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Abstract. Global climate change projections are subject to substantial modelling uncertainties. A variety of emergent con-

straints, as well as several other statistical model evaluation approaches, have been suggested to address these uncertainties.

However, they remain heavily debated in the climate science community. Still, the central idea to relate future model projec-

tions to already observable quantities has no real substitute. Here we highlight the validation perspective of predictive skill

in the machine learning community as a promising alternative viewpoint.
::::::::::
Specifically,

:::
we

:::::
argue

:::
for

::::::::::
quantitative

::::::::::
approaches5

::
in

:::::
which

:::::
each

::::::::
suggested

:::::::::::
constraining

::::::::::
relationship

:::
can

:::
be

::::::::
evaluated

:::::::::::::::
comprehensively

::
on

::::::::::::
out-of-sample

::::
test

::::
data,

:::
on

:::
top

:::
of

::::::::
qualitative

::::::::
physical

::::::::::
plausibility

:::::::::
arguments

:::
that

::::
are

::::::
already

::::::::::::
commonplace

:::
in

:::
the

::::::::::
justification

:::
of

::::
new

::::::::
emergent

::::::::::
constraints.

Building on this perspective, we review machine learning ideas for new types of controlling factor analyses (CFA). The prin-

cipal idea behind these CFA is to use machine learning to find climate-invariant relationships in historical data, which also

hold approximately under strong climate change scenarios. On the basis of existing data archives, these climate-invariant re-10

lationships can be validated in perfect-climate-model frameworks. From a machine learning perspective, we argue that such

approaches are promising for three reasons: (a) they can be objectively validated both for past data and future data, (b) they

provide more direct - by design physically-plausible - links between historical observations and potential future climates and

(c) they can take higher dimensional
::::::::::::::
high-dimensional

::::
and

:::::::
complex

:
relationships into account that better characterize the

still complex nature of large-scale emerging relationships
::
in

::
the

::::::::
functions

:::::::
learned

::
to

::::::::
constrain

:::
the

:::::
future

:::::::
response. We demon-15

strate these advantages for two recently published CFA examples in the form of constraints on climate feedback mechanisms

(clouds, stratospheric water vapour), and discuss further challenges and opportunities using the example of a climate forcing

::::
rapid

::::::::::
adjustment

:::::::::
mechanism

:
(aerosol-cloud interactions).

:::
We

::::::::
highlight

::::::
several

:::::::
avenues

:::
for

:::::
future

:::::
work,

:::::::::
including

::::::::
strategies

::
to

::::::
address

::::::::::::
non-linearity,

::
to

:::::
tackle

:::::
blind

:::::
spots

::
in

::::::
climate

::::::
model

:::::::::
ensembles,

:::
to

:::::::
integrate

::::::
helpful

::::::::
physical

:::::
priors

::::
into

::::::::
Bayesian

:::::::
methods,

::
to

::::::::
leverage

::::::::::::::
physics-informed

:::::::
machine

::::::::
learning,

:::
and

::
to

:::::::
enhance

:::::::::
robustness

:::::::
through

:::::
causal

:::::::::
discovery

:::
and

:::::::::
inference.20

1 Introduction

Machine learning applications are now ubiquitous in the atmospheric sciences (e.g., Huntingford et al., 2019; Reichstein

et al., 2019; Thomas et al., 2021; Hess et al., 2022; Hickman et al., 2023). However, there is not a single recipe for machine
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learning to advance the field. Prominently, there is an important distinction between machine learning for weather forecasting

(e.g., Dueben and Bauer, 2018; Rasp and Thuerey, 2021; Keisler, 2022; Bi et al., 2023; Lam et al., 2023; Kurth et al., 2023; Bouallègue et al., 2024)25

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Dueben and Bauer, 2018; Rasp and Thuerey, 2021; Bi et al., 2023; Lam et al., 2023; Kurth et al., 2023; Bouallègue et al., 2024)

and machine learning for accelerating and observationally constraining climate change projections (e.g. Mansfield et al., 2020; Watson-Parris, 2021; Watson-Parris et al., 2022; Kaltenborn et al., 2023; Nowack et al., 2023)

::::::
climate

::::::::
modelling

::::::::::::::::::
(Watson-Parris, 2021). In weather forecasting, the aim is to predict a relatively short time-horizon over which

any new influences of climate change are supposedly
:::::::
typically negligible. In stark contrast, the science of climate change is in-

terested in how changing boundary conditions
:
-
:::
i.e.

:::::::::::
anthropogenic

:::::::
changes

::
in

:::::::
climate

:::::::
forcings

::::
such

::
as

::::::
carbon

::::::
dioxide

::::::
(CO2)

::
or30

:::::::
aerosols

:
- will affect Earth’s climate system on long timescales. The need to go beyond what has previously been observed poses

specific, hard challenges to the application of machine learning in climate science. It is the classic differentiation that is often

coined as ‘ML models are good at interpolation (weather forecasting) but not at extrapolation (climate change response)’.
::
As

::
a

:::::
result,

:::::::
machine

:::::::
learning

::
in

:::::::
climate

::::::
science

:::
has

::::
also

::::::
largely

::::::
focused

:::
on

::::::::::
interpolation

::::::::
sub-tasks

::::
such

::
as
:::::::
climate

:::::
model

:::::::::
emulation

::
to

:::::
speed

:::
up

:::::::::
additional

:::::::
scenario

::::::::::
projections

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Mansfield et al., 2020; Watson-Parris et al., 2022; Kaltenborn et al., 2023; ?)

::
or35

::::
faster

::::
and

:::::
better

:::::::
machine

:::::::
learning

::::::::::::::
parameterizations

:::
for

::::::
climate

::::::
models

:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Nowack et al., 2018a, 2019; Rasp et al., 2018; Beucler et al., 2020)

:
. In this Opinion Article, we highlight a few ideas of how machine learning can nonetheless help reduce the substantial mod-

elling uncertainties in climate change projections,
:
; addressing a major scientific challenge of this century.

:::::::::
Specifically,

:::
we

::::
will

::::
focus

:::
on

:::
the

:::::::
example

::
of

:::::::::::
observational

:::::::::
constraint

::::::::::
frameworks

:::::::::::::::::::::::::::::::::::::::
(Ceppi and Nowack, 2021; Nowack et al., 2023).

In the remaining sections of the introduction, we first briefly review the concept of model uncertainty as well as current40

observational constraint methods, including some of their limitations. In section 2, we discuss controlling factor analyses (CFA)

using linear machine learning methods as an alternative approach , highlighting
::
for

::::::::::::
observational

::::::::::
constraints.

:::
We

::::::::
highlight

several advantages, exemplified for the cases of constraints on global cloud feedback and stratospheric water vapour feedback.

In section 3, we discuss key challenges in constraining future responses on the basis of present-day data, in particular non-

linearity and confounding. We illustrate these on the example of constraining the effective radiative forcing (ERF) from aerosol-45

cloud interactions. In section 4, we highlight potential avenues for future work, also in terms of addressing model uncertainty

with machine learning frameworks more generally. In section 5, we summarize key ideas for observational constraints and

suggest that machine learning ideas could also help to improve climate model tuning frameworks in the future.

1.1 Model uncertainty

Three sources of climate model projection uncertainty are commonly distinguished (Hawkins and Sutton, 2009; Deser et al.,50

2012; O’Neill et al., 2014):

1. scenario uncertainty given different anthropogenic emission scenarios of greenhouse gases and aerosols. Typical scenar-

ios range from strong mitigation of climate change to unmitigated growth of emissions.

2. internal variability uncertainty due to noise from climate variability superimposed on any scenario-driven trends. For

example, any given year might be colder or warmer than the climate-dependent expected average value for temperature.55
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3. model uncertainty arising from varying scientific design choices for climate models developed by different institutions.

For example, climate models can differ in terms of which and how specific processes are represented, including pa-

rameterizations of cloud processes, aerosols, and convection (Carslaw et al., 2013a, b; Sherwood et al., 2014; Kasoar

et al., 2016; Bellouin et al., 2020; Sherwood et al., 2020), or in their representations of the carbon cycle and atmospheric

chemistry (Cox, 2019; Nowack et al., 2017, 2018a). Ultimately, the resulting model uncertainty describes the long-term60

projection uncertainty in e.g. regional surface temperature or precipitation changes under the same emissions scenario.

Despite decades-long model development efforts, model uncertainty in key climate impact variables such as temperature and

precipitation, globally and regionally, has remained stubbornly high (Sherwood et al., 2020; IPCC, 2021). The apparent lack of

net progress might be the result of the competition between (a) improved individual process representations in climate models

and (b) the continuously growing number of (uncertain) climate processes being considered in the first place (Cox, 2019;65

Eyring et al., 2019; Saltelli, 2019). Whatever the reason may be; empirically, we probably need to accept large inter-model

spread in climate change projections for the foreseeable future.

In Figure 1, we illustrate the three uncertainty contributions for temperature projections for an area in Central Europe.

Scenario and model uncertainty clearly start to dominate over time, whereas at the beginning (around the years 2014-2030)

internal variability uncertainty renders even very different forcing scenarios difficult to distinguish. In climate science, scenario70

and internal variability uncertainty are often taken as given. To characterize scenario uncertainty, it is common to consider a

range of socioeconomic development pathways, from strong mitigation scenarios targeting e.g. less than 2◦ C global warming,

to high forcing business-as-usual scenarios (O’Neill et al., 2016). Internal variability uncertainty, in turn, is usually reduced

by averaging responses across
:::::::::::
characterized

::
by

::::::::::
considering multiple ensemble members for the same climate model and forcing

scenario (Sippel et al., 2015; O’Reilly et al., 2020; Labe and Barnes, 2021)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Sippel et al., 2015; O’Reilly et al., 2020; Labe and Barnes, 2021; Wills et al., 2022)75

. In this paper, we focus on methods that tackle model uncertainty.

