1 Formation drivers and photochemical effects of ClNO2 in a coastal city of

Southeast China

5

13

14

16

17

18

19

20

21

22

23

24

25

26

27

28

29

- 3 Gaojie Chen^{1,4,5}, Xiaolong Fan^{1,4}, Haichao Wang^{2*}, Yee Jun Tham³, Ziyi Lin^{1,4,5}, Xiaoting Ji^{1,4,5}, Lingling
- 4 Xu^{1,4}, Baoye Hu⁶, Jinsheng Chen^{1,4*}
- 6 ¹Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese
- 7 Academy of Sciences, Xiamen 361021, China
- ²School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China
- ³School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
- ⁴Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Institute of Urban Environment,
- 11 Chinese Academy of Sciences, Xiamen 361021, China
- ⁵University of Chinese Academy of Sciences, Beijing 100049, China
 - ⁶Minnan Normal University, Zhangzhou 363000, China
- *Correspondence to: Jinsheng Chen (jschen@iue.ac.cn); Haichao Wang (<u>wanghch27@mail.sysu.edu.cn</u>).

Abstract. Nitryl chloride (ClNO₂) is an important precursor of chlorine (Cl) radical, significantly affecting ozone (O₃) formation and photochemical oxidation. However, the key drivers of ClNO₂ production are not fully understood. In this study, the field observations of ClNO₂ and related parameters were conducted in a coastal city of Southeast China during the autumn of 2022, combining with machine learning and model simulations to elucidate its key influencing factors and atmospheric impacts. Elevated concentrations of ClNO₂ (> 500 ppt) were notably observed during nighttime in late autumn, accompanied by increased levels of dinitrogen pentoxide (N₂O₅) and nitrate (NO₃⁻). Nighttime concentrations of ClNO₂ peaked at 3.4 ppb, while its daytime levels remained significant, reaching up to 100 ppt and sustaining at approximately 40 ppt at noon. Machine learning and field observations identified nighttime N₂O₅ heterogeneous uptake as the predominant pathway for ClNO₂ production, whereas NO₃⁻ photolysis may contributed to its daytime generation. Additionally, ambient temperature (T) and relative humidity (RH) emerged as primary meteorological factors affecting ClNO₂ formation, mainly through their effects on thermal equilibrium and N₂O₅ hydrolysis processes, respectively. Ultraviolet (UV) radiation was found to play a dual role in ClNO₂ concentrations around noon. Box model simulations showed that under high ClNO2 conditions, the rates of alkane oxidation by Cl radical in the early morning exceeded those by OH radical. Consequently, VOC oxidation by Cl radical contributed ~ 19% to RO_x production rates, thereby significantly impacting O₃ formation and atmospheric oxidation capacity. This research enriched the understanding of ClNO₂ generation and loss pathways, providing valuable insights for the regulation of photochemical pollution in coastal regions.

1 Introduction

Chlorine (Cl) radical, as an important atmospheric oxidant, can react with volatile organic compounds (VOCs) to affect RO_x (including OH, HO₂, and RO₂) radicals and ozone (O₃) formation (Yi et al., 2023), thereby perturbing atmospheric chemical components and air quality (Peng et al., 2021; Li et al., 2020). The reaction rates between Cl radical and some alkanes are several orders of magnitude faster than those involving OH radical (Atkinson et al., 2006). Furthermore, the related studies indicated that the production rates of Cl radical in the early morning could significantly exceed the production rates of OH radical formed via O₃ photolysis (Phillips et al., 2012; Tham et al., 2016), thereby enhancing the atmospheric oxidation capacity.

Nitryl chloride (ClNO₂) is one of the major Cl radical precursors in the tropospheric atmosphere (Thornton et al., 2010; Xue et al., 2015; Liu et al., 2017). It is mainly generated by the heterogeneous uptake of dinitrogen pentoxide (N₂O₅) on chloride-containing aerosols (Finlayson-Pitts et al., 1989; Thornton et al., 2010), among which N₂O₅ is produced through the equilibrium reaction with nitrogen dioxide (NO₂) and nitrate (NO₃) radical. Since Osthoff et al. (2008) firstly detected over 1 ppb of ClNO₂ in the urban outflows of America (Osthoff et al., 2008), significant production of ClNO₂ has been widely observed in the polluted coastal and inland areas with abundant anthropogenic emissions and chloride sources, with concentrations ranging from tens of ppt to several ppb (Riedel et al., 2012; Mielke et al., 2013; Mielke et al., 2011; Phillips et al., 2012; Bannan et al., 2015; Wang et al., 2016; Xia et al., 2020; Xia et al., 2021; Yun et al., 2018; Wang et al., 2022; Li et al., 2023). For the diurnal profile of ClNO₂, its concentrations generally peaked and accumulated at midnight, then rapidly decreased to low levels due to strong photolysis after sunrise (Ma et al., 2023; Mielke et al., 2011; Xia et al., 2020). However, elevated daytime concentrations of ClNO₂ have been observed in field studies, mainly attributed to reduced photolysis rates under heavy cloud or fog cover, as well as contributions from horizontal and vertical transport (Tham et al., 2016; Xia et al., 2021; Jeong et al., 2019; Mielke et al., 2013; Bannan et al., 2015). Notably, the recent laboratory research demonstrated that nitrate (NO₃⁻) photolysis can generate ClNO₂ alongside Cl₂ (Dalton et al., 2023), yet this mechanism has not been confirmed under real atmospheric conditions.

At present, the observation studies of ClNO₂ focused on investigating its influencing factors, such as the N₂O₅ uptake coefficient and the production yield of ClNO₂ (Thornton et al., 2003; Tham et al., 2018). The field and laboratory studies have indicated that ClNO₂ production was mainly affected by ambient temperature (T), relative humidity (RH), and particle components (e g., chloride (Cl⁻), NO₃⁻, and liquid

water content) (Bertram and Thornton, 2009; Wang et al., 2023; Wang et al., 2020). In addition to influencing factors, the photochemical effects of ClNO₂ photolysis have been extensively evaluated (Xue et al., 2015; Xia et al., 2021; Tham et al., 2016). Cl radical released by ClNO₂ photolysis will oxidize VOCs to promote the formation RO₂ radical and O₃, greatly compensating for the underestimation of RO₂ radical and O₃ generation in model simulations (Peng et al., 2021; Ma et al., 2023). The field measurements of ClNO₂ have been conducted in different atmospheric environments, while the key drivers of ClNO₂ chemistry were still not well recognized. Moreover, it is pertinent to explore whether there are additional and unrecognized sources of ClNO₂ beyond its heterogeneous generation from N₂O₅.

In this study, the comprehensive measurements of ClNO₂ and related parameters were conducted in a coastal city of Southeast China during the autumn of 2022. Field observations, combined with a machine learning model, were used to reveal the key driving factors of ClNO₂ formation. Furthermore, we further investigated the potential mechanisms driving daytime ClNO₂ generation. Additionally, we also assessed the photochemical impacts of ClNO₂ based on a box model. Overall, this study underscored the important role of NO₃⁻ in the ClNO₂ chemistry.

2 Materials and methods

2.1 Field Measurements

The intensive field measurements of ClNO₂, related precursors, and meteorological parameters from October 9th to December 5th, 2022 were performed at an urban site (Institute of Urban Environment, Chinese Academy of Sciences) in a coastal city (Xiamen) of Southeast China (Fig. S1). Here, ClNO₂, N_2O_5 , gaseous pollutants (volatile organic compounds (VOCs), NO_x , SO_2 , CO, and O_3), aerosol mass concentrations, ionic components, size distribution, and meteorological factors were simultaneously detected. Meanwhile, an iodide-adduct time-of-flight chemical ionization mass spectrometer (Γ -ToF-CIMS) was used to measure ClNO₂ and N_2O_5 . The principles and settings of Γ -ToF-CIMS were similar with previous studies (Ma et al., 2023; Yan et al., 2023). Detailed descriptions of this observation site and instruments have been provided in previous work (Chen et al., 2024; Hu et al., 2022), Text S1, and Table S1. For the calibrations of ClNO₂ and N_2O_5 , ClNO₂ was produced by passing Cl₂ (6 ppm in N_2) through a moist mixture of sodium nitrite (NaNO₂) and sodium chloride (NaCl) (Thaler et al., 2011; Wang et al., 2022), and N_2O_5 was synthesized by the reactions of O_3 and excessive NO_2 (Tham et al., 2016; Wang et al., 2016). The dependences of ClNO₂ and N_2O_5 sensitivities on relative humidity are presented in Fig. S2. The uncertainties of the ClNO₂ and N_2O_5 measurements were estimated to be ~15 and 12 %, respectively ~20 %. The details of

ClNO₂ and N₂O₅ calibrations and uncertainty analysis are displayed in Text S2.

