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Abstract. Aerosol particles are an important part of the Earth-climate system, and their concentrations are spatially and 218 

temporally heterogeneous, as well as variable in size and composition.  Particles can interact with incoming solar radiation 219 

and outgoing long wave radiation, change cloud properties, affect photochemistry, impact surface air quality, change the 220 

albedo of snow and ice, and modulate carbon dioxide uptake by the land and ocean. High particulate matter concentrations at 221 

the surface represent an important public health hazard.  There are substantial datasets describing aerosol particles in the 222 

literature or in public health databases, but they have not been compiled for easy use by the climate and air quality modelling 223 

community.  Here we present a new compilation of PM2.5 and PM10 surface observations, including measurements of aerosol 224 

composition, focusing on the spatial variability across different observational stations.  Climate modelers are constantly 225 

looking for multiple independent lines of evidence to verify their models, and in situ surface concentration measurements, 226 

taken at the level of human settlement, present a valuable source of information about aerosols and their human impacts that 227 

are complementary to the column averages or integrals often retrieved from satellites.  We demonstrate a method for 228 

comparing the datasets to output from global climate models that are the basis for projections of future climate and large-229 

scale aerosol transport patterns that influence local air quality.  Annual trends and seasonal cycles are discussed briefly and 230 

included in the compilation.  Overall, most of the planet or even the land fraction does not have sufficient observations of 231 

surface concentrations, and especially particle composition, to characterize and understand the current distribution of 232 

particles. Climate models without ammonium nitrate aerosols omit ~10% of the global average mass of aerosol particles in 233 

both PM2.5 and PM10 size fractions, with up to 50% of the particles not included in some regions. In these regions, climate 234 

model aerosol forcing projections are likely to be incorrect, as they do not include important trends in short lived climate 235 

forcers.   236 

 237 

1 Introduction 238 

Intergovernmental Panel on Climate Change (IPCC) reports  (IPCC, 2021; Gulev et al., 2021; Szopa et al., 2021) and other 239 

community assessments have highlighted the role of uncertainties in human-induced changes to aerosol concentration and 240 

composition in limiting our ability to project future climate.  Aerosol particles are also a major contributor to air pollution, 241 

which reduces life expectancy and quality of life (Burnett et al., 2018). Aerosol particles are suspended liquids or solids in 242 

the atmosphere originating from diverse natural and anthropogenic sources and composed of a wide variety of chemicals 243 
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(e.g., sea salts, dust, sulfate, nitrate, black carbon, organic carbon). Particles interact with incoming solar radiation, outgoing 267 

long wave radiation, change cloud properties and lifetimes, and modify atmospheric photochemistry (Mahowald et al., 2011; 268 

Kanakidou et al., 2018; Bellouin et al., 2020).  Once deposited on the surface, they can modify land and ocean 269 

biogeochemistry, as well as the albedo of snow and ice surfaces (Mahowald et al., 2017; Hansen and Nazarenko, 2004; 270 

Skiles et al., 2018).  Satellite remote sensing retrievals provide important information about the temporal and spatial 271 

distribution of aerosol particles, but challenges remain in quantifying the aerosol size and chemical composition (Kahn et al., 272 

2005; Tanré et al., 1997; Remer et al., 2005, Castellanos et al., 2024).  In addition, the AERONET surface remote sensing 273 

network provides some information about loading, size and absorbing aerosol properties related to composition (Holben et 274 

al., 2001; Dubovik et al., 2002; Schuster et al., 2016; Gonçalves Ageitos et al., 2023; Obiso et al., 2023).   Both the 275 

magnitude of the aerosol effects on climate, and sometimes their sign, are dependent on the composition and size of particles 276 

(Mahowald et al., 2011, 2014a; Bond et al., 2013; IPCC, 2021). In addition, one cannot understand the impact of humans on 277 

aerosol particles without identifying the sources of particles, which determine their chemical composition. Obtaining 278 

information about the composition and size of particles in many cases requires in situ observations, which are often limited 279 

in space and time (Hand et al., 2017; Philip et al., 2017; Yang et al., 2018; Collaud Coen et al., 2020). 280 

The climate and aerosol modelling community, especially under the auspices of AEROCOM, has compiled datasets and 281 

organized comparison projects that have provided substantial information to improve aerosol models (Huneeus et al., 2011; 282 

Textor and others, 2006; Dentener et al., 2006; Schulz et al., 2006; 2012; Gliß et al., 2021) or knowledge of the aerosol 283 

impacts like cloud condensation nucleation (Laj et al., 2020; Fanourgakis et al., 2019).  However, most of the available data 284 

comes from North America and Europe (e.g., Szopa et al., 2021; Reddington et al., 2017).  In addition, previous compilation 285 

studies have focused primarily on understanding fine aerosol particles (here defined as particles with a diameter less than 2.5 286 

µm) and improving model simulation of these particles, because of their importance for air quality, respiratory health, cloud 287 

interactions and short-wave forcing (Collaud Coen et al., 2020; Bellouin et al., 2020; Fanourgakis et al., 2019; Reddington et 288 

al., 2017).  Coarse mode particles (defined as those particles with a diameter larger than 2.5 µm) are important for long wave 289 

radiation interactions, cloud seeding and for biogeochemistry, but these interactions have received less attention (Jensen and 290 

Lee, 2008; Mahowald et al., 2011; Karydis et al., 2017; Chatziparaschos et al., 2023).  In contrast to the many fine aerosol 291 

compilations and comparisons (usually considering particles with aerodynamic diameter less than 2.5 µm or PM2.5), there are 292 

fewer studies focusing on aerosol compilations for both fine and coarse particles, and their comparison to models (Kok et al., 293 

2014b; Albani et al., 2014b; Huneeus et al., 2011; Gliß et al., 2021; Kok et al., 2021).  Nonetheless, there are many 294 

observations of the coarse particle mass with diameter less than 10 µm (PM10) (e.g., Hand et al., 2017), and most climate 295 

models include these particles (e.g., Huneeus et al., 2011).  Compilations of in situ data are available for dust and iron 296 

particles (Kok et al., 2014b; Albani et al., 2014b; Mahowald et al., 2009) and for sea salts (Gong et al., 1997).  Other studies 297 

have focused on the important topics of wet deposition (Vet et al., 2014) or trends in aerosol properties (e.g., AOD, surface 298 

PM) (Mortier et al., 2020; Aas et al., 2019).  Observations of PM10 or coarse and fine particles are available for many regions 299 
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and individual sites (e.g., Malm et al., 2007; Hand et al., 2019; Maenhaut and Cafmeyer, 1998; Artaxo and Maenhaut, 1990; 316 

McNeill et al., 2020) but have not previously been compiled into one database that would facilitate the evaluation of global 317 

climate models that are an important tool for projections of future climate change, air quality and their impacts upon human 318 

society.  Aerosol modelers need as much information as possible about the observed composition of the particles and their 319 

transport. Thus, there is a need to compile both PM2.5 and PM10 in situ concentration data into one database to make it easy 320 

for modellers to compare global model results with observations. One goal the aerosol community should work towards is 321 

making aerosol measurement datasets publicly and conveniently available, while acknowledging the principal investigators 322 

who produced these datasets, which we hope this paper serves as a step towards achieving.  323 

The current generation of Earth system models used for the IPCC simulations tends to include the dominant aerosol species 324 

(desert dust, sea spray, black carbon (BC), organic matter (OM) and sulfate) while omitting other potentially important 325 

aerosol constituents. For example, some Earth system models ignore ammonium nitrate particles although these are known 326 

to be important for climate and biogeochemistry, and are impacted by human activities (Paulot et al., 2016; Adams et al., 327 

1999; Thornhill et al., 2020). In this study, we use available observations to compare to a global model estimate of the total 328 

PM10 and PM2.5, and deduce the importance of these often-neglected aerosol species. We also propose a method for 329 

comparing species that are often not directly measured (such as dust or sea salts) using their elemental composition. Note 330 

that we exclude super coarse (>PM10) particles here because of the sparcity of available measurements, although studies have 331 

suggested their importance for climate interactions (e.g., Adebyi et al., 2023).  332 

 333 

Climate modelers are constantly looking for multiple independent lines of evidence to verify their models, and in situ surface 334 

concentration data presents a valuable source of information about aerosols often near human society.  Understanding spatial 335 

variability in aerosols, and the composition of those aerosols is key to understanding how aerosols in different regions have 336 

evolved in the past, and how they will evolve in the future. Some regions are dominated by fossil fuel derived aerosols, 337 

which may have peaked in magnitude, even as greenhouse gas concentrations continue to increase, while in other regions 338 

aerosols are driven by agriculture or by natural aerosols (Bauer et al., 2016; Turnock et al., 2020; Kok et al., 2023).  In 339 

addition, different aerosol species have different impacts on climate: for example, knowing whether aerosols are scattering or 340 

absorbing changes the sign of the interaction (Li et al, 2022).  Some aerosols also serve as better cloud or ice nuclei than 341 

others, while biogeochemical impacts are very sensitive to composition (Mahowald et al., 2011). Knowing even  the order of 342 

magnitude in regions with aerosols (e.g., contrasting 0.1 to 0.001) is important for aerosol-cloud interactions that can be non-343 

linear especially at low aerosol levels (Carslaw et al., 2013). Having surface concentration observational dataset with large 344 

spatial coverage based on independent data can be valuable for aerosol model comparisons, especially for models with a 345 

global domain. We focus most of this paper on the spatial distribution of climatological mean, as that is easily obtained from 346 

models, and the most important variable for many climate impacts like radiative effects or aerosol-cloud interactions, except 347 

for aerosols dispersed by large infrequent events (e.g., Clark et al., 2015; Fasullo et al., 2022). Since aerosols are thought to 348 
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cause between 2 and 10 million deaths per year (Landrigan et al., 2018; Lelieveld et al., 2019; Murray et al., 2020; Vohra et 412 

al., 2021), understanding and being able to model correctly the annual mean aerosol concentrations in the surface layer is 413 

vital and thus this dataset provides valuable information towards understanding aerosol contributions to mortality.  414 

