

Review article: A scoping review of human factors in avalanche decision- making

- 3 Audun Hetland¹, Rebecca A. Hetland¹, Tarjei T. Skille¹, Andrea Mannberg¹
- ¹CARE (Center for Avalanche Research and Education), UiT The Arctic University of Norway, Tromsø, 9037,
 Norway
- 6 Correspondence to: Audun Hetland (audun.hetland@uit.no)

8 Abstract

7

9 The interest in understanding the human aspects of avalanche risk mitigation has steadily grown over the past few 10 decades. Between 2001–2011, 11 research papers on decision-making in avalanche terrain were published in peer-11 reviewed journals. Between 2012–2022, this number rose to 55. These papers have been authored by researchers 12 from various disciplines and publications in journals across different fields. Despite the field's nascent stage, to

13 guide future research it is pertinent to provide an overview of the insights from existing research literature.

14 This paper offers a systematic overview of peer-reviewed research on human factors in avalanche decision-making.

The overview is based on a systematic literature search covering research published up until the end of 2022. The search was conducted across six databases, including Scopus and Web of Science, using a set of keywords related to avalanche decision-making (e.g., "decision-making," "backcountry skiing," "avalanche terrain," "avalanche accident"). Out of nearly 13,000 articles containing at least one of the key search terms, 70 had a research question related to avalanche decision-making and were published in peer-reviewed academic journals. Additionally, 100

20 relevant papers were published as ISSW (International Snow Science Workshop) proceedings.

We coded all identified papers based on major and minor research questions, control variables, population covered, and methodology. 12 concepts described the different research themes (e.g., avalanche accidents, avalanche education, decision-making strategies). We applied the concepts to the 70 peer-reviewed papers and present them by their main concept.

25 26

27

28 29

1 Introduction

1.1 Rationale

30 31 Approximately 90% of fatal snow avalanche accidents are triggered by the victim or someone in their group 32 (Schweizer and Lütschg, 2001). This underscores that avalanches are more of a human issue than a snow issue. 33 Over the past two decades, there has been a growing body of research focusing on human factors in avalanche 34 terrain. The topic has been of interest for researchers across multiple disciplines, such as economy, geography, 35 outdoor and recreation, political science, psychology, and public safety and engineering research. Human factors 36 encompass any human influences that affect the assessment of avalanche risks and the decision-making process 37 (Haegeli et al., 2023). However, the concept of human factors is broad and not easily defined, and different research 38 traditions offer different approaches, thus creating a body of knowledge that is heterogeneous in nature. To create 39 a more informative and productive foundation for future research on human factors in avalanche decision-making, 40 we conducted a qualitative systematic scoping review.

41	1.2 Objectives
42 43	By conducting a scoping review, we wished to examine the extent, range and nature of the evidence so far produced
44	on human factors in avalanche terrain. The following research question has guided this effort:
45	What literature exists on how human factors affect decision-making and/or risk assessment done by individuals
46	who expose themselves to avalanche prone terrain?
47	
47 48	The main objectives of our research were:
49	a. To design and implement a systematic literature search on the topic of human factors in avalanche
50	terrain.
51	b. To identify relevant literature and extract data from the papers to make a detailed overview over this
52	literature.
53	
54	2 Methods
55	2.1 Scoping review
56	A scoping review is a type of knowledge synthesis that follows a systematic approach to map evidence on a topic
57	and identify main concepts, theories, sources, and knowledge gaps (Tricco et al., 2018). Unlike systematic reviews,
58	which typically address narrowly focused research questions, scoping reviews cover broader topics and are ofter
59	used to identify and analyze the extent, range, and nature of research activity in a particular field. By choosing this
60	approach, and by guidance of the PRISMA-ScR checklist, we wished to summarize findings from a body of
61	knowledge that is heterogeneous in both methods and discipline, and to reveale uncharted research areas within
62	the avalanche research field.
63 64	2.2 Eligibility criteria
65	
66	Our guiding principle has been that human factors must be central in the included papers. We identified literature
67	where human factors influence actual decision-making or risk assessment while exposed in avalanche terrain, but
68	also in the preparation phase before entering avalanche terrain. Preparation may include both trip planning as well
69	as avalanche education (Greene et al., 2023). Literature focused on decision-making tools was considered relevant
70	in cases where use of the tool is related to human factors in decision-making, but not where the focus is on how
71	the tool relates to weather, terrain, and snowpack aspects. In the following paragraphs we will elaborate and
72	rationalize our criteria for inclusion and exclusion.
73 74 75	2.2.1 Publication status
76	Human factors in avalanche terrain is a nascent research field that has attracted a large interest among both
77	practitioners, stakeholders and users of avalanche terrain. There is a substantial number of relevant papers that are

Provintian factors in avalanche terrain is a hascent research field that has attracted a large interest among both practitioners, stakeholders and users of avalanche terrain. There is a substantial number of relevant papers that are not published peer-reviewed (gray literature), mainly as proceedings from the International Snow Science Workshop (ISSW), or as undergraduate and graduate theses (BA, MSc, PhD). We have only included peerreviewed results in this paper. The reason is the large spread in quality of the non-peer-reviewed literature, making it difficult to set stringent eligibility criteria. However, we have searched through and extracted data from all

82 relevant papers, and the relevant papers with extracted data from the gray literature can be found at 83 https://osf.io/u9ydm/

85 2.2.2 Participants

87 All people exposed to avalanche terrain in the backcountry, side country or in out-of-bounds terrain were 88 considered eligible research participants in the included sources of evidence. This includes participants 89 maneuvering avalanche terrain by snow mobiles, snowboard, snowshoes, and skis, and by foot. Recreationalists, 90 professional guides, avalanche safety instructors and educators, ski area patrollers, avalanche professionals 91 (observers, bulletin makers, investigators), as well as other personnel that are expected to personally mitigate and 92 consider avalanche risk (e.g. field geologists, trained soldiers) were included as participants. People appearing as 93 participants through accident reports were also included in the review, as profile information of avalanche victims 94 is considered important information on how human factors may have played a vital role in the decision-making 95 process prior to the avalanche accident. Travelling into avalanche terrain might be self-assisted, snowmobile 96 assisted, lift-assisted, or motor vehicle assisted (e.g., helicopter, snowcats).

97

84

86

98 People travelling by vehicle on roads exposed to avalanche terrain were not included in this review. The rationale 99 behind this is that decisions concerning road risk and safety are made by official authorities, and not by the 100 individuals themselves. Residents living in avalanche exposed areas were excluded from our study by the same 101 rationale.

102

107

111

113

103 2.2.3 Years considered104

In order to include pioneer research and publications that has worked formatively for the development of the field
 we did not set a lower limit for publication year. Our search has been running up until the end of 2022.

108 **2.2.4 Language** 109

110 Our study has limited its inclusion to sources written in English.

112 2.2.5 Exclusion criteria

114 We chose to exclude research that focuses strictly on 1) avalanche rescue and medical issues, 2) technical aspects 115 of weather, terrain, avalanche dynamics and forecasting, and 3) management of operations where the decision-116 maker is not personally affected by the avalanche threat (like risk management in a ski-resort). Our rationale for 117 excluding these important fields is that these research areas do not analyze how individuals personally deal with 118 the threat of being involved in an avalanche accident. We also excluded articles where humans and human behavior 119 in avalanche terrain is secondary, or implied as part of the research (e.g., extensive accident reports, outdoor or 120 adventure focus). Topics such as decision-making related to rescue after an avalanche has occurred, including 121 medical issues, were not included in the search. Neither were natural science studies or studies primarily focusing 122 on building or technical aspects of avalanche forecasting. However, we note that we did include studies that 123 investigated the effect of avalanche forecast on human factors. Finally, we excluded sources of evidence where the 124 full text was not obtainable, or where human factors were auxiliary or briefly mentioned but were not among

127

the main themes. The excluded topics are also of interest to the scientific community, but will require separate searches and are not within the scope of this review.

1282.3. Information sources129

130 We defined six databases and search engines as relevant to our topic "human factors in avalanche terrain". As the 131 topic is not easily restricted to a specific discipline, Web of Science and SCOPUS were considered useful sources. 132 They both offer access to multiple databases that reference cross-disciplinary research. Two other discipline 133 specific databases, PsycINFO and Hospitality & Tourism Complete, were chosen because of the assumption that 134 human factors in avalanche terrain would be published in these academic disciplines. Our previous knowledge of 135 the existing literature led us to this assumption. In addition, we also ran the search in the ISSW proceedings 136 database and ProQuest - a database covering dissertations from a range of disciplines. The results from the latter 137 two, primarily originating from the ISSW database, have been subject to the same procedure as the peer-reviewed 138 articles presented in this paper. The results, included the extracted data, can be found in supplementary materials 139 (see https://osf.io/u9ydm/). Google Scholar was used as a tool in preliminary searches, and to supplement the final 140 search. We conducted the search between April 27th, 2017, and December 31st, 2022. Where sources of evidence 141 were found as references or abstracts, but with missing full texts, effort was made to retrieve these texts by requests 142 to relevant libraries or by contacting authors.

143

144 **2.4 Search** 145

1462.4.1 Identifying relevant keywords for systematic search147

148 We identified keywords using an iterative process. In the first phase, we searched Google Scholar using intuitive 149 search words such as ("human factor in avalanche terrain"). We thereafter used the relevant keywords in the 150 identified papers in a second systematic search: «The Human Factor in Avalanche Terrain".