Clearly, in order to make meaningful climate risk assessments, society and policymakers require better (more certain) infor-

mation than the range of raw model ensembles are currently able to provide (Figure 1). Here we will suggest a machine learning

perspective on this challenging yet important task, contrasting and comparing our view to other concepts to observationally

constrain model uncertainty (e.g. Knutti, 2010; Eyring et al., 2019; Hall et al., 2019; Williamson et al., 2021). Our viewpoint80

still shares the fundamental idea that from the complexity of
::::
many

:::::
small

::::
and

:::::::::
large-scale

::::::::
processes

::::::::
involved

::
in

:
the climate

system, simpler
::::::::
relatively

:::::
simple

:
relationships may emerge over time and space, which may

:
.
:::::
These

::::::
simple

:::::::::::
relationships

::::
may

:::
then

:
be used to robustly compare climate model behaviour to observed relationships as to distinguish more realistic models

from the rest (Allen and Ingram, 2002; Held, 2014; Huntingford et al., 2023)
:
,
:::::::
without

::::::
having

::
to

::::::::
constrain

::::
each

::::::
micro-

::::
and

::::::::::::
macrophysical

::::::
process

::::::::::
individually.85

1.2 Methods to address model uncertainty

As mentioned above, international climate model development efforts have not resulted in reduced model uncertainty over time

(e.g. Zelinka et al., 2020). To address this longstanding issue, a variety of approaches have been suggested to evaluate climate
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(a)

(b)

Internal variability 
uncertainty

(c)

Scenario
uncertainty

Model
uncertainty

CRU observations

CMIP6 historical forcing

High emissions scenario (SSP5-8.5)

Strong mitigation scenario (SSP1-2.6)

CRU observations

CMIP6 historical forcing

High emissions scenario (SSP5-8.5)

Strong mitigation scenario (SSP1-2.6)

Warming by 2050?

Figure 1. Surface air temperature climate model projections and observations for a 5◦×5◦ grid box in Central Europe. The region is indicated

in orange in (a). The raw projections, relative to their 1900-1930 average, are shown for 34 Coupled Model Intercomparison Project phase
:
6

(CMIP6) models in (b). Gray lines show one ensemble member of each model for simulations under historical forcing conditions. The

same ensemble members and CMIP6 models are shown for the years 2014 to 2100 under a high emission (red) and a strong mitigation

scenario (blue). SSP stands for Shared Socioeconomic Pathway. Observational data according to the Climatic Research Unit (CRU, version

TS4.05, Harris et al., 2020) are shown in solid black. In (b), internal variability uncertainty for individual ensemble members
:::::
across

::
the

:::
34

::::::::
simulations

:
makes it difficult to, e.g., answer the question of how much the region is projected to have warmed by the year 2050.

::::
2050,

:::
even

::
in
:::
the

::::::
absence

::
of

:::::
model

:::::::::
uncertainty.

:
This uncertainty could be better characterized

:::::::::
smoothened

:::
out by considering the average across

:::
over

:
multiple ensemble members for each model (not done here). Instead, we applied a Lowess smoothing to approximately remove internal

variability and indicate the remaining ±2σ intervals for each scenario in (c). This, in turn, highlights more clearly the scenario uncertainty,

best exemplified by the differences in the multi-model-means provided as solid central lines in (c). Finally, the model uncertainty - i.e. the

spread in projection
::::::::
projections for a given scenario after removing internal variability uncertainty - makes an evidently large contribution to

the projections here. For example, for the high emission
:::::::
emissions

:
scenario, model responses range between ca. 3 and 10 K of warming by

2100. For the Lowess smoothing, we considered a data fraction of 0.5, individually for each time series.
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models and to weight their projections, in particular through systematic comparisons of the modelled climate statistics and

relationships against those found in Earth observations. Current methods can be broadly separated into two major groups: (a)90

statistical climate model evaluation approaches and (b) emergent constraints.

1.2.1 Statistical model evaluation frameworks

There are several widely used frameworks that use a defined set of standard statistical measures to compare model behaviour

to observations. Model projections are for example weighted by performance metrics
::::::::
measures relating to historical trends and

variability in key variables such as temperature or precipitation (e.g. Giorgi and Mearns, 2002; Tebaldi et al., 2004; Reichler95

and Kim, 2008; Räisänen et al., 2010; Lorenz et al., 2018; Brunner et al., 2020a, b; Tokarska et al., 2020; Hegerl et al., 2021;

Ribes et al., 2021; Douville et al., 2022; Ribes et al., 2022; Qasmi and Ribes, 2022; Douville, 2023; O’Reilly et al., 2024), with

further examples found e.g. in atmospheric chemistry (Karpechko et al., 2013). In addition, methods to account for model-

interdependencies (due to shared model development backgrounds, or components) in these weighting procedures have been

proposed (Bishop and Abramowitz, 2013; Abramowitz and Bishop, 2015; Sanderson et al., 2015; Knutti et al., 2017; Sanderson100

et al., 2017; Abramowitz et al., 2019).

A disadvantage of many conventional model evaluation approaches is that past statistical measures
::::
used

::
to

:::::::
compare

:::::::
models

::
to

::::::::::
observations

:
(e.g. standard deviation

::::::::
deviations

:
or climatological means and trends) are not necessarily reliable indicators

for each
::
if

:::
one

::::
can

::::
rely

::::
more

:::
on

::
a
:::::::
specific model’s future response. Instead, a model that performs worse on certain past

performance measures might actually be more informative about the true future response. Possible reasons for the missing105

direct correlation of past and future responses might be that simple metrics
:::
For

::::::::
example,

::::::
simple

::::::::
historical

::::::::::
performance

::::::
scores

can be blind to offsetting model biases (Nowack et al., 2020) and could even be targeted by model tuning (Mauritsen et al.,

2012; Hourdin et al., 2017)
:
,
:::
for

:::::::
example

::
to

:::::
better

::::::
match

::::::::
historical

::::::::::
temperature

:::::
trends. From a machine learning perspective,

this could lead to situations akin to overfitting training data (e.g., apparent skill on historical data used to tune climate models,

or selecting past evaluation metrics on the basis of seemingly constraining correlations), whereas the
:
).

:::
The

:
same model might110

- as a result - actually be less informative/predictive in new situations, i.e. in this case under climate change.

Overall, due to the indirect link between historical performance measures and future responses in conventional model eval-

uation frameworks, it is not a priori clear which of the evaluation metrics
:::::::
methods to trust most. This point was for example

demonstrated in the review by Hegerl et al. (2021). Basically, different weighting approaches provide different constraints (both

in terms of median and uncertainty ranges) and it remains difficult to establish which approach to trust most and to find ways to115

make them directly comparable. Another practical limitation is that standard model evaluation measures
::::::
methods

:
used to con-

strain climate change projections are typically based on relatively large-scale spatial and long-term temporal averaging to find

significant correlations between historical climate model skill and future projections. This, in turn, makes robust constraints on

changes in extreme weather events particularly difficult to establish (Sippel et al., 2017; Lorenz et al., 2018).

1.2.2 Emergent constraints120

5



Emergent constraints
:
“
:::
The

::::::::
emergent

::::::::
constraint

::::::::
approach

::::
uses

:::
the

::::::
climate

::::::
model

::::::::
ensemble

:
to
:::::::
identify

:
a
::::::::::
relationship

:::::::
between

:::
an

::::::::
uncertain

:::::
aspect

::
of

:::
the

:::::
future

::::::
climate

::::
and

::
an

:::::::::
observable

::
or

::::::::
variation

::
or

:::::
trend

::
in

:::
the

:::::::::::
contemporary

:::::::
climate"

::::::::::::::::::::
(Williamson et al., 2021)

:
.
::::::::
Compared

:::
to

::::::::
statistical

:::::
model

:::::::::
evaluation

:::::::
criteria,

::::::::
emergent

:::::::::
constraints

::::::::
therefore

:
more directly target relationships between

shorter-term variability within the Earth system (‘observables’, e.g. seasonal cycle characteristics, observed trends, and other

aspects of internal and inter-annual variability) and future climate change, even under strong and century-long climate forcing125

scenarios (see also review papers by Hall et al., 2019; Eyring et al., 2019).

Among the prominent examples are proposed constraints on changes in snow albedo (Hall and Qu, 2006), the highly un-

certain cloud feedback and equilibrium climate sensitivity (Sherwood et al., 2014; Klein and Hall, 2015; Tian, 2015; Bri-

ent and Schneider, 2016; Lipat et al., 2017; Cox et al., 2018; Dessler and Forster, 2018), climate-driven changes in the

hydrological cycle (O’Gorman, 2012; Deangelis et al., 2015; Li et al., 2017; Chen et al., 2022; Shiogama et al., 2022;130

Thackeray et al., 2022) and in the carbon cycle (Cox et al., 2013; Wenzel et al., 2014; Cox, 2019; Winkler et al., 2019b, a)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Cox et al., 2013; Wenzel et al., 2014; Cox, 2019; Winkler et al., 2019a, b), wintertime Arctic amplification (Bracegirdle and

Stephenson, 2013; Thackeray and Hall, 2019), marine primary production (Kwiatkowski et al., 2017), permafrost (Chadburn

et al., 2017), atmospheric circulation (Wenzel et al., 2016), and mid-latitude daily heat extremes (Donat et al., 2018).

A central aspect
:::::::::
hypothesis

:
of emergent constraint definitions is that a measure of historical, already observable, cli-135

mate is consistently
:::
can

::::::::::
consistently

:::
be linked to future responses. Since the

:
A
::::::

classic
::::::::

example
::
is

:::
the

:::::::::
correlation

::::::::
between

::
the

::::::::::::
contemporary

::::::::
seasonal

:::::
cycle

:::::::::
amplitude

::
of

:::::
snow

::::::
albedo

::
to

:::
the

:::::::::
long-term

:::::
snow

::::::
albedo

:::::::
climate

::::::::
feedback

:::::
under

:::::::
climate

::::::
change

::::::::::::::::
(Hall and Qu, 2006)

:
.
::
Of

:::::::
course,

:::
the latter is only available from climate model simulations (i.e. is ‘unobserved’) , it is

self-explanatory that emergent constraint relationships can only be validated and, effectively, constructed using climate models.

As a result, the identification of potential constraint candidates fundamentally requires climate change projections simulated by140

large ensemblesof climate models, as for example widely available in the form of the CMIPs
::
so

::::
that

:::
the

:::::::::
correlation

:::::::
between

:::
the

:::
past

::::
and

:::::
future

:::::::
quantity

:::
can

::::
only

::::
quite

:::::::
literally

:
‘
:::::::
emerge’

:::::
across

:::::
large

::::::
climate

:::::
model

:::::::::
ensembles

::
of

::::::::
historical

:::
and

::::::
future

:::::::
scenario

::::::::::
simulations.

::
In

::::::::::
comparison,

:::
the

::::::::::
controlling

:::::
factor

:::::::::
approaches

::::::::
described

::::
later

::::
will

::::
also

::::::
require

:::::::::
validation

::
of

:::::::::::
extrapolation

::::
skill

::
to

:::::
future

:::::::
climates

:::::
across

:::::::
climate

:::::
model

::::::::::
ensembles.

::::::::
However,

::
as

:
a
::::
first

::::
step

::::
their

::::::::
predictive

::::
skill

::::
will

::
be

::::::::
evaluated

:::
on

::::::::
historical

:::::::::
observable

::::
data

::::
only;

:::
i.e.