Nonetheless, there have been trends in emissions especially of anthropogenic aerosols over the last 40 years (Quaas et al., 415 

2022; Bauer et al., 2022), and we consider these as well. 416 

For this study we focus on the following: a) identifying and compiling available PM2.5 and PM10 aerosol data, including 417 

aerosol composition, into a new publicly available database (AERO-MAP) for the modelling community across as much of 418 

the globe as possible; b) presenting a methodology to compare the spatial distribution of the climatological mean 419 

observations to the aerosols in an Earth system model; c) briefly present some temporal trends and comparisons available 420 

from this dataset and d) identifying the measurement and modelling gaps from this comparison.  While our model evaluation 421 

is not exhaustive, we hope that the convenience of this observational compilation enables an expanding and more thorough 422 

set of comparisons by future investigators.    423 

2 Description of Methods 424 

2.1 Observational data 425 

PM observations are made by multiple networks, or during specific field campaigns, and for different size cut-offs, with and 426 

without a description of chemical composition. Datasets were identified by advertising at international meetings 427 

(Wiedinmyer et al., 2018), searching the literature, contacting principal investigators and accessing publicly available 428 

datasets. As expected, most of the observations are over North America or Europe, with much of the rest of the land areas 429 

and most of the ocean much more poorly observed (Fig. 1; Supplemental dataset 1).  For this study, we include both PM2.5 430 

and PM10 daily (or multiple day averages) data sets that were made available by the investigators or are available from public 431 

web sites (Fig. 1; supplemental dataset 1). Some measurement sites measure PM2.5 and coarse (PM2.5 to PM10) aerosols.  For 432 

those sites, we convert the latter to PM10 for comparison.  Some measurement sites have only a few observations of 433 

composition or mass, while others have multiple years: we included less complete datasets at sites in regions with limited 434 

data (e.g., field data: these are identified as station datasets with less than one year of data in supplemental datasets). In some 435 

poorly measured regions, we include total suspended particles (TSP) datasets (information on the size fraction measured is in 436 

the Supplemental dataset). The time period for different datasets is included in the supplemental dataset 1. 437 

Detailed studies have shown that PM10 and PM2.5 samplers can differ in the sharpness of their size cut-off (Hand et al., 438 

2019). As an example, comparisons between data from the U.S. Environmental Protection Agency (EPA) Federal Reference 439 

Method sites and data from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network show that 440 
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the coarse matter from collocated sites in both networks were offset by 28% (Hand et al., 2019). There was a bias when data 458 

were compared (slope of 0.9), but the correlation coefficient was high (0.9) suggesting overall a good agreement.  We focus 459 

here on surface station measurements of PM10 and PM2.5, since our model and most models only consider mass up to PM10. 460 

For that reason, our model deposition is not directly comparable to observational bulk/total atmospheric deposition since 461 

larger particles may dominate the deposition close to the source areas (Kok et al., 2017; Mahowald et al., 2014; Neff et al., 462 

2013). Measuring absolute dry and wet deposition rates is also technically more challenging (especially dry deposition, since 463 

the particles can be re-entrained into the atmosphere), but worthwhile (Heimburger et al., 2012; Prospero et al., 1996). In 464 

regions with little data (e.g., outside of North America and Europe) we include measurements of total suspended particulates 465 

(TSP) with the PM10, because of the lack of size-resolved data.  Data from the Japanese air quality network use a different 466 

inlet for the PM10 cutoff as well, which will include a slightly larger size fraction (https://tenbou.nies.go.jp/download/).  467 

In addition to particulate matter in the PM10 and PM2.5 size fractions, we also compile the following observations to compare 468 

to the model: black carbon (BC), elemental carbon (EC), organic carbon (OC) (or particulate organic material, OM, that is 469 

here considered to be 1.8 x OC in mass), sulfate, nitrate, aluminum, sodium and chloride. To include both BC (based on light 470 

absorption measurements) and EC (based on thermal oxidation induced combustion measurements) data are also a source of 471 

uncertainty, both are proxies of the soot combustion particles since they are based on different measurements techniques, and 472 

there is no accepted equivalence between them (Mbengue et al., 2021). Details on the measurement methods and types are 473 

shown in Table 1 and vary between measurements of fine and coarse, versus PM2.5 and PM10, with different measurement 474 

types for elemental and chemical analysis (Table 1). Details on how the model is compared to data for different elements are 475 

in Section 2.3. 476 

For this paper, we focus on the climatological means for 1986-2023 and decadal means for 2010-2019.  The first period is 477 

chosen as the full duration of the individual data sets comprising the compilation are available; the second is chosen to 478 

recognize decadal variations in anthropogenic emission within the longer period and isolate a particular decade when data is 479 

most plentiful.  In addition, annual means for each year the data is available is also calculated, as well as the climatological 480 

monthly means.  The temporal means are calculated for all values at each station that are above the detection limit and 481 

reported here. At some stations or times, concentrations can be below the detection limit, and excluding these data or time 482 

periods could bias our average values.  We focus on the stations that have more than 50% of the data above the detection 483 

limit, and exclude other sites. For those included stations, if the values were reported as below the detection limit, we include 484 

in the average one-third of the minimum detection limit. The reported detection limits should bound the upper limit of 485 

aerosol mass and allow us to include sites, whose observations were otherwise too low to include, while reducing the 486 

potential biasing of our compilation towards higher values (Supplemental dataset 1). 487 

Deleted: 2014b488 

Deleted:  489 

Deleted: is490 

Deleted: section 491 

Deleted: .2492 

Deleted: For this paper, we focus on the climatological 493 
annual means for 1986-2023 which…494 



 

8 
 

Formatted: Header

Our goal is to create easy-to-use datasets for model-data comparisons. Included in this dataset are several files with different 495 

levels of description and analysis.  One file provides traceability information, including a detailed citation, type and number 496 

of measurements included, as well as time period, climatological and decadal (2010-2019) means and standard deviations for 497 

each time period (Supplemental dataset 1).  For each station dataset included in the database, there will be one line in this 498 

file.  This means that for some stations (for example K-puszta), there are multiple lines in the supplemental file indicating the 499 

two different time periods where measurements were made as well as the two sizes that are measured during each time 500 

period.  For each station dataset, there are latitude, longitudes, annual mean values, number of observations, year extent of 501 

the observations, standard deviations, etc, as well as the citation and where to obtain the data. There are also several netcdf 502 

files available at https://zenodo.org/records/11391232 for this dataset. The most useful is likely to be the 503 

Allobservation.AEROMAP.nc file, which contains the same quantitative data for each station dataset as the supplement, 504 

except that the data is processed to be only PM2.5 and PM10 (with some TSP data in places with little data, as discussed 505 

above). That means PM2.5 and coarse aerosol mass are added together if the station datasets are collocated to create a PM10 506 

dataset (e.g., see Table 1). In addition, this file contains climatological monthly means, and annual means for each year for 507 

each station dataset, so that temporal information is also easily available. Another file includes the climatological mean 508 

observations averaged up to a 2°×2° grid that is used for plotting the figures shown in the paper 509 

(Allobservation.AEROMAP.2x2.nc). As indicated in the data availability, only the time-means are available and the 510 

underlying data for some datasets cannot be openly published, but please contact the authors (identified by the citation) if 511 

other time periods are desired. 512 

 513 

The location of each site is as accurate as possible and for most sites is accurate to less than 1km.  Some datasets provided 514 

more limited information and those locations are accurate only to less than 10km (data downloaded from the following air 515 

quality networks: Mexico City: http://www.aire.cdmx.gob.mx/default.php?opc=%27aKBh%27, South Africa 516 

https://saaqis.environment.gov.za/, India: https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing/data and Chile: 517 

https://sinca.mma.gob.cl/index.php/). 518 

2.2 Model description 519 

Most of the simulations of aerosol particles were conducted using the aerosol parameterizations within the Community 520 

Atmosphere Model, version 6 (CAM6), the atmospheric component of the Community Earth System Model (CESM) 521 

developed at the National Center for Atmospheric Research (NCAR) (Hurrell et al., 2013; Scanza et al., 2015; Liu et al., 522 

2012). The aerosol module in this version is closely related to the module used in the Energy Exascale Earth System Model 523 

(Golaz et al., 2019; Caldwell et al., 2019).  Simulations were conducted at approximately 1°×1° horizontal resolution with 56 524 

vertical layers for four years, with the last three years (2013-2015) used for the analysis (Computational and Information 525 
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Systems Laboratory, 2019). The model simulates three-dimensional transport and wet and dry deposition for gases and 528 

particles by nudging toward MERRA2 winds (Gelaro et al., 2017).  529 

The model included prognostic dust, sea salts, BC, OM, and sulfate particles in the default version, using a modal scheme 530 

based on monthly mean emissions for the year 2010 (Liu et al., 2012, 2016; Li et al., 2021). The model includes separate 531 

primary and secondary organic species which are both emitted directly, but the primary organic and black carbon aerosols 532 

are allowed to age in the model from hydrophobic to hydroscopic, and their optical properties also change (Liu et al., 2016). 533 

