Responses to Editors and Reviewers

We sincerely appreciate the reviewers for their constructive and insightful comments, which are of great benefit to improve the quality of the manuscript. In response, we have carefully revised the manuscript and addressed each comment in a point-by-point manner. For clarity, the reviewers' comments are presented in black, our responses in blue, and the added or revised sections of the manuscript are highlighted in red.

RC1: <u>'Comment on egusphere-2024-1638'</u>, Anonymous Referee #1, 31 Jul 2024 General Comments

The work by Gaojie Chen et al. is a well written study presenting two months of ambient observations in Southeast China and has two main components. First, the work introduces interesting evidence for the formation of ClNO₂ during the daytime by a recently suggested particulate nitrate mechanism. Second, the work discusses the implications for Cl radical production from ClNO₂ photolysis.

The first component has significant implications for the understanding of CINO₂ formation globally. However, a discussion of the traditional metrics of CINO₂ formation, the N₂O₅ uptake rate and CINO₂ yield, are completely absent from the paper. Without a discussion on this topic, the authors' conclusion that "NO₃⁻ photolysis contributed to daytime generation" is severely weakened. In fact, it is based only a machine learning output which gauges the "importance" of NO₃⁻ influence on CINO₂ as well as a linear regression of CINO₂ with NO₃⁻ ×jNO₂×aerosol S_a. In this joint correlation, insufficient evidence is provided to suggest that the photolysis component improves the correlation. As such, I request major revisions in which the authors justify their conclusion by demonstrating that the daytime observations of CINO₂ cannot be explained by traditional N₂O₅ and CINO₂ chemistry.

The second component is based on box modeling from the master chemical mechanism. Aside from a lack of detail on the parametrization used for N_2O_5 uptake and $CINO_2$ yield, the results presented are generally sound and informative. I request

that the authors include their choice of parametrization in the main text.

Response: Thanks for your valuable comments. Your review comments and suggestions are benefit to improve the quality and readability of this manuscript. We have revised the manuscript appropriately and addressed the reviewer's comments point-by-point for consideration as below.

The first component: We have added the discussions on the N_2O_5 uptake coefficient ($\gamma(N_2O_5)$) and CINO₂ yield ($\phi(\text{CINO}_2)$). Furthermore, we also provided the evidence showing that the daytime observations of CINO₂ cannot be explained by traditional N_2O_5 and CINO₂ chemistry. Please refer to our response to Specific Comment 4 for more details.

The second component: In this study, the box model is employed to evaluate the photochemical effects of $ClNO_2$. The levels of $ClNO_2$ in the box model were constrained by the observed levels of $ClNO_2$ from our field measurements. This approach eliminates the necessity for parameterization of N_2O_5 uptake and $ClNO_2$ yield to determine $ClNO_2$ levels. Therefore, the parametrization for N_2O_5 uptake and $ClNO_2$ yield was not utilized in the box model.

Specific Comments

1. Section 2: A description on the handling of N_2O_5 uptake and $ClNO_2$ yield is absent from the methods. A list of previous papers is provided but it is not clear how these two parameters are handled. Both N_2O_5 uptake and $ClNO_2$ yield will vary with the parameters investigated here (T, RH, etc.). See McDuffie et al.

McDuffie, E. E., Fibiger, D. L., Dubé, W. P., Lopez Hilfiker, F., Lee, B. H., Jaeglé, L., et al. (2018a). ClNO₂ yields from aircraft measurements during the 2015 WINTER campaign and critical evaluation of the current parameterization. Journal of Geophysical Research: Atmospheres, 123(22), 12994–13015. https://doi.org/10.1029/2018JD029358

McDuffie, E. E., Fibiger, D. L., Dubé, W. P., Lopez-Hilfiker, F., Lee, B. H., Thornton, J. A., et al. (2018b). Heterogeneous N₂O₅ uptake during winter: Aircraft measurements during the 2015 WINTER campaign and critical evaluation of current

parameterizations. Journal of Geophysical Research: Atmospheres, 123(8), 4345–4372. https://doi.org/10.1002/2018JD028336

Response: Thanks for your comment. In this study, the box model is employed to evaluate the photochemical effects of ClNO₂. The levels of ClNO₂ in the box model were constrained by observed levels of ClNO₂ from our field measurements. This approach negates the need for parameterization of N_2O_5 uptake and ClNO₂ yield to determine ClNO₂ levels. Therefore, the parametrization for N_2O_5 uptake and ClNO₂ yield was not utilized in the box model. In the section of analyzing ClNO₂ production and loss processes, we have added the discussions on the N_2O_5 uptake coefficient ($\gamma(N_2O_5)$) and ClNO₂ yield ($\phi(\text{ClNO}_2)$). Please refer to our response to Specific Comment 4 for more details.

Added/rewritten: "Due to the levels of $CINO_2$ in the box model determined by observed levels of $CINO_2$, the parametrization for N_2O_5 uptake and $CINO_2$ yield was not utilized in the box model."

"The N₂O₅ uptake coefficient (γ (N₂O₅)) and ClNO₂ yield (ϕ (ClNO₂)) were estimated using the observational data and parameterization. We derived the values of and ϕ (ClNO₂) based on increased rates of ClNO₂ and particle nitrate (NO₃⁻) in the field observation (Phillips et al., 2016). Specially, γ (N₂O₅) and ϕ (ClNO₂) were calculated by Eq. (S5) and (S6).

$$\gamma(N_2 O_5) = \frac{2 \times (P(\text{ClNO}_2) + P(NO_3^-))}{cN_2 O_5 S_a [N_2 O_5]}$$
 (S5)

$$\phi(\text{CINO}_2) = 2 \times \left(1 + \frac{P(NO_3^-)}{P(\text{CINO}_2)}\right)^{-1}$$
 (S6)

Here, P(ClNO₂) and P(NO₃⁻) represent the production rates of ClNO₂ and NO₃⁻ induced by N₂O₅ uptake, respectively. S_a denotes the aerosol surface area, and $c(N_2O_5)$ is the mean molecular speed of N₂O₅. This method assumes that air masses remain relatively stable, and ClNO₂ and NO₃⁻ were produced through nighttime N₂O₅ heterogeneous uptake. More details on the method are provided elsewhere (Tham et al., 2018; Niu et al., 2022; Phillips et al., 2016). Using the method and selection criteria, we derived $\gamma(N_2O_5)$ and $\phi(ClNO_2)$ during the whole measurement period."