:::
the

:::::::::::
relationships

::::
used

:::
for

:::
the

::::::::::::
observational

::::::::
constraint

::::
will

::
be

::::::::
obtained

::::::
entirely

:::::
from

::::::::
historical

::::
data145

:::::
rather

::::
than

::::::
directly

::::::::
targeting

:
a
::::::::::
relationship

:::::::
between

:::
the

::::
past

:::::::::
observable

:::
and

:::
the

::::::
future

:::::::
response.

1.3 Limitations of current constraint frameworks

The challenge to constrain future projections on the basis of observations is a difficult one. Any attempt to establish robust

relationships between the (observable) past and simulated future
::::::::::::
(unobservable) will be hampered by the non-stationary nature

of the climate system(Beucler et al., 2024). Any information content that can be gained from observations will naturally, and150

intuitively, diminish as the climate changes. In addition, once relationships of this kind have been put forward, the various

methods discussed in section 1.2 typically lead to different suggested constraints for median climate change responses and

confidence intervals (e.g. Brunner et al., 2020a; Hegerl et al., 2021). This raises the next central question: which of the methods

6



should we trust (most)? By any means, this is not a small question considering the significant possible impacts associated with

future changes in climate.155

We identify three broad issues which make progress on this central question particularly difficult, and which we suggest

can be addressed by incorporating machine learning ideas into observational constraint frameworks. Further limitations are for

example discussed in section IV of Williamson et al. (2021). The three we wish to highlight here are:

1. The indirect nature of the link between the past performance measures and the future response to be constrained. While

nowadays most emergent constraints are suggested together with a plausible theoretical link between the observable160

measure and the future response (Williamson et al., 2021), the connection is by design
::::::
always indirect (Caldwell et al.,

2018). In many cases, this might indeed lead to a scientifically robust relationship, however, this robustness is in practice

difficult to evaluate objectively. Clearly, the situation is not much different in model evaluation methods which, for

example, aim to correlate the historical model-consistent standard deviation in precipitation with its future response. The

indirect nature of these links means that one can attempt to manipulate x (the observed) ‘
::::::::
observed’)

::
in

:::::::
models to better165

match the observational record. If this leads to the desired improvement in y (i.e. the simulated response) that would be

a targeted away
:::
way

:
to improve climate models. However, there is clearly no guarantee that apparent improvements in

modelling historical x will translate into constrained future responses (Hall et al., 2019).

2. Low-dimensionality equals oversimplification? The reliance on a few, relatively simple, historical performance measures

could be argued to have played a key role in limiting progress to date, even if they have the advantage to be relatively170

easy to conceptualize. For example, it is hard to imagine that very simple measures can truly reflect the complexity of the

climate system driving model uncertainty (Caldwell et al., 2018; Bretherton and Caldwell, 2020; Schlund et al., 2020;

Nowack et al., 2020). A natural focus on the best-performing of the resulting constraints, even if linked to plausible

physical mechanisms, will likely overfit the relationships between past model performance and projected change, return-

ing back to point 1. In addition, the constantly ongoing quest to find such relationships is somewhat akin to issues with175

multiple hypothesis testing in statistics, which directly leads us to point 3.

3. Risk of data mining correlations, even if based on a scientifically grounded search. A key issue with finding
:::::::
concern

::::
with

:::::::::
identifying relationships such as emergent constraints, which aim for finding a high correlation

:::
seek

::::::
strong

::::::::::
correlations

between a past (uncertain) metric
::::::::
observable

:
and future (uncertain) responses across climate model ensembles, is the fact

that correlations of this kind will always be present in big data climate archives
:::
lies

::
in

:::
the

:::::::
inherent

:::
risk

:::
of

::::::::::
correlations180

:::
that

::::
arise

::::::::
(largely)

::
by

:::::::
chance.

:::::
These

::::::::::
correlations

:::::::::
inevitably

:::::
appear

:::
in

::::
large

::::
data

:::::::
archives

::::::::::
representing

::::::::
complex

:::::::
systems

::::
such

::
as

::::::
climate

:::::::
models,

::::::
which

:::::::::
encompass

:
a
::::

vast
:::::
array

::
of

:::::::
climate

:::::::
variables. As a result, if scientists keep searching for

such relationships long enough, they will eventually find a few. Those relationships in turn, for a high-dimensional and

highly coupled climate system, will likely be at least partly explainable on the basis of actual scientific mechanisms

operating in the system, whereas other correlations will occur
::::::
entirely

:
by chance. A natural focus on the best-performing185

of the resulting constraints, even if linked to plausible physical mechanisms, will likely overfit the relationships between
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past model performance and projected change, often even falling victim to coincidental correlations. This "data min-

ing" criticism has been prominently made in previous publications (e.g. Caldwell et al., 2014; Sanderson et al., 2021;

Williamson et al., 2021; Breul et al., 2023).

A good indicator for potentially non-robust, coincidental and statistically over-confident relationships can be seen in tendencies190

for emergent constraints to perform better on the CMIP archive for which they were suggested than for later phases. Indeed

this was found for a number of constraints
::::::
Several

::::::::
emergent

:::::::::
constraints

:::::
were

:::::
found

::
to

:::::::
weaken

::
or

::::
even

::::::
vanish

:
when moving

from CMIP3 to CMIP5, or from CMIP5 to CMIP6 (Caldwell et al., 2018; Pendergrass, 2020; Schlund et al., 2020; Williamson

et al., 2021; Simpson et al., 2021; Thackeray et al., 2021)
:
,
:::::::::
suggesting

::::
that

:::
the

:::::::::
previously

::::::::
identified

::::::::::
relationships

:::::
were

::::::
indeed

:::::
likely

::::::::::::
over-confident

::
or

::::::::::
coincidental.195

2 Climate-invariant controlling factor analysis

We suggest machine learning-guided CFAs
::::::::
controlling

:::::
factor

:::::::
analysis

::::::
(CFA) as a promising alternative to establish more robust

relationships tested to hold across climate states and climate model ensembles. Specifically, these CFAs establish functions that

are only trained on data representative of the observational record but which are subsequently also tested for future responses, as

can be evaluated across ensembles of future climate model projections. These functions therefore establish a direct link between200

the past and the future. This climate-invariance can be evaluated across sets of climate models, or even sets of CMIP ensembles,

addressing limitation (1). The use of machine learning allows us to learn higher-dimensional, less simplifying, relationships,

addressing limitation (2). Finally, the design of the CFA functions will be motivated by known physical relationships between

target variables to be constrained (the predictand) and environmental controlling factors (the predictors) , addressing
::::::
which,

:
-
:::::::
together

::::
with

:::
the

:::::::::::::
comprehensive

::::::::::::
out-of-sample

::::::
testing

:
-
::::::::
addresses

:
limitation (3). The fact that the resulting functions can205

be validated both under past and future conditions further enables an objective validation and uncertainty quantification, and

reduces the risk to fall victim to coincidental correlations.

Low-dimensional CFA frameworks have been popular in climate science for some time, especially in the context of con-

straining uncertainty on cloud feedback mechanisms (e.g. Klein et al., 2017)
:
,
:::
but

::::
also

:::
for

::::::::::::
understanding

:::::::::::
stratospheric

:::::
water

::::::
vapour

::::::::
variability

::::::::::::::::::
(Smalley et al., 2017). Here we focus on recent machine learning ideas to improve their performance for210

specific constraints on climate feedback mechanisms. We often found that CFA are at first interpreted as a type of emergent

constraint. In the following, we instead highlight key differences between the two frameworks; arguing for a separate treatment.

We will illustrate central aspects by reviewing two recently published examples of constraining highly uncertain changes in

Earth’s cloud cover (Ceppi and Nowack, 2021) and in stratospheric water vapour (Nowack et al., 2023).
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2.1 Framework definition215

The central idea behind CFA for observational constraints is the definition
:::::::
training of a function f relating multiple large-scale

environmental variables X to a target variable y over time t

y(t)≈ f(X(t);θ) (1)

Ultimately, we wish to constrain climate model uncertainty in projected changes in y (e.g. changes in clouds or stratospheric

water vapour) given already observed relationships between X and y. A first major difference to emergent constraints is that220

the functions are trained only on historical data (observations or, for consistency, climate model simulations under historical

forcing conditions). The parameters θ, which characterize the function f , measure
:::
can

::::
later

::
be

:::::::::
considered

:::
as

::::::::
measures

::
of the

importance of the controlling factor relationships found. Again, in this data-driven framework, f (and thus θ) can be learned

individually both from sets of observational (providing observational functions fobs:::::
fobs,m) and climate model data (providing

model-derived functions fCMIP,k).225

The workflow of the CFA framework is illustrated in Figure 2. Expert knowledge is pivotal when selecting the factors X

(yellow box) that are thought to ‘control’ y (violet box). Machine learning
:::::::
However,

::
in
:::::::
contrast

::
to

::::::::
emergent

:::::::::
constraints

::::::
where

::::::
similar

::::::::
arguments

:::::
apply

::
to
:::::
select

:::::::::
physically

::::::::
plausible

::::::::::
constraints,

:::
the

:::::::
physical

::::::::::
mechanisms

:::::::::
suggested

::
to

:::
link

:::
the

:::::::::
predictors

::
to

::
the

:::::::::
predictand

::::
can

::
be

:::
far

::::
more

:::::::
granular

::
in

:::::
CFA.

:::
For

::::::::
example,

::
in

::::
CFA

::::::
distinct

:::::::::::::
thermodynamic

::::
and

:::::::
dynamic

::::::::::
phenomena

::::::
driving

::::::::
variability

::
in
::::

the
:::::::::
predictand

:::
can

:::
be

::::::::::::
distinguished,

:::
e.g.

:::::::
linking

:::::
cloud

:::::::::
occurrence

::
to
::

a
:::::::::::
combination

::
of

:::::::::
large-scale

:::::::
patterns

:::
of230

:::
sea

::::::
surface

:::::::::::
temperatures,

:::::::
relative

::::::::
humidity,

:::
and

:::::::::::
atmospheric

:::::::
stability

::::::::
measures

::::::::::::::::::
(Kemsley et al., 2024).

