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Geomorphic imprint of high mountain floods: Insight from the 2022 20 

hydrological extreme across the Upper Indus terrain in NW Himalayas 21 

Abstract 22 

 The interaction of tectonics, surface processes, and climate extremes impacts how the landscape 23 

responds to extreme hydrological events. An anomalous precipitation event in 2022 occurred 24 

during the monsoon season along the lower middle reaches of the Upper Indus River, resulting in 25 

short-lived high-magnitude flooding and socioeconomic disruption downstream. To understand 26 

the spatial relationship between the geomorphic response and climatic controls of this flood event, 27 

as well as their primary triggers, we performed a landscape analysis using topographic metrics and 28 

quantified the causal association between hydro-climatic variables. Temperature anomalies in 29 

upstream glaciated sub-catchments had a considerable impact on snow cover distribution, based 30 

on our observations. As snow cover changed, glacial melt runoff rose, contributing to increased 31 

fluvial stream power after traversing higher-order reaches. The higher-order reaches of the Upper 32 

Indus River received an anomalously high amount of precipitation, which, when combined with 33 

substantial glacial melt discharge, contributed to an extreme flood across the high-relief steep 34 

gradient channels. The flood-affected regions had a high mean basin ksn and SL-index, including 35 

numerous spikes in their magnitudes along their channel profiles downstream. To determine how 36 

the lower middle reaches of the Upper Indus River responded to this flood event, we employed the 37 

Enhanced Vegetation Index (EVI) and Normalized Difference Water Index (NDWI) as change 38 

indicator metrics. We observed an inverse causal influence of NDWI on EVI and a statistically 39 

significant relationship between anomalous stream power and relative EVI, suggesting that 40 

downstream channel morphology changed rapidly during this episodic event and highlighting EVI 41 

as a useful indicator of geomorphic change. We suggest that this extreme flood event is a result of 42 

the interaction of anomalous glacial melt and anomalous precipitation over a high-relief landscape, 43 

with a certain causal connection with anomalous temperature over the event duration. The synoptic 44 

observations suggest that this meteorological condition involves the interaction of the Indian 45 

Summer Monsoon (ISM) and Western Disturbance (WD) moisture fluxes. However, the 46 

geomorphic consequences of such anomalous monsoon periods, as well as their influence on long-47 

term landscape change, are still unclear. 48 
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1. Introduction 50 

High mountain floods in the Himalayas are associated with several processes, including coupling 51 

of the Indian Summer Monsoon (ISM) and western disturbance (WD) circulations (Houze et al., 52 

2011), cloudbursts (Dimri et al., 2016), anomalous precipitation, cloud-scale interconnected 53 

atmospheric anomalies (Dimri et al., 2017), and geomorphic driven surface processes (Sharma et 54 

al., 2017). There is growing recognition that landscapes may evolve through the cumulative effects 55 

of extreme episodic events, in particular in rapidly eroding terrains (Korup, 2012; Cook et al., 56 

2018). Recent studies suggest that even minor shifts in weather patterns can have a significant 57 

impact on the frequency and magnitude of floods (Knox, 2000; Liu et al., 2015; Benito et al., 2015; 58 

Sharma et al., 2022). It has also been suggested that high-magnitude flood occurrences in the 59 

bedrock rivers draining the Himalayas are the geomorphic agents with the most significant impact 60 

on the evolution of the regional landscape as well as on the residents of the downstream regions 61 

(Bookhagen et al., 2005a; Sharma et al., 2017; Panda et al., 2020). 62 

  The Tibetan Plateau and its surrounding mountainous regions, such as the Himalayas and 63 

the Karakoram ranges, are critical for the downstream hydrology and water availability of the 64 

Indus River system (Hewitt, 2009; Immerzeel et al. 2010) (Fig.1). The majority of the hydrological 65 

budget of Indus River comes from precipitation, snowmelt, and glaciers, but their relative 66 

contribution varies among the major contributing tributaries (Bookhagen and Burbank 2010; Wu 67 

et al., 2021). The Upper Indus catchment receives precipitation from two distinct climatic systems, 68 

the WD and the ISM, over its foreland and highlands in the northwest (NW) Himalayas 69 

(Bookhagen and Burbank 2006; 2010). However, it remains unclear yet how these two distinct 70 

circulation patterns interact over the Himalayan landscape and what is their potential influence on 71 

long-term geomorphic change (Dimri et al., 2015;2017; Ray et al., 2019). 72 
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 73 

Fig.1. Regional topographic setting of Upper Indus catchment along with its major tributaries 74 

overlaid with major geological structures (MBT= Main boundary Thrust, MCT= Main Central 75 

Thrust, STDS= Southern Tibet Detachment system, ITSZ= Indus Tibetan Suture Zone, SSZ= 76 

Shyok Suture Zone, KF= Karakoram fault). 77 

  Short-duration episodic weather events have a significant influence on hillslope-surface 78 

processes and rates of bedrock erosion by modulating mass movement and subsequent landscape 79 

evolution (Snyder et al., 2003; Bookhagen et al., 2005b; Srivastava et al., 2017). During such 80 

events, a lot of sediment is transported through the fluvial system, some of which is temporarily 81 

deposited in low-gradient reaches and changes the landscape, before being finally deposited in 82 

oceanic sinks (Goodbred, 2003; Panda et al., 2020). The geomorphic signatures of catchment 83 

morphology are vital for understanding and identifying the channel response involved in such 84 

events as well as the processes and patterns of erosion (Kashyap and Behera., 2023; Sharma et al., 85 

2017). 86 

From the beginning of July until the end of August 2022, large portions of the Indus catchment 87 

experienced unprecedented monsoon precipitation (Otto et al., 2023; Nanditha et al., 2023). Some 88 

recent studies suggest that the primary trigger of this anomalous precipitation event was an 89 

intensely low atmospheric circulation pattern, low sea surface temperatures across the eastern 90 

Pacific, and the advent of a La-Nina event (Otto et al., 2023; Nanditha et al., 2023). This extreme 91 
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precipitation event resulted in a catastrophic flood in the low elevation flood plains of the Indus 92 

catchment (Jones, 2022; Otto et al., 2023; Ma et al., 2023). This severe flood had an extreme 93 

impact over the southern province of Pakistan, causing internal displacement of about ~30–32 94 

million people and the deaths of ~1500–1600 people (Bhutto, 2022; Khokhar, 2022; UNICEF, 95 