2.2 Machine Learning model

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

Here, the extreme gradient boosting (XGBoost) model coupling with the Shapely additive explanations (SHAP) model (the XGBoost-SHAP model) was used to identify the key influencing factors of ClNO₂ formation. Meanwhile, the XGBoost model was applied to establish the predictive model of ClNO₂ based on the observed data of gaseous precursors and meteorological factors; the SHAP model was employed to evaluate the importance of each feature affecting the simulated concentrations of ClNO₂. The SHAP model is an interpretability tool designed to analyze the contributions of individual features to model predictions. It employs an additive explanatory framework that considers all features as contributors, drawing inspiration from cooperative game theory. For each predicted instance, SHAP assigns a Shapley value, representing the cumulative contribution of each feature. Positive SHAP values indicate that a feature increases the model's predicted outcome, signifying a positive contribution. Conversely, negative SHAP values suggest that the feature reduces the predicted value, reflecting a negative contribution. The absolute value of the SHAP score reflects the magnitude of the contribution, regardless of direction, offering insight into the overall importance of the feature. The true value, on the other hand, reveals the direction of the contribution (positive or negative), facilitating a clearer understanding of the relationship between the feature and the prediction. Besides, the partial dependence plot (PDP) analysis offers a visual representation of the marginal effect that the factors have on the model's predicted outcome. It is based on the principle of stabilizing the values of non-target features, and systematically altered the target feature's values according to the model's algorithmic framework to derive the predicted values.

ClNO₂ concentrations served as the dependent variable, with trace gases (SO₂, CO, NO₂, NO, O₃, and N₂O₅), PM_{2.5} and its inorganic compositions (NO₃⁻, SO₄²⁻, NH₄⁺, and Cl⁻), and meteorological parameters (T, RH, UV, WS, WD, and BLH) acting as independent variables. The simulated ClNO₂ concentrations by the XGBoost model were highly similar with the observed values (R²=0.91), indicating the good performance of the XGBoost model (Fig. S3). Detailed introductions and settings of the XGBoost-SHAP model are provided in Text S3.

2.3 The box model

The observation-based model (OBM) was utilized to assess the impacts of ClNO₂ on photochemically atmospheric oxidation. As delineated in earlier studies (Xue et al., 2015; Tham et al., 2016; Xia et al., 2021; Peng et al., 2021; Peng et al., 2022), the Master Chemical Mechanism (MCM, version 3.3.1) was adopted, and established chlorine chemistry mechanisms have been integrated. The Tropospheric Ultraviolet and

Visible Radiation (TUV) model was used to calculate ClNO₂ photolysis rates (*J*ClNO₂) under clear-sky conditions. The simulated *J*ClNO₂ values were then scaled based on field-measured *J*NO₂ values. A thorough exposition of the box model configuration can be found in our previous publications (Liu et al., 2022b; Liu et al., 2022a) and Text S4. Observation data, including ClNO₂, VOCs, HCHO, HONO, CO, O₃, NO, NO₂, SO₂, along with meteorological factors as constraint were input into the box model at an hourly resolution (Table S2). Due to the levels of ClNO₂ in the box model determined by observed levels of ClNO₂, the parametrization for N₂O₅ uptake and ClNO₂ yield was not utilized in the box model. Two scenarios were examined: one representing observation-average conditions from October 9th to December 5th, the other reflecting a high ClNO₂ case observed on November 28th.

This study focused on elucidating the influence of ClNO₂ on the formation of RO_x radical and O₃. The O₃ production rate minus the O₃ loss rate was used to calculate the net O₃ production rate (Eq. S1-3). The AOC is calculated by the sum of the rates of CH₄, CO, and VOCs oxidized by atmospheric oxidants (O₃, OH, Cl, and NO₃ radical) (Eq. S4) (Xue et al., 2015; Yi et al., 2023). Both scenarios were evaluated with and without including ClNO₂ inputs to assess its impacts on these processes.

3 Results and discussion

3.1 Overview of observations

Fig. 1 displays the time series of ClNO₂, N_2O_5 , and related parameters including O_3 , NO_x , $PM_{2.5}$, Cl^- , NO_3^- , and meteorological parameters during the autumn observation period. Our observation shows a decline in T and UV values from October to November, with average RH values increasing from ~ 60% in October to ~ 70% in November (excluding rainy days). During the entire measurement period, ClNO₂ concentrations exhibited significant variability, with elevated levels (> 500 ppt) frequently observed in late autumn, particularly after November 10th. The elevation of ClNO₂ concentrations coincided with increased levels of N_2O_5 and NO_3^- during late autumn. The concentrations of ClNO₂ at our study site reached several ppb, compared with previous field measurements conducted at urban, suburban, rural, background, and mountain sites (Table S3), indicating its widespread presence in diverse atmospheric environments. The highest concentrations of ClNO₂ were detected during the night of November 27th, with a maximum hourly average of 3.4 ppb. Peak concentrations of N_2O_5 and NO_3^- were also observed on that night (Fig. 1). On the evening of November 27th, N_2O_5 concentrations rapidly decreased after 7 p.m., while ClNO₂ and NO_3^- concentrations significantly increased, reflecting fast N_2O_5 heterogeneous hydrolysis and effective formation of ClNO₂. Notably, on the following day (November 28th) (Fig. 2a), ClNO₂ concentrations sustained above

100 ppt around noon, partially related with weaken UV values ($\sim 14~\rm W\cdot m^{-2}$) under heavy fog and cloud cover, with the RH values of $\sim 70\%$ at that time. Similar research in California has shown ClNO₂ concentrations exceeding 100 ppt after sunrise 4 hours due to reduced photolysis (Mielke et al., 2013).

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

20B

204

205

206

207

208

209

210

211

212

218

214

215

216

The average diurnal changes of ClNO₂ and related parameters during the entire measurement campaign are depicted in Fig. 2b. As expected, ClNO₂ exhibited a distinct diurnal variation, peaking and accumulating after sunset and decreasing in the early morning. However, ClNO₂ concentrations remained ~ 40 ppt around noon, different with some studies that ClNO₂ concentrations decreased to near the detection limit around midday (Wang et al., 2022; Niu et al., 2022). Similar observation in North China declared ClNO₂ concentrations above 60 ppt in the afternoon (Liu et al., 2017). Previous studies have indicated that abundant ClNO₂ may be transported from upper atmosphere or air mass, contributing to the elevated ClNO₂ concentrations in the early morning (Tham et al., 2016; Xia et al., 2021; Jeong et al., 2019). However, the explanations for the concentrations of ClNO₂ around noon remained elusive.

To evaluate the contribution of the heterogeneous N₂O₅ uptake to daytime ClNO₂ levels, we calculated ClNO₂ production using a box model, considering (1) the contribution of heterogeneous N₂O₅ uptake to ClNO₂ production, and (2) ClNO₂ loss via photolysis, aerosol uptake, and reaction with OH· (Text S5 and S6). We used a $\gamma(N_2O_5)$ value of 0.06, a $\phi(ClNO_2)$ value of 1.0, and a $\gamma(ClNO_2)$ value of 0.006 in our calculations, which represent upper-end estimates based on previous field studies (Mcduffie et al., 2018a; Mcduffie et al., 2018b; Tham et al., 2016). However, as shown in Fig. 3, the simulated daytime ClNO₂ concentrations were lower than the observed values. Therefore, we believe that the observed daytime ClNO₂ levels, particularly around noon, cannot be adequately explained by heterogeneous N₂O₅ uptake alone, suggesting the presence of additional sources contributing to the formation of daytime ClNO₂. To evaluate the contribution of the heterogeneous N2O5 uptake to daytime ClNO2 levels, we calculated ClNO2 production using Eq. (S7), considering the loss of ClNO2 through photolysis. This method has been employed in a previous study (Text S4-S5) (Tham et al., 2016). We used a γ(N₂O₅) value of 0.06 and a ♦(CINO₂) value of 1.0 in our calculations, which represent upper-end estimates based on previous field studies (Mcduffie et al., 2018a; Mcduffie et al., 2018b; Tham et al., 2016). However, as shown in Fig. 3, the calculated $\phi(\text{CINO}_2)$ with $\gamma(\text{N}_2\text{O}_5) = 0.06$ fails to reproduce the observed levels of daytime CINO₂. A larger γ(N₂O₅) of 0.11 would be necessary, but such high uptake coefficients and yields are not supported by the current literature. Therefore, we believe that the observed daytime ClNO2 levels, particularly around noon, cannot be adequately explained by heterogeneous N₂O₅ uptake alone, suggesting the presence of additional sources contributing to the formation of daytime CINO2.

3.2 Key drivers of ClNO₂ formation

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

The XGBoost-SHAP model was employed to investigate the major drivers of ClNO₂ production during the whole observation period. The average absolute SHAP value of each feature was ranked to determine the key drivers of ClNO₂ formation, with larger SHAP values suggesting greater contributions (Fig. 4a). Additionally, features with positive SHAP values (depicted as red points) indicate that higher values of those features positively affect ClNO₂ concentrations, and vice versa (Fig. 4b). Overall, N₂O₅, NO₃⁻, T, RH, and UV were the most important features affecting ClNO₂ concentrations. Notably, these factors exhibited varied behaviors between daytime and nighttime periods.