:::::::::
Returning

::
to

::::::
Figure

::
2,

:::::::
machine

:::::::
learning

:::::
(grey

::::::
central

::::
box)

:
is used to derive the strength of the relationships between the factors and y. The gener-

alization skill of these functions trained on the historical data is easily validated on independent test data, which is a crucial

component of any data-driven method. A good first test case is again the already observable data or historical simulations (e.g.

left out years not used during training and cross-validation), especially on extreme historical events such as the 2015/2016 El235

Niño event (Kemsley et al., 2024)
:::::::::::::::::::::::::::::::::
(Kemsley et al., 2024; Ceppi et al., 2024). Of course, this test data is not used during training

and cross-validation/the hyperparameter tuning (see longer discussions on these issues in e.g. Bishop, 2006; Nowack et al.,

2021). In Figure 2, an example is shown for a hypothetical observational test case for the year 2012, if data from that year

was not used for training. We re-iterate that separate functions can be learned and then validated in such a fashion for both

observational data (fobs ::::
fobs,m) and for simulations conducted with various climate models (typically, historical simulations run240

with different climate models, indexed by k, leading to functions fCMIP,k).

To clarify, emergent constraints in combination with machine learning frameworks have been suggested as well (e.g.

Williamson et al., 2021). However, CFA are different in two ways: firstly, the relationships learned are established entirely

on the already observed period, or equivalent individual climate model output. In contrast, emergent constraint functions learn

from emergent behaviour across climate change responses of an entire model ensemble, by correlating variables characterizing245

the models’ past behaviour (e.g. a measure of internal variability) to the model-consistent future responses in a quantity of

interest (e.g. the equilibrium climate sensitivity). CFA instead learns from internal variability and uses these relationships in a
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Figure 2. Example workflow for a CFA with machine learning. First, the regression set-up is defined so that the predictand y can be

modelled well on the basis of a set of controlling factors X. These functions are learned individually for observational datasets and climate

model simulations under historical climate forcing conditions. Out-of-sample predictive skill is evaluated in each case on held-out test

data; illustrated here for a hypothetical test year 2012.
::::
2012

::
on

::::
daily

::::
data.

:
Next, it is tested if the relationships learned also hold under

climate change scenarios
:::::::
(annually

:::::::
averaged

::
for

::::::::::
visualization

:::::::
purposes). This step is only possible for climate models; demonstrated here

for two example SSP projections. The black lines mark the true
::::
actual

::::::
climate

:
model responses; the violet lines

::::
mark the predictions of

:
if

the functions are fed with the model-consistent changes in the controlling factors
::::::
(which,

:
if
:::::::::::
approximately

:::::::::::::
climate-invariant

::::::::::
relationships

:::
were

::::::
indeed

:::::::::
established,

:::::
should

:::::::
replicate

:::
the

:::::
actual

::::::::
responses). Imperfections in the machine learning predictions can be measured across

an ensemble of climate models, e.g. from the CMIPs, and as such incorporated into the overall uncertainty quantification. This is sketched

in the bottom right for a set of 39 CMIP models (red dots), here showing 30-year averages of the predictions vs. true responses for the

years 2070–2100. Finally, to obtain an observational constraint on model uncertainty in ∆y (cf. inter-model spread along the y-axis), the

function(s) fobs are combined with the 39 different CMIP controlling factor responses, leading to an observationally constrained distribution

for the predicted responses ∆yconstrained. The latter is shown (dashed
::::::
lightblue

:
distribution) on the x-axis in the bottom right figure. This

preliminary distribution is then combined with the prediction error (cf. spread around the 1:1 line across the 39 CMIP models) to obtain a

final observational constraint, indicated by the wider distribution (light blue
::::
black) along the y-axis.
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climate-invariant context to also constrain the future response, without the latter being involved in the fitting process. Secondly,

because the sample size for the relationships learned is no longer limited by the number of models in the ensemble (as is the

case for emergent constraints; typically in the range of around 10-60 CMIP models), the general setting is more suitable for250

the application of machine learning, which strongly depends on the availability of a sufficient number of training samples.

The review examples below used monthly-mean data. However, in principle, even much higher temporal resolutions could be

used, up to e.g. daily extremes, which might open up new routes for constraining changes in specific high-frequency extreme

::::::
extreme

:::::::
weather

:
events (Wilkinson et al., 2023; Shao et al., 2024).

The next important step is to validate - across a representative climate model ensemble - that the functions learned on255

historical data also perform well under climate change scenarios, i.e. if fCMIP,k can also skillfully predict the model-consistent

climate change response (indicated by ∆) if provided with model-consistent changes in the controlling factors:

∆yCMIP,k(t)≈ fCMIP,k(∆XCMIP,k(t)) (2)

Note that for most predictand and controlling factor variables, this will pose an extrapolation step to previously unobserved

value ranges. As discussed in the introduction, this extrapolation step under e.g. strong CO2 forcing poses particular challenges260

for non-linear ML techniques that one might want to apply to any given CFA analysis. In the stratospheric water vapour

example, we will show how linearizations might help tackle
::::::::
Similarly,

:
it
:::::
might

:::::
limit

:::
the

:::::
scope

::
of

::::::::
applying

::::
CFA

::
to

:
non-linear

observational constraint problems. However, alternative approaches, e.g. to turn extrapolation into approximate interpolation

problems (Beucler et al., 2024), might be one of many other helpful pathways to pursue. In the examples below, CFA-based

constraints will be derived for annually-averaged responses normalized by the global mean surface temperature Tg , as is265

common in climate feedback analyses (e.g. Andrews et al., 2012).
::
We

:::
see

:::::::
various

::::::::
pathways

::
to

::::::
address

:::::
these

::::::::
challenges

:::
in

::::
CFA

:::::::
analyses,

:::::
some

::
of

::::::
which

::::
have

:::
not

:::
yet

::::
been

::::::::
explored

::
in

:::
the

::::
CFA

::::::::
literature.

:::
We

::::
will

::::::
discuss

:::::
these

::
in

::::::
Section

::
3.

If the projections are reproduced well across the ensemble of climate models, this implies that the learned relationships

are approximately climate-invariant, thus opening up a new link between historically observable relationships and the future

climate response, at least to the degree that is currently represented in state-of-the-art climate models. This is exciting, because270

it provides a more direct approach to constrain model uncertainty than emergent constraints are able to provide. In the end, one

can then simply obtain an observational constraint on each model’s response by combining the observed function(s) fobs :::::
fobs,m

with each individual model response in the controlling factors:

∆yCMIP, constrained,kCMIP, constrained,k,m
:::::::::::::

(t) = fobs,m(∆XCMIP,k(t)) (3)

Finally, since the machine learning predictions will not be perfect, the resulting distribution of observationally constrained275

climate model responses will further need to be combined with the method-intrinsic prediction error, see Figure 2 and the

explanation in its caption, to obtain a final observationally constrained distribution for ∆y. Note that we also indexed the

function fobs with the index m here, to indicate .
::::

The
:::::
index

::::::::
indicates that both Ceppi and Nowack (2021) and Nowack et al.

(2023) trained a number of different observational functions to create the observationally constrained distribution
::
for

:::::
each
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:::::
model, to also sample and represent observational uncertainty in the relationships learned.

:::
For

::::::::
simplicity,

:::
we

::::
have

:::::::
dropped

::::
this280

::::
index

::
in
::::::
Figure

::
2.

:

2.2 Taking a step back

Before we discuss the two specific applications of the machine learning-based CFA framework, it is important to point out two

built-in assumptions in the nature of the resulting observational constraints:

1. By compartmentalising the prediction of y into two contributors in the form of parameters Θ and controlling factors X,285

the constraint will be based on the observed θobs. However, current versions of CFA do not address uncertainty in the

controlling factor responses across the climate model ensemble, which essentially remains untouched.

2. The CFA observational constraints are therefore conceptually closest to emergent constraints in the point that the choice

of controlling factors will be crucial for finding a constraint. If the
:::::::
However,

::
as

:::::::
already

:::::::::
mentioned

::::::
above,

::::
these

:::::::
choices

::::::
require

:
a
:::
far

::::::
smaller

::::
leap

:::
of

::::
faith

::
in

::::::
linking

:::
the

:::::::::
predictand

::::::::
response

::
to

::::
e.g.

:::::::::::::
thermodynamic

:::
and

::::::::
dynamic

:::::::::::
mechanisms.290

::::
Still,

::
if

:::
the resulting sensitivities Θ for the controlling factors are not actually uncertain, there will be no constraint. For

emergent constraints, this situation is akin to cases where there would be no spread along the x-axis for the observable

quantity across the models. A key difference is that one first identifies process-oriented relationships between X and y in

climate model data and observations, representing internal climate variability (and, possibly, historical trends), instead of

directly targeting quantities that have a large spread across the model ensemble for both the predictors and the long-term295

response.

2.3 Application I: cloud-controlling factor analysis

Changes in Earth’s cloud cover
::::
cloud

:::::::::
properties

::::::::
(amount,

::::::
optical

:::::
depth,

::::::::
altitude) are the leading uncertainty factor in global

warming projections under increasing atmospheric CO2 (Ceppi et al., 2017; Sherwood et al., 2020; Zelinka et al., 2020). A

driving force behind this uncertainty is the still relatively coarse spatial resolution of global models, meaning that processes300

involved in cloud formation have to be parameterized instead of being explicitly resolved. Improvements to parameterizations

relying on machine learning ideas have been suggested elsewhere (e.g. Schneider et al., 2017) and will not be discussed further

here. Instead, as first example, we will focus on CFA as an alternative viewpoint to constrain uncertainty in global cloud

feedback. As such, CFA attempts to find constraining relationships at larger spatial scale, similar to - but as outlined above in

important points different to - emergent constraints. CFA have already been used extensively to constrain uncertainty related to305

specific cloud feedback types, however primarily with low-dimensional multiple linear regression approaches including < 10

controlling factors. A few CFA studies used non-linear machine learning methods as well, but only to understand historical

cloud variations rather than to derive observational constraints on future projections (e.g. Andersen et al., 2017; Fuchs et al.,

2018; Andersen et al., 2022).

Previous observational constraint studies with lower-dimensional multiple linear regression, in turn, mostly focused on310

regionally confined major low-cloud decks (e.g. Qu et al., 2015; Zhou et al., 2015; Myers and Norris, 2016; McCoy et al.,
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2017; Scott et al., 2020; Cesana and Genio, 2021; Myers et al., 2021), because changes in their cumulative shortwave reflectivity

contribute a large fraction to the overall uncertainty in global cloud feedback (Sherwood et al., 2020). Building on this work,

Ceppi and Nowack (2021) developed a statistical learning analysis using ridge regression (Hoerl and Kennard, 1970) as a linear

form of machine learning. This new approach to CFA allowed them to improve on previous CFA constraints and to expand315

the scope beyond the low cloud decks and to global scale; for both shortwave (clouds are reflective, thus cooling climate) and

longwave (clouds can trap terrestrial radiation, thus warming climate) cloud radiative effects. Here, we will briefly review these

results, as an example of how CFA can be developed to constrain model uncertainty more effectively, by including machine

learning ideas. A sketch of the framework is shown in Figure 3.