2. Section 3.1: There is no uncertainty presented with the observations in the main text. Please include the uncertainties as the uncertainties in the SI are non-negligible (~20 %).

Response: Thanks for your comment. We have included the uncertainties in the main text.

Added/rewritten: "The uncertainties of the ClNO2 and N2O5 measurements were estimated to be \sim 20 %."

3. Figure 5: What is the interpretation of negative "importance factors"? During the daytime, N₂O₅ is a negative importance factor. Please discuss this in the main text.

Response: Thanks for your comment. In the XGBoost-SHAP model, SHAP values are used to quantify the contribution of each feature to the prediction values, with a negative SHAP value indicating a negative contribution. Generally, negative "importance factors" suggest that the presence of these factors contributes minimally or decreases the predicted values of the dependent variable. Therefore, in our study, negative SHAP values for N₂O₅ during the daytime indicate that the contribution of N₂O₅ chemistry to daytime ClNO₂ levels was limited. We have added these discussions.

Added/rewritten: "Generally, negative "importance factors" suggest that the presence of these factors contributes minimally or decreases the predicted values of the dependent variable. Therefore, in our study, negative SHAP values for N_2O_5 during the daytime indicate that the contribution of N_2O_5 chemistry to daytime ClNO₂ levels was limited."

4. Section 3.2: A discussion on the changes in aerosol content (particulate nitrate) and the effect on N₂O₅ uptake and ClNO₂ yield is absent. Such a discussion is critical here. Traditionally, one expects nitrate to reduce N₂O₅ uptake (the nitrate effect) which would limit the production of ClNO₂. Even so, ClNO₂ could be enhanced in a high nitrate case if the N₂O₅ uptake and ClNO₂ yield are substantially greater than low nitrate air masses. According to Figure 1, there are concurrent enhancements of pCl and pNO₃ during some time periods. As pCl increases the ClNO₂ yield will also increase which would

then be (coincidentally?) concurrent with high pNO₃ Even more, these periods of concurrent pCl and pNO₃ appear to correlate with enhanced PM_{2.5} and thus, I assume, aerosol surface area. Increases in surface area would then increase N₂O₅ uptake further promoting ClNO₂ and pNO₃ production. Lastly, Figure 6 suggests that the correlation between ClNO₂ mixing ratio and pNO₃xjNO₂xSa is driven by pNO₃xSa while jNO₂ has a limited or no correlation (panel d). In other words, photolysis appears to have a limited role in the production of ClNO₂.

While the above may be speculative, it is an example of why a lack of discussion on the $ClNO_2$ yield and N_2O_5 uptake significantly weakens the arguments made by the authors. As written, I believe there is insufficient evidence to conclude that " NO_3 " photolysis contributed to daytime [$ClNO_2$] generation".

Response: Thanks for your valuable comments. The N_2O_5 uptake coefficient $(\gamma(N_2O_5))$ and $ClNO_2$ yield $(\phi(ClNO_2))$ were estimated using the observational data and parameterization. We derived the values of $\phi(ClNO_2)$ based on increased rates of $ClNO_2$ and particle nitrate (NO_3^-) in the field observation (Phillips et al., 2016). Specially, $\gamma(N_2O_5)$ and $\phi(ClNO_2)$ were calculated by Eq. (1) and (2).

$$\gamma(N_2 O_5) = \frac{2 \times \left(P(\text{ClNO}_2) + P(NO_3^-) \right)}{c N_2 O_5 S_a [N_2 O_5]} \tag{1}$$

$$\phi(\text{CINO}_2) = 2 \times \left(1 + \frac{P(NO_3^-)}{P(\text{CINO}_2)}\right)^{-1}$$
 (2)

Here, P(ClNO₂) and P(NO₃⁻) represent the production rates of ClNO₂ and NO₃⁻ induced by N₂O₅ uptake, respectively. S_a denotes the aerosol surface area, and $c(N_2O_5)$ is the mean molecular speed of N₂O₅. This method assumes that air masses remain relatively stable, and ClNO₂ and NO₃⁻ were produced through nighttime N₂O₅ heterogeneous uptake. More details on the method are provided elsewhere (Tham et al., 2018; Niu et al., 2022; Phillips et al., 2016). Using the method and selection criteria, we derived $\gamma(N_2O_5)$ and $\phi(ClNO_2)$ during the whole measurement period.

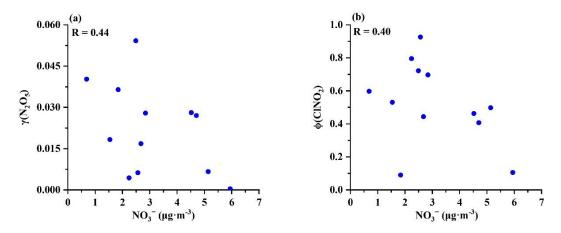


Figure R1. The relationship between field-derived $\gamma(N_2O_5)$ (a), $\phi(ClNO_2)$ (b) and NO_3^- concentrations.

The relative importance of NO_3^- derived from the XGBoost-SHAP result indicated that elevated CINO₂ concentrations were associated with high concentrations of NO_3^- besides N_2O_5 . High NO_3^- concentrations ($> 3.7~\mu g \cdot m^{-3}$) are accompanied by the elevation of CINO₂, especially its concentrations reaching $6.2~\mu g \cdot m^{-3}$. Previous studies suggested that the increased concentrations of NO_3^- decreased $\gamma(N_2O_5)$, which would limit the production of CINO₂ (Wahner et al., 1998; Mentel et al., 1999; Bertram and Thornton, 2009). As depicted in Figure R1, the dependence of $\gamma(N_2O_5)$ on NO_3^- concentrations follows the nitrate suppression effect. Therefore, the importance of nighttime NO_3^- for CINO₂ levels is that they are co-products from the processes of N_2O_5 heterogeneous uptake. During our filed observation, compared to low NO_3^- conditions, CINO₂ production was enhanced in high NO_3^- conditions. Especially in late autumn, increased aerosol abundances and N_2O_5 levels enhanced N_2O_5 uptake, which further promoted both CINO₂ and NO_3^- production.