The coarse mode is included for sulfate, dust and sea salts. For this study, the coarse size mode (mode 3) was returned to the 534 

size parameters used in the previous version of the model: CAM5 (geometric standard deviation of 1.8) to better simulate 535 

coarse mode particles, and improve the dry deposition scheme and optics used in the model for simulating coarse mode 536 

particles like dust as described in Li et al. (2022). 537 

Desert dust is entrained into the atmosphere in dry, sparsely vegetated regions subject to strong winds. We use the Dust 538 

Entrainment and Deposition scheme (Zender et al., 2003) with the emitted size distribution given by the updated Brittle 539 

Fragmentation Theory (Kok et al., 2014b, a) with improved incorporation of aspherical particles for optics and deposition (Li 540 

et al., 2022; Huang et al., 2021; Kok et al., 2017).  Anthropogenic emissions of sulfate, OM, and BC follow the Climate 541 

Model Intercomparison Project 6 historical data for 2010 (Gidden et al., 2019).  Emissions and mean concentrations for each 542 

of these constituents are included in Table 2. 543 

2.2.1 Modelling of additional aerosol sources and types 544 

Ammonium nitrate aerosol particles are not included in the standard CAM6, but are thought to be important for aerosol 545 

optical depth and surface concentrations (Paulot et al., 2016; Adams et al., 1999; Thornhill et al., 2020; Bauer et al., 2007, 546 

2016), so they are included in this study.  Nitrate can also react with dust particles, for example, but that is ignored in this 547 

study (Dentener et al., 1996).  Ammonium nitrate particles require tropospheric chemistry interactions because the nitrogen-548 

containing particles are both a source and a sink for gaseous nitrogen species, which are key elements of tropospheric 549 

photochemistry and the particles are in chemical equilibrium with the gas phase (e.g., Nenes et al., 2021; Baker et al., 2021; 550 

Bauer et al., 2007; 2016), so simulations using the CAM-CHEM model with tropospheric photochemistry are used covering 551 

the same time period (Vira et al., 2022).  Simulations with chemistry were conducted at 2°×2° resolution and are linearly 552 

interpolated to 1°×1° resolution used for the other modelled particles.  Sulfate in the CAM6 is assumed to be in the form of 553 

ammonium sulfate and the nitrate is assumed to be in the form of ammonium nitrate for these studies, so as a rough 554 

approximation only the model ammonium nitrate is compared to the observed nitrogenous aerosol optical depth.  555 

Ammonium nitrate is assumed to only form when there is surplus ammonium (and nitrate) after the ammonium sulfate is 556 

formed.  While aerosol amounts are simulated, ammonium nitrate aerosol optical depth is not calculated within the model 557 

but offline.  The model does calculate sulfate aerosol optical depth, which has a roughly similar increase in size with 558 
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humidity compared to nitrates, and similar optical properties as long as the nitrates and sulfates are in similar size fractions 665 

(Paulot et al., 2016; Bellouin et al., 2020).  Therefore the aerosol optical depth from ammonium nitrate (per unit mass) is 666 

assumed to be proportional to the sulfate aerosol optical depth per unit mass in each grid box at each time interval. Detailed 667 

comparison of the nitrate and ammonia particles, and other species was conducted in Vira et al. (2022).  Overall, the model 668 

can simulate some of the spatial distribution, but overestimates the nitrate aerosol amounts (Vira et al. 2022). 669 

2.3 Model-observation comparison methodology 670 

Comparisons of the observations to model concentrations were done using BC, OC, SO42-, Al, NO3-, NH4+, and Na 671 

composition measurements. Some of these elements/compounds map directly onto model constituents (BC, OC, SO42-, NO3-, 672 

and NH4+), while others serve as proxies for modelled constituents (Al for dust, Na for sea salts, S for sulfate, etc.).  We 673 

summarize the relationships used to obtain the values from the model (Table S1), and what observations are combined to 674 

include as much information as possible from the observations. (Table S2).  We use non-sea-salt sulfate in ocean regions for 675 

estimating sulfate.  We use the mean Na amounts in sea salt (31%; Schlesinger, 1997)  to characterize the Na amounts and 676 

include the soluble Na measurements as well (Na+) if available when Na measurements are not available. Note that Cl cannot 677 

be used to evaluate sea salts as the Cl is degassed from aerosols, primarily due to sulfate interactions (e.g.,Pio and Lopes, 678 

1998).  Some observing networks like IMPROVE use a composite of elements to deduce dust amounts (e.g., Hand et al., 679 

2017). We do not choose to do this for two reasons: 1) at some sites not all the elements are available, and 2) because these 680 

elements derive not only from desert dust, but also from industrial sources.  Note that model values come from the midpoint 681 

of the bottom level of the model (~30 m) while the observations are usually taken at 2 or 10 m high. There are several 682 

sources of measurement differences between different networks as well as between model and observations.  Modelled 683 

values of PM content, which assume dry particles, are used here, while gravimetric measurements in some networks are 684 

equilibrated at 50% relative humidity, thus 5-25% of the mass of measured PM can be water (Prank et al., 2016; Burgos et 685 

al., 2020). In addition, comparisons of coarse mode composition at co-located sites in the US show that the inlet type can 686 

cause ~30% difference in measured mass (Hand et al., 2017).  We include these differences in our error estimate in Section 687 

3.2. 688 

For the most part, we use model output for which there is a one- to-one relationship with what is being measured (BC, 689 

sulfate, etc). However, for dust this is not straightforward, as dust is composed of multiple elements.  Here we use Al as a 690 

proxy for dust, as it is relatively constant (~7%) in dust (as opposed to Ca, which varies highly, or Fe which varies 691 

moderately) (Zhang et al., 2015). Al sources are primarily from dust (Mahowald et al., 2018). Assumptions about the model 692 

composition and how they are compared to observations are summarized in Table S1. For example, OM is assumed to be 1.8 693 

times OC if OC measurements are available but not OM measurements. 694 
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Harmonizing models with different types of measurements is critical, and yet a difficult task (Huang et al., 2021). Models 718 

operate with the geometric or aerodynamic particle diameter, whereas in practise the measurements are done with a variety 719 

of particle equivalent diameter, e.g., optical, volume equivalent, projected-area equivalent or aerodynamic diameter, 720 

depending on the instrument used (Hinds, 1999; Reid et al., 2003; Rodríguez et al., 2012). In the inlets of the samplers used 721 

for the mass-measurements and collection of PM2.5 and PM10 particles for subsequent chemical analysis, such size cut-off at 722 

2.5 µm and 10 µm is defined in terms of aerodynamic diameter (i.e., Stokes diameter (involving size and shape) weighed by 723 

the square root of the particle density; Hinds, 1999).  The sharpness of the cut-off of such inlets influences the PM2.5 and 724 

PM10 mass concentration (Hand et al., 2019; Wilson et al., 2002). The PM10 size cut-off aerodynamic diameter is equivalent 725 

to PM6.3 geometric diameter for spherical dust particles (Hinds, 1999; Rodríguez et al., 2012) and to PM6.9 in the case of dust 726 

elliptical particles (Huang et al., 2021). Similarly, for dust, PM2.5 (aerodynamic diameter) is equivalent to PM1.6 (geometric 727 

diameter). These differences are important to keep in mind, but the information is not available for all networks, so we 728 

include the size cutoff as an uncertainty in the model/data comparisons as described in Section 3.2. 729 

For ease of viewing the data in this paper in the densely sampled regions as well as to compare model output to more 730 

representative spatial scales, observational records from different sites were combined into a mean within a grid cell that is 731 

two times the model resolution, or approximately 2° × 2°. This process averages the observations over a spatial scale 732 

appropriate for comparison with the chemistry model (Schutgens et al., 2016).  We provide both the climatological annual 733 

average data at each site as well as the 2° × 2° grid-averaged data (with the modelled data at doi: 10.5281/zenodo.10459654, 734 

Mahowald et al., 2024). In this dataset, the number of station datasets included in the average is included (stations) and the 735 

number of observations add up across all the station datasets included. 736 

Notice that we include both urban regions and rural or remote sites into the same dataset.  Some of the original metadata did 737 

not include the resolution of the location to better than 0.1 degrees, so that the coordinates of the locations here provided 738 

with the gridded data should not be used for finer resolution studies.  Because of the importance and size of megacities, 739 

which cross multiple grid boxes, as well as the difficulty in separating urban vs. rural sites, we include urban and rural air 740 

quality data in the same dataset, and previous studies show the expected differences between urban and rural concentrations 741 

and trends (e.g., Hand et al., 2019). 742 

Statistical comparison across the globe and different regions are included in the supplemental tables. These include model 743 

and observational averages, Kendall correlation coefficients (rank correlations), linear regression slopes and uncertainties, as 744 

well as root mean squared differences. We also include the fraction of the model/data comparison which is outside the error 745 

bounds defined in Section 3.2. These results are included in tables in the supplement and referred to in the text as 746 

appropriate. 747 
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There are multiple sources of uncertainties in the observations used in the model-data comparisons of PM concentrations at 770 

the global model grid scale: errors in the measurements, differences in measurement methods, variability in aerosol 771 

concentrations during events versus background conditions, spatial variability within a model grid box, and interannual 772 

variability.  To assess the size of these uncertainties, we look at the normalized standard deviation (defined as the standard 773 

deviation over the mean) due to these factors in the observations for within year, within a 2°×2° degree grid and for 774 

interannual variability.  To evaluate within year and between year variability, we focus on stations that have more than 10 775 

years of data. To evaluate spatial variability within grid boxes, we use grid boxes that have more than 10 stations within 776 

them. Notice that these grid boxes are likely to lie close to cities and fossil fuel source regions, because the measurement 777 

network is more dense there, perhaps exaggerating the importance of spatial variability.  In addition, different measurement 778 

methods (dry vs. moist aerosol mass, different inlet geometries) complicate the comparison of data. We assume here a 779 

measurement method uncertainty of 30% that is on the high side of previous studies (Prank et al., 2016; Burgos et al., 2020; 780 