In our study, N₂O₅ was identified as the most important influencing factor, consistent with its role in ClNO₂ formation through heterogeneous uptake processes (Thornton et al., 2010; Finlayson-Pitts et al., 1989). After sunset, ClNO₂ concentrations markedly increased due to active nighttime N₂O₅ chemistry, while this heterogeneous uptake process was hindered after sunrise as N2O5 concentrations decreased significantly (Fig. 1) (Niu et al., 2022; Wang et al., 2020; Tan et al., 2022). Indeed, the concentrations of ClNO₂ were evidently increased when N₂O₅ concentrations exceeded ~13 ppt, predominantly during the nighttime (Fig. 5a). Conversely, in Northern Europe, the ClNO₂ concentrations were mainly controlled by O₃ and NO₂, rather than by the heterogeneous uptake of N₂O₅ (Sommariva et al., 2018). In Heshan of South China, chloride and PM_{2.5} were the major factors affecting ClNO₂ formation (Wang et al., 2022). Differently, the relative importance of NO₃⁻ derived from the XGBoost-SHAP result indicated that elevated ClNO₂ concentrations were associated with high concentrations of NO₃⁻ besides N₂O₅. According to Fig. 5b, high NO₃⁻ concentrations (> 3.7 µg·m⁻³) are accompanied by the elevation of ClNO₂, especially its concentrations reaching 6.2 µg·m⁻³. Previous studies suggested that increased concentrations of NO₃⁻ decreased γ(N₂O₅), which would limit the production of ClNO₂ (Wahner et al., 1998; Mentel et al., 1999; Bertram and Thornton, 2009). As depicted in Fig. S4, the dependence of γ(N₂O₅) on NO₃⁻ concentrations follows the nitrate suppression effect. Therefore, the importance of nighttime NO₃⁻ for ClNO₂ levels is that they are co-products from the processes of N₂O₅ heterogeneous uptake. As shown in Fig. 1, compared to low NO₃⁻ conditions, ClNO₂ production was enhanced in high NO₃⁻ conditions. Especially in late autumn, increased aerosol abundances and N2O5 levels increased N2O5 uptake further promoting ClNO2 and NO₃⁻ production. Considering the limited contribution of N₂O₅ hydrolysis to daytime NO₃⁻ levels (Yan et al., 2023; Zang et al., 2022; Chen et al., 2020), the impact of high NO₃⁻ concentrations on daytime ClNO₂ concentrations warrants further analysis.

The simulated concentrations of ClNO₂, based on the XGBoost-SHAP model, were significantly elevated when NO₃⁻ concentrations were higher than 3.7 μg·m⁻³ (Fig. 5b). Consequently, the average daily concentrations of NO_3^- were classified as high (> 3.7 $\mu g \cdot m^{-3}$) and low (< 3.7 $\mu g \cdot m^{-3}$) to further elucidate the impacts of NO₃⁻ on the formation of ClNO₂. Fig. 6 presents the diurnal variations in the relative importance of factors based on the SHAP values under high and low NO₃⁻ concentrations. Unexpectedly, daytime NO₃⁻ was the dominant influencing factors for daytime ClNO₂ (Fig. 6a). High concentrations of daytime NO₃⁻ positively affected the daytime concentrations of ClNO₂, independent of N₂O₅ uptake processes. As depicted in Fig. 6a, daytime N2O5 did not promote the elevation of daytime ClNO2. Negative SHAP values for N₂O₅ during the daytime indicate that the contribution of N₂O₅ chemistry to daytime ClNO₂ levels was limited. Therefore, it is very likely that high concentrations of daytime NO₃⁻ participated in daytime ClNO₂ production. A recent study suggested that nitrate photolysis produced ClNO₂ in addition to Cl₂ (Dalton et al., 2023), while it has been not verified by field observations. Fig. 7 shows that daytime ClNO₂ concentrations correlated well (R=0.62) with the product of a proxy of NO₃⁻ photolysis (NO₃⁻×JNO₂×S_a) on aerosol surfaces (S_a), implying that the photolysis of NO₃ likely resulted in the daytime formation of CINO₂contributed to the daytime concentrations of CINO₂ at our study site. Furthermore, high concentrations of NO₃⁻ and Cl⁻, along with large values of S_a (Fig. 7a, b, c and Fig. S5) in the daytime accelerated NO₃⁻ photolysis, promoting the formation of ClNO₂, while ClNO₂ concentrations exhibited a weak correlation with JNO₂. It should be emphasized that the weak correlation between JNO₂ and ClNO₂ concentrations does not deny the potential contribution of nitrate photolysis, which could be explained by the fact that CINO₂ concentrations are affected by both its production and loss processes. Specifically, photolysis rates exert dual effects on daytime ClNO₂ concentrations: positive effects through photochemical production pathways and negative effects through direct ClNO₂ photolytic loss. Given the short daytime lifetime of CINO₂, we calculated the missing CINO₂ production rate (production rate minus loss rate) to assess the contributions from unknown sources (Text S6). The production rate of unknown source showed a good correlation with JNO₂ (R=0.41) (Fig. S6), indicating that photochemical processes may enhance ClNO₂ production. Notably, the strong correlation between the observed concentrations of ClNO₂ and the NO_3^- photolysis proxy $(NO_3^- \times JNO_2 \times S_a)$ has revealed the possibility of the contribution of NO_3^- photolysis to the unknown daytime ClNO₂ source. Overall, N₂O₅ uptake processes were the major pathways dominating nighttime CINO2 formation, while NO3 photolysis contributed to daytime CINO2 production during our observation period.

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

268

264

265

266

267

268

269

270

271

272

278

274

275

276

277

278

In term of meteorological factors, UV, T, and RH were the major influencing factors. The photolysis

was the most important sink of CINO₂ in the daytime, leading to a rapid reduction in CINO₂ concentrations, particularly in the early morning (Fig. 5e and Fig. 6). However, it is crucial to understand the dual role of photolysis intensity in determining daytime CINO₂ levels. As mentioned before, pPhotolysis can contribute to the generation of CINO₂ by promoting NO_3^- photolysis, while also causing the rapid decomposition of CINO₂. As reported in California (Mielke et al., 2013), reduced photolysis rates even increased daytime CINO₂ levels by decreasing CINO₂ loss through photolysis. The impact of ambient temperature on CINO₂ was probably reflected in its thermal equilibrium with N_2O_5 . Elevated daytime ambient temperature suppressed the formation of N_2O_5 , resulting in low N_2O_5 concentrations, which further limited the contribution of heterogeneous N_2O_5 uptake to daytime CINO₂ generation (Fig. 5c and Fig. 6). During the whole observation period from October to November, the drop in ambient temperature facilitated CINO₂ production by decreasing the thermal decomposition process. Increased RH values provided favorable conditions for the nighttime N_2O_5 hydrolysis reactions, thereby affecting CINO₂ production (Fig. 5d and Fig. 6), while high RH (> 80%) also weakened the generation of CINO₂. Notably, Cl⁻ was not the most important factors of CINO₂ formation at our study site (Fig. 4), likely attributed to the abundant chlorine source in coastal regions (Peng et al., 2022).

3.3 Impact of ClNO₂ photolysis on RO_x budget

The photochemical effects of CINO₂ were evaluated under the observation-average condition and the high CINO₂ case based on the box model. The largest Cl production rates (P(Cl)) contributed from CINO₂ photolysis were 0.05 ppb·h⁻¹ for the observation-average condition, which was lower than 0.19 ppb·h⁻¹ for the high CINO₂ case. The difference led to variable levels of atmospheric oxidation capacity induced by Cl radical. Cl radical released via the photolysis of CINO₂ initiated the oxidation of VOCs. Among VOC groups (including alkanes, alkenes, alkynes, aromatics and OVOCs), Cl radical primarily oxidized alkanes (~ 65.0%), followed by OVOCs (~ 12.7%) for both the observation-average condition and the high CINO₂ case (Fig. 8a, b). The contributions of Cl radical and other atmospheric oxidants (including OH radical and O₃) to daytime VOC oxidation were also compared (Fig. 8c, d and Table 1). In our study, the oxidation of alkanes by Cl radical for the observation-average condition were about 11.7%, which increased by 44.8% for the high ClNO₂ case, were higher than those in London (Bannan et al., 2015), Weybourne (Bannan et al., 2017), Boston (Rutherford et al., 1995), and LA (Fraser et al., 1997), lower than that in Hong Kong (Xue et al., 2015). It should be noticed that the rates of Cl radical reacting with alkanes even exceeded those of OH radical in the early morning for the high ClNO₂ case. The largest rates of alkanes oxidized by Cl radical were approximately twice as high as those of OH radical at 10 a.m. (Fig. 8e, f), highlighting that the

photochemical effects of Cl radical released via ClNO₂ photolysis were particularly important for VOC oxidation during the morning hours at our study site.