2022; Ma et al., 2023). In excess of ~$25–30 billion in economic losses are anticipated (Bhutto, 96 

2022; Otto et al., 2023). According to reports, the flood in 2022 exceeded the peak flow rate of the 97 

disastrous 2010 floods that occurred over Pakistan (Bhutto, 2022; UNICEF, 2022; Nanditha et al., 98 

2023). The magnitude of the fluvial discharge over the upstream tributaries of the Indus River 99 

increased predominantly as a result of increased streamflow across glaciated channels (NDMA, 100 

2022; UNICEF, 2022). However, the geomorphic consequences and the main drivers of this high-101 

magnitude flooding in the Upper Indus catchment have not been evaluated yet.    102 

In the present study, we evaluated the spatial distribution of channel changes in the mountainous 103 

portion of the Upper Indus catchment due to the extreme precipitation event in the months of July 104 

and August 2022. We employed a channel slope-discharge product along the trunk channel of the 105 

Upper Indus River to estimate the anomalies in the stream power resulting from the anomalous 106 

precipitation event during July and August 2022. We used a random-forest-based machine learning 107 

approach to compare the observed and predicted intensity of precipitation and runoff by assessing 108 

the mean climatology of independent hydro-climatic variables. We further quantified the causal 109 

relationship between hydro-climatic drivers using nonlinear time series data over the event 110 

duration. We investigated the channel response of this episodic flood event by using the NDWI 111 

and EVI as change indicator metrics and comparing that to event characteristics such as anomalous 112 

precipitation, stream power, and channel metrics. We want to better understand the controls on 113 

where and when these types of extreme hydrological events will substantially modify rivers and 114 

landscapes so associated geomorphic hazards can be better anticipated, and we also want to better 115 

constrain the potential role of these episodic events in driving long-term geomorphic change across 116 

the western syntaxial region. 117 

2. Regional Setting 118 

In the Himalayas, the erosion rates are high and the landscape of the mountainous terrain is shaped 119 

by the interactions between river systems and the basement tectonics (Jaiswara et al., 2019; 2020). 120 
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Among the Himalayan River systems, the Upper Indus is unique, including a fully developed, 121 

~1200-1400 km long, 8th- 9th-order drainage that enters the Himalayan terrain as an antecedent 122 

channel and cuts right over the seismically active belt in the Indus- gorges (Fig. 1). This catchment 123 

is highly affected by recurrent landslides or debris flows, and episodic glacial and landslide dams 124 

that represent significant geomorphic hazards (Korup & Montgomery 2008; Korup et al., 2010). 125 

     The Upper Indus River flows through the highly tectonically active region of the Nanga 126 

Parbat-Haramosh Massif (NP-HM), which is one of the highest relief regions on earth (~>5000 127 

m), and has the strong potential to rapidly erode uplifted material (Leland et al. 1998; Shehzad et 128 

al. 2009; Korup et al. 2010). The NP-HM region experiences the highest recorded rates of 129 

denudation and channel incision on earth (~12 mm/y), as well as high rates of tectonic uplift (~4 -130 

10 mm/y) and forms river anticlines across extremely weak crust (Koons et al., 2002; 2013; Zeitler 131 

et al., 2001; 2014; Butler, 2019). This has a significant impact on the tectonics and morphology of 132 

the western Himalayas (Hewitt, 2009; Zeitler et al., 2014). The Upper Indus catchment (UIC) is 133 

characterized by extremely steep channel gradient of ~>20-25⁰, high topographic relief of ~4000–134 

5000 m, and a large portion of snow-covered peaks (Hewitt, 2007; Farinotti et al., 2020).    135 

          As a fraction of the total annual discharge, snowmelt constitutes up to 50% in the Upper-136 

Indus catchment (UIC) (Burbank & Bookhagen, 2006; 2010; Scherler et al., 2011). Due to the 137 

Western Disturbance (WD) inclination, the UIC has a lot of precipitation in the winter and spring 138 

(Kapnick et al., 2014), while due to the orographic barrier of the high mountains, the influence of 139 

the ISM in the region weakens towards to the north-west (Forsythe et al., 2017). The annual 140 

precipitation in the UIC increases with the elevation; across the northern valley floors- in the rain 141 

shadows it ranges from 100-200 mm/y; while at elevation ~4000-4400 ma.s.l., it ranges from 600-142 

800 mm/y; and above >~5000 ma.s.l., it ranges from 1500 -2000 mm/y (Sharif et al., 2013; Wu et 143 

al., 2021). From October to March, the monthly mean temperatures in the UIC are below freezing 144 

at elevations > ~3000 m (Archer, 2004). Discharge in the tributary channels of the Upper Indus 145 

River that depend on glacier meltwater has a strong association with summer time mean air 146 

temperatures across the Karakoram ranges (Forsythe et al., 2017; Wu et al., 2021).  147 

3. Materials and Methodology 148 

3.1 Data Used 149 
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In the present study, we used a 30 m SRTM digital elevation model (DEM) for landscape 150 

characterization and geomorphic quantative parameter estimation. To investigate the impact of the 151 

climatic variables driving this extreme event on regional erosion processes, we utilized daily 152 

precipitation datasets spanning 40 years (1982–2022) from July 1 to August 31 from CHIRPS 153 

(Climate Hazards Group Infrared Precipitation with Station Data) (Version 2.0 Final). Several 154 

previous studies have investigated CHIRPS precipitation datasets at daily, monthly, and annual 155 

temporal scales across the Indus Basin (Gao et al., 2018; Ullah et al., 2019; Nawaz et al., 2021; 156 

Shahid et al., 2021). In their studies, they extensively evaluated CHIRPS's performance against 157 

regional ground datasets obtained from meteorological stations. Several studies (Katsanos et al., 158 

2016, Paredes-Trejo et al., 2017, Bai et al., 2018, Gao et al., 2018) suggest CHIRPS for 159 

hydrological analysis and water resource management due to its fine spatiotemporal resolution.  160 

We investigated the spatiotemporal distribution of hydrometeorological variables using daily 161 

datasets from July 1 to August 31. The ERA5-Land Daily Aggregated-ECMWF Climate 162 