As in previous lower-dimensional CFA for clouds, Ceppi and Nowack (2021) focused on a relatively short, well-observed320

period during the satellite era. In their set-up, this translates into a regression approach in which cloud-radiative anomalies at

grid point r, dC(r), to be be
::
are

:
approximated as a linear function of anomalies in a set of M meteorological cloud-controlling

factors dXi(r):

dC(r)≈
M∑
i=1

∂C(r)

∂Xi(r)
·dXi(r) =

M∑
i=1

Θi(r) ·dXi(r). (4)

where the parameters Θi(r) represent the
::::::
learned sensitivities of C(r) to the controlling factors. Here, C(r) could in principle325

be different types of measures to characterize cloud contributions to shorter-term variations (here, monthly) and long-term

changes (including the climate change response) in Earth’s energy budget. For example, Ceppi and Nowack (2021) separated

shortwave from longwave cloud radiative effects, and further common decompositions are into high cloud and low cloud

contributions, as well as changes in cloud fractions, cloud top pressure, and cloud optical depth (e.g. Kemsley et al., 2024)

:::::::::::::::::::::::::::::::::::::::
(Wilson Kemsley et al., 2024; Ceppi et al., 2024). As a key difference to previous studies, which focused on grid-point-wise330

relationships, e.g. between surface temperature at point r and C(r), Ceppi and Nowack (2021) regressed cloud-radiative

anomalies at grid point r as a function of the controlling factors within a 105◦ × 55◦ (lon × lat) gridded domain centered

on r (Figure 3
::
b,c), rendering the regression high-dimensional. The contribution of each controlling factor to dC(r) is then

obtained by the scalar product of the spatial vectors Θi(r) and dXi(r).

An important choice is the set of controlling factors. Heuristics that motivate various predictors for low cloud decks can be335

found in Klein et al. (2017) and for high clouds in
::::::
Wilson Kemsley et al. (2024). In Ceppi and Nowack (2021), the authors

used five different patterns of cloud controlling factors, which were used to train the predictions on historical data. However,

for an effective constraint on the cloud feedback under abrupt-4xCO2 forcing across CMIP5 and CMIP6 models, they only

considered two factors that drive the main part of the climate change response (rather than variability), at least when averaged

globally. These were patterns of surface temperature (the most important factor) and of the estimated inversion strength (EIS,340

an important modulating factor
:
;
:::::
while

:
a
::::::::
different

:::::::
stability

:::::::
measure

:::
was

:::::
used

::::
over

::::
land). Overall, the study demonstrated that

the use of machine learning ideas opens the door to consider a larger spatial context, which improved the CFA function in

terms of its predictions, and eventually also the overall observational constraint
::::::
(Figure

:::
3d). It further allowed for the extension
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Figure 3. Cloud example for a CFA with machine learning.
:::
The

::::::::
workflow

::::::
broadly

::::::
follows

:::
the

::::
logic

:::::::
outlined

::
in

:::::
Figure

::
2.

:
(a) Cloud

radiative effects
:::::
(CRE)

:
are predicted at a given grid location as a function of a set of controlling factors. Linear machine learning ap-

proaches such as ridge regression are currently recommended due to the need to extrapolate when using the learned relationships for predic-

tions under climate change scenarios.
:::
The

:::::::
functions

:::
for

:::
each

::::
grid

::::
point

:::
are

:::
first

::::::::
evaluated

::
on

:::::::::::
monthly-mean

::::
data

::
of

:::::::
historical

:::::::::
simulations

:::
and

::::::::::
observations,

:::
and

::::::::
afterwards

:::
for

::::::
climate

::::::
models

::
on

:::::::
monthly

::::::::
predictions

:::::
under

::::::
4xCO2::::::

forcing
::::
with

::::::::::::
model-consistent

:::::::
changes

::
in

:::
the

::::::::
controlling

::::::
factors.

::
As

:
a
:::::
sketch

:::
this

::
is
::::::::
illustrated

::
on

::::::::::
multi-annual

::::::::
predictions

::
of

:
a
:::::
single

::::::
climate

:::::
model

::
for

:
a
::::

grid
::::
point

::
in

::
the

::::::
tropical

::::::
Pacific

(
::
top

:::::
right).

:::
For

:::::::::::
comprehensive

:::::::::
evaluations

::
of

::::
such

:::::::
functions

::
on

::::::::
historical

:::
data

:::
see

:::
for

::::::
example

:::
the

:::::
study

::
by

::::::
Wilson

::::::::::::::::
Kemsley et al. (2024)

.
:::

As
:::
the

:::::
sketch

:::
for

::
the

::::::
4xCO2:::::::

scenario
::::::
extends

:::
over

::::
150

::::
years,

:::
the

:::::::
monthly

::::::::
predictions

::::
and

:::::
ground

::::
truth

::::
were

:::::::
averaged

::
to

::::::
annual

:::::
means

::
for

::::::::::
visualization

:::::::
purposes.

::
(b) Example sketch of the regional context (yellow) of many grid points surrounding a target grid point (pur-

ple) for which the cloud radiative effects
:::
CRE

:
are predicted. (c) Example map of CMIP multi-model-mean ridge regression coefficients

::::::::
parameters Θ for one of the controlling factors - surface temperature - when predicting shortwave cloud radiative effects

:::
CRE. In (d), the

final constraint on the global cloud feedback is illustrated:
:::
using

:
the predicted

::::::
monthly

::::::
climate

:::::::::::
model-specific

:::::::::
predictions

:::::
under

::::::
4xCO2,

::::
these

:::
are

::::::::::
subsequently

:::::::
annually

:::::::
averaged

::
to

:::::::
calculate

:
cloud feedback is obtained by combining the functions learned

::::::::
parameters from

slices
::::::::::
Gregory-type

:::::::::
regressions

::::::::::::::::::::::::::::::::
(Gregory et al., 2004; Andrews et al., 2010) of historical simulations

::::::::::::::::
top-of-the-atmosphere

::::
CRE

::::::::
anomalies

:::::
against

:::::
global

:::::
mean

:::::
surface

::::::::::
temperature

::::::
change.

:::::
These

:::::::
feedback

::::::::
parameters

:
(of same length as

::::
which

:::
are

:
the satellite data observational

record
::::
linear

::::::::
regression

:::::
slopes

::
of

::::
these

:::
fits) with model-consistent changes in

::
are

:::::::
obtained

::::::::
separately

:::
for the controlling factors. This is

regressed against
:::
ridge

::::::::
regression

:::::::::
predictions

:::
and the actual ’ cloud feedback of the same climate models

:::::
4xCO2:::::::::

simulations
:::
for

:::
each

::::::
model.

::::::::
Afterwards, as inferred

::
we

:::::::
compare

::
the

::::::::::::
ridge-predicted

::::
CRE

:::::::
feedback

::::::::
parameters

::::
with

::::
those

::::::
derived from the actual abrupt-4xCO2::::::

climate

:::::
model

:
simulations available from

:::::
across the CMIP5/6 archives

::::
entire

:::::
model

:::::::
ensemble.

::
For

:::
the

:::
plot

:::::
shown,

:::
we

:::
first

:::::::
integrated

:::
the

::::::::::
contributions

:
to
:::
the

:::::
global

::::::::
shortwave

:::
and

:::::::
longwave

::::
CRE

:::::::
feedback

:::::::
parameter

::::::::::
contributions

:::::
across

:::
all

:::
grid

:::::
points,

:::::
before

::::
then

::::::::
combining

::
the

::::::::
longwave

:::
and

:::::::
shortwave

::::::::::
components

:
to
:::
an

:::::
overall

:::::
global

::::
cloud

:::::::
feedback

:::::::::
parameter.

::::
Plots

::
for

:::
the

:::::::::
components

:::
can

::
be

:::::
found

::
in

::::::::::::::::::::
Ceppi and Nowack (2021)

:::
and

::
its

:::::::::::
Supplementary

:::::::
Material.

:
Across 52 CMIP models, a strong relationship (r = 0.87) is obtained. Here

:::::::
Following

:::
the

::::::::::
combination

::
of

:::::::
functions

:::
and

::::::::
controlling

:::::
factor

::::::::
responses

::
as

::::::
outlined

::
in

:::::
Figure

::
2, four different observationally derived functions resulted in 4×52 = 208

observationally constrained projections, shown as uncertainty distribution along the x-axis (dashed line). This distribution is combined with

the methodological uncertainty to provide a final observational constraint distribution for the global cloud feedback shown along the y-axis

(solid line).
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of CFA frameworks of cloud feedback from specific low-cloud analyses to global scale and to new cloud types (in particular,

high clouds; cf.
::::::
Wilson Kemsley et al. (2024)).345

2.4 Application II: an observational constraint on the stratospheric water vapour feedback

The linearity assumption appears to work well to first order for global cloud feedback, but this is not guaranteed for many other

uncertain Earth system feedbacks. A first counter-example can be found in Nowack et al. (2023) who adapted the framework

presented in Ceppi and Nowack (2021) to constrain uncertainty in changes in specific humidity across the stratosphere. This

‘stratospheric water vapour feedback’ is indeed highly uncertain in CMIP models, with model responses ranging from virtually350

no response to more than a tripling of concentrations relative to present-day values in 4xCO2 simulations. This, in turn, makes

significant contributions to uncertainties in global warming projections (Stuber et al., 2005; Joshi et al., 2010; Dietmüller et al., 2014; Nowack et al., 2018b; Keeble et al., 2021)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Stuber et al., 2005; Joshi et al., 2010; Dietmüller et al., 2014; Nowack et al., 2015, 2018b; Keeble et al., 2021), the tropospheric

circulation response (Joshi et al., 2006)
::::::::::::::::::::::::::::::::::::
(Joshi et al., 2006; Charlesworth et al., 2023), and the recovery of the ozone layer (Dvortsov

and Solomon, 2001; Stenke and Grewe, 2005).355

To address this uncertainty, Nowack et al. (2023) defined a CFA using ridge regression (Hoerl and Kennard, 1970) in

which they predicted monthly-mean water vapour concentrations in the tropical lower stratosphere (qstrat) as a function of

temperature variations in the upper troposphere and lower stratosphere (UTLS). Their analysis was directly motivated by the

strong mechanistic link between tropical UTLS temperature and water vapour entry rates, see e.g. Fueglistaler et al. (2009) for

a review
::::::::::::::::::::::::
Fueglistaler et al. (2005, 2009). Their final controlling factor function was defined as follows:360

log
(
qstrat(t)

)
= f(Θ,T; t,τmax) =

lat∑
i

lon∑
j

p∑
k

τmax∑
τ

Θijk,τ dTijk (t− τ) (5)

which takes into account temperature anomalies dT across a whole longitude-latitude-altitude cube of the tropical to mid-

latitude UTLS region, over τmax monthly time lags. Using this function, both internal variability in qstrat (for observations and

CMIP models) as well as the long-term climate change response (CMIP models) could be predicted well.

