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Abstract. Aerosol particles are an important part of the Earth-climate system, and their concentrations are spatially and
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temporally heterogeneous, as well as variable in size and composition. Particles can interact with incoming solar radiation
and outgoing long wave radiation, change cloud properties, affect photochemistry, impact surface air quality, change the

albedo of snow and ice, and modulate carbon dioxide uptake by the land and ocean. High particulate matter concentrations at

the surface represent an important public health hazard. There are substantial datasets describing aerosol particles in the
literature or in public health databases, but they have not been compiled for easy use by the climate and air quality modelling

community. Here we present a new compilation of PM2s and PMio surface observations, including measurements of acrosol

composition, focusing on the spatial variability across different observational stations, Climate modelers are constantly

looking for multiple independent lines of evidence to verify their models, and in situ surface concentration measurements,

taken at the level of human settlement, present a valuable source of information about aerosols and their human impacts that

are complementary to the column averages or integrals often retrieved from satellites. We demonstrate a method for

comparing the datasets to putput from global climate models that are the basis for projections of future climate and large-

scale aerosol transport patterns that influence local air quality. Annual trends and seasonal cycles are discussed briefly and

included in the compilation. Overall, most of the planet or even the land fraction does not have sufficient observations of

surface concentrations, and especially particle composition, to characterize and understand the current distribution of

both PM2.s and PMj size fractions, with up to 50% of the particles not included in some regions. In these regions, climate

model aerosol forcing projections are likely to be incorrect, as they do not include important grends in short lived climate

forcers.

1 Introduction

Intergovernmental Panel on Climate Change (IPCC) reports (IPCC. 2021: Gulev et al., 2021; Szopa et al., 2021) and other

community assessments have highlighted the role of uncertainties in human-induced changes to aerosol concentration and

composition in Jimiting our ability to project future climate, Aerosol particles are also a major contributor to airpollution,

which yeduces life expectancy and quality of life (Burnett et al., 2018). Aerosol particles are suspended liquids or solids in

the atmosphere originating from diverse natural and anthropogenic sources and composed of a wide variety of chemicals
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(e.g., sea salts, dust, sulfate, nitrate, black carbon, organic carbon). Particles interact with incoming solar radiation, outgoing
long wave radiation, change cloud properties and lifetimes, and modify atmospheric photochemistry (Mahowald et al., 2011;
Kanakidou et al., 2018; Bellouin et al., 2020). Once deposited on the surface, they can modify land and ocean
biogeochemistry, as well as the albedo of snow and ice surfaces (Mahowald et al., 2017; Hansen and Nazarenko, 2004;

Skiles et al., 2018). Satellite remote sensing yetrievals provide important information about the temporal and spatial

distribution of aerosol particles, but challenges remain in quantifying the acrosol size and chemical composition (Kahn et al.,

2005; Tanré et al., 1997; Remer et al., 2005, Castellanos et al., 2024). In addition, the AERONET surface remote sensing

network provides some information about loading, size and absorbing aerosol properties related to composition (Holben et

al., 2001; Dubovik et al., 2002; Schuster et al., 2016; Gongalves Ageitos et al., 2023; Obiso et al., 2023). Both the

magnitude of the aerosol effects on climate, and sometimes their sign, are dependent on the composition and size of particles

(Mahowald et al., 2011, 2014a; Bond et al., 2013; IPCC, 2021). In addition, one cannot understand the impact of humans on

aerosol particles without jdentifying the sources of particles, which determine their chemical composition,Obtaining

information about the composition and size of particles in many cases requires in situ observations, which are often limited
in space and time (Hand et al., 2017; Philip et al., 2017; Yang et al., 2018; Collaud Coen et al., 2020).