Hand et al., 2017).  Many of the measurements also include an assessment of their uncertainty or of the minimum detected 781 

limit: we use that to assess the average uncertainty of individual measurements (measurement errors).   782 

 783 

2.4 Temporal aerosol variability 784 

While the main goal of this study is to highlight and compile in one place the many surface concentration observational 785 

datasets available to compare against models, and we focus on the climatological annual mean, the datasets also include 786 

temporal variability.  Annual means, standard deviations and the number of observations for each station for each year are 787 

included to allow for analysis of interannual variability or trends.  In addition, the climatological monthly mean, standard 788 

deviation and number of observations is also available in order to assess the seasonal cycle.  These values are all available in 789 

the Allobservvations.AEROMAP.nc file available at doi: 10.5281/zenodo.10459654. 790 

To illustrate the included data, the trends in the PM2.5 and PM10 aerosols are calculated over 2000-2023, over 8 different 791 

regions: North America, South America, Africa, Europe and Asia.  Only data after 2000 is included because there is much 792 

more data after 2000 than prior (see Section 3.1).  All station datasets with more than 8 years of data are included in the 793 

calculation. In order to decrease the bias and uncertainty due to the large temporal and spatial variability (similar to Hand et 794 

al., 2024), we divide the annual mean at each station by the climatological annual mean over the two time periods, and 795 

average this with the other stations within the region. We then use a Theil regression which calculates the slopes excluding 796 

different datapoints and takes the median slope to reduce dependence on outliers (Hand et al., 2024).  Median, 33 and 66 797 

percentile slopes are calculated to show the median and 1-sigma uncertainties for each region. 798 
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The seasonal cycle of aerosols can provide important information about the source strength and variability, as well as 804 

meteorological constraints (Gui et al., 2021; Rasch et al., 2000).  To illustrate the value of the evaluation of the seasonal 805 

cycle in models, we calculate the climatological monthly mean in the observations and model and compare the correlation of 806 

these values, as well as the standard deviation of the 12 month means in the model versus the observations.  This method 807 

allows us to separately evaluate the seasonal cycle from the spatial distribution.  The correlation is only calculated at stations 808 

where the seasonal cycle is large enough: in math terms our criteria is where the observed standard deviation across months 809 

is larger than half of the average observed within month variability. 810 

3 Results 811 

3.1 AEROMAP observational data set 812 

First, we assessed the amount of data and the number of station datasets within each ~ 2° × 2° gridded area (Fig. 1). The 813 

observational dataset provides coverage predominately over North America and Europe for PM2.5 and PM10, as noted by 814 

previous studies (e.g., Szopa et al., 2021), but in addition we provide here a synthesis of more air quality data in other 815 

regions, especially Asia (Fig. 1). This compilation data set comprises most of the individual observations (at daily or longer 816 

time periods) of total PM2.5 (Fig. 1a, 1e: blue bars) and most of the observing stations (Fig. 1e and blue line). Approximately 817 

15,000 stations and over 20 million observations are included in this compilation. 818 

Notice that there are two to three orders of magnitude more individual observations for the total mass (PM) of particles 819 

compared to information about the composition of particles (Fig. 1e), which is shown also by contrasting the spatial 820 

distribution of measurements between PM2.5 and measured amounts of OM (Fig. 1a versus 1b), as well as a large difference 821 

between the number of station datasets measuring the total mass versus the speciated aerosol particles like OM (Fig. 1c 822 

versus 1d). While this dataset presents a huge increase in the amount of data available to the aerosol modelling community 823 

(for example, an eight-fold increase compared to the datasets included in Reddington et al., 2017), still the dominant 824 

proportion of the total PM2.5 or PM10 data are clustered over a few industrialized land regions, and there is little composition 825 

information over most of the globe (Fig. 1). 826 

3.2 Uncertainties in model-data comparisons 827 

Our goal in this study was to identify observational datasets and compile them together into one easy-to-use dataset for 828 

climate and air quality modelers. To do that we collect all available datasets, prioritizing long-term stations with composition 829 

data, but in regions with few measurements, we include only PM data, or data collected during field campaigns, which may 830 

last only a month or two. Previous studies have shown that even a 1-day average aerosol measurements, carried out on 831 

cruises, can constrain aerosol concentrations within a order of magnitude (1-sigma) for phosphorus in dust, which varies 832 

spatially by 4 orders of magnitude (Mahowald et al., 2008).  Other studies have highlighted that even for particles that have 833 
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highly variable sources, such as dust, that only a few months of observations are enough to characterize the mean and 852 

standard deviation in most places across the globe (Smith et al., 2017).  However, that study highlighted that for places 853 

where dust events do not occur every year or occur with varying number, like near South America, several years are required 854 

to characterize the mean (Smith et al., 2017).   855 

Uncertainties in the observation-model comparisons can include both uncertainties in the observations, as well as interannual 856 

variability in both the model and observations that are temporally averaged.  Uncertainties used in the comparisons of 857 

aerosols at the global model grid scale come from multiple sources: errors in the measurements, differences in measurement 858 

methods, variability in aerosol concentrations during events versus background conditions, spatial variability within a model 859 

grid box, and interannual variability, as discussed in Section 2.3.  To assess the size of the variability contribution to the 860 

uncertainties, we look at the normalized standard deviation (defined as the standard deviation over the mean) due to these 861 

factors in the observations for within year, within grid and interannual variability. Nonetheless, our estimate of spatial 862 

variability will underestimate the true value in the absence of sufficient spatial coverage.  In addition, different measurement 863 

methods (dry vs. moist aerosol mass, different inlet geometries) complicate the comparison of data (Section 2.3 discusses 864 

sources of uncertainties in more detail).  We assume here a measurement method uncertainty of 30% that is on the high side 865 

used in previous studies (Prank et al., 2016; Burgos et al., 2020; Hand et al., 2017).  Many of the measurements also include 866 

an assessment of their uncertainty: we use that to assess the average uncertainty of individual measurements  due to 867 

measurement errors. 868 

We focus on the uncertainties in the PM2.5 measurements first.  The largest uncertainties are associated with within-year 869 

variability (0.53) (Figure 1f; Table S3).  This is because most of the aerosol mass can sometimes come in a few pollution 870 

events.  Uncertainty due to combining different measurement methods (0.3) and from spatial variability within a model grid 871 

cell (0.24) are also important (Figure 1g). Both interannual variability (0.18) and measurement errors (0.08) are smaller but 872 

important contributions to uncertainty.  The importance of within year variability (which is similar to within month 873 

variability: see Table S4) is consistent with studies showing that in most places, there are a few pollution events carrying 874 

much of the mass, and with otherwise much lower background concentrations (Luo et al., 2003; Fiore et al., 2022).  875 

Obviously, interannual variability is important for secular trends (Gupta et al., 2022; Watson-Parris et al., 2020; Mahowald 876 

et al, 2010), but in this compilation the interannual variability is much smaller than the 2-4 orders of magnitude of the spatial 877 

variability across the globe, and thus can be neglected for understanding global spatial distributions (Figure 1f).  878 

These sources of uncertainties occur simultaneously and if we sum them assuming orthogonality, we obtain an normalized 879 

uncertainty of ~0.68 (Table S3), which was interpreted as meaning that model/data comparisons within a factor or three 880 

should be considered adequate. To ease the visual evaluation of the comparison we show in the following scatter plots both 881 

the 1:1 line and the range within a factor of 3.  We discuss an example of uncertainties in more detail in Section 3.3. Notice 882 
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that if we use the same metric (normalized standard deviation) to evaluate the variability across the climatological 903 

concentrations measured in the observations at different locations (Figure 3a) or across the grid averages in the model we 904 

obtain 1.0 and 2.2, respectively, much larger than the uncertainties (0.6): there is much more variability across different grid 905 

boxes (4-5 orders of magnitude: see Figure 2d) than across different years (up to 50% normalized standard deviation; Figure 906 

2f). As expected, the model contains more spatial variability than the observations, as the model reports concentrations in 907 

very high (North Africa) and very low (Antarctica) aerosol regions where we have no data, although where we have data, the 908 

model simulates a similar range (Figure 3a).  For composition measurements, there is larger uncertainty in some individual 909 

species (e.g., BC and Al) than for PM.  However there are many fewer composition observations (Table S3). Since the 910 

statistics of the uncertainty calculations are likely more robust with the bulk PM measurements, as there are an order of 911 

magnitude more data for the bulk PM data, we use the uncertainty estimate derived for PM for all of the composition data in 912 

this paper.  913 

There is time variation in how much data is available for both PM2.5 and PM10 data (Figure 2a and 2b), with the most data 914 

available between 2010 and 2020.  Different regions have slightly different trends in the amount of data (Figure 2).  For 915 

much of this paper we will discuss global and regional comparisons, and the regions we focus on are Africa, Asia, Australia, 916 

Europe, North America, South America and the high latitudes (Figure 2c). 917 

Trends in aerosols are an important scientific question, although for most of this paper we use the climatological annual 918 

mean. What if there were strong trends in the aerosols; would that lead to differences between our climatological means and 919 

what we expect for some decades?  In order to assess this, we look at the individual annual means for each station with more 920 

than 8 years of data and see if the individual annual mean is ever outside of the 3x uncertainty calculated here.  Out of the 921 

