
Thank you for these detailed comments and valuable feedback for this manuscript. We appreciate

the comments raised by both of the reviewers, and we will address each of them individually in

our response section below. We look forward to providing a revised manuscript.

RC1: 'Comment on egusphere-2024-1618', Anonymous Referee #1

This paper presents a valuable case study of a fascinating high-magnitude event, namely the

anomalous precipitation event during the 2022 monsoon that led to substantial flooding across

the lower reaches of the upper Indus River. The authors provide insight into the impacts of the

flood on this high mountain region by evaluating a series of topographic indices, alongside

precipitation datasets, to derive stream power proxies mapped in relation to various attributes of

the flood. They find that the high precipitation volumes delivered during the event, alongside

unusually high temperatures, led to substantial snow and glacier melt, contributing additional

flow to the runoff generated by the high precipitation. As a result, very high stream powers were

generated at multiple steep locales along the stream network, and these are assessed in relation to

measures of channel change inferred from satellite-derived vegetation metrics.

The paper focuses on highlighting the combination of factors that led to the high (inferred)

stream powers and therefore its main utility lies in the recognition of flood generation processes

in this environment. This is important and understandably, therefore, the paper pays less attention

to how the generated stream powers may (or may not) correlate with channel changes inferred

from the satellite images. That is, the linkages between the stream powers generated and the

channel responses are a story left largely to another analysis. The paper nevertheless represents

an important contribution to our knowledge of high mountain flood generation processes and

will be of interest to the journal's readership. Of particular interest is the authors' finding that for

this event the atmospheric instabilities responsible for delivering the extreme precipitation and

temperature anomalies were elevation-dependent, which has important implications for

evaluating the controls on, and risks posed by, similar events in the future.

The paper is well-illustrated and clearly written, and I have few suggestions for further revisions.

Nevertheless, the authors may wish to consider the following points:
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Author Response: Thank you for your positive comments about our manuscript. We are pleased

that you found this study clear and valuable.

Comment 1. The authors contextualise the flood event, but at L86 they discuss the flooding in

the *Lower* Indus valley, seemingly attributing the flooding there to extreme rainfall. This is

perhaps a contested view - in the lower basin could much of the flooding have been the result of

the poorly maintained canal network - were flood discharges (at peak) generated in the *lower*

basin unusually high or not?

Author Response: This is a good point. In this study, we are not looking at the portion of the

Indus downstream of the mountain front, so our use of the term Lower Indus is indeed incorrect.

To make this clear, we will amend the manuscript to replace the Lower Indus with the

Lower Middle Indus.

Comment 2. The authors rely on the use of the CHIRPS precipitation dataset. Readers may

value an assessment of any evidence that could support the reliability of CHIRPS in the study

region.

Authors Response: Thanks for the suggestion. Various researchers extensively evaluated

CHIRPS precipitation datasets at daily, monthly, and annual temporal scales across the Indus

Basin. They usually divide the whole Indus basin into three sub-basins, i.e., the Upper Indus

basin (UIB), the Middle Indus basin (MIB), and the Lower Indus basin (LIB). The performance

of CHIRPS was comprehensively evaluated against regional ground datasets obtained from

meteorological departments. Several studies (Katsanos et al., 2016, Paredes-Trejo et al., 2017,

Bai et al., 2018, Gao et al., 2018, Saeidiz et al., 2018) have recommended CHIRPS for

hydrological analysis and water resource management due to its fine spatiotemporal resolution.

Shahid et al. (2021) conducted a study where they observed the hydrological utility of CHIRPS

in two sub-basins of the Indus Basin, specifically the Gilgit (UIB) and Soan (MIB) basins. The

SWAT model was used to assess the performance of CHIRPS in simulating daily streamflow

across the Gilgit and Soan basins, which have completely different climates. Different regions

around the world have evaluated CHIRPS (Dinku et al., 2018, Gebrechorkos et al., 2018,

Prakash, 2019, Wu et al., 2019), particularly across Pakistan (Ullah et al., 2019, Nawaz et al.,

2021). We will add this information to the manuscript.
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Comment 3. The authors may wish to comment in more detail on the results of Figure 8, where

it is clear that the model precipitation data do not capture the full variability present in the

'observed' data. What is it about the model behavior that means the model seemingly does not

represent the high precipitation variability? (Likewise for Figure 9 for the runoff data)