However, under abrupt-4xCO2 forcing, the function notably only held true after log-transforming the predictand before365

training, which apparently led to a quasi-linearization of the relationships to be learned (Figure 4). The need for such a trans-

formation is not unexpected due to the known approximately exponential relationship between temperature and saturation

water vapour concentrations, and simply underlines that similar CFA could be designed for many other uncertain Earth system

feedbacks, even if non-linear, if appropriate physics-informed transformations can be applied.

3 Challenges370

3.1 Dealing with non-linearities

As already implied by the stratospheric water vapour example, not all relationships we wish to constrain will be linear. For

example, while not typically considered in the emergent constraint literature, the aerosol effective radiative forcing (ERF) is
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Figure 4. Constraint on stratospheric water vapour projections requiring a nonlinear transformation. (a) linear ridge regression

without transformation of the predictand. (b) After log-transforming the predictand before training on historical data. Without the log-

transformation, the predictions for large changes increasingly underestimate the actual responses in the corresponding abrupt-4xCO2 sim-

ulations and the scatter in the predictions also increases (lowering r). With the transformation, the predicted water vapour responses agree

well with the actual simulated responses (provided in parts per million volume/ppmv; normalized by model-consistent global mean surface

temperature change
:
to

::::::
convert

::
the

::::::
change

:::
into

::
a

:::::::
feedback). The final observational constraint is calculated similar to the cloud example; for

further details see Nowack et al. (2023). The dashed red lines mark the predictions
:::::::
prediction

:
intervals,

::::::
whereas the solid red lines the

::::
show

linear regressions
::::
fitted

::
to

::
the

::::
data (Wilks, 2006).

defined with reference to an un-observed pre-industrial atmospheric state and so faces many of the same challenges described

above (see also Figure 5). Since the relationships between aerosol emissions and cloud properties, and cloud properties and375

radiative forcing are known to be non-linear (Carslaw et al., 2013a),
:
extrapolating from observed to unobserved climate states,

while necessary, is fraught with danger.

Besides the obvious risk that if we naively attempted to fit non-linear functions to such relationships we could easily over-fit

our data, Figure 5 shows the opposite risk that assuming the non-linearities to be small based on the observed data (inset)

could lead us to under-fitting the response over larger ranges. If at all possible we should look to collect observations in these380

outlying regions, perhaps looking at particularly clean atmospheric conditions in the case of aerosol (Carslaw et al., 2013a;

Gryspeerdt et al., 2023).Failing that, we must either either rescale our data such that we are no-longer extrapolating, or linearize

the relationship using physical understanding (Beucler et al., 2024).

:::::::
Looking

::::::
beyond

::::::::
emergent

::::::::::
constraints

:::
and

:::::::
towards

:::
the

:::::
CFA

:::::::::
framework

:::::::::
discussed

::
in

::::::
Section

:::
2,

:::
we

::::::
further

::::::::
highlight

::::
four

::::::::
strategies

::
to

:::::::
address

:::
the

:::::::::::
extrapolation

:::::::::
challenge

::
in

:::::::::
non-linear

::::::::
contexts.

::
In

::::
our

:::::::
opinion,

:::::
these

::::::::
strategies

:::::
have

:::
not

:::
yet

:::::
been385

:::::::
exploited

::::::::::
sufficiently

::
in

:::
the

:::::::
existing

:::::::
literature

::::
and

:::::
could

::
be

:::::::::
promising

::::::::
pathways

:::
for

:::::
future

:::::
work:

:
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–
:::::::::::::::::::
(Quasi-)Linearizations.

::
In

:::
the

:::::::::::
stratospheric

:::::
water

::::::
vapour

::::::::
example,

:::
we

:::::::::::
demonstrated

::::
how

::::::::::
linearizing

::::::::::
relationships

::::
can

:::
help

::::::
tackle

::::::::
non-linear

:::::::::::
observational

:::::::::
constraint

:::::::::
challenges.

::
In

::::::::
particular,

:::::
prior

:::::::
physical

:::::::::
knowledge

:
-
::::
such

::
as

:::
the

::::::::::::
approximately

:::::::::
exponential

::::::::::
relationship

::::::::
between

::::::::::
temperature

:::
and

:::::::
specific

::::::::
humidity

:
-
:::
can

:::
be

::::
used

::
to

:::::::::
transform

:::
the

::::::::
regression

::::::::
problem

::::::
towards

::
a

::::
more

:::::
linear

:::::::::
behaviour,

::::
thus

:::::::::
facilitating

::::::::::::
extrapolation.390

–
::::::::::::::
Climate-invariant

::::
data

::::::::::::::
transformations.

:::::::
Another

::::::::
promising

:::::
route

:::::
could

::
be

::
to

:::::
pursue

:::::
ideas

::::::
similar

::
to

:::::::
variable

:::::::::::::
transformations

::::::
recently

:::::::::
suggested

::
for

:::::::
climate

:::::
model

:::::::::::::::
parameterizations

:::::::::::::::::
(Beucler et al., 2024).

:::
In

:::::::
essence,

:::::::
variables

:::
that

::::::
require

:::::::::::
extrapolation

::
in

::::::
warmer

:::::::
climates

:::::
could

::
be

::::::::::
transformed

::::
into

::::::::
substitute

:::::::
variables

::::::
whose

:::::::::
distribution

::::::
ranges

:::
are

::::::::::::
approximately

::::::::::::::
climate-invariant,

::
for

::::::::
example

::::::
because

::::
they

::::::
cannot

:::
(or

:::::
hardly

:::::
ever)

::::
cross

::::::
certain

:::::::
physical

:::::::::
thresholds

::::
(e.g.

::::::
relative

::::::::
humidity

::::::
which

:::
can

::::
vary

::::
only

:::::::
between

:::
0%

:::
and

:
-
::::::
mostly

:
-
::::::
100%).

::::
Such

:::::
ideas

:::
are

:::
not

::
be

::::::::
discussed

::
in

:::::
detail

::::
here;

:::
we

:::::
rather

::::
refer

::
to

:::::::::::::::::
Beucler et al. (2024)395

:
.

–
::::::
Moving

:::::::::
non-linear

:::::::::::
contributions

::
to

:::
the

:::::::::
controlling

:::::
factor

::::::::
responses

:
.
::::
CFA

:::
aim

::
to

:::::::::::::
observationally

::::::::
constrain

:::
the

:::::::::
parameters

::
Θ

:::
that

:::::::::::
characterize

:::
the

:::::::::::
dependence

::
of

:::
the

::::::::::
predictand

:::
on

:::
the

::::::::::
controlling

::::::
factors.

::::
The

::::::::::
controlling

::::::
factor

:::::::::
responses,

:::::::
however,

:::
are

:::
not

::::::::::
constrained

:::
and

::::
can,

::
of

::::::
course,

::::::
behave

:::::::::::
non-linearly.

::
In

::
a

:::::
linear

::::
CFA

::::::::::
framework,

:::
this

:::::::::
description

::::::
would

::
be

::::::::::
comparable

::
to

:
a
:::::
linear

:::::::
function

:::
that

:::::::
depends

:::
on

:::::::::
polynomial

::
or

::::::::::
logarithmic

:::::
terms,

::::
etc.;

::::
one

:::
can

:::
still

::::::::
constrain

:::
the

:::::
linear400

:::::
model

:::::::::
parameters

::
in
::::
that

::::
case.

::::
This

::::
idea

::
is
:::
not

:::::::
distinct

::::
from

:::
the

:::::
point

::
on

:::::::::::::::::
quasi-linearizations,

:::
but

:::::
helps

::
to

::::::::
underline

:::
the

::::::::
difference

::
in

::::::::::
approaches

::
as

::
to

:::::::
whether

::
the

:::::::::
predictand

::
or
:::
the

:::::::::
predictors

:::
are

::::::::::
transformed

::
to

:::::
obtain

:::
an

::::::::::::
approximately

:::::
linear

::::::
model.

:

–
:::::::::
Non-linear

:::::::
methods

:::::::::::
incorporating

:::::
prior

:::::::
physical

:::::::::
knowledge

::
to

::::::::
constrain

:::
the

:::::::
solution

:::::
space.

:
In

::::::
section

::
4,

:::
we

::::
will

::::::
discuss

::::
ideas

::
as

:::
to

::::
how

:::::::::
non-linear

:::::::
machine

:::::::
learning

::::::::
methods

:::::
could

::::::
indeed

::
be

:::::::
applied

::
to

::::
CFA

:::::::::::
frameworks.

:::
For

::::::::
example,

::::
this405

:::::::
concerns

::::::::
Gaussian

::::::::
Processes

::::
with

::::::::::
appropriate

::::::
choices

::
of

::::::
priors,

::
or

::::
with

:::
the

::::::::::
combination

::
of
:::::
linear

::::
and

:::::::::
non-linear

::::::
kernels

::
to

:::::
model

::::
both

:::::
linear

::::
and

:::::::::
non-linear

::::::::
variations

::
in

:::
the

:::::::::
predictand

:::::::::::::
simultaneously.

::
In

::::::::
addition,

::::::::::::::
physics-informed

::::::::
machine

:::::::
learning

:::::::::
approaches

::::::::::::::::::::::
(Karniadakis et al., 2021)

::::
could

::::
help

::
to

::
a

:::::
priori

:::::
define

::::::::
saturation

:::::::
regimes

::
in
::::::::

machine
:::::::
learning

::::
cost

::::::::
functions,

::
or

:::::::
similar.

3.2 Confounding410

Confounding occurs when an extraneous variable influences both the dependent variable and an independent variable, leading

to a spurious association. This is particularly challenging in climate science, where numerous interacting processes can lead to

complex relationships between variables. For instance, in the context of Figure 5, the apparent influence of an observed vari-

able on an unobserved variable may actually be mediated or obscured by another uncontrolled variable, such as temperature.

This confounding can severely compromise the identification and validation of emergent constraints or controlling-factor rela-415

tionships. Machine learning methods, though powerful in detecting patterns, are not inherently equipped to distinguish causal

relationships from mere correlations unless specifically designed to do so.
:
A

:::::::::
possibility

::
to

::::::
address

::::
this

::::::::
challenge

::::::
through

::::::
causal

::::::::
discovery

:::::::
methods

::::
will

::
be

::::::::
discussed

::
in

:::::::
Section

:::
4.2.

