X-BASE.The units of the �uxes correspond to the native

hourly resolution. Upon temporal aggregation as in some analyses in the presented results, the units may change.

predicted �uxes

NEE �molCO 2 � m� 2 � s� 1 net ecosystem exchange

GP P �molCO 2 � m� 2 � s� 1 gross primary productivity

ET mm � hr � 1 evapotranspiration

ETT mm � hr � 1 transpiration

predictor variables

air temperature � C
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predictor variables

vapor pressure de�cit hPa

incoming shortwave radiation W � m� 2

potential incoming shortwave radiation W � m� 2

derivative of daily pot. incoming shortwave radiation W � m� 2 � d� 1

derivative of hourly pot. incoming shortwave radiation W � m� 2 � hr � 1

daytime land surface temperature from MODIS TERRA Kelvin

nighttime land surface temperature from MODIS TERRA Kelvin

enhanced vegetation index -

near-infrared re�ectance of vegetation -

normalized difference water index -

plant functional type -

Data from the EC dataset that ultimately were used for training the models varied between ~12-14 million site-hours depend-

ing on the target variable (i.e.GPP, NEE , ET , or ETT ). Training of the machine learning algorithms was only conducted140

on hours where all input variables passed quality control. The quality control procedure consisted of two levels, with the �rst

being each hour must have at least one value of good quality measured or gap-�lled with con�dence (i.e. at least one half hour

was either 0 or 1 based on the OneFLUX _QC �ags). Second, a set of consistency tests were performed on each used variable

to check the consistency both among variables and across sites. As the consistency �ags were based on daily aggregates of

the meteorological and �ux data, entire days were removed if the test indicated inconsistencies among related variables. The145

consistency �ag also checked the relationship between variables across sites, ensuring that the relationships found across the

data are coherent. A detailed explanation of these consistency �ags can be found in Jung et al. (2024).

2.2 Global Meteorology

For the generation of global �ux maps we used hourly meteorological data from ERA5 global reanalysis products at 0.25°

(Hersbach et al., 2020). Variables included air temperature at 2m height, incoming shortwave radiation at the surface, as well150

as vapour pressure de�cit (computed from relative humidity, air temperature, and surface pressure). Units were converted

to correspond to the site level measurements which were used for training the machine learning model, and the data were

re-gridded to a 0.05° resolution using bilinear interpolation for every hour.

2.3 Satellite Earth Observation

The X-BASE products are based on measurements of the MODerate Imaging Spectroradiometer (MODIS) of surface re-155

�ectance and land surface temperature from collection 006 at daily resolution. Missing records were gap-�lled consistently
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in both the average time series per EC station and in the global gridded data following the procedures of the FluxnetEO data

version 2 (Walther and Besnard et al., 2022; Walther, 2023).

2.3.1 Spectral vegetation indices

At site level we used surface re�ectance in the �rst seven MODIS spectral bands from the MCD43A4 c006 re�ectance data160

set (500 m and daily, where each daily value is inverted from all valid observations within a 16-day window, Schaaf and Wang

(2015b)). The spectral vegetation indices computed from the re�ectance data were the enhanced vegetation index (EVI, Huete

et al. (2002)), the spectral re�ectance of vegetation in the near-infrared (NIRv, Badgley et al. (2017)), and the normalized

difference water index (NDWI) with MODIS band 7 as reference (Gao, 1996). We followed the procedure of the FluxnetEO

data sets version 2 (Walther and Besnard et al., 2022) for data acquisition from Google Earth Engine for all pixels in a cutout165

of 4x4 km2 around each EC station, as well as for quality checks in terms of cloud, snow, and land cover, index values outside

the de�ned ranges, and outliers. An iterative approach then determined both, the strictness of the inversion quality of the

bidirectional re�ectance distribution function (BRDF, based on the MCD43A2 data, Schaaf and Wang (2015a)) and the set of

pixels in a cutout that shall represent a given EC station. Appendix B1 outlines all technical details of the dynamic procedure.