Author's Response: It appears that we may not have communicated this clearly. The model, in

fact, does not accurately predict the extreme precipitation ranges of the 2022 July–August

events. This is actually the aim of this machine learning-based model: to demonstrate that this

event is anomalous and driven by the interaction of different circulation patterns, such as

southward moving mid-latitude westerlies troughs and eastward advancing southwestern

monsoons, as well as anomalous meteorological conditions, rather than the typical monsoon

rainfall. We will clarify this in our discussion of the model results in the manuscript.
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RC2: 'Comment on egusphere-2024-1618', Anonymous Referee #2

The manuscript "Geomorphic imprint of high mountain floods: Insight from the 2022

hydrological extreme across the Upper Indus terrain in NW Himalayas" addresses an important

and timely topic in the field of fluvial geomorphology. The authors' attempt to analyze the

impacts of an extreme flood event in a complex mountainous terrain is commendable, and their

multi-faceted approach, combining geomorphic analysis, remote sensing, and advanced

statistical techniques, demonstrates ambition and creativity in tackling this challenging subject.

The study's strengths lie in its comprehensive consideration of multiple factors influencing flood

response, including precipitation, temperature, snowmelt, and pre-existing landscape

characteristics. The authors' use of various data sources and their attempt to link large-scale

climatic drivers to local geomorphic changes is noteworthy. However, despite these positive

aspects, the manuscript suffers from several critical methodological flaws that significantly

undermine the validity and reliability of its findings. These issues span multiple aspects of the

study, including data resolution and quality, analytical techniques, and interpretation of results.

The lack of adequate pre- and post-flood comparisons, insufficient validation of remotely sensed

data, problematic application of causal analysis, and inadequate error analysis and uncertainty

quantification are particularly concerning. Given the severity and pervasiveness of these

methodological shortcomings, I regrettably must recommend the rejection of this manuscript.

The following detailed comments outline the specific issues that led to this decision, along with

suggestions for how the authors might address these problems in future work.

Author Response: Thank you for your extensive feedback. You made several points identifying

things that are missing in the manuscript, particularly related to error analysis and method

robustness, and we appreciate this in helping to improve our manuscript. Several of the points

raised highlight that we are not clear enough about the goals of the study, which is very helpful

to know and will be improved.

Comment 1. Inadequate data resolution and quality: The authors rely heavily on 30m SRTM

DEM data (Line 149) for their geomorphic analysis. This resolution is insufficient for accurately

capturing the fine-scale topographic changes expected from a single flood event in a complex

mountainous terrain. High-resolution LiDAR or drone-derived DEMs (sub-meter resolution)
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would be necessary for this type of analysis. The authors mention using several datasets (Lines

148-160) but lack specificity about which data is used for each geomorphic index, and how these

data were applied. At what resolution was all the data transformed for each index?

Author's Response: It is correct that the topographic data (DEM) that we have used is not

suitable for detecting detailed geomorphic changes. However, this study does not aim to detect

detailed geomorphic change, and we never claimed to be doing so. While having high-resolution

Lidar or UAV-derived DEMs would be ideal, these data are currently unavailable and difficult to

obtain, particularly for the vast area of the Upper Indus catchment that we are examining. A

paper focused on detailed geomorphic change would be very interesting, but it would be a very

different study than the one we have done.

In line no. 98-113 of section 1. introduction, we will clarify that we are not looking at

detailed geomorphic change.

Comment 2. Inadequate pre- and post-flood comparisons: The authors attempt to use

MODIS-derived indices (NDWI, NDSI, EVI) for change detection (Lines 158-160). However,

their approach has several limitations: (a) Temporal resolution: The authors don't specify the

exact dates of the pre- and post-flood images used. Given that MODIS provides daily or 8-day

composite products, the selection of these dates is crucial and could significantly affect the

results (b) Spatial resolution: MODIS data typically has a spatial resolution of 250-1000m, which

may be too coarse to capture detailed geomorphic changes in complex mountainous terrain. (c)