:
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Figure 5. A schematic diagram of a typical emergent constraint showing the relationship between an unobserved quantity (Y; say effective

radiative forcing/ERF) and an observed quantity (X). This holds well over a limited region of X (inset). This relationship may fail to

hold outside the observed region though, particularly if the response is (or becomes) non-linear. This relationship can also breakdown if a

(possibly) unobserved variable Z affects both X and Y, causing a confounding that changes the relationship in e.g. in a warmer world (or the

past).

3.3
::::

Blind
:::::
spots

::
in

:::::::
climate

::::::
model

:::::::::
ensembles

::::::
Clearly,

:::
any

::::::::::::
observational

::::::::
constraint

::::::::
approach

:::
that

:::::::
requires

::::::
climate

::::::
models

::
to

:::::::
validate

:::
the

:::::::::::
mathematical

:::::
model

::::
used

::
to

::::::::
constrain420

::
the

::::::
future

:::::::
response

::
is

:::::::::
potentially

:::::::
affected

::
by

:::::
blind

::::
spots

::
in
:::
the

:::::::::
ensemble.

:::
For

::::::::
example,

::::
blind

:::::
spots

:::::
could

::
be

:::::::::
potentially

:::::::
missing

:::::::
physical

::::::::::
mechanisms

::::::
across

::
all

::::::
models

:::
as

:::
e.g.

:::::::
implied

::
in

:::::::::::::::
Kang et al. (2023)

::
for

::::::::
Southern

::::::::::
Hemisphere

:::
sea

:::::::
surface

::::::::::
temperature

:::::::
changes.

::::
This

:::::::::
limitation,

:::::::
however,

::::::
applies

:::
in

::::::
similar

::::
ways

::
to

:::
all

::::
types

::
of

::::::::::
approaches

::::::::
discussed

::::
here

::::::::
including

::::::
classic

::::::::
statistical

::::::
climate

::::::
model

:::::::::
evaluation,

:::::::::
emergent

::::::::::
constraints,

:::
and

:::::
CFA.

::::
For

:::::
CFA,

::::
this

::::::
affects

:::
the

:::::::::
evaluation

:::
of

:::
the

::::::::::::::::
climate-invariance

:::::::
property

::
of

:::
the

:::::::::::
relationships

:::::
found

:
if
::::
they

:::
are

::
to
:::
be

::::::::
evaluated

::::
well

::::::
beyond

::::::::
historical

::::::
climate

:::::::
forcing

:::::
levels.425

::::
Still,

:
a
::::::::::
well-chosen

:::
set

::
of

:::::
proxy

::::::::
variables

::
as

::::::::
predictors

:::
for

::::
CFA

::::
can,

::
to

::::
some

::::::
extent,

::::
help

::
to

:::::
buffer

::::::
against

:::::
such

::::::
effects.

::
In

:::
the

::::::::::
stratospheric

:::::
water

::::::
vapour

::::::::
example,

:::
the

:::::::
authors

::::::
focused

:::
on

:::
the

::::::::::
CO2-driven

::::::
climate

:::::::::
feedback.

::
As

::
it
::::::
stands,

::::
such

:::
an

::::::::
approach

:::::::
brackets

:::
out

::::
other

::::::::
potential

::::::::::
mechanisms

:::
for

:::::
future

:::::::
changes

::
in

::::::::::
stratospheric

:::::
water

::::::
vapour

:::::::
through

::::::::
chemical

::::::::::
mechanisms

::::::
related

::
to

:::::::
methane

::::::::::::::::::
(Nowack et al., 2023)

::
or

::
to

::::::
changes

::
in

:::
the

::::::::::
background

:::::::::::
stratospheric

::::::
aerosol

::::::
loading

:::::::::::::::::::::::::::::::::::::::
(Kroll and Schmidt, 2024; Marshall et al., 2024)
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:
.
::::::::
However,

:::
the

:::::::::::::
monthly-mean

::::::::::
temperature

:::::::::
variations

::::::
around

:::
the

::::::::::
tropopause

::::
will

::::::::
naturally

::::::::
integrate

:::::::
multiple

:::::::::::
mechanisms430

::::::::::
contributing

::
to

:::::
water

::::::
vapour

:::::::::
variability,

:::::
some

::
of

:::::
which

:::
the

:::::::
authors

:::
did

:::
not

::::::::
explicitly

:::::
think

::
of

::::::
during

::::
their

:::::::::
framework

:::::::
design.

:::::::
Notably,

:::
the

::::
same

:::::::::
variations

:::
will

:::::
never

:::::
truly

:::::
reflect

:::
the

:::::
most

:::::::
intuitive

:::::::::
mechanism

:::
of

:::
the

:::::::::
immediate

::::::::::
dehydration

::
of

:::
air

::::::
parcels

:::::
during

:::::
their

:::::
ascent

:::::
from

:::
the

::::::::::
troposphere

::::
into

:::
the

:::::::::::
stratosphere.

:::
The

:::::
latter

::::::
would

::::::
require

::
a

:::::::::
Lagrangian

::::::::::
perspective

::::
and

:::::
much

:::::
higher

::::::::
temporal

::::
and

::::::
spatial

:::::::::
resolutions

:::
in

:::
the

::::
data

::::
the

::::
CFA

::
is
:::::::

applied
:::
to.

:::
At

:::
the

:::::
same

:::::
time,

:::::
other

::::::::
processes

::::::::::
potentially

::::::::::
contributing

::
to

:::::
water

::::::
vapour

:::::::::
variations,

:::::
such

::
as

:::::::::
convective

::::::::::::
overshooting,

:::::::::::::::::
radiation-circulation

::::::::::
interactions,

:::
or

:::::
cirrus

::::::
clouds435

:::::::::::::::::::::::::::::::
(Dessler et al., 2016; Ming et al., 2016)

:
,
:::
will

:::::
likely

:::::::
already

::::
have

::
an

:::::
effect

::::::::::
present-day

:::
and

:::::
would

::::
thus

::
be

::::
part

::
of

:::
the

::::::::::::
observationally

::::::
derived

:::::::::
parameters

::
in

:::
the

:::::::::
constraint

::::::::
functions

:::
(i.e.

:::::
lower

::
or

:::::::
increase

:::
the

::::::::::::::::::::
observationally-derived

:::::::::::
sensitivities).

::::::
Having

::::
said

::::
that,

:::::
what

::::::
always

:::::::
remains

::::::::
uncertain

::
in

:::::
CFA

::
is

:::::::
whether

:::
the

::::::::::
distribution

::
of

::::::::::
controlling

:::::
factor

:::::::
changes

:::
in

:::
the

::::::::
ensemble

::
of

::::::
climate

::::::
models

:::::
truly

::::::::::
encapsulates

::::
their

::::::
future

:::
true

::::::::
response

::
to

::::
CO2:::::::

forcing.
:
If
::::
not,

::::::::::
constraining

::::::::
functions

:::::::
learned

::::
from

::::
past

:::
data

:::::
might

:::::::
provide

:
a
::::::::
different

::::::::
constraint

::
on

:::
the

:::::
future

::::::::
feedback

::
if

::::::::
combined

::::
with

:
a
:::
set

::
of

:::::::::
controlling

::::::
factor

::::::::
responses440

:::::::::::
hypothesized

::
to

:::::
better

::::::::
represent

:::::::::
suggested

::::
blind

::::
spot

:::::::::::
mechanisms.

:::
In

:::
any

:::::
case,

::::
such

:::::
tests

:::::
could

::
be

::::::::
valuable

::
to

:::::::
explore

:::
the

::::::::::
implications

::
of

::::::::
potential

::::::
climate

:::::
model

:::::
blind

:::::
spots

:::
for

:::
the

::::::::
robustness

:::
of

:::::::::::
observational

::::::::::
constraints.

:::::::
Specific

:::::::::
simulations

::::
with

::
a

:::::::::::::
mechanistically

:::::::::
supposedly

:::::
more

:::::::
complete

::::::
model,

::
or

::::::::::
simulations

::::::
subject

::
to

:::::
larger

::::::
ranges

::
of

:::::
values

:::
for

::::::::
uncertain

::::::
climate

::::::
model

:::::::::
parameters

:::
(see

::::
also

::::::::
perturbed

:::::::
physics

:::::::::
simulations

::::::::
discussed

::
in
:::::::
Section

:::
4.3)

:::::
could

:::
be

:::::
useful

:::::::
starting

:::::
points

::
in

:::
this

::::::
regard.

:::::
Tests

::::
along

:::::
these

::::
lines

:::::
could

:::::::
provide

:::::::
valuable

:::::::
insights

::::
with

::::::
respect

::
to

:::
the

::::::::
sensitivity

:::
of

::::
CFA

:::::::::::
observational

:::::::::
constraints

::
to

:::::::
varying

:::
the445

::::::::::
assumptions

:::::::
inherent

::
in

::::::::::::
state-of-the-art

:::::::
climate

:::::::
models.

4 Opportunities

With care
:
In

:::::::
Section

::
3,

:::
we

:::::::::
highlighted

::::::
several

:::::::::
challenges

::
in

:::
the

:::::::::
application

:::
of

:::::::
machine

:::::::
learning

::
in

:::::::::::
observational

:::::::::
constraints

:::
on

::::::::::::
state-of-the-art

::::::
climate

::::::
model

:::::::::
ensembles.

:::::
With

::::::
careful

::::::::::::
consideration

::
of

:::::
these

:::::::::
challenges, however, machine learning has the

potential to be a powerful tool to learn more sophisticated, objective (emergent) constraints that can be validated through cross-450

validation and perfect model tests. On top of the machine learning-augmented CFA outlined in section 2, we here highlight a

few more ways in which machine learning can be used to find, and improve the robustness of, observational constraints.

4.1 Physical priors

In many cases we already have a reasonable approximation of the functional form of a physical response but would like

to capture uncertain elements, such as free parameters or closures, in a consistent and transparent way. In the stratospheric455

water vapour example above, this was the known non-linear relationship between temperature and saturation water vapour. In

Bayesian terms, we already have an informative prior. As such, using a Bayesian approach can be a powerful way of encoding

this information and updating it with observations to provide predictions with well calibrated uncertainties.

One recent example of this utilizes the functional form of a simple energy balance model (FaIR in this case; Leach et al.