To evaluate the contribution of the heterogeneous N_2O_5 uptake to daytime ClNO₂ levels, we calculated ClNO₂ production using Eq. (3), considering the loss of ClNO₂ through photolysis. This method has been employed in a previous study (Tham et al., 2016).

$$\frac{d[ClNO_2]}{dt} = k(N_2O_5)[N_2O_5]\phi(\text{ClNO}_2) - JClNO_2[\text{ClNO}_2]$$
 (3)

$$k(N_2O_5) = \frac{1}{4}cN_2O_5S_a\gamma(N_2O_5)$$
 (4)

We used a $\gamma(N_2O_5)$ value of 0.06 and a $\phi(ClNO_2)$ value of 1.0 in our calculations, which represented upper-end estimates based on previous field studies (Mcduffie et al., 2018a; Mcduffie et al., 2018b; Tham et al., 2016). However, as shown in Figure R2, a $\phi(ClNO_2)$ of 1.0 with a $\gamma(N_2O_5)$ of 0.06 ($\phi\gamma=0.06$) fails to reproduce the observed levels of daytime $ClNO_2$. A larger $\gamma(N_2O_5)$ of 0.11 would be necessary, but such high uptake coefficients and yields are not supported by the current literature. Therefore, we believe that the observed daytime $ClNO_2$ levels, particularly around noon, cannot be adequately explained by heterogeneous N_2O_5 uptake alone, suggesting the presence of additional sources contributing to the formation of daytime $ClNO_2$.

Notably, the laboratory research had confirmed that NO₃⁻ photolysis can produce CINO₂ (Dalton et al., 2023). In our study, machine learning analysis, which gauges the "importance" of NO₃⁻ in affecting daytime ClNO₂, as well as a linear regression of ClNO₂ against NO₃⁻×*J*NO₂×*S*_a, implied that NO₃⁻ photolysis contributed to daytime ClNO₂ concentrations at our study site. Although NO₃⁻ photolysis can produce ClNO₂, this does not necessarily mean that higher photolysis intensity will result in higher ClNO₂ concentrations. It is crucial to understand the dual role of photolysis intensity in determining daytime ClNO₂ levels. Photolysis can contribute to the generation of ClNO₂ by promoting NO₃⁻ photolysis, while also causing the rapid decomposition of ClNO₂. As reported in California (Mielke et al., 2013), reduced photolysis rates even increased daytime ClNO₂ levels by decreasing ClNO₂ loss through photolysis. Additionally, in real atmospheric conditions, several factors beyond photolysis influence NO₃⁻ photolysis, including NO₃⁻ concentrations and particulate chloride levels.

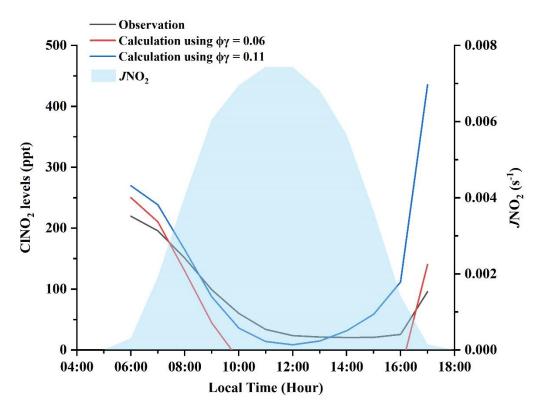


Figure R2. Comparisons of daytime ClNO₂ levels between observation, and calculation using Eq. (4) with a ϕ (ClNO₂) of 1.0 and a γ (N₂O₅) of 0.06 ($\phi\gamma$ = 0.06), or a ϕ (ClNO₂) of 1.0 and a γ (N₂O₅) of 0.11 ($\phi\gamma$ = 0.11).

Added/rewritten: "The average diurnal changes of CINO₂ and related parameters during the entire measurement campaign are depicted in Fig. 2b. As expected, CINO₂ exhibited a distinct diurnal variation, peaking and accumulating after sunset and decreasing in the early morning. However, ClNO₂ concentrations remained ~ 40 ppt around noon, different with some studies that ClNO₂ concentrations decreased to near the detection limit around midday (Wang et al., 2022; Niu et al., 2022). Similar observation in North China declared ClNO₂ concentrations above 60 ppt in the afternoon (Liu et al., 2017). Previous studies have indicated that abundant ClNO₂ may be transported from upper atmosphere or air mass, contributing to the elevated ClNO₂ concentrations in the early morning (Tham et al., 2016; Xia et al., 2021; Jeong et al., 2019). However, the explanations for the concentrations of ClNO₂ around noon remained elusive.

To evaluate the contribution of the heterogeneous N₂O₅ uptake to daytime ClNO₂

levels, we calculated CINO₂ production using Eq. (S7), considering the loss of CINO₂ through photolysis. This method has been employed in a previous study (Text S4-S5) (Tham et al., 2016). We used a $\gamma(N_2O_5)$ value of 0.06 and a $\phi(CINO_2)$ value of 1.0 in our calculations, which represent upper-end estimates based on previous field studies (Mcduffie et al., 2018a; Mcduffie et al., 2018b; Tham et al., 2016). However, as shown in Fig. 3, the calculated $\phi(CINO_2)$ with $\gamma(N_2O_5) = 0.06$ fails to reproduce the observed levels of daytime CINO₂. A larger $\gamma(N_2O_5)$ of 0.11 would be necessary, but such high uptake coefficients and yields are not supported by the current literature. Therefore, we believe that the observed daytime CINO₂ levels, particularly around noon, cannot be adequately explained by heterogeneous N_2O_5 uptake alone, suggesting the presence of additional sources contributing to the formation of daytime CINO₂."

"Differently, the relative importance of NO_3^- derived from the XGBoost-SHAP result indicated that elevated ClNO₂ concentrations were associated with high concentrations of NO_3^- besides N_2O_5 . According to Fig. 5b, high NO_3^- concentrations (>3.7 $\mu g \cdot m^{-3}$) are accompanied by the elevation of ClNO₂, especially its concentrations reaching 6.2 $\mu g \cdot m^{-3}$. Previous studies suggested that increased concentrations of NO_3^- decreased $\gamma(N_2O_5)$, which would limit the production of ClNO₂ (Wahner et al., 1998; Mentel et al., 1999; Bertram and Thornton, 2009). As depicted in Fig. R1, the dependence of $\gamma(N_2O_5)$ on NO_3^- concentrations follows the nitrate suppression effect. Therefore, the importance of nighttime NO_3^- for ClNO₂ levels is that they are coproducts from the processes of N_2O_5 heterogeneous uptake. As shown in Fig. 1, compared to low NO_3^- conditions, ClNO₂ production was enhanced in high NO_3^- conditions. Especially in late autumn, increased aerosol abundances and N_2O_5 levels increased N_2O_5 uptake further promoting ClNO₂ and NO_3^- production."