The keywords and phrases chosen for our search were selected first based on their frequency in the keywords overview (see *keyword, selection.docx* for more details). Other keywords have been added after consulting with researchers familiar with the field. We ran several preliminary searches in the named databases to refine the final set of keywords. The size of the search result has been guiding as to define the relevance and usefulness of the keywords.

156157 **2.4.2 Building the search**

We created two bins, 1) human factor and 2) avalanche. These two bins have a list of associated keywords. Any paper with keywords that matched both bins would be listed as a result. The search is built using the Boolean operators OR and AND, where OR is used between all the keywords within the main categories and AND is used to combine the two categories for the final result. We searched for keywords in titles, abstracts, and listed keywords. Thesaurus terms (pre-defined keywords for specific databases) have been added to the databases with this functionality. The table below provides an overview of relevant categories of keywords in the two bins (for more details see *Identifying keywords.docx* and *Keywords, overview.docx* at https://osf.io/u9ydm/).

166 167

Table 1 Overview over keywords included in search.

Main category "human factor" (combined with OR):		Main category "avalanche" (combined with OR):
 Human factor and human error Decision-making and decision support Risk () Education and training Heuristics, cognitive bias and intuition Situational awareness and pattern recognition Group dynamics/management/factors Expertise/expert/professionals and guiding 	The two bins are combined with AND. Papers with a match in both categories are listed as result	 Avalanche Backcountry, side-country, off-piste and off-bounds Skier, snowshoer, snowmobiler snowboarder Adventure recreation/tourism

168 169

171

170 **2.5 Selection of sources of evidence**

172 The final search result from the individual databases and search engines were added to our library, and duplicates 173 were filtered out. Guided by our research objectives and eligibility criteria, a preliminary screening was performed 174 based on title and abstract, separating obviously ineligible studies from possible eligible ones. We used a folder 175 structure categorizing sources as included, uncertain and excluded. In the next step, two researchers read the full 176 text. Notes were subsequently compared, and in cases where there was disagreement, the papers were discussed in 177 depth and a conclusion was drawn based on the extent of how they answered to the research objectives and fulfilled 178 the eligibility criteria. This process was repeated in three iterations. The final result yielded 70 peer- reviewed 179 papers. We also conducted the same process for the ISSW proceedings.

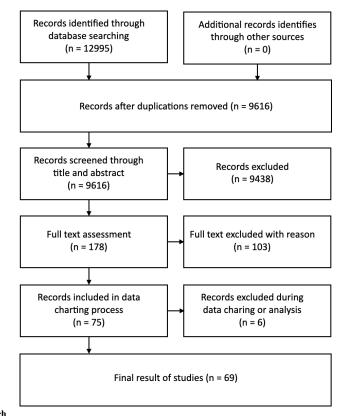


Figure 1. Flow diagram of the search

184

185 **2.6 Data charting process**

186 187 To extract relevant data from the papers, two of the authors developed a matrix schema for charting data from the 188 sources of evidence included. Data was extracted on the basis of year of publication, type of publication, sampling 189 procedure, method of data collection, type of study design, participants (e.g., self- or lift assisted recreationalists, 190 avalanche educators, avalanche forecasters), risk target (the population at risk, e.g., recreationalists, avalanche 191 professionals), focus of study, main explanatory factor, if existing, and, if relevant, control variables of data. 192 Two independent researchers extracted and coded the data. Notes were subsequently compared and discussed, and

- if the two coders were not in agreement, or any kind of uncertainty was identifiable, a conclusion was made basedon a further discussion with an extended panel of one or two researchers. Table 2 provides a description of the
- 195 categories of extracted data.

	Population	Sample	Method 1a	Method 2a	Method 3	Focus 1 + focus 2	Factor 1 + factor 2	Control variables
Recreationalists	Self-assisted recreationalists	Randomized	Survey	Reflection on attitude	Quantitative	DM-errors	FACETS	Socio-demographic
General public	Lift-assisted recreationalists	Convenience field	Field observation	Discrete choice experiment	Qualitative	DM-tools	Other heuristic bias	Experience
Avy professionals	Heli-assisted recreationalists	Convenience online	Accident analysis	GPS tracks	Mixed design	DM-expertise	Risk perception/attitude	Avy training
Avy victims	Motor-assisted recreationalists	Convenience other	Field/lab experiment	User frequency in field	Other	Bayesian perspective	Group dynamics	Avy knowledge
Other field workers	Participants of guided groups	Data from sources	Lit. review/overview	Online user frequency	(theoretical,	Risk perception	Other social factors	Avy experience
Other	Recreationalists not defined	No sample	Review accidents	Participatory observation	conceptual,	Group dynamics	Leadership	Other variables
Tourist industry	Backcountry guides		Interview	Field experiment	overview etc.)	Demographics	Avy experience	
	Ski area patrollers		Media as data source	Lab experiment		Avy education	Avy DM competence	
	Avy safety instructors/educators		Review of avy danger	Focus groups/ interviews etc.		Planning	Avy danger level	
	Avy professionals not defined		Theoretical model	Discourse analysis		Accidents/incidents	Avy problem	
	Avalanche victims (acc. Reports)		No data collection	Analysis of accidents		Avy victims	Risk communication	
	Professionals field workers		Critique of theory/tool	Theoretical modelling		Safety culture	DM-Aid	
	Public authorities			Comparison to risk in other fields		Recreation specialization	Goals and policy statements	
	Residents in avy exposed terrain			Calculated prevention values		Human factors	Physical activity	
	No sample (theoretical etc.)			Demographic survey		Risk communication	Planning / info seeking	
				Collection of snow/weather data		Process of DM	Human factors	
				Literature review/ overview		Safety equipment	Avy education /awareness	
				No data collection		Media/opinions on avy	Recreation specialization	
						DM related to terrain	Media/opinions of risk	
						Forecast/danger rating	Weakness in DM-process	
							Safety measures/equipment	

 \sim

200 **2.7 Categorization of papers according to their main focus** 201

We coded all papers according to their main focus. The different focus themes were developed using an iterative process. One of the authors suggested a first set of themes, based on a previous, non-systematic, review of the literature. During the data's coding process, the two coding researchers could add themes if a paper did not fit the existing themes. In total, 20 themes were identified in the eligible material.

Organizing the literature into 20 themes provides an overview of topics covered in the literature so far. However, some of the topics identified are very narrow, and others overlap. The high number of topics may also make the overview less clear. We therefore decided to revise the codes into a smaller number of research themes. Three of this paper's authors made an initial suggestion of eight research themes. These themes were sent to three international collaborators for feedback and discussion. Based on the discussion, the themes were revised into 12 main research themes (Table 3).

212 213

Table 3. Final research themes.

4 5	Research theme		Description
6 7	Biases & decision-making errors (BE)		All biases and errors.
18 19 20	Risk communication (RC)	242 243	Effects of risk communication on learning, understanding, risk perceptio decision-making.
21 22 23 24	Avalanche education (AE)	244 245	Effects of avalanche education on learning, and decisions. Content analys of avalanche education.
25 26 27 28	Experience (EXP)	246 247 248	Experience of travelling in the backcountry and/or assessing avalance risk. How/what people learn from experience. How experience affect decision-making.
229 230 231	Risk perception (RP)	249 250	Risk judgment, perceived danger/safety. Effects on and of risk perception decision-making.
32 33 34	Willingness to take risk (WTR)	251 252	Measures of risk attitudes. Factors that affect willingness to take ris Effects of willingness to take risk on decisions.
235 236 237 238 239 240 241	Social factors (SF) and group decision-making (GDM)	253 254	Effects of group dynamics and other social factors on individual and gro decision making.
	Avalanche accidents (AA)	255 256 257	Factors that affect the risk of being involved in avalanche accidents (in accident analysis). Effects of avalanche accidents on decisio preferences, and perception.
8	Population characteristics (PC)		Descriptions of characteristics of certain populations or sub populations.
9 0	Decision-making strategies (DMS)		Studies of decision-making tools, strategies, processes, factors.
1 262 263	Motivation (M)	267	Studies on motives for activities and effects of motivation on decision making.
264 265 266	Methods and theory (MT)	268 269	Studies that mainly focus on describing/developing new methods of theory.

270

271 Two of the authors and the three international collaborators thereafter assigned independently at least one concept

to each paper in the dataset. The assignment was based on the focal research question of the article, and not based

on the potential relevance for a given research area. For example, studies analyzing avalanche education directly

274 were assigned the concept 'avalanche education', while studies that might be relevant for avalanche education but 275 did not explicitly investigate the effects of avalanche education or avalanche course curricula were not assigned 276 this concept. Since some papers cover more than one topic, we provided each paper with up to three different 277 concepts. In cases of disagreement, notes were compared and discussed, and concepts were adjusted.

278 279

2802813. Result

282 Of the 12,995 articles that contained at least one of the keywords in the two categories, 76 fulfilled the eligibility 283 criteria and were included in the dataset. During the analysis of the data, we discovered that six of the identified 284 papers did not have human decision-making as their main focus. These papers were therefore removed, and the 285 final data set contained 70 articles.