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

The oxidation of VOCs by Cl radical further affects the generation of RO_x (OH + HO₂ + RO₂) radicals. The RO_x radical production rates for the high ClNO₂ case were evidently lower than that under the observation-average condition, primarily due to reduced photolysis rates on that day. However, the total RO_x radical production rates averagely increased by 23.8% with ClNO₂ photolysis for the high ClNO₂ case, higher than a 4.9% increase for the observation-average condition (Fig. \$557). For the observation-average condition, O₃ (32.7%), HONO (31.7%), and OVOCs (21.6%) photolysis were the most significant contributors to RO_x radical production in the early morning (7-10 a.m.), with VOC oxidation by Cl radical contributing only 3.7% (Fig. 9a). However, for the high ClNO₂ case, VOC oxidation induced by Cl radical in the early morning accounted for 19.1% of RO_x radical production, which was higher than O₃ (7.4%) and HCHO (4.1%) photolysis, close to OVOCs (19.0%) photolysis (Fig. 9b). The contributions of ClNO₂ photolysis to the RO_x radical production rates in our study were larger than previous results observed in autumn of Heshan (Wang et al., 2022) and North China (Xia et al., 2021), similar with that in summer of Wangdu (Tham et al., 2016). Thus, the concentrations of OH, HO₂, and RO₂ radicals in the box model with ClNO₂ inputs averagely increased by 17.9%, 34.6%, and 54.3% for the high ClNO₂ case, higher than the increases of 3.7%, 7.1%, and 10.3% contributed from the observation-average conditions, respectively (Fig. S6S8). The uplift in the concentrations of RO_x radicals also accelerated the generation of O₃. The increase in the net O_3 production rates (P(O_3)) for the observation-average condition averagely reached 0.13 ppb·h⁻¹ (15.8 %) in the daytime (Fig. 10a), while larger elevations in the net P(O₃) were observed for the high ClNO₂ case (Fig. 10b), with a maximum of 0.64 ppb·h⁻¹ (120 %) at 10 a.m. As a result, increased RO_x radical and O₃ greatly enhanced the atmospheric oxidation capacity (Fig. 10c, d), especially for the high ClNO₂ case (up to 65%).

Table 2 summarizes the impacts of ClNO₂ photolysis on RO_x radical and O₃ production in our study and previous observations around the world (Xia et al., 2021; Wang et al., 2022; Tham et al., 2016; Wang et al., 2016; Xue et al., 2015; Bannan et al., 2017; Jeong et al., 2019), indicating that the photochemical impacts of ClNO₂ were variable in different atmospheric environments. At our study site, the effects of ClNO₂ photolysis on RO_x radical production were important, especially in the early morning. The enhanced RO_x radical production induced by ClNO₂ photolysis accelerated the chemical generation of O₃. Primary RO_x radical production rates (including O₃, HONO, HCHO, OVOCs, and ClNO₂) were considered as one of the most important parameters to O₃ formation (Lu et al., 2023). Therefore, the considerable contribution of

 $ClNO_2$ photolysis to primary RO_x radical production in the early morning may bring new challenges for O_3 alleviation.

Conclusions

In conclusion, we present two months of field measurements in the coastal area of Southern China during the autumn, coupled with machine learning and model simulations, providing new insights into ClNO₂ chemistry. Our observation shows the increase in the concentrations of ClNO₂ were accompanied by elevated concentrations of N₂O₅ and NO₃⁻, low values of T and UV, and high values of RH. The nighttime heterogeneous uptake of N₂O₅ was identified as the major source of ClNO₂, while NO₃⁻ photolysis served as a potential daytime ClNO₂ source NO₃⁻ photolysis promoted the elevation of daytime ClNO₂ concentrations. Cl radical released by ClNO₂ photolysis after sunrise had important photochemical effects in the early morning. The photolysis of high ClNO₂ concentrations resulted in net O₃ production rates and atmospheric oxidation capacity levels increasing by 120% and 65%, respectively. Our results enhanced the understanding of ClNO₂ chemistry in coastal regions, calling for more observations and laboratory research to fully reveal its exact role in different atmospheric environments.

Data availability. Data are available upon request to Jinsheng Chen (jschen@iue.ac.cn).

Author contributions. JC provided funding support for field measurements, designed this study, and revised this manuscript. GC designed this study, analyzed the data, and wrote this manuscript. HW helped perform the calibrations and revised this manuscript. XF revised this manuscript. XF, HW, YT, ZL, XJ, LX, BH contributed to discussions of this manuscript.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. The authors acknowledge the National Natural Science Foundation of China, the Science and Technology Department of Fujian Province, Center for Excellence in Regional Atmospheric Environment Project, Xiamen Atmospheric Environment Observation and Research Station of Fujian Province, and Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention (Institute of Urban Environment, Chinese Academy of Sciences).

- 372 Financial support. This work was funded by the National Natural Science Foundation of China
- 373 (U22A20578, 42305102 & 42277091), the Science and Technology Department of Fujian Province
- 374 (2022L3025), the National Key Research and Development Program (2022YFC3700304), STS Plan
- Supporting Project of the Chinese Academy of Sciences in Fujian Province (2023T3013), Fujian Provincial
- Environmental Protection Science & Technology Plan Projects (2023R004), and Xiamen Atmospheric
- Environment Observation and Research Station of Fujian Province. Y.J.T. acknowledges the funding support
- 378 from the Guangdong Basic and Applied Basic Research Foundation (2022A1515010852) and the
 - Fundamental Research Funds for the Central Universities, Sun Yat-sen University (23hytd002).

References

379

380

381

383

384

- Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi,
 - M. J., Troe, J., and Subcommittee, I.: Evaluated kinetic and photochemical data for atmospheric chemistry:
 - Volume II gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625-4055,
 - https://doi.org/10.5194/acp-6-3625-2006, 2006.
- Bannan, T. J., Bacak, A., Le Breton, M., Flynn, M., Ouyang, B., McLeod, M., Jones, R., Malkin, T. L.,
- Whalley, L. K., Heard, D. E., Bandy, B., Khan, M. A. H., Shallcross, D. E., and Percival, C. J.: Ground and
- Airborne U.K. Measurements of Nitryl Chloride: An Investigation of the Role of Cl Atom Oxidation at
- 389 Weybourne Atmospheric Observatory, J. Geophys. Res. Atmos., 122, 11,154-111,165,
- 390 https://doi.org/10.1002/2017jd026624, 2017.
- Bannan, T. J., Booth, A. M., Bacak, A., Muller, J. B. A., Leather, K. E., Le Breton, M., Jones, B., Young, D.,
- Coe, H., Allan, J., Visser, S., Slowik, J. G., Furger, M., Prévôt, A. S. H., Lee, J., Dunmore, R. E., Hopkins, J.
- R., Hamilton, J. F., Lewis, A. C., Whalley, L. K., Sharp, T., Stone, D., Heard, D. E., Fleming, Z. L., Leigh,
- R., Shallcross, D. E., and Percival, C. J.: The first UK measurements of nitryl chloride using a chemical
- ionization mass spectrometer in central London in the summer of 2012, and an investigation of the role of Cl
- 396 atom oxidation, J. Geophys. Res. Atmos., 120, 5638-5657, https://doi.org/10.1002/2014jd022629, 2015.
- Bertram, T. and Thornton, J.: Toward a general parameterization of N_2O_5 reactivity on aqueous particles: the
- competing effects of particle liquid water, nitrate and chloride, Atmos. Chem. Phys., 9, 8351-8363,
- 399 <u>https://doi.org/10.5194/acp-9-8351-2009</u>, 2009.
- 400 Chen, G., Ji, X., Chen, J., Xu, L., Hu, B., Lin, Z., Fan, X., Li, M., Hong, Y., and Chen, J.: Photochemical

- 401 pollution during summertime in a coastal city of Southeast China: Ozone formation and influencing factors,
- 402 Atmos. Res., 301, 107270, https://doi.org/10.1016/j.atmosres.2024.107270, 2024.
- 403 Chen, X., Wang, H., Lu, K., Li, C., Zhai, T., Tan, Z., Ma, X., Yang, X., Liu, Y., Chen, S., Dong, H., Li, X.,
- Wu, Z., Hu, M., Zeng, L., and Zhang, Y.: Field Determination of Nitrate Formation Pathway in Winter
- Beijing, Environ. Sci. Technol., 54, 9243-9253, https://doi.org/10.1021/acs.est.0c00972, 2020.
- Dalton, E. Z., Hoffmann, E. H., Schaefer, T., Tilgner, A., Herrmann, H., and Raff, J. D.: Daytime
- 407 Atmospheric Halogen Cycling through Aqueous-Phase Oxygen Atom Chemistry, J. Am. Chem. Soc., 145,
- 408 15652-15657, https://doi.org/10.1021/jacs.3c03112, 2023.
- Finlayson-Pitts, B. J., Ezell, M. J., and Pitts, J. N.: Formation of chemically active chlorine compounds by
 - reactions of atmospheric NaCl particles with gaseous N₂O₅ and ClONO₂, Nature., 337, 241-244,
 - https://doi.org/10.1038/337241a0, 1989.