13320 station datasets for PM2.5 or PM10 which have more than 8 years of data, only 175 (1.3%) have an annual average 922 

outside the uncertainty estimated here. Of those with a value outside the uncertainty, only 10 (<0.01%) have a statistically 923 

significant trend. This suggests that for the temporal interval we have chosen for the climatology, long term trends are not a 924 

significant source of differences in the spatial climatological dataset presented here.  Nonetheless, we acknowledge that in 925 

regions where aerosol emissions increase and then decrease over our multi-decadal observational record (e.g. China), our test 926 

for trends will not reveal where the climatology over the full period is less representative of individual decades.  We also 927 

supply in the compiled dataset a decadal mean for the time period of 2010-2019, which is made publicly available.  A 928 

comparison of the climatological mean versus the decadal mean for the PM2.5 and PM10 concentrations show that for almost 929 

all locations, there is a small difference between the two values, and they lie on a one-to-one line (Figure 2d and 2e; Table 930 

S4).  There are a few station datasets ( <5% ) which have a difference between the climatological mean and the decadal 931 

mean that is larger than 20%, and very few (<0.05%) have a difference which is larger than the uncertainties described in 932 

this section (factor of 3; Table S4). The biggest difference between the climatological and decadal average values is the 933 

number of station datasets and observations and thus spatial coverage: we lose between 20% and 100% of the station 934 
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datasets, depending on the size and composition, when we use the decadal means (Table S5). This is because even though 939 

this is the most observed decade, still some datasets are outside this time period. In order to emphasize the spatial 940 

distribution of the datasets, and because the climatological values are so similar to the decadal means, we will show just the 941 

climatological values in the next few sections, although both are available (Supplemental dataset 1 and 942 

https://zenodo.org/records/10459654). 943 

3.3 PM2.5 model-data comparison 944 

Modelled concentrations of PM2.5 are more often compared against observations than for PM10 or other size fractions, and 945 

comprise an important portion of the particulate matter associated with human activities. Therefore, we describe first the 946 

observational synthesis and comparison to model results for PM2.5. Because the high number of observations in some parts of 947 

the world would make the figures unreadable, the observations are gridded onto an approximately 2°×2° grid for 948 

comparisons with the model, although individual data points are still difficult to read (Fig. 3a). The maps illustrate where the 949 

observational comparison in the scatter plot is made, and focused maps of each major region are available in the supplement 950 

(Figure S1) as well as global and regional statistics (Table S5). As expected, in the model the highest concentrations are over 951 

the desert dust regions, such as North Africa, and over heavily industrialized regions in Asia. For the heavily industrialized 952 

regions in Asia, these high values are consistent with the observations, but the regions in North Africa with the highest 953 

modelled values do not have similar observational validation for high concentration values due to a lack of data (Fig. 3a).  954 

Overall, the model is able to simulate much of the spatial variability in PM2.5 over two orders of magnitude (Fig. 3a and 3c), 955 

however there is a tendency to overestimate in the PM2.5 over India and China (Fig. 3b), although the mean over all the 956 

regions is within the 3x uncertainty (Fig. 3c: bold symbols).  In addition, there are some observations (globally ~6% Table 957 

S6) that are outside the 3x uncertainty estimates (Figure 3c and 3d).  The scatterplots show the comparisons of the model to 958 

the observations using the gridded data (Fig. 3c) and all original data (Fig. 3d), and the correlation coefficients are similar 959 

(0.60 vs. 0.67 in Fig 3c and Fig 3d, respectively).  It is interesting that the correlation using the ungridded data (Fig 3d) is 960 

slightly higher, perhaps because the model does better in regions with more data, although this is not a statistically 961 

significant result.  The averages over different regions show that on average, the model is simulating the regions within the 962 

uncertainty (bold black symbols in Fig 3d; Table S5). 963 

As an example of the source of the uncertainties discussed in Section 3.2, we discuss the differences over India and China in 964 

the Asia region in more detail.  It seems likely that at least some of these errors are due to an overestimate in the emission 965 

databases, since satellite based remote sensing has suggested that models overestimate in SO2 over China (Luo et al., 2020).  966 

In addition, these discrepancies could be due to an error in the aerosol transport modelling or the time period: the 967 

observations are more recent while the assumptions for the emissions are for the year 2010 (Quass et al., 2021). The 968 

comparison using the decadal averages (2010-2019) show similar biases (Figure S2) as expected since the decadal averages 969 
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are so similar to the climatological averages (Figure 2d), which suggests the time differences may not be the most important 983 

factor. In addition, notice that once averaged over the 2°×2° grids more observations are within a factor of 3, our uncertainty 984 

bound (contrast 3c and 3d).  However, there could also be methodological and analytical differences due to which group or 985 

network did the observations or the exact locations of the different monitors. Much of the data in those regions are not 986 

usually included in routinely used previous compilations of data (e.g., Reddington et al., 2017), so the fact that previous 987 

model studies have not been able to assess emission datasets in these regions could also partially explain this discrepancy. 988 

Comparison between different observations in some cities (Fig. 4) shows that in these grid boxes there can be very large 989 

differences (~factor of 3) between the annually averaged values reported at nearby stations within 1° distance radially. 990 

Notice that the AirNow measurements (https://www.airnow.gov/international/us-embassies-and-consulates/ on the US 991 

embassies) tend to be higher than those reported from government air quality networks. The sites compared are in large cities 992 

and thus are likely to have strong local sources and intense gradients in pollutants. For now, we keep in mind this large 993 

difference, but continue to use the observations. As indicated below, in these regions we do not have measurements of 994 

composition so we do not know which constituents are poorly simulated in our emissions or transport modelling.  More 995 

statistics describing the model data comparisons are shown in Table S5. 996 

Next, we consider the composition of the PM2.5 aerosol in the model versus the observations. The model simulates high and 997 

low values of sulfate observed with a correlation coefficient of 0.64.  Sulfate particles concentration are on the high side in 998 

the model in several regions: more so in North America, Africa, but less so for Europe and other regions (Fig. 5a and b; 999 

Figure S3; Table S5), although all of the regional means are within the 3x uncertainty (bold symbols in Fig. 5b).  Previous 1000 

studies have compared SO42- aerosol observations to some model simulations and have not noted this bias (e.g., Barrie et al., 1001 

2001; Aas et al., 2019) but this bias was seen in this model and attributed to the simple chemistry included in the model (Liu 1002 

et al., 2012; Yang et al., 2018).  About 18% of the climatological mean model values are outside the 3x uncertainty, and a 1003 

larger fraction is outside for Africa, Australia and South America, where there is less data (Table S5).  1004 

BC comparisons suggest the model results are roughly able (r=0.63, within the 3x uncertainty) to capture the spatial 1005 

dynamics of this aerosol across more than 2 orders of magnitude, although in some regions model values are on the low side 1006 

(Europe and Asia) (Fig. 5c and d; Fig. S4; Table S5).  This is similar to previous model intercomparisons (Koch et al., 2009; 1007 

Bond et al., 2004, 2013; Liu et al., 2012, 2016).  About 18% of the model values are outside the uncertainty bounds, and 1008 

many of these values come from Europe, where 36% of the values in Europe are outside the uncertainty bounds (Table S5). 1009 

Simulations of OM in the default model (Fig. 5e) suggest that the model is within the uncertainty of most of the data, and the 1010 

regional averages are close to the 1:1 line (Fig. 5f).  Correctly modelling organic material is very difficult both due to the 1011 

sparsity of data for comparison, as well as the importance of both primary and secondary OM in PM (Heald et al., 2010; 1012 

Kanakidou et al., 2005; Olson et al., 1997; Tsigaridis et al., 2014), and previous studies with this model have noted an 1013 

overestimate in comparison with surface observations (Liu et al., 2012).   1014 
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As a proxy for sea salts, we use the elemental data of the major component, Na, and we see the highest values over oceans 1047 

and lower values over land, as expected and seen in the observations (Fig. 5g).  Although most of the data is within the 1048 

uncertainties (30% is outside the uncertainties; Table S5), the model tends to be too high at low Na and too low at high Na in 1049 

North America, where much of the data are available (Fig. 5g and h; also seen in slopes Table S5), which has been seen 1050 

previously with this model (Liu et al., 2012).  Notice that we do not include industrial emissions of Na, but the 1051 

concentrations far inland include some Na, suggesting land-based natural or industrial sources. As a proxy for dust, we use 1052 

Al amounts (Fig. 5i and j), which globally and over dust regions are dominated by dust, although there are few observational 1053 

datasets in high dust regions. The comparisons suggest the model is able to simulate dust (correlation coefficient=0.5, Table 1054 

S5) across 4 orders of magnitude, similar to previous studies (Liu et al., 2012; Albani et al., 2014a; Li et al., 2022; Huneeus 1055 

et al., 2011) although there is a tendency for a high bias in the models over low dust regions and a low bias in high dust 1056 

regions, similar to sea salts (Fig. 5i and 5j; also seen in the slopes in Table S5). One reason for this overestimate of PM2.5 1057 

aerosol mass for constituents like sea salt and dust that are predominantly in the coarse mode, is that the coarse mode in this 1058 

model has a wide enough standard deviation that it contributes significantly to the PM2.5 size fraction (Ke et al., 2022; Li et 1059 

al., in prep.). Better resolution of the coarse mode aerosol may be required to better simulate these aerosols (Ke et al., 2022; 1060 

Li et al., in prep.). 1061 

Next, we consider the ammonium nitrate that requires complicated gas-aerosol phase equilibrium to correctly simulate (e.g., 1062 

Bauer et al., 2007; Thornhill et al., 2021; Adams et al., 2001; Regayre et al., 2018; Seinfeld and Pandis, 2006; Wolff, 1984).  1063 