The eligible papers have publication dates ranging from 1999 to 2022. Over half (N=56) were published in the last 10 years and more than a quarter (N=22) since 2020. Most studies (N=43) rely on quantitative methods. A relatively small number uses qualitative (N=9) or mixed methods (N=11). Only three studies use randomized sampling strategies. Seventy percent rely on convenience samples (N = 50). Sixty-four percent (N = 46) of the articles study backcountry recreationalists. The result from the data charting process with extracted data can be found at <u>https://osf.io/u9ydm/</u>.

292 293 294

3.1 Main research themes in the eligible literature

We provide a brief overview of the research themes situated based on research traditions and concepts from related research fields. The list is not meant to cover all potentially relevant research themes on the human dimension of avalanche risk. In Table 5 the papers are sorted on the different research themes.

298

299 3.1.1 Biases and decision-making errors (N = 11)

A range of cognitive and motivational biases can influence decision making, including those related to risk analysis (Montibeller and Winterfeldt, 2015), human judgment (Kruglanski and Ajzen, 1983), and strategic planning (Barnes, 1984). The origins of these biases can be traced to both innate and acquired factors, as well as to environmental influences (Croskerry et al., 2013). Despite the prevalence of these biases, individuals often fail to recognize them in their own decision making (Pronin, 2007). Additionally, decision makers can fall into psychological traps such as the anchoring trap and the status quo trap (Hammond et al., 1998).

306

The papers in this review include a wide range of factors that potentially affect perceptions of risk or skill and/or decisions, like over-confidence (e.g. Bonini et al., 2018), heuristic traps (e.g. Furman et al., 2010), availability affect (e.g. Mannberg et al., 2021a) framing effects (e.g. Stephensen et al., 2021) but also theoretical (e.g. Zajchowski et al., 2016) and environmental factors (e.g. Wickens et al., 2015). Existing studies in this category typically investigate if people make biased judgements and/or how biases and heuristics affect decision-making in avalanche terrain.

313

314 3.1.2 Risk communication (N = 9)

315 Risk communication is a critical aspect of informing the public about potential risks, particularly in public health

316 emergencies (Glik, 2007; Wachinger et al., 2013) and has an impact on risk perception and decision-making

- (Williams and Noyes, 2007). However, it is often challenging due to the complexity of risk information and the
 need to consider and understand the audience beliefs, values and concerns (Keeney and von Winterfeldt, 1986;
 Fischhoff, 2015). The presentation of risk information can significantly impact its effectiveness, with visual aids
 such as graphics playing a key role (Lipkus and Hollands, 1999).
- 321

325

Within the avalanche context, the tag mainly concerns communication via avalanche bulletins. Existing studies in
 this category cover both how different groups use and understand the content in avalanche bulletins (e.g. Fisher
 et al., 2022) and how the presentation of the information aids or hampers understanding (e.g. Engeset et al., 2018).

326 **3.1.3** Avalanche education (N = 4).

Education plays a crucial role in the ability to conduct risk management in uncertain environments (Carmen Nadia
 Ciocoiu and Daniel Neicu, 2007). Education may also help understanding risk and uncertainty (Bob Manson, 2018;
 Stalker, 2003). The effect of education is pivotal, especially in activities that take place in complex and wicked
 environments, where potentially fatal situations are a possibility.

331

Two of the four existing studies discuss the role of heuristic traps in avalanche courses (Johnson et al., 2020; Zajchowski et al., 2016). The third study concerns how the processing skills of avalanche bulletin information vary among recreationists, and how this can be an avenue for continuing education (Fisher et al., 2022). The fourth study evaluates the effect of avalanche education on risk perception (Greene et al., 2022). It should be mentioned that many studies use avalanche education as one of many control variables, but these studies are not included under this tag. The four papers in this category do not cover effects of avalanche education on knowledge and skills, and analyses of the structure and content of avalanche courses.

339

340 **3.1.4 Experience (N = 2)**

Experience can build expertise and therefore significantly impact risk management, but the role of experience in
the risk identification process is much less significant than it is commonly assumed to be (Maytorena et al., 2007).
Particularly, in wicked learning environments where feedback is sparce, experience does not necessarily lead to
expertise (Hogarth et al., 2015).

345

346 There are only two papers in this category. One of the studies proposes a new way of measuring expertise. The 347 other investigates how skill affects assessments and understanding of avalanche risk. However, several other 348 papers have this as auxiliary concept, e.g., Landrø (2020) studies experts' decision-making.

349

350 **3.1.5 Risk perception (N = 10)**

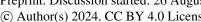
Risk perception is a complex phenomenon influenced by various factors and covers both the perceived likelihood of an outcome, and how dangerous the outcome is perceived to be. Humans have a poor understanding of probabilities (Hertwig and Erev, 2009). Several studies highlight the role of emotions and cognitive processes in shaping risk perception (Slovic, 1987; Slovic et al., 2007). Other contributing factors are personal experiences and cultural factors (Hicks and Brown, 2013; Wachinger et al., 2013) and attitude, risk sensitivity, and specific fear (Sjöberg, 2000; Joffe, 2003).

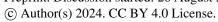
357 In the avalanche literature, studies have focused on a variety of factors that impact risk perception like impact from 358 experience of fatal avalanche events (e.g. Leiter, 2011), cognitive effect of framing (e.g. Stephensen et al., 2021), 359 physical effects of activity (e.g. Raue et al., 2017) or effect of travel strategies (e.g. Michaelsen et al., 2022) or 360 impact of online user platforms (e.g. Plank, 2016). 361 3.1.6 Willingness to take risk (N = 10), 362 363 While risk perception describes a person's understanding of how likely or dangerous a situation is, risk preferences, 364 or willingness to take risk describe how much they like or dislike the situation given the perceived risk (Dohmen 365 et al., 2011; Pratt, 1978). Willingness to take risk is tied to demographic factors like gender, age, height, and 366 parental background (Dohmen et al., 2011), individual factors like sensation seeking (Sharifpour et al., 2013), risk 367 conception and positive feelings (Dohmen et al., 2018; Isen and Patrick, 1983) or social factors like influence from 368 peers and mortality salience (Hirschberger et al., 2002; Woodside, 1972) and external factors (Hetschko and 369 Preuss, 2020; Savage, 1993). 370 371 Existing studies in this category typically study how risk preferences correlate with decisions (e.g Haegeli et al., 372 2012; Mannberg et al., 2018), or how willingness to take risk correlate with participant characteristics like gender 373 and age (e.g. Mannberg et al., 2018; Walker and Latosuo, 2016) or co-hort (e.g. Haegeli et al., 2012; Kopp et al., 374 2016) or external factors like equipment (e.g. Haegeli et al., 2020). 375 376 3.1.7 Social factors and group decision-making (N = 6). Being in a group affects performance and decision 377 making in multiple ways (Kerr and Tindale, 2004). A group will often outperform individual decision makers 378 (Kugler et al., 2012). However, negative group factors have been repeatedly shown to decrease decision quality 379 (Kroon et al., 1991) and lead to higher risk taking (Bougheas et al., 2013) and can lead to fatally flawed decisions 380 (Sunstein and Hastie, 2008). Group size has been shown to be an important predictor, where large groups can lead 381 to riskier decisions, and challenge communication within groups where groups may only discuss already shared 382 information and hold back information that is only known to parts of the group (Stasser and Titus, 1985). 383 384 Studies in this category include formation, leadership and decision making in groups (e.g. Zweifel and Haegeli, 385 2014), social aspiration (e.g. Mannberg et al., 2021b), moral boundaries (Tøstesen and Langseth, 2021), group 386 size (Zweifel et al., 2016), organizational culture (Johnson et al., 2016) and decision-making within groups, and 387 how groups affect the decisions made by individuals (Ebert and Morreau, 2023). There is a large spread in the 388 focus of existing studies. Topics include group formation, how group size, composition, decision rules affect the 389 quality of decisions, and how organizational and social norms affect behavior. 390

391 3.1.8 Avalanche accidents (N = 10).

Accident studies in general offer valuable insights into the causes and prevention of accidents and provide opportunities for learning (Balasubramanian and Louvar, 2002; Hovden et al., 2011). However, accidents are complex phenomena which benefit from a comprehensive approach (Cedergren and Petersen, 2011; Moura et al.,