Reanalysis, which had a spatial resolution of 11132 meters, provided data on 2-meter air 163 

temperature, skin temperature, dewpoint temperature, snowmelt, and runoff. We used remote 164 

sensing-based indices to detect signatures of anomalous changes over the landscape. We computed 165 

these metrics over the monthly mean for July and August 2022, using daily datasets of the MODIS-166 

based normalized difference water index (NDWI), the normalized difference snow index (NDSI), 167 

snow albedo, EVI, and surface reflectance bands b1 and b2, which have a 500-meter spatial 168 

resolution. 169 

3.2 Drainage network extraction and landscape analysis. 170 

We extracted the drainage network from the DEM using the ArcGIS platform. A regional slope 171 

map was produced by running a 1000 m radius mean filter over the slope model derived from the 172 

DEM, and a regional relief map was generated by passing a 1000 m circular radius focal range 173 

window over the DEM. Further analysis of the DEM and the derived flow accumulation data were 174 

performed in MATLAB using the transient profiler tools (Jaiswara et al., 2019, 2020). We 175 

extracted the longitudinal profiles of the bedrock channels within an accumulation region of about 176 

1*106 m2 and channel network of the Upper Indus catchment using TopoToolbox (Wobus et al., 177 

2006; Kirby and Whipple, 2012; Schwanghart and Scherler, 2014). We used a 1000 m smoothing 178 
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window and a 20 m vertical interval to sample the channel networks in order to reduce the noise 179 

and artefacts that are embedded in the elevation data. 180 

3.3 Quantitative Geomorphic parameters 181 

We used geomorphic quantitative parameters such as SL (Stream length-gradient index)-index, ksn 182 

(Normalized steepness index) and Stream power of the Upper Indus trunk channel to evaluate the 183 

influence of the high magnitude flooding event across the Upper Indus River during July and 184 

August 2022. To evaluate the spatial variability of the flood magnitude and the channel 185 

morphology, these metrics are plotted on the longitudinal profile of the trunk channel. 186 

3.3.1 Stream length-gradient index (SL- Index) 187 

 Rivers often achieve an equilibrium or steady state between erosion and sedimentation, which is 188 

represented by a concave longitudinal river profile (Schumm et al., 2002). Tectonic, lithological, 189 

and/or climatic factors often result in shifts in river profiles from this expected steady-state 190 

condition (Hack, 1973; Burbank and Anderson, 2011). Here, we use the Stream Length-Gradient 191 

(SL) index to identify the zones of topographic break and changes in the channel gradient of the 192 

longitudinal profile by using the equation: 193 

SL = (ΔH/ΔL)/L…………………. (1) 194 

where SL denotes the steepness or gradient of the profile for the local reach, L is the total river 195 

length from the midpoint of the local reach to the highest point on the channel, ΔH is the change 196 

in elevation over the reach and ΔL is the length of the reach, so ΔH/ ΔL represent the channel slope 197 

or gradient of the reach. A sharp lithological variation and/or the differential uplift across active 198 

structures are frequently linked to an abrupt change in SL-index along the river (Hack, 1973; 199 

Jaiswara et al., 2020; Kashyap et al., 2024). 200 

3.3.2 Channel Steepness index 201 

We extracted the bedrock profile of the Upper Indus River, which can be described using the power 202 

law relationship between upstream drainage area (A) and channel gradient (S) as (Jaiswara et al., 203 

2019, 2020; Kashyap et al., 2024): 204 
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S = ks A-θ………………. (2) 205 

where ks = (E/K)1/n is the channel steepness index, θ = (m/n) is the channel concavity index, m 206 

and 𝑛 are positive constants, E is the erosion rate at a steady state (Wobus et al., 2006; Kirby and 207 

Whipple, 2012).  The relative magnitude of ks is often related to the surface uplift rate as well as 208 

the erosional efficiency across a bedrock catchment (Snyder et al., 2003; Wobus et al., 2006). 209 

3.3.3 Stream Power estimation 210 

The normalized steepness index (ksn) has emerged as an important topographic metric with 211 

significant correlation with erosion rate over a wide range of timescales (Wobus et al., 2006; 212 

Jaiswara et al., 2019; Kashyap et al., 2024). However, one major drawback of ksn is that it includes 213 

an assumption of spatially constant precipitation because upstream drainage area is used as a proxy 214 

for discharge (Adams et al., 2020; Leonard et al., 2023a). 215 

        In the present study, we incorporate the precipitation intensity into the stream power 216 

calculation to analyze the anomalous stream power along the trunk channel during the flood event. 217 

We estimate the precipitation induced stream power using the slope-discharge method, which 218 

involves multiplying the accumulated flow distance weighted by precipitation with the hyperbolic 219 

tangent function of the channel gradient along the flow path (Adams et al., 2020; Leonard et al., 220 

2023b). The estimation of stream power (KsnQ) as a function of channel discharge can be estimated 221 

as: 222 

KsnQ = (𝑺) × 𝒇(∫𝒑 ∗ 𝑭𝑫)……. (3)  223 

where S is the channel gradient, FD is the accumulated flow distance, p is the accumulated 224 

precipitation (Leonard et al., 2023a; b). Thus, KsnQ is a normalized version of the channel 225 

steepness metric that uses the product of channel gradient (S) and upstream discharge (Q) 226 

estimated from mean precipitation (P) as a fluvial discharge proxy. This enables KsnQ to account 227 

for the spatial and temporal variability in precipitation along the upper Indus River during the high 228 

magnitude flood event. Accumulated precipitation resolves spatial patterns well and scales nearly 229 

linearly with relevant discharges, particularly for large and long-lasting precipitation events (Rossi 230 

et al., 2016; Leonard et al., 2023a; b). 231 
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3.4 Machine learning based approach to model the anomalous event characteristics 232 

The Random Forest (RF) technique is a supervised machine learning method that has been used 233 

as a tree-based ensemble technique and includes a bagging or boot-strapping algorithm (Breiman, 234 

2001; Wolfensberger et al., 2021). In the present study we use a RF based multivariate regression 235 

approach to estimate the anomalous precipitation and runoff intensity in July and August 2022 236 

using the independent variables obtained from classifying variable importance. 237 