To summarize these complicated interactions, because SO42- is a stronger acid than NO3- in the atmosphere, the basic NH4+ is 1064 

preferentially found with SO42-.  Thus NO3- particles will only form if there is sufficient NH4+ available.  As described in the 1065 

methods, to include these particles we added to the aerosol mass simulations from a different version of the same model 1066 

which include chemistry (Vira et al., 2022), and a more process-based source of ammonia (Vira et al., 2020) since the default 1067 

CESM2 version used here does not include chemistry. Note that even in the chemistry version of the model for CESM2 the 1068 

complicated gas-aerosol phase thermodynamic equilibrium calculations are not included, which causes errors in the 1069 

simulation of the amounts of nitrogen aerosol (e.g., Bauer et al., 2007; Thornhill et al., 2021; Adams et al., 2001; Regayre et 1070 

al., 2018; Nenes et al., 2021). Thus while the NH3 agricultural emission scheme used in this model is state-of-the-art, the 1071 

lack of an adequate gas-aerosol phase separation may lead to biases as discussed in Vira et al. (2022). In addition, recent 1072 

studies have suggested that emissions of NH4 from vehicles should be 1.8x higher than previously estimated (Toro et al., 1073 

2024), highlighting the difficulty of adequate emission datasets for nitrogenous aerosol precursors.  NO3- particles compared 1074 

against available observations show that over 2 orders of magnitude, the model results are able to simulate the spatial 1075 

variability (correlation coefficient=0.55), but the model tends to overestimate the observations by about a factor of 2 (except 1076 

in South America), similar to what was seen in Vira et al., (2022) (Fig. 5k, 5l, Table S5).  The model surface concentration 1077 

NO3 values are with most of the data within the uncertainties (Fig. 5k and l; 46% are outside the uncertainty bounds in Table 1078 

S6). The model and data distribution of NH4+ show the high values of NH4+ over agricultural regions especially (e.g., Vira et 1079 
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al., 2022), like the mid-western US or central Europe (Fig. 5m and Fig. 5n; correlation coefficient=0.52).  The NH4+ in the 1100 

simulation used here compares well to available observations across the different regions by having the regional averages 1101 

being close to the 1:1 line (Fig. 5n), most of the individual model-data comparisons being within the uncertainties at most 1102 

observational sites (Fig. 5m and n; and 16% of the data is outside the uncertainty bounds in Table S5). 1103 

How would these comparisons change if we used the decadal 2010-2019 averages instead of the climatological averages of 1104 

the observations?  As expected from the similarity between the observations averaged over these two time periods (Section 1105 

3.2; Table S4) the results do not substantially change (>20%) in most regions where there is a similar amount of data (Fig. 1106 

S2a; Table S6).  But for some regions and composition datasets, there is much less data (>25% less data), and in those cases, 1107 

there can be large differences between using the decadal averages versus the climatological averages (Table S6).  This 1108 

suggests that using the climatological averages for our comparisons for PM2.5 allows us to include more data and evaluate 1109 

more regions, without including much bias, since interannual variability is a small source of uncertainty compared to other 1110 

uncertainties (Table S4).    1111 

3.4 PM10 model-data comparison 1112 

PM10 was the first size selective standard for particulate air quality until more studies showed that smaller particles (PM2.5 or 1113 

PM1) were more relevant for health impacts and PM2.5 standards were added (e.g., https://www.epa.gov/pm-1114 

pollution/timeline-particulate-matter-pm-national-ambient-air-quality-standards-naaqs, accessed October 4, 2023).  1115 

However, there are still many PM10 measurements routinely made (Fig 1d; Fig. 7a).  The model is able to simulate PM10 1116 

concentrations across 2 orders of magnitude with some skill (correlation=0.55; Fig. 7a and 6b), as most of the data is within 1117 

the uncertainties (Fig. 5a, b and c; 8% of data is outside the uncertainty Table S7).  Gridding the data before comparing to 1118 

the model results in a slightly higher correlation across space as including all data (0.55 vs. 0.72; Fig 5b vs. c).  More 1119 

statistical comparisons are shown in Table S7.  The regional averages are all within the uncertainty bounds for all regions. 1120 

 1121 

There are fewer comparisons with PM10 composition data available in the literature: usually only sea salts and dust are 1122 

compared to observations that include the coarse mode (Gong et al., 2003; Ginoux et al., 2001; Albani et al., 2014b; 1123 

Mahowald et al., 2006).  Comparisons for SO42- suggest that the model can estimate the distribution of the high and low 1124 

concentrations (correlation coefficient=0.43), but tends to over predict PM10 values across most regions (Africa, Australia, 1125 

Europe, North America and South America), as many observations are too high and outside the uncertainty bounds (Fig. 7a 1126 

and b.; Table S7 indicates 48% of the model values are outside the uncertainty bounds).  For BC, the PM10 simulation 1127 

captures the range of values (correlation coefficient of 0.47), with most of the model results within the uncertainty bounds of 1128 

the observations across all the regions (Fig. 7c and d; 16% outside the uncertainty bounds in Table S7). There is suggestion 1129 

in the observations that there may be some fraction of BC in the coarse model, since there is more BC in PM10 than in PM2.5, 1130 

but in the simulations used here there is no mass in the coarse mode (compare Fig. 7c versus 5c). The model-data 1131 
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comparisons simulations for OM suggest a good spatial distribution of OM (correlation coefficient=0.43) and the modelled 1166 

regional averages are similar to the observations. Again, the model does not simulate coarse mode OM currently, and does 1167 

not include primary biogenics (Jaenicke, 1979; Mahowald et al., 2008), and yet can match the observations. The limited Na 1168 

(indicating sea salt) data suggest the model can simulate the spatial distribution (correlation coefficient=0.49), but tends to 1169 

overestimate and has many observations outside the error bound (Fig. 7g and h; 50% of the observations are outside the 1170 

uncertainty bounds in Table S7), as was seen previously (Liu et al., 2012). Most of the regional averages, however, are just 1171 

on the line of the uncertainty bounds (Fig. 7h). Comparisons with Al (used here as a proxy for dust) show that the spatial 1172 

variability is correlated between model and observations (correlation coefficient of 0.46), but the model overpredicts the 1173 

concentrations in high dust regions and underestimates in low dust region (Fig 7i and 7j; 54% of the observations are outside 1174 

the uncertainty bounds in Table S7). The largest overestimates are in Asia and Africa (Fig 7i and 7j).  Dust models are 1175 

compared against aerosol optical depth, deposition and surface concentrations and it is currently not possible to simulate all 1176 

of these different types of measurements at the same time, consistent with previous studies with this model (Li et al., 2022; 1177 

Kok et al., 2014b; Albani et al., 2014a; Matsui and Mahowald, 2017; Zhao et al., 2022), and indeed across most dust models 1178 

(Huneeus et al., 2011). 1179 

 1180 

The model simulations of NO3- suggest too high values in high NO3- areas, and too low in low NO3- regions, especially in the 1181 

limited data for the South American region (Fig. 7k and l; Table S7 shows 69% of the data is outside the uncertainty 1182 

bounds). NH4+ shows a slightly better comparison to the limited available data (Fig. 7m and n) as seen in Vira et al. (2022). 1183 

As discussed earlier, the model does not include other forms of nitrate aerosols which may be important, such as the reaction 1184 

of nitrate with dust aerosols (Wolff, 1984; Dentener et al., 1996; Xu and Penner, 2012). 1185 

 1186 

If we compared instead to the decadal averages rather than the climatological averages, we would obtain similar results in 1187 

many cases (Fig. 2b; Table S8), but being limited to decadal averages reduces substantially the amount of observations 1188 

available for comparison. The few regions which lose less than 25% of the data sets when we temporally limit our 1189 

comparison have similar statistics similar as in the PM2.5 comparisons. Again, this suggests that using the climatological 1190 

averages includes more regions in the comparisons without evidence that it increases bias, because of the small amount of 1191 

interannual variability in this data set (Section 3.2). 1192 

 1193 

3.5 Temporal variability 1194 

This paper emphasizes the expanded spatial coverage in this compiled dataset with the spatial comparisons in Section 3.2-1195 

3.5, but the dataset also contains temporal variability as well. To illustrate the type of temporal data within this dataset we 1196 

present briefly some common metrics.  First, we consider what trends this data suggests in the surface concentrations for 1197 

PM2.5 and PM10.  Because most of this data comes from after 2000 (Figure 2a and 2b), we focus on the trends between 2000-1198 

2023.  We also average by region in order to obtain a large-scale trend in surface concentrations (see details of methods in 1199 
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Section 2.5).  Overall, the observations suggest that there is a statistically significant (1-sigma) decrease in aerosols over this 1222 

time period of about 1% per year for PM2.5 for North America, South America, Africa, and Europe, but not a statistically 1223 

significant change over Asia and Australia (Figure 8a). These downward trends are similar to those seen in other studies 1224 

including North America and Europe (Hand et al., 2024; Gui et al., 2021; Gupta et al., 2020; Mortier et al., 2020) and South 1225 

America (Mortier et al., 2020), and the more ambivalent signals over Asia and Australia have also been seen (Gui et al., 1226 

2021; Gupta et al., 2020; Mortier et al., 2020). For PM10, there are different trends: North America and Europe have a 1227 

statistically significant downward trend of about 1%/year while Asia has a larger downward trend of about 3% per year, but 1228 

the error bar overlaps the 0 line for the south American, Africa and Australian regions, indicating that those regions do not 1229 

have statistically significant downward trends. There are no other studies we know of that looked at trends in PM10 1230 

specifically. Note that we do not compare against the model results here, as our example model simulation does not include 1231 

emission trends, but these datasets include each station's annual average so that more detailed comparisons could be 1232 

conducted.  In addition, apparently these trends do occur long enough to cause a large bias in the climatology (Section 3.2) 1233 