395	2017). Yet, feedback from experience and accidents are important for improving operational security (Croft, 2020;
396	Lindberg et al., 2010).
397	
398	Studies in this category includes trend in accident rates (e.g. Berlin et al., 2019; Page et al., 1999), correlates of
399	avalanche accidents and demographic factors (e.g. Jekich et al., 2016; Peitzsch et al., 2020), victim profile (e.g
400	Soule et al., 2017), group size (Zweifel et al., 2016), fatality risk in helicopter and snow cat skiing (Walcher et al.,
401	2019) and organizational culture (Johnson et al., 2016). The existing studies typically characterize avalanche
402	victims or the situation leading up to the accident.
403	
404	3.1.9 Population characteristics ($N = 11$).
405	People travelling in avalanche terrain are not one homogeneous group, but rather a heterogeneous collection of
406	people with different motives, skills, ways and means of travel. Tailoring risk mitigation strategies to specific user
407	groups is crucial for their effectiveness (Bartolucci et al., 2023).
408	
409	This concept is broad. It includes studies that in some way characterize a "population", regardless of size. Studies
410	in this category present characteristics for different populations in terms of safety practices (Nichols et al., 2018;
411	Silverton et al., 2007, 2009), use of avalanche safety equipment (e.g Ng et al., 2015) and broader focus on human
412	factor and motivation among different groups (Jackman et al., 2023; Sole et al., 2010).
413	
414	3.1.10 Decision making strategies (N = 17) Decision making under uncertainty is a complex process that requires
415	a range of strategies. These strategies can take many forms, from pre-defined (rule-based) strategies to heuristics
416	(Gigerenzer and Gaissmaier, 2011) or vaguely defined habits (Verplanken and Aarts, 1999). And in the decision
417	making process the decision makers need to consider a wide range of potential states and outcomes, as well as the
418	reliability of information.(Hansson, 1996; Polasky et al., 2011). Coping with such uncertainty requires mental
419	preparedness, agility, and the ability to react to unforeseen events (Kleindorfer, 2008).
420 421	The existing literature on decision-making strategies has a very large spread both concerning method and focus.
421	The studies typically either describe or test relevant strategies, underlying decision-making factors, or use of
423	decision-making aid in different user groups.
424	The 17 papers cover both methodological procedures (e.g. Sterchi and Haegeli, 2019; Thumlert and Haegeli, 2017),
425	as well as empirical collected data on human behavior and mitigation strategies in avalanche terrain (Michaelsen
426	et al., 2022). The literature span investigations of professionals (e.g Løland and Hällgren, 2023) and recreationists
427	(e.g Grimsdottir and McClung, 2006), and covers research on decision-making strategies of backcountry skiers
428	(e.g Pfeifer, 2009; Witting et al., 2021), mechanized based skiing (e.g Hendrikx and Johnson, 2016; Sterchi and
429	Haegeli, 2019), as well as snowmobilers (e.g. Baker, 2013; Michaelsen et al., 2022).
430	<i>c i i i i i i i i i i</i>
431	
431	3.1.11 Motivation (N = 3)


- Motivation potentially affects a wide range of factors that drive risk exposure (Kerr and Houge Mackenzie, 2012)
 and engaging in analytical thinking (Mækelæ et al., 2023). In the avalanche context, this relates to, e.g., terrain
 choices, educational choices, information search, use of risk-mitigation strategies etc.
- 436 The concept covers studies that either describe motivational factors in different user groups (Frühauf et al., 2019),



437	or how motivations affect decision-making. The three existing papers in this category focus mainly on motives to
438	seek risk among lift-assisted skiers (Frühauf et al., 2019, 2020; Fruhauf et al., 2017).
439 440	3.1.12 Methods and theory $(N = 7)$.
441	The field of social science is characterized by a broad but important variety of theory and methods (Porta and
442	Keating, 2008). Example of methods can be observation studies, interviews, surveys and experiments each with
443	their own strengths and limitations (Herzog, 1997). It is therefore important to consider the specific research
444	problem and context when choosing what methodological tools to apply.
445	
446	The existing studies includes papers that develop and describe a new theory or a new empirical method to collect
447	or analyze data that can help gain a better understanding of human factors in avalanche terrain.
448	Several of the existing papers in this category present methods for GPS-tracking in combination with surveys, to
449	collect data on terrain-use and travel behavior in recreational out-of-bounds skiing (Johnson and Hendrikx, 2021;
450	Sykes et al., 2020). Further, this concept covers methodological investigations to document terrain preferences
451	(Saly et al., 2020) and terrain selection practices (Thumlert and Haegeli, 2017).
452	
453 454	In table 5 the different papers from all the 12 research themes are presented with their different theme tag.

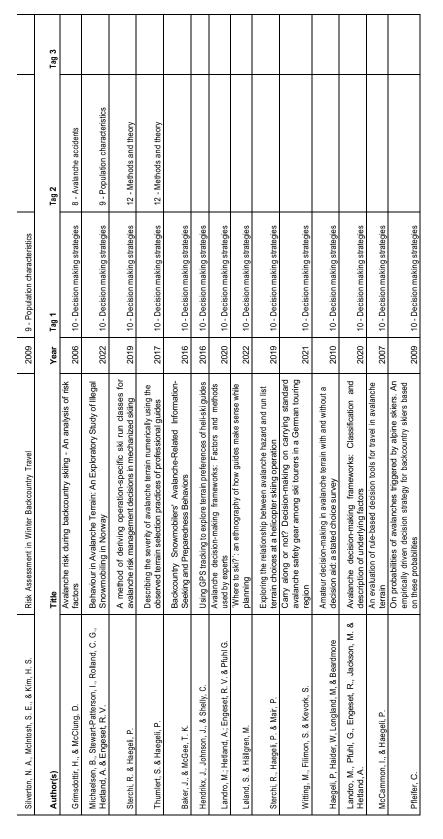
https://doi.org/10.5194/egusphere-2024-1628 Preprint. Discussion started: 26 August 2024

(c)

Johnson, J; Mannberg, A; Hendrikx, J; Hetland, A & F Stephensen, M Zaichowski, C. A. B., Browniee, M. T. J., & Furman, N. 7	Rethinking the heuristic traps paradigm in avalanche education:				,
_	Past, present and future	2020	1 - Biases & DM errors	3 - Avalanche education	
	The Dialectical Utility of Heuristic Processing in Outdoor Adventure Education	2016	1 - Biases & DM errors	3 - Avalanche education	
Bonini, N., Pighin S., Rettore, E., Savadori, L., Schena, C. F., Tonini, S. & Tosi, P.	Overconfident people are more exposed to "black swan" events: a case study of avalanche risk	2018	1 - Biases & DM errors	5 - Risk perception	
	Liking and perceived safety across judgments of distinct instances of a category of activity	2021	1 - Biases & DM errors	5 - Risk perception	
Marengo, D., Monaci, M. G., & Micell, R.	Winter recreationists' self-reported likelihood of skiing backcountry slopes: Investigating the role of situational factors, personal experiences with avalanches and sensation-seeking	2017	1 - Biases & DM errors	6 - Willingness to take risk / risk preferences	
T Furman, N., Shooter, W., & Schumann, S.	The Roles of Heuristics, Avalanche Forecast, and Risk Propensity in the Decision Making of Backcountry Skiers	2010	1 - Biases & DM errors	2 - Risk communication	6 - Willingness to take risk / risk preferences
Ebert, P. A.	Bayesian reasoning in avalanche terrain: a theoretical investigation	2019	1 - Biases & DM errors		
F Mannberg, A., Hendrikx, J., Johnson, J. & Hetland, A.	Powder Fever and its Impact on Decision-Making in Avalanche Terrain	2021	1 - Biases & DM errors		
Wickens, C. D., Keller, J. W. & Shaw, C.	Human Factors in High-Attitude Mounaineering	2015	1 - Biases & DM errors		
E Fisher, K., Haegeli, P. & Mair, P.	Exploring the avalanche bulletin as an avenue for continuing education by including learning interventions	2022	2 - Risk communication	3 - Avalanche education	
Terum, J.A., Mannberg, A. & Hovem, F. K.	Trend effects on perceived avalanche hazard	2022	2 - Risk communication	5 - Risk perception	
Haegeli, P., & Strong-Cvetich, L. R.	Using discrete choice experiments to examine the stepwise nature of avalanche risk management decisions-An example from mountain snowmobiling	2018	2 - Risk communication	6 - Willingness to take risk / risk preferences	1 - Biases & DM errors
V Clair, A. St., Finn, H., Haegeli, P.	Where the rubber of the RISP model meets the road: Contextualizing risk information seeking and processing with an avalanche bulletin user typology	2021	2 - Risk communication		
Engeset, R. V., Pfuhl, G., Landrø, M., Mannberg, A. & (Communicating public avalanche warnings - what works?	2018	2 - Risk communication		
Fisher, K., Haegeli, P. & Mair, P.	Impact of information presentation on interpretability of spatial hazard information: lessons from a study in avalanche safety	2021	2 - Risk communication		
T Fisher, K., Haegeli, P. & Mair, P.	Travel and terrain advice statements in public avalanche bulletins: a quantitative analysis of who uses this information, what makes it useful and what can be improved	2022	2 - Risk communication		

Table 5. Eligible papers sorted on main research theme. One paper can be tagged in up to three research themes.