"It is crucial to understand the dual role of photolysis intensity in determining daytime ClNO₂ levels. Photolysis can contribute to the generation of ClNO₂ by promoting NO₃⁻ photolysis, while also causing the rapid decomposition of ClNO₂. As reported in California (Mielke et al., 2013), reduced photolysis rates even increased daytime ClNO₂ levels by decreasing ClNO₂ loss through photolysis."

Technical Comments

Line 76: tenths: tens

Response: Thanks for your comment. We have revised it.

Added/rewritten: "Since Osthoff et al. (2008) firstly detected over 1 ppb of ClNO₂ in the urban outflows of America, significant production of ClNO₂ was widely observed in the polluted coastal and inland areas with abundant anthropogenic emissions and chloride sources, and its concentrations were ranged from tens of ppt to several ppb."

Figure 3, 5 and 6: Please change the color scale to a colorblind friendly version.

Response: Thanks for your comment. We have changed the color scale in Figure 3, 5 and 6 to a colorblind friendly version. Additionally, due to N_2O_5 , NO_3^- , T, RH, and UV being the most important features of affecting ClNO₂ concentrations, we only compared their relative importance. Therefore, Figure 5 only presents the relative importance of N_2O_5 , NO_3^- , T, RH, and UV.

Added/rewritten:

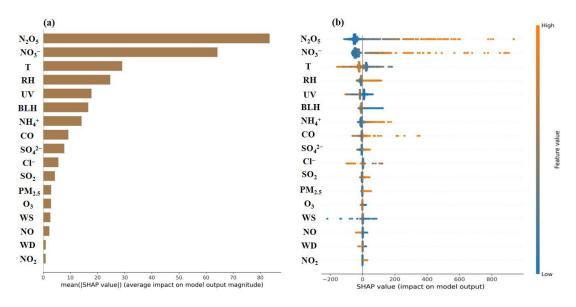


Figure 3. Relative importance of each feature to ClNO₂ using XGBoost-SHAP during the autumn observation period. The mean absolute SHAP value (a), summary plot of SHAP values of each feature (b).

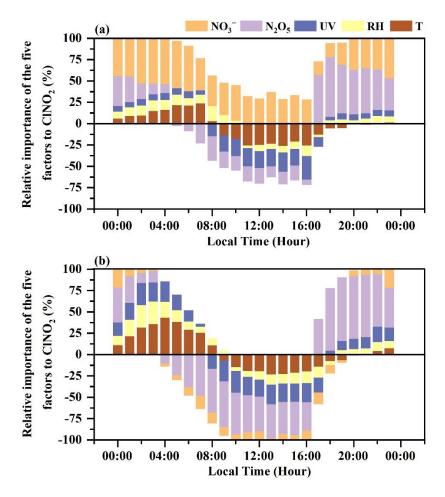


Figure 5. The diurnal variations of the relative importance of the major five factors (including N_2O_5 , NO_3^- , T, RH, and UV) to $ClNO_2$ based on the SHAP values under the high (> 3.7 $\mu g \cdot m^{-3}$) (a) and low (< 3.7 $\mu g \cdot m^{-3}$) (b) $ClNO_2$ concentrations.

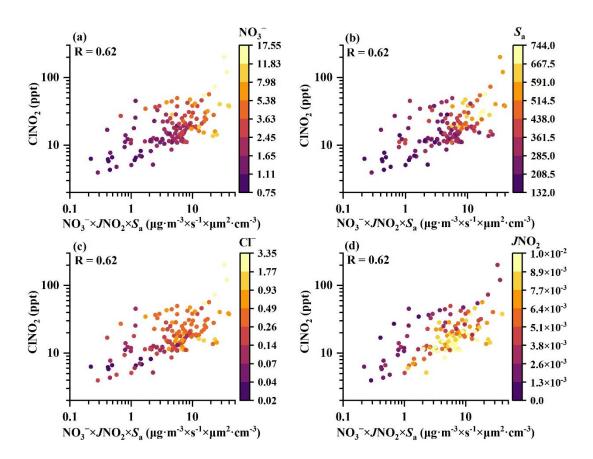


Figure 6. The relationship of daytime ClNO₂ concentrations (12:00-15:00 Local Time) and a proxy of nitrate (NO₃⁻) photolysis (NO₃⁻×JNO₂×S_a). The color of the dots denotes the NO₃⁻ (a), S_a (b), Cl⁻ (c), JNO₂ (d), respectively.

Line 215: averagely: average

Response: Thanks for your comment. We have corrected it.

Added/rewritten: "Therefore, the average daily concentrations of NO_3^- were classified as high (> 3.7 μ g·m⁻³) and low (< 3.7 μ g·m⁻³) NO_3^- cases to further elucidate the impacts of NO_3^- on the formation of ClNO₂."

Line 224: corrected: correlated

Response: Thanks for your comment. We have revised it.

Added/rewritten: "As depicted in Figure 6, it is observed that daytime ClNO₂ concentrations correlated well (R = 0.62) with the product of a proxy of NO_3^- photolysis ($NO_3^- \times JNO_2 \times S_a$) on aerosol surfaces (S_a), implying that the photolysis of NO_3^- contributed to the daytime concentrations of ClNO₂ at our study site."