Global data of BRDF-corrected surface re�ectance stem from the MCD43C4 c006 data (Schaaf and Wang, 2015b), available170

in a climate modelling grid of 0.05° with the same temporal sampling and subject to the same removal of snow and water pixels

and outlier values like at site level. The BRDF quality control of the global data followed the same dynamic approach (see

Appendix B1), which maximized data availability especially in tropical regions.

2.3.2 Land surface temperature

Satellite observations of land surface temperature (LST) were based on the MODIS c006 TERRA observations which are175

available every day at 1 km resolution (Wan et al., 2015). We selected the 1 km2 pixel containing a speci�c tower and treated

the two MODIS LST data streams as independent predictor variables which represent clear-sky LST at a speci�c time of

the day (namely around 10.30 AM and PM local time). Quality checks and gap-�lling followed the procedure described in

FluxnetEO version 2 (Walther and Besnard et al., 2022).

For the global spatialization of the �ux estimates we relied on climate modelling grid LST from the MODIS TERRA data180

sets (Wan et al., 2015) and apply consistent quality control and imputation of missing values like at site-level.

2.3.3 Land cover

Land cover information used the IGBP global vegetation classi�cation. Site level classi�cation was as reported by the principal

investigators. Global data were based on the yearly-resolved MODIS MCD12C1 c006 product (Friedl and Sulla-Menashe,

2015). In order to ease the transition between site and global land cover classi�cations, an intermediate classi�cation scheme185

was utilized which translated each classi�cation into characteristics (e.g. trees, crops, needleleaf, deciduous, etc. . . ) based on
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whether the classi�cation has (value=1.0), might have (value=0.5), does not have (value=0.0) a speci�c feature, or is unknown

(value=-1.0). A full description of this intermediate classi�cation system can be found in Appendix B2.

2.4 Machine Learning Method

All X-BASE products are based on gradient boosted regression trees using the XGBoost library (Chen and Guestrin, 2016).190

XGBoost is known as a robust algorithm that is able to handle a variety of variable types (numeric, boolean, categorical).

Training was conducted using a two-thirds training sub-sampling ratio and a 0.05 learning rate. Hyperparameters were chosen

based on preliminary testing to predict eddy covariance data, and a full list of hyperparameters can be found in Appendix B3.

Boosting was stopped when no model improvement (based on mean squared error of validation data) was observed for ten

consecutive rounds, and the best performing model was stored to generate predictions. In all cases, the model reached the195

stopping criteria relatively quickly, with the �nal number of boosting rounds between 80-230, depending on the �ux.

2.5 Cross-validation

All cross-validation was performed using a ten-fold, leave-site-fold-out scheme, where each fold was constructed by randomly

assigning each site to a fold. For each round of cross-validation, eight folds were used for training, one for validation and the

remaining one as the test fold for which the actual predictions were made. The leave-site-fold-out scheme ensures that no data200

from the sites in the test fold were ever seen by the algorithm during training, and in turn iterated such that each site was in

the test set once. As eddy covariance sites are sometimes clustered in the same location (e.g. as different treatments) and can

therefore be both physically closely located and not truly independent, sites are assigned to the same fold if they are less than

0.05° apart to reduce over-�tting. We evaluate the accuracy of the cross-validation models by computing the Nash-Sutcliffe

modeling ef�ciency (NSE, Nash and Sutcliffe (1970)), where a negative NSE indicates a model accuracy that is worse than a205

mean prediction, while a value close to one indicates high model accuracy. We compute the NSE for each site and for a range

of temporal scales from hourly to inter-annual.

2.6 Up-scaling

The �nal step to train a model to use in the �nal global prediction step was identical to the training in the cross-validation,

with the exception that, because no test fold was required, we used nine of the ten folds for the training and validation was210

done on the remaining fold. The �nal trained models (one trained model for each target �ux) were then used to predict �uxes

at the global scales using the associated globally gridded input variables that correspond to those used at site level, as outlined

in Table 2.