Author(s)	Title	Year	Tag 1	Tag 2	Tag 3
Greene, K., Hendrikx, J. & Johnson, J.	The Impact of Avalanche Education on Risk Perception, Confidence, and Decision-Making among Backcountry Skiers	2022	3 - Avalanche education	5 - Risk perception	
Hallandvik, L., Andresen, M. S., & Aadland, E.	Decision-making in avalanche terrain-How does assessment of terrain, reading of avalanche forecast and environmental observations differ by skiers' skill level?	2017	4 - Experience	10 - Decision making strategies	
Stewart-Patterson, I.	Measuring decision expertise in commercial ski guiding in a more meaningful way	2016	4 - Experience	12 - Methods and theory	
Stephensen, M. B.; Schulze, C.; Landrø, M.; Hendrikx, J. & Hetland, A.	Should I judge safety or danger? Perceived risk depends on the question frame	2021	5 - Risk perception	1 - Biases & DM errors	
Groves, M. R. & Varley, P. J.	Critical mountaneering decisions: technology, expertise and subjective risk in adventurous leisure	2020	5 - Risk perception	6 - Willingness to take risk / risk preferences	
Plank, A.	The hidden risk in user-generated content: An investigation of ski tourers' revealed risk-taking behavior on an online outdoor sports platform	2016	5 - Risk perception	2 - Risk communication	
Mehus, G., Mehus, A. G., Germeten, S. & Henriksen, N.	Young people and snowmobiling in northern Norway; accidents, injury prevention and safety strategies	2016	5 - Risk perception		
Raue, M., Streicher, B., Lermer, E., & Frey, D.	Being active when judging risks: bodily states interfere with accurate risk analysis	2017	5 - Risk perception		
Leiter, A. M.	The sense of snow - Individuals' perception of fatal avalanche events	2011	5 - Risk perception		
Kopp, M., Wolf, M., Ruedl, G. & Burtscher, M.	Differences in Sensation Seeking Between Alpine Skiers, Snowboarders and Ski Tourers	2016	6 - Willingness to take risk / risk preferences	9 - Population characteristics	
Walker, E., & Latosuo, E.	Gendered decision-making practices in Alaska's dynamic mountain environments? A study of professional mountain guides	2016	6 - Willingness to take risk / risk preferences	9 - Population characteristics	
Haegeli P., Gunn M., & Haider W.	Identifying a High-Risk Cohort in a Complex and Dynamic Risk Environment: Out-of-bounds Skiing-An Example from Avalanche Safety	2012	6 - Willingness to take risk / risk preferences	12 - Methods and theory	
Haegeli, P., Rupf, R. & Karlen, B.	Do avalanche airbags lead to riskier choices among backcountry and out-of-bounds skiers?	2020	6 - Willingness to take risk / risk preferences		
Mannberg, A., Hendrikx, J., Landrø, M., & Ahrland Stefan, M.	Who's at risk in the backcountry? Effects of individual characteristics on hypothetical terrain choices	2018	6 - Willingness to take risk / risk preferences		


Author(s)	Title	Year	Tag 1	Tag 2	Tag 3
Johnson, J., Haegeli, P., Hendrikx, J., & Savage, S.	Accident causes and organizational culture among avalanche professionals	2015	7 - Social factors and group DM	8 - Avalanche accidents	
Zweifel, B., Procter, E., Techel, F., Strapazzon, G., & Boutellier, R.	Risk of Avalanche Involvement in Winter Backcountry Recreation: The Advantage of Small Groups	2016	7 - Social factors and group DM	8 - Avalanche accidents	
Mannberg, A., Hendrikx, J. & Johnson, J.	Risky positioning – social aspirations and risk-taking behaviour in avalanche terrain	2020	7 - Social factors and group DM		
Ebert, P. A. & Morreau, M	Safety in numbers: how social choice theory can inform avalanche risk management	2022	7 - Social factors and group DM		
Tøstesen, G & Langseth, T	Freeride skiing - Risk-taking, Recognition, and Moral Boundaries	2021	7 - Social factors and group DM		
Zweifel, B., & Haegeli, P.	A qualitative analysis of group formation, leadership and decision making in recreation groups traveling in avalanche terrain	2014	7 - Social factors and group DM		
Berlin, C., Techel, F., Moor, B. K., Zwahlen, M., Hasler, R. M. & Swiss Natl Cohort Study, Grp	Snow avalanche deaths in Switzerland from 1995 to 2014-Results of a nation-wide linkage study	2019	8 - Avalanche accidents	9 - Population characteristics	
Soule, B., Reynier, V., Lefevre, B., & Boutroy, E	Who is at risk in the French mountains? Profiles of the accident victims in outdoor sports and mountain recreation	2017	8 - Avalanche accidents	9 - Population characteristics	
Techel, F., Zweifel, B., & Winkier, K.	Analysis of avalanche risk factors in backcountry terrain based on usage frequency and accident data in Switzerland	2015	8 - Avalanche accidents		
Jekich, B. M., Drake, B. D., Nacht, J. Y., Nichols, A., Ginde, A. A. & Davis, C. B.	Avalanche Fatalities in the United States: A Change in Demographics	2016	8 - Avalanche accidents		
Page, C. E., Atkins, D., Shockley, L.W. & Yaron, M.	Avalanche deaths in the United States: a 45-year analysis	1999	8 - Avalanche accidents		
Peitzsch, E.; Boilen, S.; Logan, S.; Birkeland, K. & Greene, E.	Research note: How old are the people who die in avalanches? A look into the ages of avalanche victims in the United States (1950–2018)	2020	8 - Avalanche accidents		
Walcher, M.; Haegeli, P. & Fuchs, S.	Risk of death and major injury from natural hazards in Helicopter and Snowcat skiing in Canada	2019	8 - Avalanche accidents		
Nichols, T. B., Hawley, A. C., Smith, W. R., Wheeler III, A. R., & McIntosh, S. E.	Avalanche Safety Practices Among Backcountry Skiers and Snowboarders in Jackson Hole in 2016	2018	9 - Population characteristics	10 - Decision making strategies	
Ng, P., Smith, W. R., Wheeler, A., & MacIntosh, S. E.	Advanced Avalanche Safety Equipment of Backcountry Users: Current Trends and Perceptions	2015	9 - Population characteristics		
Sole, A. E., Emery, C. A., Hagel, B. E., & Morrongiello, B. A.	Risk Taking in Avalanche Terrain: A Study of the Human Factor Contribution	2010	9 - Population characteristics		
Jackman, P. C., Hawkins, R. M., Burke, S. M., Swann, C. & Crust, L.	The psychology of mountaineering: a systematic review	2020	9 - Population characteristics		
Silverton, N. A., MacIntosh, S. E., & Kim, H. S.	Avalanche safety practices in Utah	2007	9 - Population characteristics		

https://doi.org/10.5194/egusphere-2024-1628 Preprint. Discussion started: 26 August 2024

 \odot

© Author(s) 2024. CC BY 4.0 License.

Author(s)	Title	Year Tag 1	Tag 1	Tag 2	Tag 3
Fruhauf, A., Anewanter, P., Hagenauer, J., Marterer, N. & Kopp, M.	Freeriding-Only a need for thrill? Comparing different motives and behavioural aspects between slope skiers and freeride skiers	2019	11 - Motivation	6 - Willingness to take risk / risk preferences	
Fruhauf, A., Hardy, W., Pfoestl, D., Hoellen, F. G. & Kopp, M.	A qualitative approach on motives and aspects of risk in freeriding	2017	11 - Motivation		
Fruhauf, A., Zenzmaier, J. & Kopp, M.	Does Age Matter? A Qualitative Comparison of Motives and Aspects of Risk in Adolescent and Adult Freeriders	2020	11 - Motivation		
Sykes, J.; Hendrikx, J.; Johnson, J. & Birkeland, K. W.	Combining GPS tracking and survey data to better understand travel behavior of out-of-bounds skiers	2020	12 - Methods and theory	10 - Decision making strategies	
Johnson, J & Hendrikx, J.	Using Citizen Science to Document Terrain Use and Decision- Making of Backcountry Users	2021	12 - Methods and theory		
Saly, D.; Hendrikx, J.; Birkeland, K. W.; Challender, S. & Johnson, J.	Using time lapse photography to document terrain preferences of backcountry skiers	2020	12 - Methods and theory		

474 475	4. Discussion
476	Our review shows that the number of peer-reviewed papers on the human factors in avalanche decision-making
477	has increased substantially during the past decade. The vast majority of published studies use convenience
478	sample methods to collect, and quantitative methods to analyze data from their participants, which mainly
479	consists of recreational backcountry users (especially skiers).
480	Our review of research themes suggests that most papers have research questions related to 'biases and decision-
481	making errors' (concept 1), 'risk communication' (concept 2), 'risk perception' (concept 5) or 'willingness to
482	take risk' (concept 6). Many papers also fall under the categories 'population characteristics' (concept 9) or
483	'decision-making strategies' (concept 10). However, we would like to highlight that these two research themes
484	are less informative than the other themes. Many of the papers in these categories provide descriptions of the
485	behaviors or characteristics of specific groups of backcountry users. These papers were often categorized as
486	concept 9 (population characteristics) or 10 (decision-making strategies), even if these concepts are broad.
487	
488	We note that the literature on avalanche education, social factors, and experience is very limited. Avalanche
489	education provided by trained instructors ideally leads to improved skills in risk assessment and mitigation.
490	However, we have not found any papers analyzing the quality of avalanche education, or how courses can be
491	improved to increase learning. Social factors are important because most decisions are made by groups, not
492	individuals. The sociality of humans further means that our decisions are very susceptible to the influence of
493	people around us. However, many of these factors are situational and therefore difficult to capture, even in situ.
494	Motivation affects a wide range of behaviors, including information seeking and use of products and services,
495	terrain choices and risk assessments. Finally, due to the inherent lack of feedback, experience and expertise are
496	not as closely linked in avalanche context as in other domains. Experience can therefore both improve and
497	deteriorate decisions.
498	
499	4.1 Limitations
-00	