Lack of quantitative analysis: The authors present qualitative descriptions of changes in these

indices (Lines 350-356) but fail to provide a rigorous statistical analysis of the changes. For

example, they could have conducted a pixel-by-pixel comparison and presented statistics on the

percentage of areas showing significant changes. (d) Limited interpretation: While changes in

vegetation indices can indicate flood impacts, the authors don't adequately address how these

spectral changes relate to specific geomorphic processes or landforms. They make broad

inferences about channel morphology changes (Lines 357-360) without directly linking spectral

changes to field-observed geomorphic features. (e) Absence of complementary data: The use of

optical indices alone is insufficient for comprehensive flood impact assessment. The authors

could have strengthened their analysis by incorporating other remote sensing data, such as SAR
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imagery for flood extent mapping or high-resolution optical imagery for detailed change

detection. The authors rely heavily on remote sensing indices (e.g., EVI, NDWI) to infer

geomorphic changes (Lines 354-363). However, they provide no ground-truthing or field

validation of these inferred changes. Without this validation, the reliability of their

interpretations is questionable. The SAR/Landsat data can serve as a proxy in most cases.

Authors Response:

a) We compute the MODIS-based indices (NDSI, NDWI, and EVI) using the monthly mean

composite of the daily datasets, maintaining a spatial resolution of 500 m.We will add

this to the method in Section 3.1.

b) Yes, it’s true that the spatial resolution is not sufficient to capture detailed geomorphic

change, but as we said above, the goal of this study is to look at regional and large-scale

landscape patterns rather than detailed changes.

c) We didn’t think that a pixel-by-pixel analysis was the appropriate way to check the

robustness of the observed change. Instead, we accounted for the inherent variability in

the metric by comparing the relative changes in 2022 to the changes in these metrics

observed from 2002 to 2021.

d) This is a good point. We have compared the MODIS-derived change to both before and

after optical imagery to ascertain the measurement.We'll include several examples of

this in the supplementary information.

e) We attempted to use SAR data to look at flood inundation mapping; however, SAR

proved unsuitable in this region because of the high relief and steep gradient valleys. One

of the big advantages of MODIS data over optical imagery such as Landsat and Sentinel

is that MODIS provides daily data as opposed to return periods of ~2 weeks.

Comment 3. Problematic causal analysis: The authors employ the PCMCI (Peter and Clark

Momentary Conditional Independence) algorithm for causal discovery among hydro-climatic

variables (Lines 244-270). While this is an advanced method for time series analysis, its

application in this study has several significant issues: (a) Assumption of causal sufficiency: The

PCMCI method assumes that all relevant variables are included in the analysis. However, the

authors don't justify their selection of variables (temperature gradient, rainfall gradient, and

6



anomalous change indicators) as a comprehensive set for describing the complex geomorphic

system. Important factors like soil moisture, vegetation cover, or tectonic uplift rates are not

considered, potentially leading to spurious causal relationships. (b) Linear relationships

assumption: The authors use the ParCorr linear independence test (Line 261), which assumes

linear relationships between variables. However, geomorphic and hydrological processes often

exhibit non-linear behaviors. The authors don't address this limitation or justify why a linear

approach is appropriate for their data. (c) Temporal resolution mismatch: The authors use a

maximum 2-day lag period (τmax = 2) for their analysis (Lines 267-268). This short-term focus

may miss important longer-term causal relationships in the geomorphic system, which can

operate on much longer timescales. d) Lack of robustness testing: The authors don't present any

sensitivity analysis or robustness checks for their causal discovery results. It's crucial to test how

the identified causal relationships change with different parameter choices (e.g., varying τmax or

significance levels). e) Interpretation issues: The authors present their causal graph (Fig. 10)

without adequately explaining how to interpret the results in the context of geomorphic

processes. They don't link the statistical relationships found to physical mechanisms of landscape

change. f) Temporal scope limitation: The analysis is limited to the July 1 to August 31, 2022

period (Lines 265-266). This narrow timeframe may not capture the full range of causal

relationships relevant to the flood event, especially considering potential antecedent conditions

or delayed effects.

Author's Response: There are a number of points raised about the causal analysis; several of

these seem to stem from some confusion about what the causal analysis includes. We did this

analysis to explore the hydro-climatic conditions of the high mountain flood. We are not

attempting to look at the causality of long-term change or the full impact of the flood on the

geomorphic system. The focus is on understanding the event's meteorological drivers and

distribution of short-term impacts.We will clarify this in Section 4.5 of the manuscript.