(2021)) as a prior for a Gaussian process (GP) emulation of the temperature response to a given forcing (Bouabid et al., 2023).460

By constructing the statistical (machine learning) model to respect the physical form of the response, it is able to better predict

19



Figure 6. Example of using a Bayesian model with a physical prior to enable accurate and well calibrated extrapolation of climate

projections. Both the FaIR model and the FaiRGP model (which encodes the FaIR response in the covariance function) accurately

reproduce the NorESM2 warming under SSP2-4.5 - despite having only seen historical temperatures. The Plain GP has a no physical

regularisation and quickly reverts to its mean function.

future warming. Importantly for this discussion, this approach performs significantly better than an unconstrained GP when

making out-of-sample predictions (extrapolating). For example, by training both GPs only on outputs from a GCM representing

the historical period, the physical GP is able to accurately predict future warming under SSP-2-4.5, while the plain GP quickly

reverts to its mean function. This behaviour is not confined to GPs, any highly parameterised regression technique (such as a465

neural network) would produce spurious results without the strong regularisation that the physical form provides. Similarly,

physical constraints imposed on machine learning cost functions, as is the case in physics-informed machine learning (Chen

et al., 2021; Karniadakis et al., 2021; Kashinath et al., 2021), could be powerful tools to be used in this context.

4.2 Discovering controlling factors

Causal discovery and inference techniques allow us to robustly detect potential constraints and to address the challenge of470

confounding variables respectively (Runge et al., 2019; Camps-Valls et al., 2023). Methods such as causal discovery or the use

of instrumental variables could help in distinguishing true climate signals from confounding noise. Furthermore, enhancing

the datasets with more comprehensive metadata that captures potential confounders and applying robust statistical techniques

to explicitly model these confounders can aid in mitigating their effects. Such approaches would strengthen the reliability of

machine learning-driven analyses, ensuring that the emergent constraints or CFAs reflect more accurate and physically plau-475

sible relationships that hold under various climate change scenarios. An interesting analogy is that with CFA from section 2,

significant confounding which might change the detected historical relationships under climate change should also lead to a

corresponding decrease in predictive skill of the climate change response under, e.g., 4xCO2 forcing. As such, poorly perform-
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ing CFA extrapolations might be a good indicator of poorly designed causal (proxy) relationships among the controlling factors

and the predictand.480

4.3 Perturbed parameter ensembles

Perturbed Physics Ensembles (PPEs) (Murphy et al., 2004; Mulholland et al., 2017) present a significant opportunity in the

realm of CFA by allowing researchers to systematically explore the sensitivity of climate models to changes in physical param-

eterizations. By adjusting various parameters within a climate model, PPEs generate a range of plausible climate outcomes,

which can then be analyzed to understand how specific processes impact model outputs. This systematic variation of param-485

eters helps isolate the influence of individual factors, thereby providing deeper insights into the workings of climate models

than is possible by simply comparing a small ensemble of qualitatively different models.

The utility of PPEs extends beyond the internal processes of models to potentially enhance our understanding of real-world

observations. By identifying which parameters and model configurations yield the best alignment with observed climate data,

researchers can infer which physical processes might be driving observed changes in the climate system. This transfer of490

learning from models to observations is crucial for improving the robustness and credibility of climate projections. Moreover,

the knowledge gained through PPEs can guide the development of more refined machine learning algorithms that are capable

of incorporating complex, non-linear interactions discovered in observations. Thus, combined with the causal discovery ap-

proaches outlined above, PPEs not only enrich our understanding of climate model behavior but can also serve as a resource

for informing robust (physical) CFAs.495

5 Conclusions

While all climate change studies with machine learning necessarily face the challenge of extrapolation in the presence of

(potential) non-linearity, there are clearly opportunities and methods to make the power of machine learning accessible to the

scientific challenge. Here, we took the perspective of how machine learning can help us provide better observational constraints

on the still substantial uncertainties in climate model projections. In particular, we highlighted controlling factor analyses (CFA)500

combined with machine learning as a promising route to pursue, and contrasted this approach to emergent constraints.
:::
On

:::
the

:::
one

:::::
hand,

::::::::
emergent

::::::::::
constraints

:::::
share

:::::::
common

:::::::
ground

::::
with

:::::
CFA

::
in

::::
that

::::
they

::::
still

::::::
require

::::::
expert

:::::::::
knowledge

:::
in

:::
the

::::::
choice

::
of

::::::::
predictors

::::
and

::
in

::::
that

::::
they

::::::
require

::
a
::::
leap

::
of

::::
faith

:::
in

:::
the

:::::
whole

::::::::
ensemble

:::
of

::::::::::::
state-of-the-art

:::::::
climate

:::::::
models.

:::
On

:::
the

:::::
other

::::
hand,

:::::
CFA

::::
learn

::::::::
functions

::::
that

::
a

::::::
provide

::
a
:::::
more

:::::
direct

:::
link

::::::::
between

:::
the

::::
past

:::
and

::::::
future

::::::::
response,

::::::
reduce

:::::::::::::::
oversimplification

::::::
through

:::
the

:::::::
learning

::
of

:::::
more

:::::::
complex

:::::::::
functional

:::::::::::
relationships,

::::
and

::::
allow

:::
for

:::::
more

::::::::::::
comprehensive

::::::::::::
out-of-sample

:::::::::
validation

::
of505

::::::::
predictive

::::
skill

::::
both

::
on

::::
past

:::::::
(climate

:::::::
models

:::
and

:::::::::::
observations)

::::
and

:::::
future

::::
data

:::::::
(models

:::::
only).

:::
As

::::
such

:::::
CFA,

:::
are

:::::::
arguably

::::
also

:::
less

:::::
prone

::
to

:::
the

::::
risk

::
of

::::
data

::::::
mining

::::::::::
correlations

:::
that

:::
are

:
a
:::::::::
posteriori

:::::::
justified

::
on

:
a
::::::::
physical

::::::
science

:::::
basis.

:

Ultimately, CFA might also help to validate proposed emergent constraints in the future.
:
In
::::::::

essence,
:::
for

:::
this

:::
to

:::::::
happen,

:::
one

:::::
would

:::::
have

::
to

:::
set

::
up

:::
an

:::::::
effective

::::
CFA

::::::::
targeting

:::
the

::::
same

::::::::
uncertain

::::::::::
predictand.

:
Existing emergent constraints could thus,

in many ways, be considered as useful starting points for this new field
:
,
::
in

:::
the

:::::
spirit

:::
of

:::::::
working

:::::::
towards

:
‘
:::::::
multiple

:::::
lines510
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::
of

::::::::
evidence’. We further provided a wider perspective on the challenges of using machine learning for observational and,

specifically, emergent constraints, such as non-linearity and confounding. Key opportunities to address these challenges we see

in physics-informed data transformations, physics-informed machine learning, causal algorithms, perturbed physics ensembles,

and in imposing physical knowledge through physical priors in Bayesian methods.

:::::
While

:::
we

::::::
refrain

::::
from

:::::::::::::
over-explaining

::::
our

::::::::::
intentionally

::::::::::::
philosophical

:::::
paper

::::
title,

::
it

:
is
:::::
clear

:::
that

::::::::
emergent

::::::::::
constraints

::::
tend515

::
to

::
be

::::::::::::::
low-dimensional

:::
and

:::::::::
somewhat

:::::::::
simplistic.

::::::::::::
Consequently,

::::
they

:::
will

::::::::::
necessarily

::
be

:::::::
various

::::::
degrees

::
of
:

‘
::::::
wrong’,

::
as

:::
are

:::
all

::::::
models

::
of

:::
the

:::::
truly

:::::::
complex

::::
real

::::::
world.

:::
As

::::
such

::::
they

:::::
have

::::::::::::
commonalities

::::
with

::::
the

::::::
climate

:::::::
models

::::
they

:::
are

:::::::
derived

:::::
from.

::::::::::
Nonetheless,

::::::::
emergent

::::::::::
constraints,

:::::
along

::::
with

::::
other

::::::::
statistical

:::::::::
evaluation

::::::::
methods,

::
are

::::::::
essential,

:::::::
because

::::
raw

:::::
model

:::::::::
ensembles

::::
alone

::::::
would

:::::
only

::::
offer

:::::::
limited

::::::
insight

:::::
when

::
it
::::::

comes
:::

to
::::::
Earth’s

:::::::::
uncertain

::::::
future.

::::::::
Emergent

::::::::::
constraints

::::
have

::::::::::
effectively

::::::::
motivated

:::::::
research

::::
into

::::::
poorly

::::::::::
understood

::::::
climate

:::::::::
processes,

:::::::::::
contributing

::
to

::::::::
scientific

::::::::::::
understanding

::::
and

::::::::
inspiring

::::::
further520

:::::
model

:::::::::::
development.

:::::
They

::::
will

::::::
remain

::::::::
valuable

::::
tools

:::
for

::::
the

::::::
climate

:::::::
science

::::::::::
community

:::
for

:::
the

::::::::::
foreseeable

::::::
future.

::
In

::::
this

:::::
paper,

:::
we

:::::::
propose

:::
that

::::
CFA

:
-
::
a
:::::::::::
conceptually

::::::
related

::
yet

:::::::
distinct

::::::::
approach

:
-
:::::
could

::::
play

::
an

::::::::
important

::::
role

:::
not

::::
only

::
in

:::::::::
validating

:::
and

:::::::::::::
complementing

:::
but

::::
also

::::
even

::
in

::::::
moving

:::::::
beyond

:::
the

::::::
current

:::::::
evidence

::::::::
provided

:::
by

:::::::
emergent

::::::::::
constraints.

Finally, we underline an analogy between the development of machine learning and climate models. This analogy, in turn,

could motivate adjustments to frameworks for climate model development and evaluation cycles. Specifically, in the context of525

training machine learning models, the process bears some similarities to the tuning of climate models to historical observations

(e.g. Mauritsen et al., 2012; Hourdin et al., 2017). As a result, one might argue that model intercomparisons, weightings, and

evaluations against that same data are far less meaningful, similar to how one should not evaluate machine learning models

against their training data (a good fit could simply - and in the most cases - imply overfitting rather than good generalizable

predictive skill). Of course, there are intrinsically regularizing features in the form of physical laws in any physics-based mod-530

elling system, which will somewhat mitigate such effects, as compared to fitting a neural network without physical constraints.

Still, we see scope for defining dedicated historical test datasets as part of future model intercomparison exercises. These test

datasets should not be included during climate model tuning. For example, one could agree that all model tuning should stop by

the year 2005 (the typically last year of historical simulations for CMIP5), which would leave around two decades for objective

model evaluation of recent trends and variability. Through continued scientific exchange , there might
:
of

:::::
ideas

::
of
::::

this
:::::
kind,535

::::
there

::::
will be many different ways for academic transfer learning’ of this kind between the disciplines of machine learning and

climate science
:
to

:::::
learn

::::
from

::::
one

::::::
another.
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