The spreadsheet containing the data from eligible papers has some limitations that should be kept in mind when 500 501 used. First, to systematically assign a main concept to a paper, we focused on the paper's primary objective and 502 focal research question. However, human factors in avalanche decision-making are a complex concept, and a 503 single paper can encompass insights relevant to a multitude of topics. In addition, while all included studies are 504 published peer-reviewed, the clarity of the research question, and the link between the research question and 505 analysis, vary substantially in the final dataset. The resulting concepts may therefore provide an overly simplistic 506 picture of the content in the current literature. Much of the literature offers insights that extend to topics beyond 507 their main concept, and the resulting categorization should not be considered a measure of topic inclusion. 508 Second, while the data extraction and organization of the material followed a structured procedure, the 509 evaluation was done by a limited number of researchers. This means that the papers have been interpreted 510 through the lens of a few individuals. The evaluation is therefore subjective, and other researchers may have 511 categorized the data differently. 512 Finally, the methodological decisions relating to the eligibility criteria, publication status, years and languages 513 considered, and information sources for the literature were aimed to create a more systematic review. While 514 these decisions improved the relevance, consistency, and quality of the studies, they have drawbacks in that they

515 inherently create a publication bias. As a result, the current study is biased towards Western academic

- 516 perspectives in predominantly European and North American industry contexts. However, given that this study is 517 a first attempt to consolidate this body of research from across the widely dispersed and inconsistent publishing 518 outlets utilized by the avalanche community, it serves as a fundamental first step toward building subsequently 519 more comprehensive and inclusive overviews of the literature. 520 521 5. Conclusion 522 The aim of the systematic literature search was to provide an overview of the existing body of research on human 523 factors in avalanche decision-making. We hope the shared spreadsheet and the organization of the literature into 524 different research themes will help researchers find relevant literature and identify important knowledge gaps 525 that remain to be filled. 526 We would like to end with a call for action. The work with this literature search has been challenging for mainly 527 two reasons. First, many papers lack clear and relevant keywords. This made it difficult to identify them in our search. Second, some of the papers proved difficult to access, even after trying to contact authors or libraries. We 528 529 would therefore envision a shared database similar to PsycInfo with categorization of studies in various 530 categories and we encourage authors to publish their papers open access so that important messages are not 531 locked in behind pay walls. This is particularly important given that the readership may be practitioners without 532 access to scientific libraries. Finally, we encourage researchers within the field to draw attention to existing gaps 533 that should be closed, where assessing the quality of avalanche education is most compelling. 534 535 6. Author contribution 536 AH lead the project and has been involved in all stages of the project including design, implementation, and 537 writing and editing paper. RAH: designed and ran the search, developed the sorting procedure, writing and 538 editing, TVS: Finalizing sorting and writing and editing, AM: advice of design and implementation, writing and 539 editing. 540 541 7. Acknowledgment 542 We would like to thank everyone that has contributed to the sorting process, particularly Finn Hovem, Ingrid 543 Stette Haaberg and Markus Aase for their extended and laborious effort in the initial screening. We would also 544 like to thank our three international collaborators Pascal Haegeli, Ann St. Clair and Kelly McNeil for valuable 545 help in identifying the concepts and contributing to the proceedings paper version of this manuscript that was 546 presented at ISSW in Bend October 2023. 547 548 7.1 Funding 549 This study was partly funded by NordForsk grant 105061. 550 551 8. Conflict of interest 552 The authors declare they have no conflict of interest. 553 554 555
 - 20

558	9. References
559	Baker, J.: Backcountry snowmobilers' risk perceptions, avalanche related information seeking behaviours,
560	preparedness and decision-making processes, M.A., University of Alberta (Canada), Ann Arbor, 118 pp., 2013.
561	
562	Balasubramanian, S. G. and Louvar, J. F.: Study of major accidents and lessons learned, Process Saf. Prog., 21,
563	237–244, 2002.
564	
565 566	Barnes, J. H., JR.: Cognitive biases and their impact on strategic planning, Strateg. Manag. J., 5, 129–137, 1984.
567	Bartolucci, A., Aquilino, M. C., Bril, L., Duncan, J., and van Steen, T.: Effectiveness of audience segmentation in
568	instructional risk communication: A systematic literature review, Int. J. Disaster Risk Reduct., 103872, 2023.
	instructional fisk communication. A systematic incrature review, int. J. Disaster Kisk Reduct., 1038/2, 2023.
569	
570	Berlin, C., Techel, F., Moor, B. K., Zwahlen, M., Hasler, R. M., and Swiss National Cohort study group: Snow
571	avalanche deaths in Switzerland from 1995 to 2014—Results of a nation-wide linkage study, PLoS One, 14,
572	e0225735, 2019.
573	
574	Bob Manson: Understanding risk in an emergency management context., J. Bus. Contin. Emerg. Plan., 2018.
575	
576	Bonini, N., Pighin, S., Rettore, E., Savadori, L., Schena, F., Tonini, S., and Tosi, P.: Overconfident people are
577	more exposed to "black swan" events: a case study of avalanche risk, 2018.
578	
579	Bougheas, S., Nieboer, J., and Sefton, M.: Risk-taking in social settings: Group and peer effects, J. Econ. Behav.
580	Amp Organ., 92 273–283, 2013.
581	
582	Carmen Nadia Ciocoiu and Daniel Neicu: Education and Professional Training in the Field of Risk Management,
583	2007.
584	
585	Cedergren, A. and Petersen, K .: Prerequisites for learning from accident investigations - A cross-country
586	comparison of national accident investigation boards, Saf. Sci., 49, 1238-1245, 2011.
587	
588	Croft, J.: The Lessons to be Learned from Incidents and Accidents, in: Current trends in radiation protection, EDP
589	Sciences, 149–164, 2020.
590	
591	Croskerry, P., Singhal, G., and Mamede, S. ilvia: Cognitive debiasing 1: origins of bias and theory of debiasing,
592	BMJ Qual. Amp Saf., 22, ii58–ii64, 2013.
593	Ditte Quai. 1 http 541., 22, 100 1101, 2015.
594	D. Porta and M. Keating: Approaches and Methodologies in the Social Sciences: Comparing approac hes,
595	methodologies and wethods. Some concluding remarks, 2008.
596	neurodologies and vincinous. Some concluding remarks, 2000.
597	Dohmen, T., Falk, A., Huffman, D., Sunde, U., Schupp, J., and Wagner, G. G.: Individual risk attitudes:
598	Measurement, determinants, and behavioral consequences, J. Eur. Econ. Assoc., 9, 522–550, 2011.
599	

600 601	Dohmen, T., Quercia, S., and Willrodt, J.: Willingness to Take Risk: The Role of Risk Conception and Optimism, SSRN Electron. J., 2018.
602	SSKIN Election. J., 2018.
602 603	Ebert, P. A. and Morreau, M.: Safety in numbers: how social choice theory can inform avalanche risk
604	management, J. Adventure Educ. Outdoor Learn., 23, 340-356, 2023.
605	
606	Engeset, R. V., Pfuhl, G., Landrø, M., Mannberg, A., and Hetland, A.: Communicating public avalanche warnings
607	- what works?, Nat Hazards Earth Syst Sci, 18, 2537-2559, https://doi.org/10.5194/nhess-18-2537-2018, 2018.
608	
609	Fischhoff, B.: Risk perception and communication, in: Oxford Textbook of Global Public Health, Oxford
610	University Press, 893–906, 2015.
611	
612	Fisher, K. C., Haegeli, P., and Mair, P.: Exploring the avalanche bulletin as an avenue for continuing education by
613	including learning interventions, J. Outdoor Recreat. Tour., 37, 100472, 2022.
614	
615	Fruhauf, A., Hardy, W. A., Pfoestl, D., Hoellen, FG., and Kopp, M.: A qualitative approach on motives and
616	aspects of risks in freeriding, Front. Psychol. Vol 8 2017 ArtID 1998, 8, https://doi.org/10.3389/fpsyg.2017.01998,
617	2017.
618	
619	Frühauf, A., Anewanter, P., Hagenauer, J., Marterer, N., and Kopp, M.: Freeriding-Only a need for thrill?:
620	Comparing different motives and behavioural aspects between slope skiers and freeride skiers, J. Sci. Med. Sport,
621	22, S44–S49, 2019.
622	
623	Frühauf, A., Zenzmaier, J., and Kopp, M.: Does age matter? A qualitative comparison of motives and aspects of
624	risk in adolescent and adult freeriders, J. Sports Sci. Med., 19, 112, 2020.
625	
626	Furman, N., Shooter, W., and Schumann, S.: The roles of heuristics, avalanche forecast, and risk propensity in the
627	decision making of backcountry skiers, Leis. Sci., 32, 453-469, 2010.
628	
629	Gigerenzer, G. and Gaissmaier, W.: Heuristic decision making, Annu. Rev. Psychol., 62, 451-482, 2011. Glik, D.
630	C.: Risk Communication for Public Health Emergencies, Annu. Rev. Public Health, 28, 33-54, 2007.
631	
632	Greene, K., Hendrikx, J., and Johnson, J.: The impact of avalanche education on risk perception, confidence, and
633	decision- making among backcountry skiers, Leis. Sci., 1-21, 2022.
634	
635	Grimsdottir, H. and McClung, D.: Avalanche risk during backcountry skiing - An analysis of risk factors, Nat.
636	Hazards, 39, 127-153, https://doi.org/10.1007/s11069-005-5227-x, 2006.
637	
638	Haegeli, P., Gunn, M., and Haider, W.: Identifying a High-Risk Cohort in a Complex and Dynamic Risk
639	Environment: Out- of-bounds Skiing-An Example from Avalanche Safety, Prev. Sci., 13, 562-573,
640	https://doi.org/10.1007/s11121-012-0282-5, 2012.