𝑯(𝒙) = ∑ 𝒉𝒊(𝒙)𝑻
𝒊=𝟏 ……………… (4) 238 

Where, hi (x) denotes the ith regression tree output (hi) on sample x. Therefore, the prediction of 239 

the RF is the mean of the predicted values of all the decision trees. T denotes the regression trees 240 

for regression prediction. 241 

     Based on the mean climatology of the last 40 years, we predict the daily anomalous 242 

precipitation and runoff intensity for the 2022 event and compare them with the observed actual 243 

values. We employed the highest significance variables, as well as precipitation and runoff data 244 

from 1982 to 2021, as a training set. We utilized a time series cross-validation approach in this 245 

study to evaluate the Random Forest model's performance in predicting precipitation and runoff 246 

during the Upper Indus catchment's high-elevation flood event in July and August 2022. Given the 247 

temporal dependency and sequential pattern of hydro-climatic data, using a normal K-fold cross-248 

validation method could result in data leakage by allowing future data to inform past projections. 249 

To address this issue, we employed time series cross-validation to maintain the data within 250 

chronological order. We trained the model using a sliding window method, gradually moving the 251 

training window forward in time with each iteration. Specifically, we designed the first training 252 

window to contain data from the first 30 years, leaving the last 10 years for testing. In each 253 

successive iteration, we increased the training window by one year and retrained the model on the 254 

expanded training set. We trained these models on meteorological variables obtained from the 255 

classification of the most significant, as well as other physical drivers associated with high-256 

elevation flood episodes in the region. We evaluated the model's performance based on the 257 

accuracy of precipitation and runoff predictions, using metrics such as mean absolute error (MAE), 258 

mean squared error (MSE), and root mean squared error (RMSE) (SI. Table. 1- 2). We computed 259 

these metrics for each rolling window to gain insight into the model's performance across various 260 
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time periods, especially in the lead-up to the 2022 flood event. To utilize the independent variables 261 

to estimate these event characteristics, we first classify the hydro-climatic variables based on their 262 

higher importance using the RF classification approach. Then, by using the RF multivariate 263 

regression approach, we select only those independent variables with the highest significance to 264 

estimate anomalous precipitation and runoff intensity during the event duration. 265 

3.5 Causal discovery among Hydro-climatic variables 266 

Causal methodologies have been utilized to evaluate whether and how changes in one hydro-267 

climatological variable during anomalous extreme events influence the magnitude of another 268 

(Runge et al., 2019a; Nowak et al., 2020). To understand how an extreme event is regulated over 269 

high mountainous terrain, a temporal investigation of event characteristics is required. Using this 270 

evaluation, we gain insight into how the conditioning hydro-climatic variables that regulate these 271 

extreme events evolve throughout event duration in a catchment (Runge, 2018; Krich et al., 2020). 272 

Understanding directional dependencies is crucial to distinguish them from connections that 273 

cannot be deduced using any statistical model (Kretschmer et al., 2017; Karmouche et al., 2023). 274 

  In this study, we use causal stationarity, and the absence of contemporaneous causal effects 275 

for the time series datasets using the PCMCI and MCI approaches (Tibau et al., 2022; Runge, 276 

2023). PCMCI is a causal identification technique that combines the Momentary Conditional 277 

Independence (MCI) approach with the PC algorithm (Runge et al., 2019b; Nowack et al., 2020). 278 

Given a set of multivariate time series, PCMCI estimates the time series graph that depicts the 279 

conditional independencies among the time-lagged factors (Runge et al., 2014; 2019a). In addition 280 

to PCMCI, we use the ParCorr linear independence test based on partial correlations is employed 281 

(Runge et al., 2014; 2023). 282 

  In order to evaluate the meteorological disturbances associated with the Upper Indus Flood of 283 

2022, we identified the causal lag-connection between hydroclimatic variables, with a specific 284 

focus on exploring the meteorological conditions leading up to and during the flood event. We 285 

focused on identifying the short-term meteorological drivers that triggered the anomalous 286 

precipitation-driven high elevation flood and understanding the distribution of its immediate 287 

impacts within the Upper Indus catchment. We emphasize that this study does not attempt to 288 

explore the causality of long-term climatic changes or assess the full geomorphic consequences of 289 
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the flood on the landscape. We deliberately limit the scope to comprehend the meteorological 290 

conditions and their direct impact on the flood in the July-August 2022 period. By narrowing our 291 

focus to the short-term hydro-climatic interactions, we aim to offer insights into the key 292 

atmospheric processes and their role in shaping the event’s severity rather than its broader or 293 

longer-term geomorphic impacts. 294 

      In the present study we use the daily datasets of hydro-climatological variables and group them 295 

as; Temperature gradient (Tg), including Air temperature, Surface temperature, and Dewpoint 296 

temperature; Rainfall gradients (Rg), including Precipitation intensity, Runoff and Snowmelt; and 297 

anomalous change indicators (Ac) including EVI, NDWI, and NDSI, July 1 to August 31, 2022, 298 

so includes 62 observational intervals. We evaluate the causal interference between these hydro-299 

climatic variables using the MCI approach with a maximum 2-day lag period (τmax = 2) and a limit 300 

for significance set to 0.05 (α = 0.05), in order to examine the spatially interdependence 301 

relationships among each of these variables during 2-day event periods.   302 

3.6 Moisture pathways 303 

The Hybrid Single-Particle Lagrangian Integrated Trajectories (HYSPLIT) model 304 

(https://www.ready.noaa.gov/HYSPLIT_traj.php) has been employed to determine the probable 305 

moisture parcel source region (Joshi et al., 2023). Over the past decade, researchers have used the 306 

HYSPLIT model to identify moisture sources (Wang et al., 2017; Joshi et al., 2023). To determine 307 

the backward trajectory following an anomalous precipitation event, this study used the HYSPLIT 308 

model. We used three starting heights of 500, 1000, and 3000 ma.s.l. to calculate the backward 309 

trajectory for each day of July and August 2022, given that the HYSPLIT model required the start 310 

date/time, location, and height for each precipitation event (Wang et al., 2017; Gudipati et al., 311 

2022). This study used meteorological data with a spatial resolution of 1⁰×1⁰ from the Global Data 312 