References

- Bertram, T. and Thornton, J.: Toward a general parameterization of N₂O₅ reactivity on aqueous particles: the competing effects of particle liquid water, nitrate and chloride, Atmos. Chem. Phys., 9, 8351-8363, https://doi.org/10.5194/acp-9-8351-2009, 2009.
- Dalton, E. Z., Hoffmann, E. H., Schaefer, T., Tilgner, A., Herrmann, H., and Raff, J. D.:
 Daytime Atmospheric Halogen Cycling through Aqueous-Phase Oxygen Atom
 Chemistry, J. Am. Chem. Soc., 145, 15652-15657,
 https://doi.org/10.1021/jacs.3c03112, 2023.
- Jeong, D., Seco, R., Gu, D., Lee, Y., Nault, B. A., Knote, C. J., McGee, T., Sullivan, J. T., Jimenez, J. L., Campuzano-Jost, P., Blake, D. R., Sanchez, D., Guenther, A. B., Tanner, D., Huey, L. G., Long, R., Anderson, B. E., Hall, S. R., Ullmann, K., Shin, H., Herndon, S. C., Lee, Y., Kim, D., Ahn, J., and Kim, S.: Integration of airborne and ground observations of nitryl chloride in the Seoul metropolitan area and the implications on regional oxidation capacity during KORUS-AQ 2016, Atmos. Chem. Phys., 19, 12779-12795, https://doi.org/10.5194/acp-19-12779-2019, 2019.
- Liu, X., Qu, H., Huey, L. G., Wang, Y., Sjostedt, S., Zeng, L., Lu, K., Wu, Y., Hu, M., Shao, M., Zhu, T., and Zhang, Y.: High Levels of Daytime Molecular Chlorine and Nitryl Chloride at a Rural Site on the North China Plain, Environ. Sci. Technol., 51, 9588-9595, https://doi.org/10.1021/acs.est.7b03039, 2017.
- McDuffie, E. E., Fibiger, D. L., Dubé, W. P., Lopez Hilfiker, F., Lee, B. H., Jaeglé, L.,
 Guo, H., Weber, R. J., Reeves, J. M., Weinheimer, A. J., Schroder, J. C.,
 Campuzano-Jost, P., Jimenez, J. L., Dibb, J. E., Veres, P., Ebben, C., Sparks, T. L.,
 Wooldridge, P. J., Cohen, R. C., Campos, T., Hall, S. R., Ullmann, K., Roberts, J.
 M., Thornton, J. A., and Brown, S. S.: ClNO₂ Yields From Aircraft Measurements
 During the 2015 WINTER Campaign and Critical Evaluation of the Current
 Parameterization, J. Geophys. Res. Atmos., 123, 12,994-913,015,
 https://doi.org/10.1029/2018JD029358, 2018a.

- McDuffie, E. E., Fibiger, D. L., Dubé, W. P., Lopez-Hilfiker, F., Lee, B. H., Thornton,
 J. A., Shah, V., Jaeglé, L., Guo, H., Weber, R. J., Michael Reeves, J., Weinheimer,
 A. J., Schroder, J. C., Campuzano-Jost, P., Jimenez, J. L., Dibb, J. E., Veres, P.,
 Ebben, C., Sparks, T. L., Wooldridge, P. J., Cohen, R. C., Hornbrook, R. S., Apel,
 E. C., Campos, T., Hall, S. R., Ullmann, K., and Brown, S. S.: Heterogeneous N₂O₅
 Uptake During Winter: Aircraft Measurements During the 2015 WINTER
 Campaign and Critical Evaluation of Current Parameterizations, J. Geophys. Res.
 Atmos., 123, 4345-4372, https://doi.org/10.1002/2018JD028336, 2018b.
- Mentel, T. F., Sohn, M., and Wahner, A. J. P. C. C. P.: Nitrate effect in the heterogeneous hydrolysis of dinitrogen pentoxide on aqueous aerosols, Phys. Chem. Chem. Phys., 1, 5451-5457, https://doi.org/10.1039/A905338g, 1999.
- Mielke, L. H., Stutz, J., Tsai, C., Hurlock, S. C., Roberts, J. M., Veres, P. R., Froyd, K. D., Hayes, P. L., Cubison, M. J., Jimenez, J. L., Washenfelder, R. A., Young, C. J., Gilman, J. B., Gouw, J. A., Flynn, J. H., Grossberg, N., Lefer, B. L., Liu, J., Weber, R. J., and Osthoff, H. D.: Heterogeneous formation of nitryl chloride and its role as a nocturnal NO_x reservoir species during CalNex-LA 2010, J. Geophys. Res. Atmos., 118, 10,638-610,652, https://doi.org/10.1002/jgrd.50783, 2013.
- Niu, Y.-B., Zhu, B., He, L.-Y., Wang, Z., Lin, X.-Y., Tang, M.-X., and Huang, X.-F.: Fast Nocturnal Heterogeneous Chemistry in a Coastal Background Atmosphere and Its Implications for Daytime Photochemistry, J. Geophys. Res. Atmos., 127, e2022JD036716, https://doi.org/10.1029/2022JD036716, 2022.
- Phillips, G. J., Thieser, J., Tang, M., Sobanski, N., Schuster, G., Fachinger, J., Drewnick, F., Borrmann, S., Bingemer, H., Lelieveld, J., and Crowley, J. N.: Estimating N₂O₅ uptake coefficients using ambient measurements of NO₃, N₂O₅, ClNO₂ and particle-phase nitrate, Atmos. Chem. Phys., 16, 13231-13249, https://doi.org/10.5194/acp-16-13231-2016, 2016.
- Tham, Y. J., Wang, Z., Li, Q., Wang, W., Wang, X., Lu, K., Ma, N., Yan, C., Kecorius, S., Wiedensohler, A., Zhang, Y., and Wang, T.: Heterogeneous N₂O₅ uptake coefficient and production yield of ClNO₂ in polluted northern China: roles of

- aerosol water content and chemical composition, Atmos. Chem. Phys., 18, 13155-13171, https://doi.org/10.5194/acp-18-13155-2018, 2018.
- Tham, Y. J., Wang, Z., Li, Q., Yun, H., Wang, W., Wang, X., Xue, L., Lu, K., Ma, N., Bohn, B., Li, X., Kecorius, S., Größ, J., Shao, M., Wiedensohler, A., Zhang, Y., and Wang, T.: Significant concentrations of nitryl chloride sustained in the morning: investigations of the causes and impacts on ozone production in a polluted region of northern China, Atmos. Chem. Phys., 16, 14959-14977, https://doi.org/10.5194/acp-16-14959-2016, 2016.
- Wahner, A., Mentel, T. F., Sohn, M., and Stier, J.: Heterogeneous reaction of N₂O₅ on sodium nitrate aerosol, J. Geophys. Res. Atmos., 103, 31103-31112, https://doi.org/10.1029/1998JD100022, 1998.
- Wang, H., Yuan, B., Zheng, E., Zhang, X., Wang, J., Lu, K., Ye, C., Yang, L., Huang, S., and Hu, W.: Formation and impacts of nitryl chloride in Pearl River Delta, Atmos. Chem. Phys., 22, 14837-14858, https://doi.org/10.5194/acp-22-14837-2022, 2022.
- Xia, M., Peng, X., Wang, W., Yu, C., Wang, Z., Tham, Y. J., Chen, J., Chen, H., Mu, Y., and Zhang, C.: Winter ClNO₂ formation in the region of fresh anthropogenic emissions: seasonal variability and insights into daytime peaks in northern China, Atmos. Chem. Phys., 21, 15985-16000, https://doi.org/10.5194/acp-21-15985-2021, 2021.