642	Haegeli, P., Rupf, R., and Karlen, B.: Do avalanche airbags lead to riskier choices among backcountry and out-of-
643	bounds skiers?, J. Outdoor Recreat. Tour., 32, 100270, 2020.
644	
645	Haegeli, P., Clair, A. S., McNeil, K., Mannberg, A., and Hetland, A.: Reflections on How to Improve the
646	Contribution of Social Science Research to Avalanche Safety Practices, Proceedings of the 2023 International
647	Snow Science Workshop, 8–13, 2023.
648	
649	Hammond, J. S., Keeney, R. L., and Raiffa, H.: The hidden traps in decision making., Harv. Bus. Rev., 76 5, 47-8,
650	50, 52 passim, 1998.
651	
652	Hendrikx, J. and Johnson, J.: Tracking snowmobilers to understand travel behavior in avalanche terrain, in:
653	Proceedings of the 2016 International Snow Science Workshop, 805-809, 2016.
654	
655	Hertwig, R. and Erev, I.: The description-experience gap in risky choice, Trends Cogn. Sci., 13, 517-523, 2009.
656	
657	Hetschko, C. and Preuss, M.: Income in jeopardy: How losing employment affects the willingness to take risks, J.
658	Econ. Psychol., 79, 102175, 2020.
659	
660	Hicks, S. and Brown, S.: Perceptions of risk, Int. Rev. Vict., 19, 249-267, 2013.
661	
662	Hirschberger, G., Florian, V., Mikulincer, M., Goldenberg, J. L., and Pyszczynski, T.: GENDER DIFFERENCES
663	IN THE WILLINGNESS TO ENGAGE IN RISKY BEHAVIOR: A TERROR MANAGEMENT
664	PERSPECTIVE, Death Stud., 26, 117–141, 2002.
665	
666	Hogarth, R. M., Lejarraga, T., and Soyer, E.: The two settings of kind and wicked learning environments, Curr.
667	Dir. Psychol. Sci., 24, 379–385, 2015.
668	
669	Hovden, J., Størseth, F., and Tinmannsvik, R. K.: Multilevel learning from accidents - Case studies in transport,
670	Saf. Sci., 49, 98–105, 2011.
671	
672	Isen, A. M. and Patrick, R.: The effect of positive feelings on risk taking: When the chips are down, Organ. Behav.
673	Hum. Perform., 31, 194–202, 1983.
674	
675	Jackman, P. C., Hawkins, R. M., Burke, S. M., Swann, C., and Crust, L.: The psychology of mountaineering: a
676	systematic review, Int. Rev. Sport Exerc. Psychol., 16, 27-65, 2023.
677	
678	Jekich, B. M., Drake, B. D., Nacht, J. Y., Nichols, A., Ginde, A. A., and Davis, C. B.: Avalanche Fatalities in the
679	United States: A Change in Demographics, Wilderness Environ. Med., 27, 46-52,
680	https://doi.org/10.1016/j.wem.2015.11.004, 2016.
681	
682	Joffe, H. el\` ene: Risk: From perception to social representation, Br. J. Soc. Psychol., 42, 55-73, 2003.

684	Johnson, J. and Hendrikx, J.: Using Citizen Science to Document Terrain Use and Decision-Making of
685	Backcountry Users, Citiz. Sci. Theory Pract., 6, 2021.
686	
687	Johnson, J., Haegeli, P., Hendrikx, J., and Savage, S.: Accident causes and organizational culture among
688	avalanche professionals, J. Outdoor Recreat. Tour., 13, 49–56, 2016.
689	
690	Johnson, J., Mannberg, A., Hendrikx, J., Hetland, A., and Stephensen, M.: Rethinking the heuristic traps paradigm
691	in avalanche education: Past, present and future, Cogent Soc. Sci., 6, 1807111, 2020.
692	
693	Keeney, R. L. and von Winterfeldt, D.: Improving Risk Communication, Risk Anal., 6, 417-424, 1986.
694	
695	Kerr, J. H. and Houge Mackenzie, S.: Multiple motives for participating in adventure sports, Sport Psychol.
696	Perspect. Olymp. Olymp. Games, 13, 649-657, https://doi.org/10.1016/j.psychsport.2012.04.002, 2012.
697	
698	Kerr, N. L. and Tindale, R. S.: Group performance and decision making, Annu Rev Psychol, 55, 623-655, 2004.
699	Kleindorfer, P. R.: Reflections on Decision Making Under Uncertainty, SSRN Electron. J., 2008.
700	
701	Kopp, M., Wolf, M., Ruedl, G., and Burtscher, M.: Differences in Sensation Seeking Between Alpine Skiers,
702	Snowboarders and Ski Tourers, J. Sports Sci. Med., 15, 11-16, 2016.
703	
704	Kroon, M. B., Hart, P., and Van Kreveld, D.: Managing group decision making processes: Individual versus
705	collective accountability and groupthink, Int. J. Confl. Manag., 2, 91-115, 1991.
706	
707	Kruglanski, A. W. and Ajzen, I.: Bias and error in human judgment, Eur. J. Soc. Psychol., 13, 1-44, 1983.
708	
709	Kugler, T., Kausel, E. E., and Kocher, M. G.: Are groups more rational than individuals? A review of interactive
710	decision making in groups, Wiley Interdiscip. Rev. Cogn. Sci., 3, 471-482, 2012.
711	
712	Landrø, M., Hetland, A., Engeset, R. V., and Pfuhl, G.: Avalanche decision-making frameworks: Factors and
713	methods used by experts, Cold Reg. Sci. Technol., 170, 102897,
714	https://doi.org/10.1016/j.coldregions.2019.102897, 2020.
715	
716	Leiter, A. M.: The sense of snow-Individuals' perception of fatal avalanche events, J. Environ. Psychol., 31, 361-
717	372, 2011.
718	
719	Lindberg, AK., Hansson, S. O., and Rollenhagen, C.: Learning from accidents - What more do we need to
720	know?, Saf. Sci., 48, 714–721, 2010.
721	
722	Lipkus, I. M. and Hollands, J. G.: The Visual Communication of Risk, JNCI Monogr., 1999, 149–163, 1999.
723	
724	Løland, S. and Hällgren, M.: 'Where to ski?': an ethnography of how guides make sense while planning, Leis.

725 Stud., 42, 866–882, 2023.

726	
727	Mannberg, A., Hendrikx, J., Landrø, M., and Stefan, M. A.: Who's at risk in the backcountry? Effects of
728	individual characteristics on hypothetical terrain choices, J. Environ. Psychol., 59, 46-53, 2018.
729	
730	Mannberg, A., Hendrikx, J., Johnson, J., and Hetland, A.: Powder fever and its impact on decision-making in
731	avalanche terrain, Int. J. Environ. Res. Public. Health, 18, 9496, 2021a.
732	
733	Mannberg, A., Hendrikx, J., and Johnson, J.: Risky positioning-social aspirations and risk-taking behaviour in
734	avalanche terrain, Leis. Stud., 40, 495–512, 2021b.
735	
736	Maytorena, E., Winch, G. M., Freeman, J., and Kiely, T.: The Influence of Experience and Information Search
737	Styles on Project Risk Identification Performance, IEEE Trans. Eng. Manag., 54, 315–326, 2007.
738	
739	Michaelsen, B., Stewart-Patterson, I., Rolland, C. G., Hetland, A., and Engeset, R. V.: Behavior in avalanche
740	terrain: an exploratory study of illegal snowmobiling in Norway, Int. J. Environ. Res. Public. Health, 19, 6040,
741	2022.
742	
743	Montibeller, G. and Winterfeldt, D. von: Cognitive and Motivational Biases in Decision and Risk Analysis, Risk
744	Anal., 35, 2015.
745	
746	Moura, R., Beer, M., Patelli, E., Lewis, J., and Knoll, F.: Learning from accidents: Interactions between human
747	factors, technology and organisations as a central element to validate risk studies, Saf. Sci., 99, 196-214, 2017.
748	
749	Ng, P., Smith, W. R., Wheeler, A., and McIntosh, S. E.: Advanced avalanche safety equipment of backcountry
750	users: current trends and perceptions, Wilderness Environ. Med., 26, 417-421, 2015.
751	
752	Nichols, T. B., Hawley, A. C., Smith, W. R., Wheeler, A. R., III, and McIntosh, S. E.: Avalanche Safety Practices
753	Among Backcountry Skiers and Snowboarders in Jackson Hole in 2016, Wilderness Environ. Med.,
754	https://doi.org/10.1016/j.wem.2018.05.004, 2018.
755	
756	Ove Hansson, S.: Decision Making Under Great Uncertainty, Philos. Soc. Sci., 26, 369–386, 1996.
757	
758	Page, C. E., Atkins, D., Shockley, L. W., and Yaron, M.: Avalanche deaths in the United States: a 45-year
759	analysis, Wilderness Environ. Med., 10, 146-151, https://doi.org/10.1580/1080-
760	6032(1999)010[0146:Aditus]2.3.Co;2, 1999.
761	
762	Peitzsch, E., Boilen, S., Logan, S., Birkeland, K., and Greene, E.: Research note: How old are the people who die
763	in avalanches? A look into the ages of avalanche victims in the United States (1950-2018), J. Outdoor Recreat.
764	Tour., 29, 100255, 2020.
765	
766	Pfeifer, C.: On probabilities of avalanches triggered by alpine skiers. An empirically driven decision strategy for