2.7 Previous FLUXCOM and independent global �ux estimates

We compare X-BASE with up-scaling results from FLUXCOM (Jung et al., 2019, 2020). As mentioned earlier, FLUXCOM215

comprised an ensemble of up-scaling experiments that differed in the choice of machine learning method, meteorological forc-
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ing data, and which were summarized in two groups of set-ups that shared the same predictor variables and spatiotemporal res-

olution: The “remote-sensing-only” set-up (RS) mostly used spaceborne observations of MODIS as explanatory variables and

produced �ux estimates every 8 days at 0.083° resolution, while the `remote-sensing plus meteorology set-up' (RS+METEO)

produced daily �ux estimates at half degree resolution from meteorological predictor variables and an average seasonal cycle220

of satellite observations (Tramontana et al., 2016; Jung et al., 2019, 2020). Comparisons to FLUXCOM RS+METEO datasets

always refer to the ensemble over multiple machine learning methods for all realizations driven by the ERA5 meteorology

(Hersbach et al., 2020). RS+METEO uses average seasonal cycles of MODIS c005 observations. For the FLUXCOM RS set-

up we use the ensemble over all machine learning methods. Please note that both the previous RS runs and the X-BASE runs

presented here are driven by data from MODIS c006, but the processing has changed in some aspects such as quality control225

and gap-�lling. For clari�cation, an overview on FLUXCOM(-X) naming conventions is given in Appendix A.

For evaluating X-BASENEE globally, in particular its seasonal cycle and for different regions, we used two different at-

mospheric inversion model products: the Orbiting Carbon Observatory-2 (OCO-2) v10 model intercomparison project (Byrne

et al., 2023) and the CarboScope inversion (Rödenbeck et al., 2018) version s99oc_v2022 (Roedenbeck and Heimann, 2022).

Estimates from the OCO-2 came from the the LNLGIS experiment which combines satellite-based column-averagedCO2230

(XCO2) retrievals and in-situCO2 measurements as observational constraints in the assimilation, and consists of 13 different

ensemble members covering the period 2015-2020 with a monthly frequency and 1° spatial resolution (https://gml.noaa.gov/

ccgg/OCO2_v10mip/index.php). The CarboScope product consisted of a single inversion output at the same spatial resolution

as OCO-2, but a longer temporal period from 2001 to 2020. In each case, as the inversion products estimate net biome ex-

change, we subtracted from the inversions data �re emissions as estimated by the Global Fire Emissions Database, Version 4.1235

(Randerson et al., 2017).

We compared temporal patterns of X-BASEGPP with the patterns in global retrievals of sun-induced chlorophyll �uores-

cence (SIF) from the Sentinel-5P TROPOMI instrument (Köhler et al., 2018), which under most conditions approximate the

variability in GPP. For the comparison we used estimates of daily mean SIF applying a correction factor to instantaneous

observations (Zhang et al., 2018) and averaged both X-BASEGPP and TROPOMI SIF to a temporal resolution of 16 days240

and 0.5° spatial grids for the common period 04/2018-12/2020.

X-BASE ET andETT were cross-compared with transpiration estimates from the Global Land Evaporation Amsterdam

Model (GLEAM) v3.6a (Martens et al., 2017; Miralles et al., 2011). GLEAM also utilizes satellite and reanalysis data sets

but in a more physically constrained way, relying on semi-empirical models such as the Priestley and Taylor (Priestley and

Taylor, 1972) and Gash models (Gash, 1979). Further comparisons were made to precipitation data from GPCC (Schneider245

et al., 2022).

2.8 Units across scales and conversion

Given the broad range of spatial and temporal scales reported here, we utilized different units depending on each use case.

All base measurements and predictions are at hourly timescale and in units of�molCO 2 � m� 2 � s� 1 for carbon �uxes and

mm � hr � 1 for water �uxes (as reported in Table 2). In the case of carbon �uxes, all timescales which are not sub-daily are250
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reported in grams carbon per unit time and area. Globally integrated values are reported inPg carbon orkm2 water and are

aggregated using a common land area estimate per grid cell.