a) We are using the causal analysis to investigate the meteorological drivers of the event and

looking at temporal relationships and causality over two days. Factors that are constant

on these time scales, such as uplift rates and distribution of vegetation cover are therefore

not considered. The Upper Indus catchment's mean elevation is ~4000 m, with a

predominantly glacial-fluvial regime. Much of the region is characterized by elevated low
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relief, steep landscapes, and a rain shadow effect, which collectively minimize the

influence of soil moisture on the geomorphic system. Moreover, our preliminary analysis

of soil moisture for this event did not yield significant results, further justifying its

exclusion from the final model.

b) It is true that geomorphic processes can exhibit non-linearity; however, our causal

analysis is focused on the drivers of the flood and not the impacts and therefore does not

attempt to describe any geomorphic processes. Non-linear methods might be able to

capture more complexity, but our goal was to find the most direct and understandable

causal pathways that led to the meteorological anomaly, drove this high-mountain flood,

and significantly changed the landscape. In this context, the ParCorr test allowed us to

effectively focus on these pathways. We acknowledge the potential for non-linearities and

plan to explore them in future studies, but for this analysis, the linear approach provided

clear and actionable insights into the causal relationships among the selected variables.

c) As we stated above, we are not looking at long-term geomorphic processes, or attempting

to do comprehensive geomorphic analysis, so the timescale is appropriate for the

meteorological and hydrological variables that we are considering.

d) It is important to clarify that the primary objective of our causal analysis was to identify

the physical drivers of the extreme flood event across the Upper Indus catchment rather

than directly model the geomorphic system itself. Our focus was on understanding how

hydro-climatological variables, such as temperature and rainfall gradients, contributed to

the occurrence and magnitude of this high-mountain flood, which subsequently drove

significant landscape changes. The causal graph provides insights into the temporal-lag

relationships between these variables, highlighting the causal interrelationship between

significant variables that triggered the flood. Although these statistical relationships don't

aim to depict direct geomorphic processes, they aid in tracing the origins of the flood

event, which subsequently influenced the geomorphic process. By identifying the flood's

drivers, we can better understand the subsequent landscape changes, making this analysis

a critical step in linking hydro-climatological dynamics to geomorphic outcomes in the

context of high-elevation landscapes such as the Upper Indus catchment.

e) Again, we are focused on the hydro-climatic drivers rather than the geomorphic

processes. The EVI change can symbolize various processes such as inundation, erosion,
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and landsliding, but fundamentally, it signifies the region where a geomorphic or

hydrologic process has eliminated the vegetation. We will add to the discussion of the

EVI results by clarifying what the EVI change represents.

f) It is true that we are not capturing the long-term geomorphic relationships, but again, this

is not the focus of the causal analysis.

Comment 4. Unsupported stream power calculations: The author's novel approach to calculating

stream power (Lines 204-224) incorporates precipitation data, but they fail to validate this

method against established stream power calculation techniques or field measurements of actual

stream power during the flood event.

Authors Response: This approach is not completely novel, and we have provided references in

lines 214–215 for the method. Established stream power calculations assume uniform

precipitation over the catchment, which is an assumption that was clearly violated in the Upper

Indus catchment, which had a strong precipitation gradient. Therefore, we don’t expect a match

between typical stream power calculations and our precipitation-dependent stream power. To

compare it with the actual streampower, we calculate the monthly mean streampower using the

monthly climatology from the past 40 years. We have not attempted a full hydrological routing

and modeling of the flood, nor have we attempted to reconstruct the flood discharges. Therefore,

we do not anticipate a correlation between the calculated streampower anomaly and specific

measurements of streampower during the flood. Furthermore, no discharge data has been made

available from this region.

Comment 5. Insufficient error analysis and uncertainty quantification: The authors fail to

adequately address uncertainties in their analysis, particularly in their Random Forest modeling

(Lines 227-243). Specific issues include: a) Model performance metrics: No information is

provided on standard evaluation metrics such as R-squared, RMSE, or Mean Absolute Error for

the Random Forest predictions. b) Validation strategy: The authors don't specify their model

validation approach (e.g., k-fold cross-validation, hold-out validation set).c) Feature importance:

While they mention variable importance (Lines 372-380), they don't provide quantitative

measures or visualizations of feature importance. d) Sensitivity analysis: There's no exploration

of how model results change with different parameter settings or input variables. e) Propagation
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of uncertainties: The authors don't discuss how uncertainties in their Random Forest predictions

might affect subsequent analyses, such as the causal discovery or stream power calculations.