RC2: 'Comment on egusphere-2024-1638', Anonymous Referee #3, 03 Jan 2025

In this manuscript, the authors present a study that investigates key factors driving the production of ClNO₂ based on field observations and XGBoost-SHAP model. Furthermore, the authors evaluated the potential impact of ClNO₂ photolysis on the formation of RO₂ and hence, the atmospheric oxidative capacity.

Overall, I found this manuscript interesting and well-constructed. Although the conclusion drawn for the nighttime ClNO₂ formation has been well recognized for two decades, the contribution of NO₃⁻ photolysis to daytime ClNO₂ is confirmed by the authors, which brings sufficient novelty to this manuscript.

Despite this, I do have some comments, particularly on the interpretation of the machine learning results, which need to be fully addressed before this manuscript can be accepted for publication.

Response: Thank you for your valuable and thoughtful comments. Your comments and suggestions have greatly enhanced the overall quality and readability of the manuscript. We have made the necessary revisions and provided detailed responses to each point below for your consideration.

General comments:

1. Machine learning, especially SHAP value, starts to be widely used in atmospheric research very recently, but many readers may not be sufficiently familiar with it. To improve the readability, I believe the way of interpreting SHAP values must be fully informed in the manuscript. E.g., what do the negative and positive SHAP values stand for? Should the contribution be evaluated by the true value or absolute value.

Response: Thank you for your comment. We have added a detailed introduction to SHAP values in the revised manuscript.

Added/rewritten: "The SHAP model is an interpretability tool designed to analyze the contributions of individual features to model predictions. It employs an additive explanatory framework that considers all features as contributors, drawing inspiration from cooperative game theory. For each predicted instance, SHAP assigns

a Shapley value, representing the cumulative contribution of each feature. Positive SHAP values indicate that a feature increases the model's predicted outcome, signifying a positive contribution. Conversely, negative SHAP values suggest that the feature reduces the predicted value, reflecting a negative contribution. The absolute value of the SHAP score reflects the magnitude of the contribution, regardless of direction, offering insight into the overall importance of the feature. The true value, on the other hand, reveals the direction of the contribution (positive or negative), facilitating a clearer understanding of the relationship between the feature and the prediction."

- 2. I am not fully convinced by the way of performing SHAP model and its interpretation.
- 1) why does the aerosol surface, as a known important factor for N₂O₅ uptake, not used as an input of SHAP model?

Response: Thank you for your valuable comment. We agree that aerosol surface area is a crucial factor influencing the heterogeneous uptake of N_2O_5 . Initially, we had included particle surface area concentrations (S_a) in the XGBoost-SHAP model to assess its significance in ClNO₂ formation. However, the results indicated that S_a did not play a prominent role (Figure R3). Furthermore, it is found that R^2 values of the training and testing sets slightly improved from 0.963 and 0.861 to 0.965 and 0.891, respectively, when S_a was not used as an input of a machine learning model. Given that PM_{2.5} and its inorganic compositions serve as representative indicators of aerosol conditions to some extent, we chose not to include aerosol surface area as a dependent variable in the machine learning model to avoid redundancy.

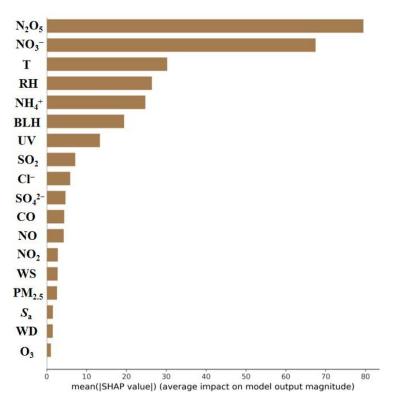


Figure R3. Relative importance of each feature to $ClNO_2$ using the XGBoost-SHAP model during the autumn observation period, with S_a included as an additional variable in the model.

2) ClNO₂ has a rather long nighttime lifetime, which means ClNO₂ could be accumulated during airmass transport. Meanwhile, N₂O₅ could both form and loss through the transport, leading to varying patterns of its concentration. In fact, this can be testified by calculating the maximal ClNO₂ production through N₂O₅ uptake by, e.g., assuming gamma = 0.1 and ClNO₂ yield = 1. Given this assumption, I didn't see any model input that could represent the influence of airmass transport. I suggest to reconsider their model input and incorporate certain transport parameters.

Response: Thank you for your thoughtful comment. I fully agree with your opinion that ClNO₂ tends to accumulate at night. We had indeed considered the impact of air mass transport in our analysis. In this study, trace gases (SO₂, CO, NO₂, NO, O₃, and N₂O₅), PM_{2.5} and its inorganic compositions (NO₃⁻, SO₄²⁻, NH₄⁺, and Cl⁻), along with meteorological parameters (T, RH, UV, WS, WD, and BLH) were selected as independent variables. Typically, WS and WD effectively reflect

the influence of air masses and play a significant role in the transport, dispersion, and accumulation of atmospheric pollutants. However, results from the XGBoost-SHAP model indicate that WS and WD have a minimal impact on ClNO₂ concentrations (Figure R4). Notably, previous observations indicating that ClNO₂ is easily influenced by air mass transport were primarily conducted in clean rural areas or under background atmospheric conditions (Niu et al., 2022; Tan et al., 2022). Given that our study site located in a typical urban area surrounded by shopping malls, residential zones, and major traffic arteries, it is highly affected by fresh anthropogenic emissions. Therefore, these results suggest that ClNO₂ concentrations are primarily driven by local processes, rather than by air mass transport during our study period.

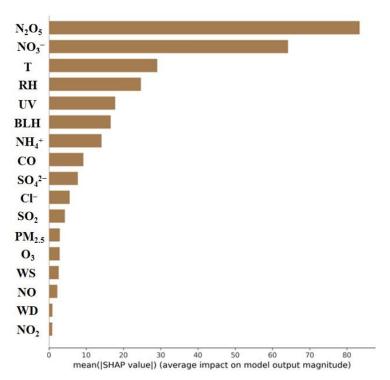


Figure R4. Relative importance of each feature to ClNO₂ using the XGBoost-SHAP model during the autumn observation period.

3) As this study suggested, daytime and nighttime ClNO₂ are driven by different processes, which however, were affected by similar parameters (in different ways). For instance, NO₃⁻ is a co-product with ClNO₂ at nighttime, but a precursor of ClNO₂ in the daytime. I suggest to consider conducting SHAP models daytime and

nighttime data sets separately, so that the exact role of these parameters can be better revealed.