 1234 

Next, we use the climatological monthly mean data for PM2.5 and PM10 and compare against the model to see how well the 1235 

models simulate the seasonal cycle. There are many ways to evaluate the seasonality in the literature (Gleckler et al., 2008; 1236 

Henriksson et al., 2011; Huneeus et al., 2011; Rasch et al., 2000). We chose one way here, but this dataset could be used in 1237 

other ways as well. The models can simulate the timing of the seasonal cycle well across most regions as seen in correlations 1238 

between the climatological monthly mean in the model and observation (Figure 9a and 9b), but there are several regions 1239 

where the model is not capturing the timing of the seasonal cycle (e.g., northern India, Turkey, New Zealand). The spatial 1240 

distribution of the size of the seasonal cycle (defined here as the standard deviation in the climatological monthly mean) is 1241 

less well simulated than the annual mean (contrast Fig. 8d with Fig. 3c and 8f with 6c: the correlation coefficients are 1242 

smaller and there is more spread in the comparisons with the scatter plot).  Examining whether this is a model-specific result 1243 

or more generally occurs in the models would help discriminate between errors in the input emission datasets or 1244 

meteorological errors in the model (e.g., Huneeus et al., 2011). 1245 

3.6 Data and model coverage 1246 

The compilation shown here is the most comprehensive currently available for describing the spatial variability of the total 1247 

mass and composition of in situ particulate surface concentration data, and yet it highlights the lack of sufficient data to 1248 

constrain the current global distribution of particles and their composition (Fig. 10a and b).  Only 3% of the grid boxes 1249 

(2°×2°) have PM2.5 data (about 10% of land grid boxes), and only 0.3% have  sufficient data to constrain most of the 1250 

composition (defined as having 90% of the variables considered here: total mass, SO42-, BC, OM, Na or Cl, Al or dust, NO3- 1251 

and NH4+).  There are even less data available to characterize PM10 (Fig. 10b), which is less important for air quality and 1252 

aerosol-cloud interactions but more important for aerosol-biogeochemistry interactions and long wave interactions 1253 
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(Mahowald et al., 2011; Li et al., 2022a; Lim et al., 2012; Kanakidou et al., 2018).  Because of the high spatial and temporal 1258 

variability of coarse aerosols and the lack of satellite or other remote sensing data to characterize coarse sizes, this lack of 1259 

data is a severe handicap in constraining aerosol radiative forcing, its uncertainties and other impacts of particles in the 1260 

climate system.  Indeed, many of these regions have also been identified as regions lacking sufficient remote sensing data for 1261 

climate and air quality purposes (Millet et al., 2024). 1262 

In this paper, we included nitrate aerosols, which are not included in the default CESM simulations conducted for climate, 1263 

and represent about 10% of the globally averaged surface concentration mass (Table 2; Fig. S18 and S19). When we look 1264 

spatially, the default particles are the dominant particles over most of the planet (Fig. 11), but in many regions for both PM2.5 1265 

and PM10, the default aerosol scheme includes less than 50% of the aerosol particles (Fig. 10a and c), with substantial 1266 

contributions from the nitrate particles that we add to the simulation (Fig. 10b and d).  The CESM2 (and some other climate 1267 

models) do not include nitrogen particles (NO3- and NH4+), because of the substantial complexity and computation load of 1268 

chemistry and gas-aerosol equilibrium (Bauer et al., 2007; Thornhill et al., 2021; Adams et al., 2001; Regayre et al., 2018)).  1269 

Previous studies have highlighted the importance of nitrogen particles for climate, air quality and ecosystem impacts (e.g., 1270 

Adams et al., 2001; Bauer et al., 2007, 2016; Kanakidou et al., 2016; Baker et al., 2021).  Changes in nitrogen aerosol 1271 

precursor emissions are likely to follow different future trajectories than SO42-, BC or OC, whose anthropogenic sources are 1272 

mostly fossil fuel derived and should decrease in the future as renewable energy resources expand (Gidden et al., 2019).  1273 

Ammonia has substantial sources from agriculture, which will likely to stay constant or expand (Gidden et al., 2019; 1274 

Klimont et al., 2017; Bauer et al., 2016).  This suggests there could be a substantial bias, especially regionally, in both 1275 

historical and future aerosol forcings due to the exclusion of these important sources (e.g., Bauer et al., 2007; Thornhill et al., 1276 

2021; Adams et al., 2001; Regayre et al., 2018). 1277 

4. Conclusions 1278 

In this study, we collect aerosol surface concentration datasets and present a new aerosol compilation (AERO-MAP) 1279 

designed to evaluate the spatial and temporal variability of particulate matter in Earth system and air quality models.  The in 1280 

situ surface measurements complement the column totals typically retrieved by satellites.  This dataset includes both total 1281 

mass and composition, where available, including 15,000 station datasets and over 20 million daily to weekly averaged 1282 

measurements. Climatological and decadal averages (2010-2019) are presented, and we recommend that the climatological 1283 

averages be used, because they include more datasets, and multi-decadal and decadal means are extremely similar when 1284 

compared (Section 3.2).  Spatial variability of aerosols (Figure 1f and Section 3.2) is important to simulate accurately in 1285 

models, as a prerequisite to identifying their human impacts.  In addition, we make available annual means across time, and 1286 

the climatological monthly means so that temporal trends can be assessed. Here we expand beyond the usual limited 1287 

coverage of North America and Europe to present a more global view for observations of both PM2.5 and PM10 (Fig. 1).  1288 
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Unfortunately, there are still very limited data characterizing both the surface concentration, size and composition of aerosol 1317 

particles (Fig. 10), and the locations where we lack data have also been identified as lacking sufficient remote sensing data as 1318 

well (Millet et al., 2024).   While satellite remote sensing can indicate the total atmospheric loading during cloud free 1319 

conditions, it cannot yet provide information about the size or composition of particles (Kahn et al., 2005; Tanré et al., 1997; 1320 

Remer et al., 2005).  Surface based remote sensing may provide more information about size and absorption properties 1321 

(Holben et al., 2001; Dubovik et al., 2002; Schuster et al., 2016; Gonçalves Ageitos et al., 2023; Obiso et al., 2023), but 1322 

single scattering albedo, for example, is only available under very high (>0.4 AOD) aerosol loading conditions, and thus is 1323 

not available most of the time and space (Dubovik et al, 2002).  Knowing the size and the composition of aerosols is key to 1324 

their impacts on air quality and climate (Mahowald et al., 2011).  Knowing what particles are dominant in a region is 1325 

required, as fossil fuel derived aerosols will likely be reduced, while agriculturally based aerosols may well increase (Gidden 1326 

et al., 2019). We also present a method that is generalizable to other models that use this dataset to evaluate both mass and 1327 

composition for intercomparison projects and improvements in air quality and Earth system models.  The novel aspect of this 1328 

paper is to present this compilation in an easy to use netcdf format and some example comparisons that can be used in the 1329 

future to evaluate and improve model simulations for individual models or for AEROCOM intercomparisons.  The 1330 

underlying data could also be used for data assimilation efforts or for estimating from the observations what the 1331 

contributions are from different aerosols (e.g., similar to Prank et al., 2016). 1332 

This study has highlighted the value of surface concentration data by showing that it can identify where models do well or 1333 

poorly not just for total mass, but also for different compositions and size, complimenting other data sources, such as remote 1334 

sensing. A recent, independent and complementary effort collects all atmospheric composition data (not just aerosols) from 1335 

many networks into one easy to use framework called GHOST (Globally harmonised dataset of surface atmospheric 1336 

composition measurements; Bowdalo et al., 2024). The approach used in GHOST includes presenting the data in netcdf 1337 

format, at the original resolution, with meta data about measurement type, etc. included, and is an important step forward 1338 

(Bowdalo et al., 2024). At this point GHOST only includes a subset of the data available in this study: we hope that the 1339 

GHOST effort can be expanded to include more spatial variability and be maintained into the future. 1340 

This study also highlights the importance of including all aerosol components into the models, and shows that in the CESM2 1341 

approximately 10% is missing. In many places, there is 50% of the particulate mass missing, due to lack of the nitrate 1342 

particles (Fig. 10; Paulot et al., 2016; Adams et al., 1999; Thornhill et al., 2020).  Because these particles are largely driven 1343 

by agricultural sources and not fossil fuels, their concentrations will be hardly affected by the transition to renewable energy 1344 

and may increase if agricultural production expands with population.  Therefore, these nitrate aerosol particles represent 1345 

important air quality and climate impacts that should be represented more accurately in future studies. 1346 
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Data availability: The data compiled here is available as a csv table with citations as a supplemental data 1. This same file 1363 

is available as well as gridded datasets with the compiled observations and modelled data in netcdf format at 1364 
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 2341 

Figure 1: Distribution of observations in the data base, showing the number of observations of PM2.5 (a) and 2342 

PM10 organic carbon (OC) (b) (with the colors indicating different numbers using the top color bar), as well as 2343 

the number of stations within each 2x2 grid locations for PM2.5 (c) and PM10 OC (d) (using the second color bar), 2344 

showing that there is much more PM2.5 or PM10 data, in contrast to speciated data. e) The number of observations 2345 

(bars) for total particulate matter (PM) or speciated data is summarized for the PM2.5 (blue) and PM10 (orange) 2346 

fraction using the left-hand side y-axis.  The number of stations included in the study is shown as a dotted line (e) 2347 

and uses the right-hand size y-axis.  f) Normalized (1 standard deviation over the mean) observational uncertainty 2348 
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for PM2.5 from measurement errors, interannual variability, measurement method, within grid variability and 2355 

within year variability at the same station.  Interannual variability and within grid uncertainty are defined as the 2356 

normalized standard deviation in the variability for stations that have more than 10 years of data. Within grid 2357 

variability is the normalized standard deviation of 2x2 grid cells that have more than 10 stations. Measurement 2358 

errors are the normalized standard deviation of the reported measurement errors for PM2.5. Measurement method 2359 

error derives from differences between different measurement methods (e.g., Prank et al., 2016; Burgos et al., 2360 