Author's Response: We appreciate the opportunity to clarify our methodology and provide

additional insights into our analysis.

a) We acknowledge the importance of including standard evaluation metrics such as

R-squared, RMSE, and mean absolute error (MAE) to assess the performance of our

Random Forest model. We have already estimated these metrics and observed that the

model performs well for the Upper Indus Catchment, followed by some upstream

sub-catchments such as Shyok, Shinger, and Hunza. In our revised manuscript, we will

incorporate these metrics to provide a comprehensive understanding of the model’s

predictive accuracy. We will present these metrics alongside the model predictions to

facilitate a clearer assessment of its performance.

b) The model validation strategy is indeed critical for ensuring the reliability of the

predictions. In our original manuscript, we employed a k-fold cross-validation approach,

which we did not adequately detail. We apologize for this oversight and will provide a

thorough explanation of our cross-validation methodology in the revised version.

Specifically, we will discuss the choice of k, the process for splitting the data, and

how this strategy helps mitigate overfitting while providing a robust estimate of

model performance.

c) & (d) We agree that investigating how model results change with different parameter

settings and input variables is critical for understanding our model's stability and

reliability. In our initial submission, we did not provide a comprehensive sensitivity

analysis, and we acknowledge this as a gap in our study. To address this, we will include

a detailed sensitivity analysis in the revised manuscript. Specifically, we will

examine how variations in key model parameters (such as the number of trees,

maximum depth, and minimum samples per split in the Random Forest model)

affect the output. Additionally, we will explore the influence of different input

variables on the model’s predictions, analyzing which variables have the most

significant impact on the results. We will present the analysis's findings to

demonstrate our model's resilience to various conditions and to identify the primary
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factors influencing its predictions. This will not only provide greater confidence in

the results but also provide insights into the model's sensitivity to different factors.

(e) To better understand the extreme climate forcing that triggers this anomalous

monsoon period and the physical drivers of the high mountain flood, we estimate the

lagged relationship using causal discovery for hydroclimatic variables during the

observational period from July to August 2022. We do not use the quantitative

geomorphic parameters used in this study for causal investigation.

Comment 6. Inappropriate temporal scale: The focus on only July-August 2022 (Lines 148-151)

is too narrow to capture the full geomorphic impact of the flood event. This timeframe doesn't

account for potential delayed landscape responses or longer-term geomorphic adjustments.

Authors Response: This is true, but as we have stated above, the purpose of this study is an

overview of the physical drivers and initial impacts of the event, and we do not attempt a

comprehensive or long-term picture of the full geomorphic impacts of the event. Again, this

would be very interesting, but it would be a different study than the one we have done.

Comment 7. Insufficient error analysis and uncertainty quantification: The authors fail to

adequately address uncertainties in their analysis, particularly in their Random Forest modeling

(Lines 227-243). Specific issues include: a) Model performance metrics: No information is

provided on standard evaluation metrics such as R-squared, RMSE, or Mean Absolute Error for

the Random Forest predictions. b) Validation strategy: The authors don't specify their model

validation approach (e.g., k-fold cross-validation, hold-out validation set).c) Feature importance:

While they mention variable importance (Lines 372-380), they don't provide quantitative

measures or visualizations of feature importance. d) Sensitivity analysis: There's no exploration

of how model results change with different parameter settings or input variables. e) Propagation

of uncertainties: The authors don't discuss how uncertainties in their Random Forest predictions

might affect subsequent analyses, such as the causal discovery or stream power calculations.

Authors Response: This comment bears similarities to the previous one as Comment 5.

Please refer to Author Response 5.
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Comment 8. Lines 331-363: The discussion of spatial distribution of hydro-climatic anomalies

could be strengthened by including a statistical analysis of the relationships between different

variables. Given the spatial nature of the remote sensing data, the authors should consider

employing spatial statistical methods such as:

Geographically Weighted Regression (GWR): This technique could be used to explore the

spatially varying relationships between precipitation anomalies and other variables like

temperature, snowmelt, and runoff. GWR would allow the authors to identify how these

relationships change across the study area, potentially revealing important local variations in

flood response.

Author Response: Yes, this is a good point. We initially conducted this analysis and performed

spatial interpolation using various hydro-climatic variables to capture the spatial distribution

across the Upper Indus catchment. However, the significance of these observations during the

monsoon period of 2022 was limited. Because this did not yield any insights, we did not include

it in the manuscript.We will add this spatial analysis to the supplementary information.
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