411

413

415

- Fraser, M. P., Cass, G. R., Simoneit, B. R., and Rasmussen, R.: Air quality model evaluation data for
 - organics. 4. C2-C36 non-aromatic hydrocarbons, Environ. Sci. Technol., 31, 2356-2367,
- 414 https://doi.org/10.1021/es960980g, 1997.
 - Hu, B., Duan, J., Hong, Y., Xu, L., Li, M., Bian, Y., Qin, M., Fang, W., Xie, P., and Chen, J.: Exploration of
- the atmospheric chemistry of nitrous acid in a coastal city of southeastern China: results from measurements
- across four seasons, Atmos. Chem. Phys., 22, 371-393, https://doi.org/10.5194/acp-22-371-2022, 2022.
- Jeong, D., Seco, R., Gu, D., Lee, Y., Nault, B. A., Knote, C. J., McGee, T., Sullivan, J. T., Jimenez, J. L.,
 - Campuzano-Jost, P., Blake, D. R., Sanchez, D., Guenther, A. B., Tanner, D., Huey, L. G., Long, R.,
- Anderson, B. E., Hall, S. R., Ullmann, K., Shin, H., Herndon, S. C., Lee, Y., Kim, D., Ahn, J., and Kim, S.:
- Integration of airborne and ground observations of nitryl chloride in the Seoul metropolitan area and the
- implications on regional oxidation capacity during KORUS-AQ 2016, Atmos. Chem. Phys., 19, 12779-
- 423 12795, https://doi.org/10.5194/acp-19-12779-2019, 2019.
- 424 Li, F., Huang, D. D., Nie, W., Tham, Y. J., Lou, S., Li, Y., Tian, L., Liu, Y., Zhou, M., and Wang, H.:
- Observation of nitrogen oxide-influenced chlorine chemistry and source analysis of Cl₂ in the Yangtze River
- Delta, China, Atmos. Environ., 306, 119829, https://doi.org/10.1016/j.atmosenv.2023.119829, 2023.
- Li, Q., Badia, A., Wang, T., Sarwar, G., Fu, X., Zhang, L., Zhang, Q., Fung, J., Cuevas, C. A., Wang, S.,

- Zhou, B., and Saiz-Lopez, A.: Potential Effect of Halogens on Atmospheric Oxidation and Air Quality in
- 429 China, J. Geophys. Res. Atmos., 125, e2019JD032058, https://doi.org/10.1029/2019JD032058, 2020.
- 430 Liu, T., Chen, G., Chen, J., Xu, L., Li, M., Hong, Y., Chen, Y., Ji, X., Yang, C., Chen, Y., Huang, W., Huang,
- Q., and Wang, H.: Seasonal characteristics of atmospheric peroxyacetyl nitrate (PAN) in a coastal city of
- Southeast China: Explanatory factors and photochemical effects, Atmos. Chem. Phys., 22, 4339-4353,
- 433 <u>https://doi.org/10.5194/acp-22-4339-2022</u>, 2022a.
- Liu, T., Hong, Y., Li, M., Xu, L., Chen, J., Bian, Y., Yang, C., Dan, Y., Zhang, Y., Xue, L., Zhao, M., Huang,
- Z., and Wang, H.: Atmospheric oxidation capacity and ozone pollution mechanism in a coastal city of
- southeastern China: analysis of a typical photochemical episode by an observation-based model, Atmos.
- 437 Chem. Phys., 22, 2173-2190, https://doi.org/10.5194/acp-22-2173-2022, 2022b.
- Liu, X., Qu, H., Huey, L. G., Wang, Y., Sjostedt, S., Zeng, L., Lu, K., Wu, Y., Hu, M., Shao, M., Zhu, T., and
 - Zhang, Y.: High Levels of Daytime Molecular Chlorine and Nitryl Chloride at a Rural Site on the North
- China Plain, Environ. Sci. Technol., 51, 9588-9595, https://doi.org/10.1021/acs.est.7b03039, 2017.
- Lu, K., Zhou, H., Lee, J., Nelson, B., and Zhang, Y.: Ozone mitigations beyond the control of nitrogen
 - oxides and volatile organic compounds, Sci Bull, 68, 1989-1992, https://doi.org/10.1016/j.scib.2023.07.051.,
- 443 2023.

442

- Ma, W., Chen, X., Xia, M., Liu, Y., Wang, Y., Zhang, Y., Zheng, F., Zhan, J., Hua, C., and Wang, Z.:
 - Reactive Chlorine Species Advancing the Atmospheric Oxidation Capacities of Inland Urban Environments,
- Environ. Sci. Technol., 57, 14638-14647, https://doi.org/10.1021/acs.est.3c05169, 2023.
- McDuffie, E. E., Fibiger, D. L., Dubé, W. P., Lopez Hilfiker, F., Lee, B. H., Jaeglé, L., Guo, H., Weber, R. J.,
- Reeves, J. M., Weinheimer, A. J., Schroder, J. C., Campuzano-Jost, P., Jimenez, J. L., Dibb, J. E., Veres, P.,
- Ebben, C., Sparks, T. L., Wooldridge, P. J., Cohen, R. C., Campos, T., Hall, S. R., Ullmann, K., Roberts, J.
- 450 M., Thornton, J. A., and Brown, S. S.: ClNO₂ Yields From Aircraft Measurements During the 2015
- WINTER Campaign and Critical Evaluation of the Current Parameterization, J. Geophys. Res. Atmos., 123,
- 452 12,994-913,015, https://doi.org/10.1029/2018JD029358, 2018a.
- McDuffie, E. E., Fibiger, D. L., Dubé, W. P., Lopez-Hilfiker, F., Lee, B. H., Thornton, J. A., Shah, V., Jaeglé,
- L., Guo, H., Weber, R. J., Michael Reeves, J., Weinheimer, A. J., Schroder, J. C., Campuzano-Jost, P.,

- Jimenez, J. L., Dibb, J. E., Veres, P., Ebben, C., Sparks, T. L., Wooldridge, P. J., Cohen, R. C., Hornbrook, R.
- S., Apel, E. C., Campos, T., Hall, S. R., Ullmann, K., and Brown, S. S.: Heterogeneous N₂O₅ Uptake During
- Winter: Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of Current
- 458 Parameterizations, J. Geophys. Res. Atmos., 123, 4345-4372, https://doi.org/10.1002/2018JD028336, 2018b.
- Mentel, T. F., Sohn, M., and Wahner, A. J. P. C. C. P.: Nitrate effect in the heterogeneous hydrolysis of
- 460 dinitrogen pentoxide on aqueous aerosols, Phys. Chem. Chem. Phys., 1, 5451-5457,
- 461 https://doi.org/10.1039/A905338g, 1999.
- Mielke, L. H., Furgeson, A., and Osthoff, H. D.: Observation of ClNO₂ in a Mid-Continental Urban
- Environment, Environ. Sci. Technol., 45, 8889-8896, https://doi.org/10.1021/es201955, 2011.
- Mielke, L. H., Stutz, J., Tsai, C., Hurlock, S. C., Roberts, J. M., Veres, P. R., Froyd, K. D., Hayes, P. L.,
 - Cubison, M. J., Jimenez, J. L., Washenfelder, R. A., Young, C. J., Gilman, J. B., Gouw, J. A., Flynn, J. H.,
 - Grossberg, N., Lefer, B. L., Liu, J., Weber, R. J., and Osthoff, H. D.: Heterogeneous formation of nitryl
- chloride and its role as a nocturnal NOx reservoir species during CalNex-LA 2010, J. Geophys. Res. Atmos.,
- 468 118, 10,638-610,652, https://doi.org/10.1002/jgrd.50783, 2013.
- Niu, Y.-B., Zhu, B., He, L.-Y., Wang, Z., Lin, X.-Y., Tang, M.-X., and Huang, X.-F.: Fast Nocturnal
 - Heterogeneous Chemistry in a Coastal Background Atmosphere and Its Implications for Daytime
 - Photochemistry, J. Geophys. Res. Atmos., 127, e2022JD036716, https://doi.org/10.1029/2022JD036716,
- 472 2022.

466

470

471

- Osthoff, H. D., Roberts, J. M., Ravishankara, A. R., Williams, E. J., Lerner, B. M., Sommariva, R., Bates, T.
 - S., Coffman, D., Quinn, P. K., Dibb, J. E., Stark, H., Burkholder, J. B., Talukdar, R. K., Meagher, J.,
- Fehsenfeld, F. C., and Brown, S. S.: High levels of nitryl chloride in the polluted subtropical marine
- boundary layer, Nat. Geosci., 1, 324-328, https://doi.org/10.1038/ngeo177, 2008.
- Peng, X., Wang, T., Wang, W., Ravishankara, A., George, C., Xia, M., Cai, M., Li, Q., Salvador, C. M., and
- Lau, C.: Photodissociation of particulate nitrate as a source of daytime tropospheric Cl₂, Nat. Commun., 13,
- 479 1-10, https://doi.org/10.1038/s41467-022-28383-9, 2022.
- Peng, X., Wang, W., Xia, M., Chen, H., Ravishankara, A. R., Li, Q., Saiz-Lopez, A., Liu, P., Zhang, F.,
- Zhang, C., Xue, L., Wang, X., George, C., Wang, J., Mu, Y., Chen, J., and Wang, T.: An unexpected large

- continental source of reactive bromine and chlorine with significant impact on wintertime air quality, Natl.
- 483 Sci. Rev., 8, nwaa304, https://doi.org/10.1093/nsr/nwaa304, 2021.
- Phillips, G. J., Tang, M. J., Thieser, J., Brickwedde, B., Schuster, G., Bohn, B., Lelieveld, J., and Crowley, J.
- N.: Significant concentrations of nitryl chloride observed in rural continental Europe associated with the
- 486 influence of sea salt chloride and anthropogenic emissions, Geophys. Res. Lett., 39, L10811,
- 487 <u>https://doi.org/10.1029/2012g1051912</u>, 2012.
- Riedel, T. P., Bertram, T. H., Crisp, T. A., Williams, E. J., Lerner, B. M., Vlasenko, A., Li, S. M., Gilman, J.,
- de Gouw, J., Bon, D. M., Wagner, N. L., Brown, S. S., and Thornton, J. A.: Nitryl chloride and molecular
- 490 chlorine in the coastal marine boundary layer, Environ. Sci. Technol., 46, 10463-10470,
- 491 https://doi.org/10.1021/es204632r, 2012.