2020; Hand et al., 2017). The stations included derive from the following sources (see supplemental dataset for 2361 
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 2401 
Figure 2: The temporal change in the number of observations of PM2.5 (a) and PM10 (b) available in this study 2402 
(black) and by region: Dark blue: Australia, Blue: Asia, Light Blue: Europe, Yellow: Africa, Orange: South 2403 
America, Red/orange: North America and Red: High latitudes; the regions are shown in (c), and are used 2404 
throughout this study.  Scatterplots comparing the climatological mean versus the decadal (2010-2019) mean 2405 
surface concentration for PM2.5 (d) and PM10 (e), using symbols which indicate the region of the dataset point 2406 
plotted.2407 
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 2412 

 2413 

Figure 3: Model results and gridded observations for PM2.5 in µg/m3 spatially mapped globally (a) and focused 2414 

on just Asia (b) where the model is plotted as the background and the observations are circles with the colors 2415 

indicating the amount of PM2.5 using the same scale.  A comparison of the model (x-axis) to the observations (y-2416 
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axis) is shown for the gridded data (c) and including all stations (d).  In the scatter plots, the color and symbols 2418 

indicate the regions, the bold black symbols are the average across each region (indicated by the symbol), the 2419 

dotted line is the 1:1 line and the dashed lines are the factor of 3 uncertainty estimates.  More statistics are shown 2420 

in Table S7, and maps focused on different regions are available in Figure S1. 2421 
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 2428 

Figure 4: Comparison of PM2.5 observations from the US Embassy’s AirNow network 2429 

(https://www.airnow.gov/international/us-embassies-and-consulates/) versus observations from the Chinese 2430 

air quality network (downloaded from https://quotsoft.net/air/) (Beijing 39.9N 116.4E, Guangzhou 23N 113E, 2431 

Shanghai 31N 121E) and the Indian (Chennai 13N 80E, Kolkata 23N 88E, New Delhi 27N 77E) network 2432 

(https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing/data); and observations (Barraza et al., 2433 

2017) from Santiago, Chile (23.7S 70.4W) against the Chilean air quality network 2434 

(https://sinca.mma.gob.cl/index.php/).  The numbers after each city name are the number of stations found within 2435 

1° distance of the AirNow (or Chile observations) station. 2436 
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  2443 

 2444 

Figure 5: Model results and gridded observations for different types of PM2.5 in µg/m3 spatially mapped globally 2445 

where the model is plotted as the background and the observations are circles with the colors indicating the 2446 

amount PM2.5 using the same scale for (a) SO4
2-, (c) BC (black carbon), (e) OM (organic material=1.8 times 2447 

organic carbon (OC)), (g) Na, (i) Al, (k) NO3
-, (m) NH4

+.  A scatter plot comparison of the model (x-axis) to the 2448 Deleted: ¶2451 ... [17]
Deleted: 42452 
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observations (y-axis) is shown for the gridded observational data for for (b) SO4
2-, (d) BC (f) OM, (h) Na, (j) Al, 2453 

(l) NO3
-, (n) NH4

+.  In the scatter plots, the colors and symbols indicate the regions, the bold black symbols are 2454 

the average across each region (indicated by the symbol), the dotted line is the 1:1 line and the dashed lines are 2455 

the factor of 3 uncertainty estimates. More statistics are shown in Table S5, and the maps focused on specific 2456 

regions are available in Figure S3-S9 for SO4
2-, BC, OM, Na, Al, NO3

-, and NH4
+, respectively. 2457 
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 2463 

Figure 6: Model results and gridded observations for PM10 in µg/m3 spatially mapped globally (a). A comparison 2464 

of the model (x-axis) to the obsevations (y-axis) is shown for the gridded data (b) and including all stations (c). In 2465 

the scatter plots, the colors and symbols indicate the regions, the bold black symbols are the average across each 2466 

region (indicated by the symbol), the dotted line is the 1:1 line and dashed lines are the factor of 3 uncertainty 2467 

estimates.  More statistics are shown in Table S7, and maps focused on different regions are shown in Fig. S10 2468 
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 2479 

Figure 7: Model results and gridded observations for different types of PM10 in µg/m3 spatially mapped globally 2480 

where the model is plotted as the background and the observations are circles with the colors indicating the 2481 

amount PM10 using the same scale for (a) SO4
+2, (c) BC (black carbon), (e) OM (organic material=1.8 times 2482 

organic carbon (OC)), (g) Na, (i) Al, (k) NO3
-, (m) NH4

+.  A scatter plot comparison of the model (x-axis) to the 2483 

observations (y-axis) is shown for the gridded observational data for (b) SO4
2, (d) BC (f) OM, (h) Na, (j) Al, (l) 2484 

NO3
-, (n) NH4

+.  In the scatter plots, the colors and symbols indicate the regions, the bold black symbols are the 2485 

average across each region (indicated by the symbol), the dotted line is the 1:1 line and the dashed lines are the 2486 

factor of 3 uncertainty estimates.  More statistics are shown in Table S7, and the maps focused on specific 2487 

regions are available in Figure S11-S17 for SO4
2-, BC, OM, Na, Al, NO3

-, and NH4
+, respectively. 2488 
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 2495 

 2496 

Figure 8: Trends in the observations of aerosols in different regions during the 1980-2000 and 2000-2024 time 2497 

periods for PM2.5 (a) and PM10 (b).  Error bars indicate the 1-sigma uncertainty using a Thiel regression approach. 2498 
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 2503 

Figure 9: Model data comparison for the seasonal cycle.  The correlation coefficient between the 12 2504 

climatological monthly means in the observations and the model for those station datasets with a larger seasonal 2505 

cycle than within monthly variability (see Section 2.5 for more details), averaged to 2°×2° grid for plotting for 2506 

PM2.5 (a) and PM10 (b). A comparison of the magnitude seasonal cycle in the observations versus the model 2507 

(defined as the standard deviation of the 12 climatological monthly means) spatially for (c) PM2.5 and (e) PM10 2508 
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and a scatterplot for PM2.5 (d) and PM10 (f).  The correlation coefficient is only calculated in locations where the 2509 

standard deviation from the seasonal cycle is stronger than the within month variability (see Section 2.5 for 2510 

details). 2511 

 2512 

Figure 10: Observational coverage (%) for gridded observations, showing within each grid box (2°x2°) the % of 2513 

the constituents that are measured assuming that PM, SO4
2-, BC, OM, Na, Al, NO3

-, and NH4
+

 are required to 2514 

constrain the PM distribution for (a) PM2.5 and (b) PM10.  2515 
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 2518 

Figure 11: Modelled estimates of what percent of the surface concentration of PM2.5 is considered in the default 2519 

CAM6 climate model (a) or is new in this study (b).  Similarly PM10 is shown for the default model (c) and new 2520 

sources in this study (d). The new sources added in this study are the nitrogen oxides as described in Section 2.3. 2521 
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 2528 
Table 1: Aerosol measurement types. 2529 

Composition Measurement Method Variables  Example 
Networks 

Example 
Citations 

Fine and Coarse Stacked Filter Unit (SFU) Fine, Coarse  U. Gent Maenhaut et al., 
2002a 

PM2.5 and PM10 Reference Method/Federal 
Equivalent Method 
(FRM/FEM),  

PM2.5, PM10   IMPROVE, 
CASNET, EMEP 

Hand et al, 2019, 
Putaud et al., 
2004 

PM2.5 and PM10 Hi Vol Sampler   EMEP, SINCA Putaud et al., 
2004 

Elemental Particle Induced x-ray 
emission Spectrometry 
(PIXE), Instrumental nuclear 
activation analysis (INAA) 

Al, S, Na  U. Gent, EMEP Maenhaut et al., 
2002a 

Elemental Inductively Coupled Plasma-
Mass Spectrometry (ICP-
MS) 

Al, S, Na  EMEP, 
SPARTAN 

Putaud et al., 
2004; Phillip et 
al., 2017 

Elemental XRF  Al, S, Na  IMPROVE, 
CASNET 

Hand et al, 2019 

Chemistry Ion Chromatography SO4--, NO3-, NHr  IMPROVE, 
CASNET, EMEP 

Hand et al, 2019, 
Putaud et al., 
2004 

Carbonaceous Thermal Optical Reflectance EC, OC  IMPROVE, 
CASNET 

Hand et al, 2019 

 Evolved Gas Analysis Non-
dispersive Infrared 
(EGA+NDIR) 

OC, EC  EMEP Putaud et al., 
2004 

      

 2530 

 2531 

Table 2: Global Aerosol Modelling Budgets 2532 

Global modelled deposition (Tg/year), percentage of aerosol that is PM2.5, and globally and annually averaged surface 2533 

concentration (µg/m3) and aerosol optical depth for each of the sources used in the model.  An asterisk indicates that there 2534 

are additions to the model from the default CAM6.  2535 

 PM10 PM2.5   
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Deposition 

(Tg/year) % 

Conc 

(µg/m3) 

AOD 

(unitless) 

Sulfate 121 100 2.1 0.018 

Black carbon 10 100 0.5 0.009 

Primary 

organic 

aerosol 34 100 1.6 0.008 

Secondary 

organic 

aerosol 37 100 1.0 0.007 

Sea salts 2520 3 13.0 0.045 

Dust 2870 1 19.4 0.030 

NH4NO3* 20 100 0.4 0.013 

 2537 
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