Assimilation System (NCEP-GDAS). 313 

4. Results 314 

4.1 Geomorphic analysis of the Upper Indus terrain 315 

https://www.ready.noaa.gov/HYSPLIT_traj.php
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The Indus River is around ~1400–1600 km long and forms multiple loops both parallel to and in 316 

opposition to the regional structural trend; its bed elevation ranges from ~500-6000–m. The river 317 

exhibits distinct morphological characteristics over its flow path in terms of its topographic 318 

attributes and derivatives. Over the elevated low-relief landscape in the Tibetan plateau, the relief 319 

and channel gradient vary as (~0-500 m; ~0-10°), with a low SL index (~ <1 *104) gradient meter 320 

and mean basin ksn of (~<90 m0.9) (Fig. 2; Fig. 3a). Then, when the river traverses through the NP-321 

HM region, there is a progressive rise in the local relief and channel gradient to (~>2000-3000 m; 322 

~>25-35°), which is also reflected in the SL-index (>2.5-3×104) and mean ksn (~>331 m0.9). This 323 

region is characterized by topographic discontinuities across active structures, leading to high 324 

relief variation and topographic roughness. 325 

 326 

Fig.2. Spatial distribution of local relief overlaid with Mean basin ksn ranges across the Upper 327 

Indus River catchment. 328 

      The tributaries in the upstream glaciated valleys that flow parallel to the structural trend 329 

have a higher mean channel gradient (>~20-30⁰) and topographic relief (>~2000-3000 m) (Fig. 2). 330 

When these tributary channels start to descend towards the main stream after following the 331 

glaciated landscape, the value of SL and ksn for the trunk channels shows a significant rise at 332 

~3000–4000 m mean elevation. Approaching the southern mountain front, the main trunk channel 333 

relief and channel gradient are ~1000-2000 m and ~15-25° respectively (Fig. 3a). 334 
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 335 

Fig.3. The trunk channel profile of Upper Indus River plotted with (a) SL-index; (b) The highest 336 

order profile of Upper Indus River plotted with Stream power (slope-discharge product)-channel 337 

elevation (highest order profile is the subset of trunk channel profile indicated by black dash line). 338 

      The spatial association of higher ksn (>~331 m0.9), topographic relief (~1500-2000 m), and 339 

longitudinal increase in channel gradient along the main Upper Indus River channel downstream 340 

suggests a higher erosional regime. These high values for the various topographic metrics highlight 341 

zones of accelerated erosion where the river is in gradational disequilibrium. Furthermore, this 342 
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tectonically active southern front coincides with a region that gets significant annual mean 343 

precipitation (~1500–2500 mm/y), suggesting a tectonic-climate linkage in the erosional process.  344 

4.2 Spatial distribution of Hydro-climatic anomalies over event duration 345 

The downstream reach of the Upper Indus trunk channel received a significant amount of 346 

anomalous precipitation (>~60–80 mm/d) during the observation period of July and August 2022 347 

(Fig. 4a, 4b). The spatial variability of anomalous precipitation varies with a range of >~0–40 348 

mm/d along its major glaciated tributaries, such as Hunza, Astor, Gilgit, Shingo, and Zanskar. In 349 

July and August 2022, the total extent of anomalous precipitation was around ~900–1000 350 

mm/month, which was approximately ~300–400% more than the long-term (1982–2022) mean 351 

climatology. From July to August 2022, there was continuous precipitation in the high gradient 352 

downstream region, and due to the antecedent weather conditions, extreme precipitation likely 353 

produced suitable conditions for high-magnitude flooding. The potential geomorphic response of 354 

such anomalous precipitation is suggested by the resulting anomalous stream power over the 355 

downstream channels (Fig. 4c, 4d). The spatial distribution of anomalous stream power shows that 356 

the greatest increase occurred at ~400-800 km along the channel profile downstream. For both the 357 

months of July and August of 2022, we observed a significant rise in the stream power, to ~>200 358 

m3/s above the mean values (Fig. 3b). 359 
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 360 

Fig. 4. Spatial distribution of hydro-meteorological variables for anomalous July and August 361 

month of 2022 across Upper Indus catchment such as: (a) precipitation (July) (b) precipitation 362 

(August) (c) Snowmelt (July) (d) snowmelt (August); (e) Runoff (July) (f) Runoff (August).  363 

    During the observation period, other variables, such as runoff and snowmelt, also showed 364 

positive anomalies across the upstream glaciated sub-catchments over the Karakoram ranges (Fig. 365 

4e, 4f). Furthermore, during July and August 2022, the temperature variables indicated a positive 366 

deviation from the mean climatological trend over the glaciated catchments. In the upstream sub-367 

catchments in Shyok, Shingar, Hunza, and Gilgit, air and dewpoint temperatures reach (>~3°C 368 

above mean), while surface temperatures reach (>~6°C above mean) (Fig. 5). The spatial 369 

distribution of anomalous temperatures corresponds well with the anomalous snowmelt and runoff 370 

magnitude across the upstream glaciated catchments.  371 
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 372 

Fig. 5. Spatial distribution of hydro-meteorological variables for anomalous July and August 373 

month of 2022 across Upper Indus catchment such as: (a) Air temperature (July) (b) Air 374 

temperature (August) (c) Surface temperature (July) (d) Surface temperature (August); (e) 375 

Dewpoint temperature (July) (f) Dewpoint temperature (August).   376 

 377 

     We also observed a significant shift in the spatial distribution of change indicator variables 378 

during the observation period. In July 2022, the lower middle reaches of the Upper Indus River 379 

exhibited a negative change in EVI (~0-0.21) and a positive relative NDWI (~0.15-0.20). This 380 

inverse relationship between these two change indicators was found in the upstream channel as 381 

well in August. During the event, the tributary channels in the upstream glaciated landscape 382 

experienced a significant change in snow cover distribution, as demonstrated by the spatial 383 

variations of the relative NDSI (~ 0-0.63). Changes in relative snow cover correspond directly to 384 

increases in snowmelt and glacial runoff across glaciated catchments (Fig. 6). We observed a 385 

significant relationship (p<0.005; R=0.81) between the relative EVI metric and the anomalous 386 

stream power in the Upper Indus trunk channel and along its main tributaries. The anomalous 387 

stream power of the Upper Indus River and all of its major tributaries corresponds to a proportion 388 
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of EVI change that exceeds across low-gradient regions. This positive relationship with an 389 

increasing trend suggests a substantial geomorphic response due to extreme flooding. However, a 390 

negative relationship between anomalous stream power and EVI can also be observed across the 391 

channels of Astor and Shingo (Fig. 7).  392 

 393 

Fig. 6. Spatial distribution of hydro-meteorological variables for anomalous July and August 394 

month of 2022 across Upper Indus catchment such as: (a) EVI (July) (b) EVI (August) (c) NDWI 395 