506

- Rutherford, J. A., Koehl, W. J., Benson, J. D., Burns, V. R., Hochhauser, A. M., Knepper, J. C., Leppard, W.
 - R., Painter, L. J., Rapp, L. A., and Rippon, B.: Effects of Gasoline Properties on Emissions of Current and
- Future Vehicles-T50, T90, and Sulfur Effects-Auto/Oil Air Quality Improvement Research Program, SAE
- 495 Technical Paper0148-7191, https://doi.org/10.4271/952510, 1995.
- Sommariva, R., Hollis, L. D. J., Sherwen, T., Baker, A. R., Ball, S. M., Bandy, B. J., Bell, T. G., Chowdhury,
- M. N., Cordell, R. L., Evans, M. J., Lee, J. D., Reed, C., Reeves, C. E., Roberts, J. M., Yang, M., and Monks,
- 498 P. S.: Seasonal and geographical variability of nitryl chloride and its precursors in Northern Europe, Atmos.
- 499 Sci. Lett., 19, https://doi.org/10.1002/asl.844, 2018.
- Tan, Z., Fuchs, H., Hofzumahaus, A., Bloss, W. J., Bohn, B., Cho, C., Hohaus, T., Holland, F., Lakshmisha,
- 501 C., Liu, L., Monks, P. S., Novelli, A., Niether, D., Rohrer, F., Tillmann, R., Valkenburg, T. S. E., Vardhan, V.,
- Kiendler-Scharr, A., Wahner, A., and Sommariva, R.: Seasonal variation in nitryl chloride and its relation to
- gas-phase precursors during the JULIAC campaign in Germany, Atmos. Chem. Phys., 22, 13137-13152,
- 504 https://doi.org/10.5194/acp-22-13137-2022, 2022.
- 505 Thaler, R. D., Mielke, L. H., and Osthoff, H. D.: Quantification of nitryl chloride at part per trillion mixing
 - ratios by thermal dissociation cavity ring-down spectroscopy, Anal. Chem., 83, 2761-2766,
- 507 https://doi.org/10.1021/ac200055z, 2011.
 - Tham, Y. J., Wang, Z., Li, Q., Wang, W., Wang, X., Lu, K., Ma, N., Yan, C., Kecorius, S., Wiedensohler, A.,

- Zhang, Y., and Wang, T.: Heterogeneous N₂O₅ uptake coefficient and production yield of ClNO₂ in polluted
- northern China: roles of aerosol water content and chemical composition, Atmos. Chem. Phys., 18, 13155-
- 511 13171, https://doi.org/10.5194/acp-18-13155-2018, 2018.
- 512 Tham, Y. J., Wang, Z., Li, Q., Yun, H., Wang, W., Wang, X., Xue, L., Lu, K., Ma, N., Bohn, B., Li, X.,
- Kecorius, S., Größ, J., Shao, M., Wiedensohler, A., Zhang, Y., and Wang, T.: Significant concentrations of
- 514 nitryl chloride sustained in the morning: investigations of the causes and impacts on ozone production in a
- polluted region of northern China, Atmos. Chem. Phys., 16, 14959-14977, https://doi.org/10.5194/acp-16-
- 516 <u>14959-2016</u>, 2016.

521

522

525

- Thornton, J. A., Braban, C. F., and Abbatt, J. P.: N₂O₅ hydrolysis on sub-micron organic aerosols: the effect
- of relative humidity, particle phase, and particle size, Phys. Chem. Chem. Phys., 5, 4593-4603,
 - https://doi.org/10.1039/B307498F, 2003.
- Thornton, J. A., Kercher, J. P., Riedel, T. P., Wagner, N. L., Cozic, J., Holloway, J. S., Dubé, W. P., Wolfe, G.
 - M., Quinn, P. K., Middlebrook, A. M., Alexander, B., and Brown, S. S.: A large atomic chlorine source
 - inferred from mid-continental reactive nitrogen chemistry, Nature., 464, 271-274,
- 523 https://doi.org/10.1038/nature08905, 2010.
- Wahner, A., Mentel, T. F., Sohn, M., and Stier, J.: Heterogeneous reaction of N₂O₅ on sodium nitrate aerosol,
 - J. Geophys. Res. Atmos., 103, 31103-31112, https://doi.org/10.1029/1998JD100022, 1998.
- Wang, H., Yuan, B., Zheng, E., Zhang, X., Wang, J., Lu, K., Ye, C., Yang, L., Huang, S., and Hu, W.:
- 527 Formation and impacts of nitryl chloride in Pearl River Delta, Atmos. Chem. Phys., 22, 14837-14858,
- 528 <u>https://doi.org/10.5194/acp-22-14837-2022</u>, 2022.
- 529 Wang, H., Wang, H., Lu, X., Lu, K., Zhang, L., Tham, Y. J., Shi, Z., Aikin, K., Fan, S., Brown, S. S., and
- Zhang, Y.: Increased night-time oxidation over China despite widespread decrease across the globe, Nat.
- 531 Geosci., 16, 217-223, https://doi.org/10.1038/s41561-022-01122-x, 2023.
- 532 Wang, H., Chen, X., Lu, K., Tan, Z., Ma, X., Wu, Z., Li, X., Liu, Y., Shang, D., Wu, Y., Zeng, L., Hu, M.,
- 533 Schmitt, S., Kiendler-Scharr, A., Wahner, A., and Zhang, Y.: Wintertime N₂O₅ uptake coefficients over the
 - North China Plain, Sci. Bull., 65, 765-774, https://doi.org/10.1016/j.scib.2020.02.006, 2020.

- 535 Wang, T., Tham, Y. J., Xue, L., Li, Q., Zha, Q., Wang, Z., Poon, S. C. N., Dubé, W. P., Blake, D. R., Louie, P.
- K. K., Luk, C. W. Y., Tsui, W., and Brown, S. S.: Observations of nitryl chloride and modeling its source and
- effect on ozone in the planetary boundary layer of southern China, J. Geophys. Res. Atmos., 121, 2476-2489,
- 538 <u>https://doi.org/10.1002/2015JD024556</u>, 2016.
- 539 Xia, M., Peng, X., Wang, W., Yu, C., Wang, Z., Tham, Y. J., Chen, J., Chen, H., Mu, Y., and Zhang, C.:
- Winter ClNO₂ formation in the region of fresh anthropogenic emissions: seasonal variability and insights
- into daytime peaks in northern China, Atmos. Chem. Phys., 21, 15985-16000, https://doi.org/10.5194/acp-
- 542 **21-15985-2021**, 2021.
- 543 Xia, M., Peng, X., Wang, W., Yu, C., Sun, P., Li, Y., Liu, Y. A. H. C. t. A.-P. O. A. C., Xu, Z., Wang, Z., Xu,
- Z., Nie, W., Ding, A., and Wang, T.: Significant production of ClNO₂ and possible source of Cl₂ from N₂O₅
- 545 uptake at a suburban site in eastern China, Atmos. Chem. Phys., 20, 6147-6158, https://doi.org/10.5194/acp-
- 546 **20-6147-2020**, **2020**.

- Xue, L. K., Saunders, S. M., Wang, T., Gao, R., Wang, X. F., Zhang, Q. Z., and Wang, W. X.: Development
 - of a chlorine chemistry module for the Master Chemical Mechanism, Geosci. Model Dev., 8, 3151-3162,
- 549 <u>https://doi.org/10.5194/gmd-8-3151-2015</u>, 2015.
- Yan, C., Tham, Y. J., Nie, W., Xia, M., Wang, H., Guo, Y., Ma, W., Zhan, J., Hua, C., and Li, Y.: Increasing
 - contribution of nighttime nitrogen chemistry to wintertime haze formation in Beijing observed during
- 552 COVID-19 lockdowns, Nat. Geosci., 16, 975-981, https://doi.org/10.1038/s41561-023-01285-1, 2023.
- Yi, X., Sarwar, G., Bian, J., Huang, L., Li, Q., Jiang, S., Liu, H., Wang, Y., Chen, H., and Wang, T.:
- 554 Significant Impact of Reactive Chlorine on Complex Air Pollution Over the Yangtze River Delta Region,
- China, J. Geophys. Res. Atmos., 128, e2023JD038898, https://doi.org/10.1029/2023JD038898, 2023.
- Yun, H., Wang, T., Wang, W., Tham, Y. J., Li, Q., Wang, Z., and Poon, S. C. N.: Nighttime NO_x loss and
- 557 ClNO₂ formation in the residual layer of a polluted region: Insights from field measurements and an iterative
- box model, Sci. Total Environ., 622-623, 727-734, https://doi.org/10.1016/j.scitotenv.2017.11.352, 2018.
- 559 Zang, H., Zhao, Y., Huo, J., Zhao, Q., Fu, Q., Duan, Y., Shao, J., Huang, C., An, J., Xue, L., Li, Z., Li, C.,
- and Xiao, H.: High atmospheric oxidation capacity drives wintertime nitrate pollution in the eastern Yangtze
- River Delta of China, Atmos. Chem. Phys., 22, 4355-4374, https://doi.org/10.5194/acp-22-4355-2022, 2022.