3 Results

3.1 Cross-validation and data space

One important innovation in FLUXCOM-X compared to the previous FLUXCOM ensemble was the training data base, which255

was larger due to an incease in both number of sites and years. Furthermore, the EC methodology has changed considerably

in many aspects ranging from collection and processing to quality �ltering in the last 15 years. We show here one illustrative

example of the changes in the environmental space that is represented in the training samples for dailyNEE : between daily

VPD and daily incoming shortwave radiation the distribution of training samples was considerably broader in X-BASE com-

pared to the RS+METEO ensemble (Fig. 1). Furthermore, the number of unique sites contributing to a certain VPD-radiation260

bin has increased (Fig. C1), i.e. the number of ecosystems sampled in each climatic condition has also increased. The increases

were seen particularly at the margins of the distribution, i.e. for days with high VPD along the full radiation spectrum, and

vice versa for days with high radiation conditions along the full VPD spectrum. Remarkably, the number of sites contributing

training samples for high VPDand high radiation were observed much more frequently (Fig. 1) and at more sites (Fig. C1)

compared to RS+METEO - providing more and more varied information for dry conditions. Overall for NEE, the number of265

sampled site-days increased over three-fold (552878 to 183216 for X-BASE and RS+METEO respectively), note however that

X-BASE is modeled at hourly instead of daily resolution and thus the number of sampled site-days should not be considered a

metric of how well the feature space is sampled.

The results from the ten-fold cross validation showed an overall high performance with most �uxes and scales of variability

having an NSE above 0.6 (Fig. 2). In terms of scales of variability across all �uxes, the monthly mean diel cycle (“diel”) and the270

daily median seasonal cycle (“seasonal”) were very regular patterns that the trained models reproduced best. Also, among-site

changes (“spatial”, except forNEE ) and monthly aggregated �uxes (“monthly”) were reliably predicted. Deviations from the

median daily seasonality (“anom”) were only moderately reliable with NSE between 0.25 and 0.5. The XGBoost models did not

succeed in accurately reproducing inter-annual changes (“i.a.v.”) of all �uxes and between-site patterns inNEE . Consistently

across all scales, the net �uxes which are directly calculated (i.e.,ET and even more soNEE ) showed lower performance275

than their respective modelled gross �uxes (i.e.,GPP andETT ). Note that the cross validation results from Fig. 2 cannot

be quantitatively compared to previous cross validation results in FLUXCOM as the training data are not the same. However,

qualitatively the accuracy gradient among �uxes, as well as along scales of variability, corresponded to patterns identi�ed in

FLUXCOM and in comparable empirical modeling activities (Jung et al., 2011; Tramontana et al., 2016; Virkkala et al., 2021;

Dannenberg et al., 2023).280
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Figure 1. Cross-validation sampling in meteorological space:Number of site-days contributing to sampling forNEE for the previous

FLUXCOM RS+METEO ensemble (left) compared to the sampling of FLUXCOM-X-BASE (right) in environmental space of daily aggre-

gated incoming shortwave radiation and VPD. Color corresponds to number of site days per bin in log scale. Only bins with at least twenty

site-days are shown.

Figure 2. FLUXCOM-X-BASE site-level accuracy of predicted �uxes in ten-fold leave-site-fold-out cross-validation in terms of NSE

computed per site for a range of scales of variability. Scales of variability include the hourly timescale (“hourly”), daily (“daily”) and

monthly (“monthly”) aggregated �uxes, as well as between-site changes (“spatial”), monthly mean diel cycle (“diel”), daily median seasonal

cycle (“seasonal”), deviations from the median daily seasonality (“anom.”), and inter-annual variability (“i.a.v.”). Boxes denote the range

from the 25th to the 75th percentile of sites, whiskers extend 1.5 times the interquartile range from the 25th and 75th percentile of NSE

across sites.
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