(July) (d) NDWI (August); (e) NDSI (July) (f) NDSI (August).  396 
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 397 

 398 

Fig.7. Statistical relationship between Relative EVI- Anomalous Stream Power from July 1 to 399 

August 31, 2022 across Upper Indus catchment as well as along its all the major tributaries. 400 

4.3 Machine learning based approach to quantify the event anomalies 401 

The RF-classification-based determination of variable importance indicates that dewpoint 402 

temperature is the most significant variable in estimating precipitation intensity. Other significant 403 

variables include surface temperature and air temperature. Relative NDSI was the variable of 404 

highest significance for estimating precipitation in all other sub-catchments except Shingar (Fig. 405 

S1). Snowmelt, dewpoint temperature, relative NDSI, and surface temperature are the most 406 

significant variables for each sub-catchment when estimating runoff intensity. Surface temperature 407 

holds higher significance in the trunk channel catchment of the Upper Indus, followed by air 408 

temperature and precipitation intensity (Fig. S2). The anomalous precipitation and runoff intensity 409 

are then estimated using these independent variables with the highest significance obtained during 410 

classification. 411 

         The results show that the Upper Indus catchment received significantly more precipitation 412 

and runoff than predicted at multiple instances in July and August of 2022 (Fig. 8). The anomalous 413 

and extreme characteristics of the hydro-climatic and terrestrial drivers could explain this 414 

phenomenon. The Upper Indus catchment received a significant amount of anomalous 415 
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precipitation, with an intensity of >~100 mm/d, which is much higher than the predicted intensity 416 

during the period of observation. The channels in the higher relief landscapes such as Astor and 417 

Gilgit encountered the second-highest anomalous incidence, with intensities ~80–100 mm/d. The 418 

upstream glaciated catchments, such as the Shyok, Shingo, and Hunza, also have persistent 419 

anomalous intensities of up to ~100 mm/d. The least impacted catchment was Zanskar and Shingo, 420 

despite a high rate of precipitation that ranges from ~60–80 mm/d. 421 

 422 

Fig. 8. Random Forest-Regression based observed vs modeled anomalous precipitation from July 423 

1 to August 31, 2022 across Upper Indus catchment as well as along all the major tributaries.  424 

 425 

The distribution of observed and predicted runoff shows the intensity of observed runoff 426 

corresponds with the precipitation trend. During the observation period, the Upper Indus 427 

catchment had much higher runoff rates, followed by upstream glaciated sub-catchments including 428 

Shyok (~30-60 mm/d), Shingo, and Gilgit (~20-30 mm/d). However, in the majority of the 429 

upstream sub-catchments, the observed anomalous runoff intensity is insignificant (Fig. 9). 430 
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 431 

Fig. 9. Random Forest-Regression based observed vs modeled anomalous runoff from July 1 to 432 

August 31, 2022 across Upper Indus catchment as well as along all the major tributaries.  433 

4.4 Causal relationship among Hydro-climatic variables over event duration 434 

The causal analysis showed that the impact of numerous meteorological variables on the extreme 435 

flood over the Upper Indus terrain varied significantly. We observed a significant causal lagged 436 

connection between dewpoint temperature and NDSI, which together positively influenced 437 

precipitation intensity with a 1-day lag across the Upper Indus catchment. Similarly, precipitation 438 

intensity and snowmelt exhibit a positive causal influence on NDWI with a 1-day lag period. For 439 

instance, the cross-correlation between precipitation and dewpoint temperature with positive 440 

impact is > 0.4 over the event duration. There was a significant negative causal influence of NDWI 441 

on EVI, indicating an inversely proportional relationship across the observational lag period. The 442 

hydro-climatic variables such as precipitation intensity, snowmelt, NDWI, EVI, NDSI, air 443 

temperature, and surface temperature, had non-linear and non-stationary tends from July 1, 2022, 444 

to August 31, 2022, as shown by the autocorrelation and PCMCI magnitude over the time series. 445 

The auto MCI ranges of these variables are comparatively very low. Runoff and dewpoint 446 

temperatures exhibit stationarity and a linear trend over the time series with relative high auto-447 

MCI ranges. It is also observed that dewpoint temperature has a significant inherent connection 448 
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with snowmelt and NDSI, indicating that these variables have a direct causative relationship with 449 

a high cross-MCI range (Fig. 10). In a causal investigation, edges with arrows indicate a link 450 

between the drivers. However, depending on the available metrics, there may be an instant causal 451 

connection between the drivers. It should be observed that this relationship may not have been 452 

determined to be causative. 453 

 454 

Fig.10. Causal detection among hydro-climatic driver having non-linear time series from July 1 to 455 

August 31, 2022 across Upper Indus catchment with maximum allowable lag of 2 days at the 95% 456 

CI. (The drivers are shown in the solid circles such as: DT= Dewpoint Temperature, ST= Surface 457 

Temperature, AT= Air Temperature, P= Precipitation intensity, SM= Snowmelt, RF= Runoff, 458 

NDWI= Normalized Difference Water Index, NDSI= Normalized Difference Snow Index, EVI= 459 
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Enhanced Vegetation Index: The node color represents autocorrelation whereas link color 460 

represents the strength of directional link. The lag at which the link was found significant is shown 461 

as link label, absence of which indicates that the link was found at zero lag).  462 

4.5 Identifying moisture trajectories for the anomalous precipitation event 463 

 Based on moisture source uptake along trajectories for the observation period of July 1 to August 464 

31, 2022, the amount of precipitation across the orographic ridges of the Upper Indus terrain was 465 

delivered along two major pathways, one from Mediterranean Sea sources such as Western 466 

disturbance (WD)-derived moisture during the onset of the monsoon and a second from the ISM, 467 

originating from the Bay of Bengal and the Arabian Sea. The WD routes provided the moisture 468 

sources for the precipitation along the 3000 m height trajectories, while the Arabian Sea, the Bay 469 

of Bengal, and the Himalayan foreland provided the moisture along the 500 m and 1000 m 470 

trajectories. Furthermore, the anomalous temperature gradient observed for the months of July and 471 