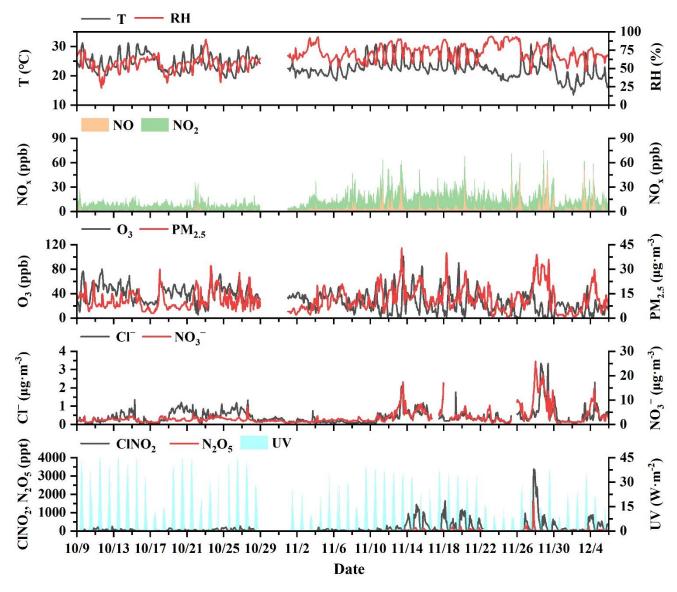


Figure 1. The time series of ClNO₂, related precursors, and meteorological parameters during the autumn observation period.

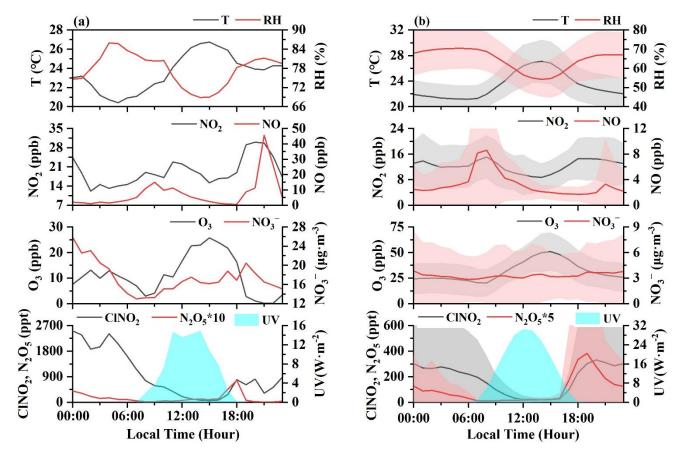
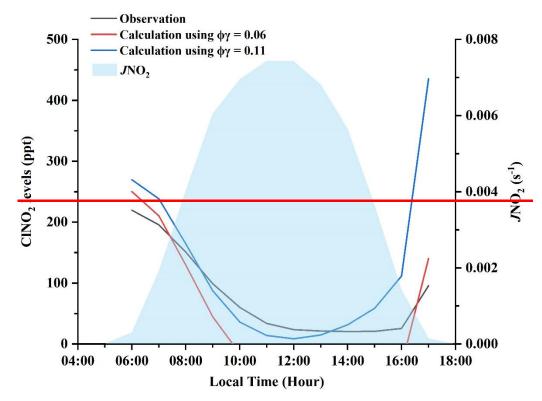
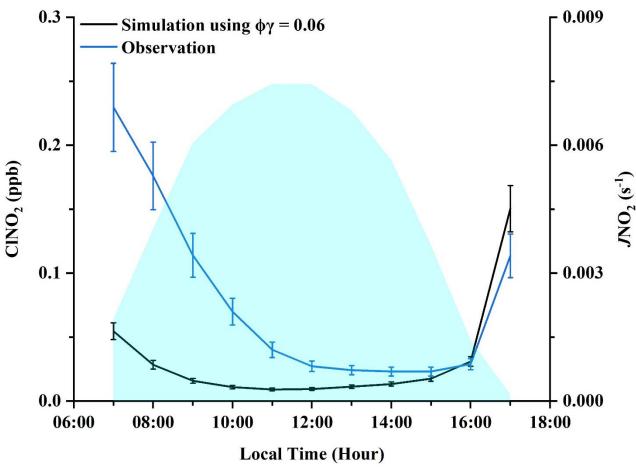
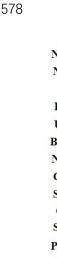




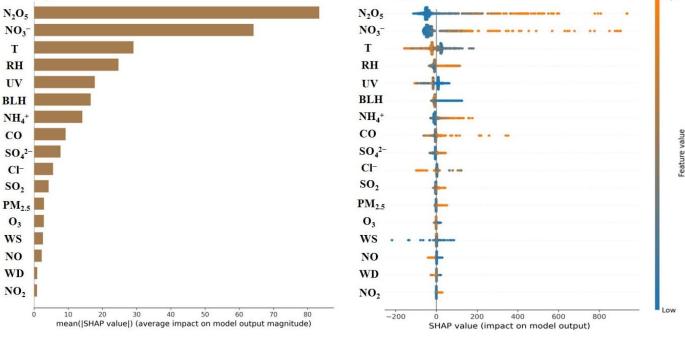
Figure 2. Diurnal variations of ClNO₂ and other related parameters for the highest concentrations of ClNO₂ (case) on November 28th (a) and the observation-average condition (from 9 October to 5 December) (b).



57B

Figure 3. Comparisons of daytime ClNO₂ levels between observation and simulation with a ϕ (ClNO₂) of 1.0 and a γ (N₂O₅) of 0.06 (ϕ γ = 0.06).

Comparisons of daytime ClNO₂ levels between observation, and calculation using Eq. (4) with a ϕ (ClNO₂)


580

581

(a)

576

577

(b)

Figure 4. Relative importance of each feature to ClNO₂ using XGBoost-SHAP during the autumn observation period. The mean absolute SHAP value (a), summary plot of SHAP values of each feature (b).

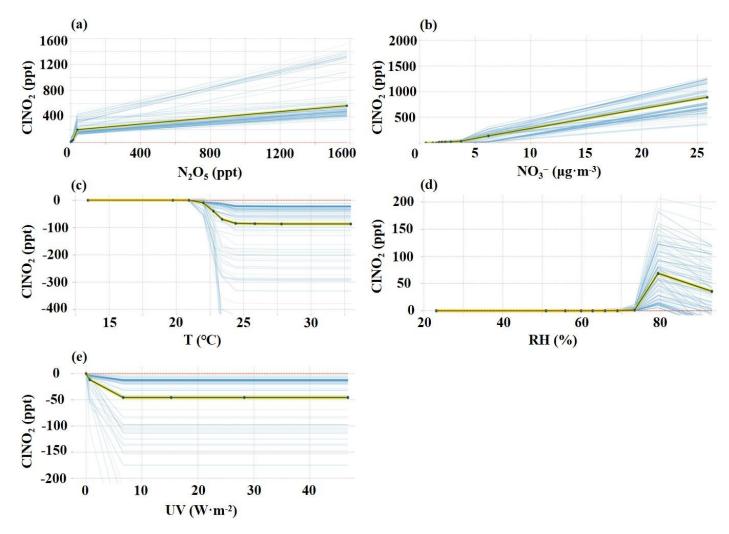


Figure 5. Isolation plots of PDP for N_2O_5 (a), NO_3^- (b), T (c), RH (d), and UV (e). The average variations of simulated ClNO₂ with factors' changes spline are indicated by the yellow and black curve, and blue curves presents all situations during the whole observation period.

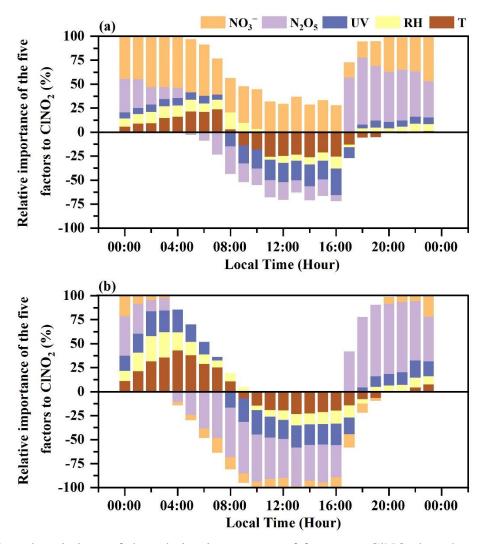


Figure 6. The diurnal variations of the relative importance of factors to ClNO₂ based on the SHAP values under the high (> $3.7~\mu g \cdot m^{-3}$) (a) and low (< $3.7~\mu g \cdot m^{-3}$) (b) ClNO₂ concentrations.