Response: Thanks for your constructive comment. We fully agree with your insightful perspective. Through our in-depth analysis, we found that ClNO₂ exhibits distinctly different influence pathways during the daytime and nighttime, with certain parameters potentially playing different roles in these two periods. To investigate this further, we integrated all daytime and nighttime data into a unified machine learning model, resulting in a high-performing model. Using SHAP analysis, we were able to effectively distinguish the roles of key influencing factors between daytime and nighttime.

While the primary formation mechanisms of ClNO₂ differ between daytime and nighttime, there is a clear interconnection between daytime and nighttime ClNO₂ concentrations. Especially, the elevated nighttime ClNO₂ concentrations can significantly affect its concentrations in the early morning. Machine learning models trained exclusively on daytime data show poor performance, with R² values for the testing sets dropping below 0.6, thereby constraining further analysis of factor importance. As a result, separating daytime and nighttime data for independent machine learning analyses may risk overlooking the intrinsic linkages between these periods.

We believe that a comprehensive analysis, incorporating both daytime and nighttime data, is crucial for a complete and accurate assessment of ClNO₂ production and loss processes. Although we did not segregate the data into daytime and nighttime subsets for machine learning, SHAP analysis enabled us to clearly identify the relative importance of various factors during the daytime and nighttime, providing deeper insights into their respective mechanisms across these two periods.

For example, we used SHAP analysis to evaluate the key influencing factors of daytime ClNO₂. The simulated concentrations of ClNO₂, based on the XGBoost-SHAP model, were significantly elevated when NO_3^- concentrations were higher than 3.7 $\mu g \cdot m^{-3}$. Consequently, the average daily concentrations of NO_3^- were classified as high (> 3.7 $\mu g \cdot m^{-3}$) and low (< 3.7 $\mu g \cdot m^{-3}$) to further elucidate the impacts of NO_3^- on the formation of ClNO₂. Fig. R5 presents the diurnal variations in the relative importance

of the most critical influencing factors based on the SHAP values under high and low NO₃⁻ concentrations. Unexpectedly, daytime NO₃⁻ was the dominant influencing factors for daytime ClNO₂ (Fig. R5a). High concentrations of daytime NO₃⁻ positively affected the daytime concentrations of ClNO₂, independent of N₂O₅ uptake processes. As depicted in Fig. R5a, daytime N₂O₅ did not promote the elevation of daytime ClNO₂. Negative SHAP values for N₂O₅ during the daytime indicate that the contribution of N₂O₅ chemistry to daytime ClNO₂ levels was limited. Therefore, it is very likely that high concentrations of daytime NO₃⁻ participated in daytime ClNO₂ production.

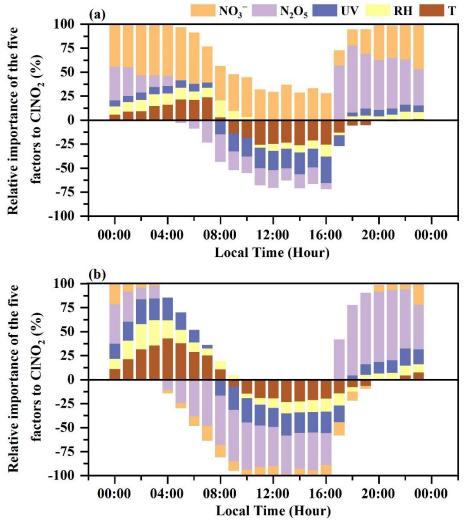


Figure R5. The diurnal variations of the relative importance of factors to ClNO₂ based on the SHAP values under the high (> 3.7 μ g·m⁻³) (a) and low (< 3.7 μ g·m⁻³) (b) ClNO₂ concentrations.

Detailed comments:

Line 64 "were" could be replaced by "are", as this is common case.

Response: Thanks for your comment. We have revised it.

Added/rewritten: "The reaction rates between Cl radical and some alkanes are several orders of magnitude faster than those involving OH radical."

Line 99-100 "our research integrated...." This sentence has grammatic error, please rephrase.

Response: Thanks for your comment. This sentence has been rephrased.

Added/rewritten: "Field observations, combined with a machine learning model, were used to reveal the key driving factors of ClNO₂ formation. Furthermore, we further investigated the potential mechanisms driving daytime ClNO₂ generation."

Line 141-143. The statement of JClNO₂ calculation is not clear, please consider to rephrase.

Response: Thanks for your comment. The statement of *J*ClNO₂ calculation has been rephrased.

Added/rewritten: "The Tropospheric Ultraviolet and Visible Radiation (TUV) model was used to calculate ClNO₂ photolysis rates (*J*ClNO₂) under clear-sky conditions. The simulated *J*ClNO₂ values were then scaled based on field-measured *J*NO₂ values."

Line 167-168 "Simultaneously, ..." I think the high correlation between $ClNO_2$ and N_2O_5 (and NO_3^-) does not mean simultaneous peaking. From Fig.1, I can clearly see that their concentrations do not reach the maxima at exactly the same time.

Response: Thanks for your valuable comment. We agree with your opinion that the concentrations of ClNO₂, N₂O₅, and NO₃⁻ did not reach their maxima simultaneously. We intended to convey that their peak concentrations were observed during the night of November 27th. The sentences have been revised accordingly.

Added/rewritten: "The highest concentrations of ClNO₂ were detected during the

night of November 27th, with a maximum hourly average of 3.4 ppb. Peak concentrations of N₂O₅ and NO₃⁻ were also observed on that night."

Line 203-204 the authors first indicate NO₃⁻ could affect the formation of ClNO₂; but afterwards, the authors say that the high NO₃⁻ and ClNO₂ together were caused by the simultaneous formation. Please improve the logic of this part.

Response: Thanks for your comment. We have improved the logic of this part.

Added/rewritten: "Differently, the relative importance of NO_3^- derived from the XGBoost-SHAP result indicated that elevated ClNO₂ concentrations were associated with high concentrations of NO_3^- besides N_2O_5 . According to Fig. 5b, high NO_3^- concentrations (> 3.7 $\mu g \cdot m^{-3}$) are accompanied by the elevation of ClNO₂, especially its concentrations reaching 6.2 $\mu g \cdot m^{-3}$. The importance of nighttime NO_3^- for ClNO₂ levels is that they are co-products from the processes of N_2O_5 heterogeneous uptake. As shown in Fig. 1, compared to low NO_3^- conditions, ClNO₂ production was enhanced in high NO_3^- conditions."