August 2022 shows that the steep bedrock valleys are causing abnormal air-mass feedback. The 472 

substantial divergence in the air-mass curve from mid-July to mid-August 2022 suggests there may 473 

have been very high precipitation and temperature fluctuations during those periods (Fig. 11).    474 

 475 
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Fig.11. Moisture pathways (Backward trajectories) for Anomalous precipitation event from July 1 476 

to August 31, 2022 across Upper Indus catchment: (Blue line denotes the trajectory of 500 m 477 

elevation, yellow line denotes the trajectory of 1000 m elevation, and red line denotes the trajectory 478 

of 3000 m elevation: Blue and yellow dot lines exhibit the ISM pathways, whereas Red dot lines 479 

exhibit the WD pathways).   480 

5. Discussion 481 

5.1 Spatial relationship between topographic metrics and event anomalies  482 

To characterize the geomorphic response of this extreme flood, we estimated stream power over 483 

the trunk channel of the upper Indus River as an event anomaly. Understanding the spatial 484 

distribution of stream power over the longitudinal profile of bedrock rivers is essential for 485 

evaluating the catchment-scale variability in channel response to anomalous precipitation events 486 

(Whipple et al., 2000; Kaushal et al., 2020). The peaks and troughs in the stream power profile 487 

regulate the morphological characteristics of the bedrock channels (Schneider et al., 2014; Bawa 488 

et al., 2014; Sinha et al., 2017). The river morphology and channel shape will be significantly 489 

impacted by the temporal variations in flooding intensity during anomalous precipitation events 490 

(Bookhagen and Strecker, 2012; Scherler et al., 2014). 491 

     The initial ~400–600 km length of the Upper Indus River is characterized by low gradient 492 

channels as the river traverses over the elevated-low relief landscape. After traversing through the 493 

mainstream and joining in the highest-order channel across the syntaxial region, there is a sharp 494 

rise in the stream power profile along the downstream. The western syntax (NP-HM) in the NW 495 

Himalayas is one of the most rapidly uplifting (>~5-10 mm/y) and eroding (>~10 mm/y) regions 496 

on earth, with extreme topographic relief (>3000 m) (Fig. 1; 2). The sudden increase in the stream 497 

power of the Upper Indus River after traversing through NP-HM and the resultant extreme flood 498 

along lower middle reaches were also attributed to this high elevation change (>~4000 m) and 499 

steep channel gradient (>~20-30⁰) (Fig. 3b). The spatial variability of stream power is also highly 500 

connected with other topographic metrics such as the ksn and SL index, which demonstrate a 501 

considerable rise in their longitudinal profiles when the channel crosses the NP-HM region (Fig. 502 

3a). We observed that the stream power distribution along the longitudinal profiles of the Upper 503 
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Indus River is characterized by numerous peaks for both anomalous precipitation months in July 504 

and August 2022 (Fig. 3b). 505 

  The upstream glaciated channels of the Trans Himalayan and Karakoram ranges have a 506 

substantial glacial influence on erosion, contributing to the main trunk channel of the Upper Indus 507 

River. Therefore, such high-magnitude floods ought to propagate through the channels of high 508 

mountainous tributaries like Shyok, Gilgit, and Hunza, depending on the landscape characteristics 509 

of the upper Indus catchment. A moderate change in the distribution pattern of snow cover may 510 

have a significant impact on glacial runoff and substantially contribute to fluvial discharge. In 511 

addition to the southern mountain front, the headwaters and syntaxial zone of the Upper Indus 512 

catchment received a significant amount of precipitation, which contributed to the anomalous rise 513 

in stream power and substantially contributed to this extreme flood that influenced the channel 514 

geometry of the lower middle reach and drove high bedrock erosion (Fig. 4). However, the lower 515 

middle reaches with higher stream power are distinguished by the steep channel valley and absence 516 

of sediment deposition. The observation suggests that the higher-order channels of the Upper Indus 517 

River traversing across higher relief and steep gradient valleys likely possess direct first-order 518 

control over the pattern of erosion when combined with an anomalous rate of precipitation (Fig. 519 

3b). 520 

5.2 Hydrological extremes and causal connections 521 

Our observations suggest that the interaction of glacial runoff with fluvial discharge over the steep 522 

gradient channels combined to drive the extreme flood event across the Upper Indus catchment. 523 

These extreme hydrological episodes imply that the possible response of atmospheric instabilities 524 

may be elevation-dependent (Dimri et al., 2015; Forsythe et al., 2017; Ullah et al., 2021; Sharma 525 

et al., 2021). It commenced with anomalous rises in temperature gradients over the glaciated sub-526 

catchments of the Upper Indus terrain, which drove the rapid changes in snow cover distribution 527 

(Fig. 5; 6). This directly impacts glacial runoff magnitude and contributes to an anomalous rise in 528 

fluvial stream power when traversed downstream over higher-relief fluvial reaches (Fig. 6). The 529 

lower middle reaches of the Upper Indus catchment witnessed an anomalous amount of 530 

precipitation intensity from early July to late August 2022 (Fig. 4). When compared to the annual 531 

mean climatology, the precipitation intensity in the lower middle reaches of the Upper Indus River 532 
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was roughly ~150–200% higher in the 2022 monsoon period. The 2022 Upper Indus flood 533 

represents an abrupt change from the region's prior precipitation and runoff patterns. To study this 534 

anomaly, we utilized a Random Forest model trained on climatological data from the last 40 years 535 