767 backcountry skiers based on these probabilities, Nat. Hazards, 48, 425–438, https://doi.org/10.1007/s11069-008-

768	9270-2, 2009.
769	
770	Plank, A.: The hidden risk in user-generated content: An investigation of ski tourers' revealed risk-taking behavior
771	on an online outdoor sports platform, Tour. Manag., 55, 289-296, https://doi.org/10.1016/j.tourman.2016.02.013,
772	2016.
773	
774	Polasky, S., Carpenter, S. R., Folke, C., and Keeler, B.: Decision-making under great uncertainty: environmental
775	management in an era of global change, Trends Ecol. Amp Evol., 26, 398-404, 2011.
776	
777	Pratt, J. W.: Risk aversion in the small and in the large, in: Uncertainty in economics, Elsevier, 59-79, 1978.
778	Pronin, E.: Perception and misperception of bias in human judgment, Trends Cogn. Sci., 11, 37–43, 2007.
779	
780	Raue, M., Streicher, B., Lermer, E., and Frey, D.: Being active when judging risks: bodily states interfere with
781	accurate risk analysis, J. Risk Res., 20, 445–462, https://doi.org/10.1080/13669877.2015.1057206, 2017.
782	
783	Saly, D., Hendrikx, J., Birkeland, K. W., Challender, S., and Johnson, J.: Using time lapse photography to
784	document terrain preferences of backcountry skiers, Cold Reg. Sci. Technol., 172, 102994, 2020.
785	
786	Savage, L.: An empirical investigation into the effect of psychological perceptions on the willingness-to-pay to
787	reduce risk, J. Risk Uncertain., 6, 75–90, 1993.
788	
789	Schweizer, J. and Lütschg, M.: Characteristics of human-triggered avalanches, Cold Reg. Sci. Technol., 33, 147-
790	162, 2001.
791	
792	Sharifpour, M., Walters, G., and Ritchie, B. W.: The mediating role of sensation seeking on the relationship
793	between risk perceptions and travel behavior, Tour. Anal., 18, 543–557, 2013.
794	
795	Silverton, N. A., McIntosh, S. E., and Kim, H. S.: Avalanche safety practices in Utah, Wilderness Environ. Med.,
796	18, 264–270, 2007.
797	
798	Silverton, N. A., McIntosh, S. E., and Kim, H. S.: Risk assessment in winter backcountry travel, Wilderness
799	Environ. Med., 20, 269–274, 2009.
800	
801	Sjøberg, L.: Factors in Risk Perception, Risk Anal., 20, 1–12, 2000. Slovic, P.: Perception of Risk, Science, 236,
802	280–285, 1987.
803	200 200, 1997.
804	Slovic, P., Finucane, M. L., Peters, E., and MacGregor, D. G.: The affect heuristic, Eur. J. Oper. Res., 177, 1333-
805	1352, 2007.
806	1552, 2007.
800 807	Sole, A. E., Emery, C. A., Hagel, B. E., and Morrongiello, B. A.: Risk Taking in Avalanche Terrain: A Study of
808	the Human Factor Contribution, Clin. J. Sport Med., 20, 445–451,
500	and reason controlation, can be operation, 20, 115 151,

809 https://doi.org/10.1097/JSM.0b013e3181fc0a6d, 2010.

810	
811	Soule, B., Reynier, V., Lefevre, B., and Boutroy, E.: Who is at risk in the French mountains? Profiles of the
812	accident victims in outdoor sports and mountain recreation, J. Mt. Sci., 14, 1490-1499, 2017.
813	
814	Stalker, K.: Managing Risk and Uncertainty in Social Work, J. Soc. Work, 3, 211-233, 2003.
815	
816	Stasser, G. and Titus, W.: Pooling of unshared information in group decision making: Biased information
817	sampling during discussion., J. Pers. Soc. Psychol., 48, 1467, 1985.
818	
819	Stephensen, M. B., Schulze, C., Landrø, M., Hendrikx, J., and Hetland, A.: Should I judge safety or danger?
820	Perceived risk depends on the question frame., J. Exp. Psychol. Appl., 2021.
821	
822	Sterchi, R. and Haegeli, P.: A method of deriving operation-specific ski run classes for avalanche risk
823	management decisions in mechanized skiing, Nat. Hazards Earth Syst. Sci., 19, 269-285, 2019.
824	
825	Sunstein, C. R. and Hastie, R.: Four Failures of Deliberating Groups, SSRN Electron. J., 2008.
826	
827	Sykes, J., Hendrikx, J., Johnson, J., and Birkeland, K. W.: Combining GPS tracking and survey data to better
828	understand travel behavior of out-of-bounds skiers, Appl. Geogr., 122, 102261, 2020.
829	
830	T. Herzog: Research Methods and Data Analysis in the Social Sciences, 1997.
831	
832	Thumlert, S. and Haegeli, P .: Describing the severity of avalanche terrain numerically using the observed terrain
833	selection practices of professional guides, Nat. Hazards, 1-27, https://doi.org/10.1007/s11069-017-3113-y, 2017.
834	
835	Tøstesen, G. and Langseth, T.: Freeride Skiing-risk-taking, recognition, and moral boundaries, Front. Sports Act.
836	Living, 3, 650564, 2021.
837	
838	Tricco, A. C., Lillie, E., Zarin, W., O'Brien, K. K., Colquhoun, H., Levac, D., Moher, D., Peters, M. D., Horsley,
839	
057	T., and Weeks, L.: PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation, Ann.
840	T., and Weeks, L.: PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation, Ann. Intern. Med., 169, 467–473, 2018.
840	
840 841	Intern. Med., 169, 467–473, 2018.
840 841 842	Intern. Med., 169, 467–473, 2018. Verplanken, B. and Aarts, H.: Habit, attitude, and planned behaviour: is habit an empty construct or an interesting
840 841 842 843	Intern. Med., 169, 467–473, 2018. Verplanken, B. and Aarts, H.: Habit, attitude, and planned behaviour: is habit an empty construct or an interesting
840 841 842 843 844	Intern. Med., 169, 467–473, 2018. Verplanken, B. and Aarts, H.: Habit, attitude, and planned behaviour: is habit an empty construct or an interesting case of goal- directed automaticity?, Eur. Rev. Soc. Psychol., 10, 101–134, 1999.
840 841 842 843 844 845	Intern. Med., 169, 467–473, 2018. Verplanken, B. and Aarts, H.: Habit, attitude, and planned behaviour: is habit an empty construct or an interesting case of goal- directed automaticity?, Eur. Rev. Soc. Psychol., 10, 101–134, 1999. Wachinger, G., Renn, O., Begg, C., and Kuhlicke, C.: The risk perception paradox—implications for governance
 840 841 842 843 844 845 846 	Intern. Med., 169, 467–473, 2018. Verplanken, B. and Aarts, H.: Habit, attitude, and planned behaviour: is habit an empty construct or an interesting case of goal- directed automaticity?, Eur. Rev. Soc. Psychol., 10, 101–134, 1999. Wachinger, G., Renn, O., Begg, C., and Kuhlicke, C.: The risk perception paradox—implications for governance

851	Walker, E. and Latosuo, E.: Gendered decision-making practices in Alaska's dynamic mountain environments? A
852	study of professional mountain guides, J. Outdoor Recreat. TourRes. Plan. Manag., 13, 18-22,
853	https://doi.org/10.1016/j.jort.2015.11.010, 2016.
854	
855	Wickens, C. D., Keller, J. W., and Shaw, C.: Human Factors in High-Altitude Mountaineering, J. Hum. Perform.
856	Extreme Environ., 12, 2015.
857	
858	Williams, D. J. and Noyes, J. M.: How does our perception of risk influence decision-making? Implications for the
859	design of risk information, Theor. Issues Ergon. Sci., 8, 1-35, 2007.
860	
861	Witting, M., Filimon, S., and Kevork, S.: Carry along or not? Decision-making on carrying standard avalanche
862	safety gear among ski tourers in a German touring region, Saf. Sci., 143, 105406, 2021.
863	
864	Woodside, A. G.: Informal Group Influence on Risk Taking, J. Mark. Res., 9, 223-225, 1972.
865	
866	Zajchowski, C. A. B., Brownlee, M. T. J., and Furman, N. N.: The Dialectical Utility of Heuristic Processing in
867	Outdoor
868	Adventure Education, J. Outdoor Recreat. Educ. Leadersh., 8, 119–135, https://doi.org/10.18666/jorel-2016-v8-i2-
869	7697, 2016.
870	
871	Zweifel, B. and Haegeli, P.: A qualitative analysis of group formation, leadership and decision making in
872	recreation groups traveling in avalanche terrain, J. Outdoor Recreat. Tour., 5-6, 17-26,
873	https://doi.org/10.1016/j.jort.2014.03.001, 2014.
874	
875	Zweifel, B., Procter, E., Techel, F., Strapazzon, G., and Boutellier, R.: Risk of Avalanche Involvement in Winter
876	Backcountry Recreation: The Advantage of Small Groups, Wilderness Environ. Med.,

877 27, 203–210, https://doi.org/10.1016/j.wem.2015.12.001, 2016.