Line 221 "did not promoted..." should be "did not promote".

Response: Thanks for your comment. We have revised it.

Added/rewritten: "As depicted in Fig. 5a, daytime N₂O₅ did not promote the elevation of daytime ClNO₂."

Line 222 "A recent study declared that...". Please use "suggested" or "argued" instead of "declared".

Response: Thanks for your comment. We have revised it.

Added/rewritten: "A recent study suggested that nitrate photolysis produced ClNO₂ in addition to Cl₂ (Dalton et al., 2023), while it has been not verified by field observations."

Line 236-237. I am not convinced by the discussion about the role of temperature. The authors suggested that N_2O_5 is not important for ClNO₂ in the daytime. Then how can

temperature affect ClNO₂ through the thermal equilibrium of N_2O_5 ? Also, N_2O_5 is a measured quantity. Such a temperature impact should be already reflected by the connection between daytime N_2O_5 and ClNO₂.

Response: Thank you for your comments. We believe that N₂O₅ plays a critical role in the formation of ClNO₂, as ClNO₂ is generated through the heterogeneous uptake of N₂O₅ on chloride-containing aerosols. In this study, we emphasized that limited contribution of heterogeneous N₂O₅ uptake to daytime ClNO₂ concentrations was primarily due to very low daytime N₂O₅ levels, which are largely associated with its thermal decomposition. In other words, the thermal decomposition process affects ClNO₂ generation by reducing the availability of N₂O₅ in the daytime. Specifically, the elevated ambient temperature from nighttime to daytime reduced N₂O₅ concentrations through enhanced thermal decomposition. During the entire observation period from October to November, the overall drop in ambient temperature facilitated ClNO₂ production by reducing the thermal decomposition of N₂O₅, thereby increasing its availability for heterogeneous uptake.

Added/rewritten: "The impact of ambient temperature on ClNO₂ was probably reflected in its thermal equilibrium with N₂O₅. Elevated daytime ambient temperature suppressed the formation of N₂O₅, resulting in low N₂O₅ concentrations, which further limited the contribution of heterogeneous N₂O₅ uptake to daytime ClNO₂ generation. During the whole observation period from October to November, the drop in ambient temperature facilitated ClNO₂ production by decreasing the thermal decomposition process."

Line 243 I suggest the subtitle of "Impact of ClNO₂ photolysis on RO_x budget"

Response: Thanks for your suggestion. We have revised it.

Added/rewritten: "3.3 Impact of ClNO₂ photolysis on RO_x budget."

Figure 2: the N_2O_5 in the lowest panel is barely seen. Please consider to show the pattern by perhaps N_2O_5*5 .

Response: Thank you for your suggestion. We have revised Figure 2 to update the

presentation of N₂O₅ accordingly.

Added/rewritten:

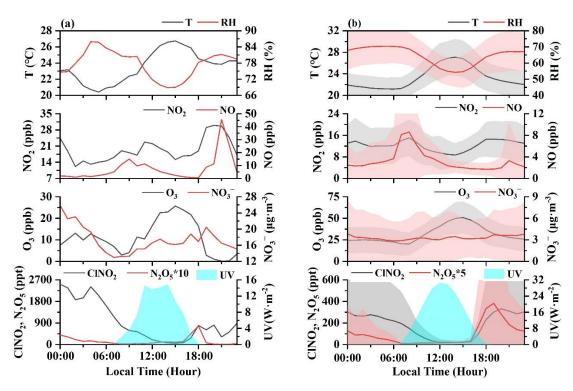


Figure 2. Diurnal variations of ClNO₂ and other related parameters for the highest concentrations of ClNO₂ (case) on November 28th (a) and the observation-average condition (from 9 October to 5 December) (b).

Figure 4. the division of x ticks looks strange. Please modify.

Response: Thanks for your comment. We have modified Figure 4.

Added/rewritten:

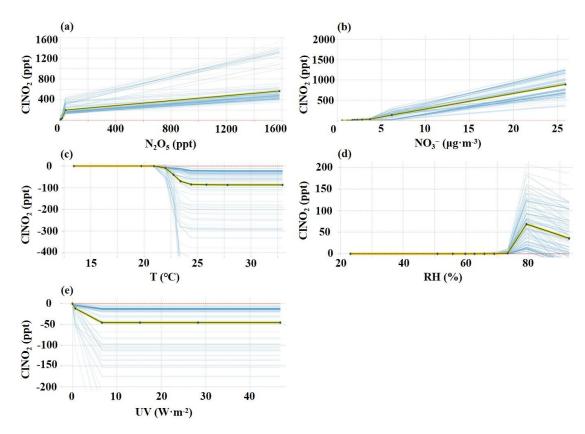


Figure 4. Isolation plots of PDP for N₂O₅ (a), NO₃⁻ (b), T (c), RH (d), and UV (e). The average variations of simulated ClNO₂ with factors' changes spline are indicated by the yellow and black curve, and blue curves presents all situations during the whole observation period.

References

Dalton, E. Z., Hoffmann, E. H., Schaefer, T., Tilgner, A., Herrmann, H., and Raff, J. D.: Daytime Atmospheric Halogen Cycling through Aqueous-Phase Oxygen Atom Chemistry, J. Am. Chem. Soc., 145, 15652-15657, https://doi.org/10.1021/jacs.3c03112, 2023.

Niu, Y.-B., Zhu, B., He, L.-Y., Wang, Z., Lin, X.-Y., Tang, M.-X., and Huang, X.-F.: Fast Nocturnal Heterogeneous Chemistry in a Coastal Background Atmosphere and Its Implications for Daytime Photochemistry, J. Geophys. Res. Atmos., 127, e2022JD036716, https://doi.org/10.1029/2022JD036716, 2022.

Tan, Z., Fuchs, H., Hofzumahaus, A., Bloss, W. J., Bohn, B., Cho, C., Hohaus, T., Holland, F., Lakshmisha, C., Liu, L., Monks, P. S., Novelli, A., Niether, D., Rohrer, F.,

Tillmann, R., Valkenburg, T. S. E., Vardhan, V., Kiendler-Scharr, A., Wahner, A., and Sommariva, R.: Seasonal variation in nitryl chloride and its relation to gas-phase precursors during the JULIAC campaign in Germany, Atmos. Chem. Phys., 22, 13137-13152, https://doi.org/10.5194/acp-22-13137-2022, 2022.