(1982-2021), with an emphasis on the months of July and August. The model used previous 536 

climatology as a training dataset to estimate precipitation and runoff, which are significant drivers 537 

of flooding. Despite the Random Forest model's resilience, the results revealed a substantial 538 

difference between the model's predictions and the actual observed data obtained from the 2022 539 

flood event. The model, based on 40 years of past data, failed to capture the high precipitation and 540 

runoff patterns observed in July and August 2022 (Fig. 8: 9). The model's inability to predict 541 

rainfall intensity, as well as subsequent runoff, highlights the anomalous nature of the event. This 542 

disparity demonstrates that the 2022 flood was not only unusual but also went outside the typical 543 

climatological shifts observed over the previous four decades. This emphasizes the necessity for 544 

future modeling efforts to include other predictors, such as changes in snowmelt dynamics, 545 

atmospheric circulation anomalies, and other non-stationary phenomena. 546 

      The moisture flux trajectories observed during the 2022 monsoonal period across the lower 547 

middle reaches of the upper Indus River reveal two distinct sources of moisture pathways, 548 

indicating that the combined effect of the westerlies-driven precipitation and the active monsoon 549 

phase has likely caused this episodic event (Wang et al., 2017) (Fig. 11). Over the past years, the 550 

interactions between moisture-laden ISM and southward-penetrating upper-level WD depression 551 

have been linked to some catastrophic western Himalayan floods, such as in 2010 across Pakistan 552 

and 2013 in Uttarakhand, India (Rasmussen and Houze, 2012; Vellore et al., 2015; Dimri et al., 553 

2016; Sharma et al., 2017). This anomalous rise in the rate of precipitation intensity contributes to 554 

the rapid increase in stream power across steep valleys. The combined causal influence of 555 

temperature and precipitation intensity with topography plays an important role in modulating such 556 

episodic events, as these variables eventually regulate the amount of solid precipitation, influence 557 

the change in snow cover, and have a significant impact on snowmelt runoff (Fig. 10) (Bovy et al., 558 

2016; Godard and Tucker, 2021; Delaney et al., 2023). This flood indicates the importance of 559 

understanding the cause-and-effect relationship between temperature and precipitation in high-560 

elevation uplands. 561 

5.3 Channel Response to an Extreme Flood 562 
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 This study used the EVI change analysis as a significant event characteristic to capture the 563 

changes in the channel morphology triggered by the 2022 Upper Indus flood. The anomalous 564 

runoff events during the flood significantly altered channel geometry, and these changes were 565 

reflected in the spatial and temporal variations of EVI (Fig. 6). Geomorphic processes such as 566 

inundation, erosion, and landsliding have submerged or removed vegetation in areas marked by 567 

drastic shifts in EVI ranges (Anderson and Goulden, 2011). The reduction in EVI ranges along the 568 

steep channels highlights the expansion of water bodies during flooding, while the surrounding 569 

areas experienced erosion and landslides due to the extreme discharge. The broader geomorphic 570 

consequences of extreme hydrological events, such as river channel widening, sediment 571 

deposition, and riverbank erosion, frequently link to these changes in vegetation cover (Olen et al., 572 

2016; Starke et al., 2020; Clift and Jonell, 2021; Scheip and Wegmann, 2021). While EVI cannot 573 

directly measure hydrologic parameters, its ability to reflect the loss of vegetation makes it a useful 574 

proxy for assessing the intensity of geomorphic processes during floods. This capability is 575 

particularly important in high-mountain landscapes such as the Upper Indus, where steep 576 

landscapes and glacial fluvial regimes amplify the effects of extreme events.  577 

   We utilize NDWI and EVI as change indicator metrics to understand the changes in channel 578 

morphology due to this extreme flood event. The spatial variability of EVI corresponds 579 

significantly with an increase in NDWI intensity downstream during July and August 2022 (Fig. 580 

6).  The substantial decrease in EVI values along downstream channels has also been attributed to 581 

the anomalous precipitation event, which led to increased surface runoff, higher NDWI limits, and 582 

subsequent flood deposits. We observed a significant direct causal influence with one-day-lagged 583 

connection of precipitation and snowmelt on NDWI (Fig. 10). This combined causal relationship 584 

between precipitation and snowmelt with NDWI intensity indicates that anomalous runoff 585 

occurred across both glacial and fluvial channels. Further the inverse causal connection (negative 586 

MCI ranges) between NDWI and EVI illustrates the rapid change in the channel geometry due to 587 

increase in the fluvial discharge over lower middle reaches (Fig. 10). 588 

    The change in river morphology driven by the high-magnitude flood episodes is also 589 

documented by the statistically significant (p<0.005; R= 0.81) relationship observed between 590 

anomalous stream power and relative EVI across the lower middle reaches of the Upper Indus 591 

River (Fig. 7). It is generally assumed that relative vegetation intensity is an indicator of 592 
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geomorphic change that results from short-duration, high-magnitude hydrological events (Olen et 593 

al., 2016; Starke et al., 2020; Clift and Jonell, 2021; Scheip and Wegmann, 2021). Thus, we 594 

anticipate that EVI acts as a spatial indicator of change in the channel morphology across the lower 595 

middle reaches of the trunk channel during the monsoon period of 2022 (Fig. 7) suggesting that 596 

the distribution of event characteristics such as NDWI and EVI can be useful to detect the relative 597 

change in channel morphology triggered by high-magnitude floods.  598 

6. Conclusion 599 

Our study reveals several significant event characteristics of the 2022 Upper Indus flood. Our 600 

analysis shows that the Upper Indus flood originated across elevated glacial channels due to the 601 

anomalous temperature rise, which increased the glacial runoff. This increase in runoff across 602 

glaciated catchments after traversing through fluvial reaches enhanced the fluvial discharge and 603 

likely increased the stream power in the anomalous precipitation region. The synoptic observation 604 

of moisture pathways indicates that this anomalous precipitation incident is linked to the 605 

interaction of southward moving mid-latitude westerlies troughs and eastward advancing 606 

southwestern monsoon circulation. We observe a statistically significant relationship between the 607 

anomalous stream power and relative EVI change across the lower middle reaches, which serves 608 

as a significant geomorphic indicator of change in the channel morphology. This will aid in 609 

determining the reliability of EVI as a consistent indicator of geomorphic changes, as well as its 610 

applicability in studying the geomorphic evolution of regional landscapes. This extreme flood 611 

illustrates how causal connections between temperature and precipitation across high relief-612 

gradient channels can magnify the impacts. Such hydrological events may play significant roles as 613 

efficient geomorphic agents of erosion and, therefore, in the coupling of climatic extremes, 614 

topography, and erosion. This study underscores the susceptibility of the elevated syntaxial region 615 

to short-lived, high-magnitude flooding, indicating the need for additional research to determine 616 

the causal relationship between the drivers of hydrological extremes. Significant research is needed 617 

to understand the long-term impact of these extreme climatic events on the geomorphic processes 618 

in the region. 619 

  620 

  621 
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