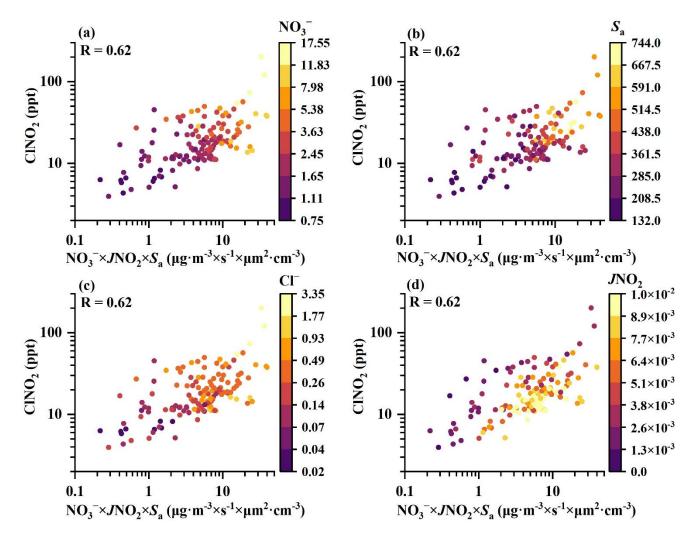


Figure 7. The relationship of daytime ClNO₂ concentrations (12:00-15:00 Local Time) and a proxy of nitrate (NO_3^-) photolysis $(NO_3^- \times JNO_2 \times S_a)$. The color of the dots respects the NO_3^- (a), S_a (b), Cl^- (c), JNO_2 (d), respectively.

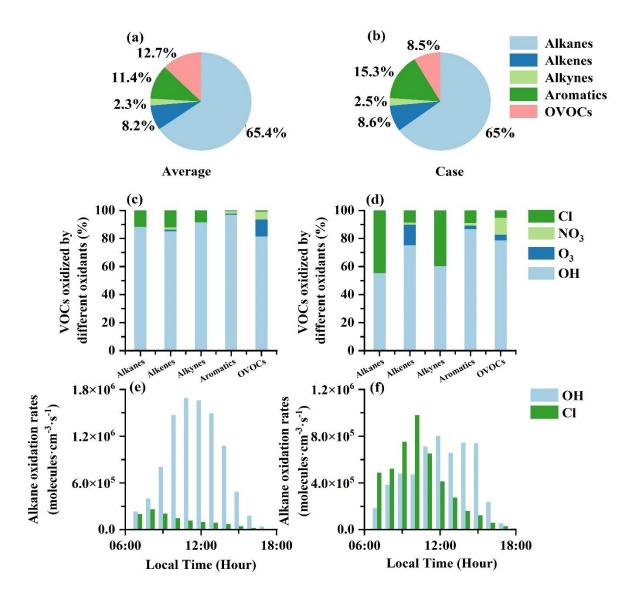


Figure 8. The impacts of Cl radials released by ClNO₂ photolysis and other atmospheric oxidants (including OH, NO₃, and O₃) on VOC oxidation under the observation-average condition and high ClNO₂ case, respectively. The contributions of different VOC groups oxidized by Cl radical during the observation-average (a). The contributions of different VOC groups oxidized by Cl radical during the case (b). The contributions of different atmospheric oxidants (including OH, Cl, NO₃, and O₃) to VOC groups during the observation-average (c). The contributions of different atmospheric oxidants (including OH, Cl, NO₃, and O₃) to VOC groups during the case (d). Comparisons of alkane oxidation rates (molecules·cm⁻³·s⁻¹) by OH and Cl radical during the observation-average (e). Comparisons of alkane oxidation rates by OH and Cl radical (molecules·cm⁻³·s⁻¹) during the case (f).

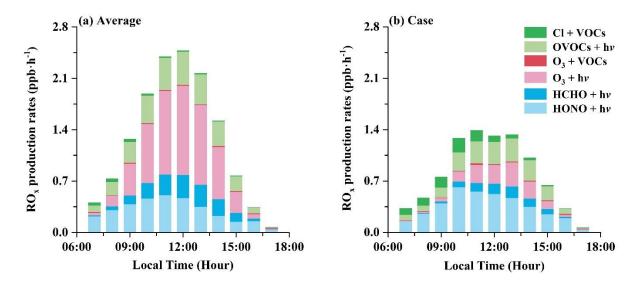


Figure 9. The contributions of different production pathways to RO_x production rates under the observation-average condition (a) and high $ClNO_2$ case (b), respectively.

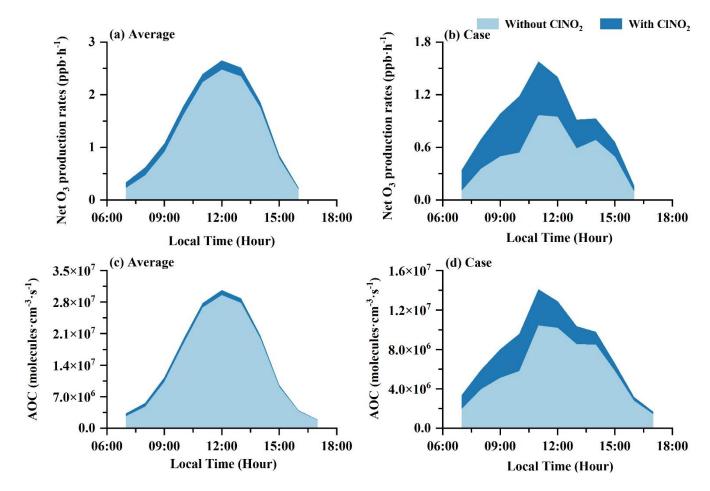


Figure 10. The impacts of Cl radials released by ClNO₂ photolysis on net O₃ production rates and the AOC levels under the observation-average condition (a, c) and high ClNO₂ case (b, d), respectively.

Table 1. Relative importance of Cl, OH, and O₃ to the daytime oxidation of VOC groups (including alkanes, alkenes, alkynes, aromatics, and OVOCs) around the world (Xue et al., 2015; Bannan et al., 2015; Bannan et al., 2017; Rutherford et al., 1995; Fraser et al., 1997).

	Xiamen	Xiamen	Hong Kong	London	Weybourne	Boston	LA
	(average)	(case)	(max)	(average)	(average)	DOSION	
Alkane Cl%	11.7	44.8	53.0	3.5	1.0	8.5	9.9
Alkane OH%	88.3	55.2	47.0	96.5	99.0	91.5	90.1
Alkane O ₃ %	-	-	-	-	-	-	-
Alkene Cl%	12.2	8.7	14.0	0.6	0.4	0.3	0.3
Alkene OH%	85.0	75.2	81.0	77.9	78.3	33	31.3
Alkene O ₃ %	1.2	14.7	5.0	21.5	21.4	66.7	68.4
Alkyne Cl%	8.5	40.0	-	7.0	2.6	8.7	8.7
Alkyne OH%	91.5	60.0	-	91.8	96.7	89.7	89.7
Alkyne O ₃ %	-	-	-	1.2	0.7	1.6	1.6
Aromatics Cl%	0.7	9.1	11.0	-	-	-	-
Aromatics OH%	97.0	86.6	89.0	-	-	-	-
Aromatics O ₃ %	0.7	2.6	-	-	-	-	-
OVOCs C1%	0.9	5.2	6.0	-	-	-	-
OVOCs OH%	81.4	78.7	85.0	-	-	-	-
OVOCs O ₃ %	12.0	3.9	-	-	-	-	-

Table 2. The impacts of $ClNO_2$ photolysis on RO_x (OH, HO_2 , and RO_2) levels, $P(RO_x)$, and $P(O_3)$ around the world (Xia et al., 2021; Wang et al., 2022; Tham et al., 2016; Wang et al., 2016; Xue et al., 2015; Bannan et al., 2017; Jeong et al., 2019).

Study Area	Season	ОН	HO ₂	RO_2	$P(RO_x)$	P(O ₃)
Xiamen (average)	Autumn	3.7%	7.1%	10.3%	4.9%	6.7%
Xiamen (case)	Autumn	17.9%	34.6%	54.3%	23.8%	41.7%
Wangdu/Beijing/Mt. Tai	Winter	15.0%-22.0%	24.0%-31.0%	36.0%-52.0%	1.3%-3.8%	1.3%-6.2%
Heshan	Autumn	1.5%-2.6%	1.9%-4.6%	3.0%-6.8%	< 2.2%	1.0%-4.9%
Wangdu	Summer	-	-	-	10%-30%	3.0%-13.0%
Mt. Tai Mo Shan, Hong Kong	Winter	40.0%-77.0%	53.0%-106.0%	-	-	11.0%-41.0%
Hok Tsui, Hong Kong	Summer	6.6%	12.2%	45.1%	-	10.3%
Weybourne	Spring	5.0%	7.0%	9.0%	-	-
Seoul	Spring	-	-	-	-	1.0%-2.0%