The climate and aerosol modelling community, especially under the auspices of AEROCOM, has compiled datasets and
organized comparison projects that have provided substantial information to improve aerosol models (Huneeus et al., 2011;
Textor and others, 2006; Dentener et al., 2006; Schulz et al., 2006; 2012: Glif} et al., 2021) or knowledge of the aerosol

Jmpacts like cloud condensation nucleation (Laj et al., 2020; Fanourgakis et al., 2019). However, most of the available data

comes from North America and Europe (e.g., Szopa et al., 2021; Reddington et al., 2017). In addition, previous compilation

studies have focused primarily on understanding fine aerosol particles (here defined as particles with a diameter less than 2.5

pum) and improving model simulation of these particles, because of their importance for air quality, respiratory health, cloud
interactions and short-wave forcing (Collaud Coen et al., 2020; Bellouin et al., 2020; Fanourgakis et al., 2019, Reddington et
al., 2017). Coarse mode particles (defined as those particles with a diameter larger than 2.5 pm) are important for long wave
radiation interactions, cloud seeding and for biogeochemistry, but these interactions have received less attention (Jensen and
Lee, 2008; Mahowald et al., 2011; Karydis et al., 2017; Chatziparaschos et al., 2023). In contrast to the many fine aerosol
compilations and comparisons (usually considering particles with acrodynamic diameter less than 2.5 um or PMas), there are
fewer studies focusing on aerosol compilations for both fine and coarse particles, and their comparison to models (Kok et al.,
2014b; Albani et al., 2014b; Huneeus et al., 2011; GliB et al., 2021; Kok et al., 2021). Nonetheless, there are many

observations of the coarse particle mass with diameter less than 10 pm (PM)o) (e.g., Hand et al., 2017), and most climate

models include these particles (e.g., Huneeus et al., 2011). Compilations of in situ data are available for dust and iron

particles (Kok et al., 2014b; Albani et al., 2014b; Mahowald et al., 2009) and for sea salts (Gong et al., 1997). Other studies
have focused on the important topics of wet deposition (Vet et al., 2014) or trends in aerosol properties (e.g., AOD, surface

PM) (Mortier et al., 2020; Aas et al., 2019). Observations of PMio or coarse and fine particles are available for many regions
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and individual sites (e.g., Malm et al., 2007; Hand et al., 2019; Maenhaut and Cafmeyer, 1998; Artaxo and Maenhaut, 1990;
McNeill et al., 2020) but have not previously been compiled into one database,that would facilitate the evaluation of global

climate models that are an important tool for projections of future climate change, air quality and their impacts upon human

society. Aerosol modelers need as much information as possible about the observed composition of the particles,and their
transport. Thus, there is a need to compile both PMa s and PMio in situ concentration data into one database to make it easy

for modellers to compare global model results with observations,One goal the aerosol community should work towards is

making aerosol measurement datasets publicly and conveniently available, while acknowledging the principal investigators

who produced these datasets, which we hope this paper serves as a step towards achieving.

A

The current generation of Earth system models used for the IPCC simulations tends to include the dominant aerosol species

(desert dust, sea spray, black carbon (BC), organic matter (OM) and sulfate) gvhile omitting other potentially important

acrosol constituents. For example, some Earth system models ignore ammonium nitrate particles although these are known
to be important for climate and biogeochemistry, and are impacted by human activities (Paulot et al., 2016; Adams et al.,

1999; Thornhill et al., 2020). Jn this study, we use available observations to compare to a global model estimate of the total

PMio and PMz5, and deduce the importance of these often-neglected aerosol species. We also propose a method for

comparing species that are often not directly measured (such as dust or sea salts) using their elemental composition. Note

that we exclude super coarse (>PMio0) particles here because of the sparcity of available measurements, although studies have -

suggested their importance for climate interactions (e.g., Adebyi et al., 2023).
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concentration data presents a valuable source of jnformation about aerosols often near human society.

variability in aerosols, and the composition of those aerosols is key to understanding how aerosols in different regions have

evolved in the past, and how they will evolve in the future, Some regions are dominated by fossil fuel derived aerosols,

Understanding spatial

‘(Deleted: magnitude (e.g., Mahowald et al., 2011; Se

which may have peaked in magnitude, gven as greenhouse gas concentrations continue to increase, while in other regions

aerosols are driven by agriculture or by natural aerosols (Bauer et al., 2016: Turnock et al., 2020; Kok et al., 2023). In

addition, different aerosol species have different impacts on climate; for example, knowing whether aerosols are scattering or - )

absorbing changes the sign of the interaction (Li et al, 2022). Some aerosols also serve as better cloud or ice nuclei than
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cause between 2 and 10 million deaths per year (Landrigan et al., 2018; Lelieveld et al., 2019; Murray et al., 2020; Vohra et

al., 2021), understanding and being able to model correctly the annual mean aerosol concentrations in the surface layer is

vital and thus this dataset provides valuable information towards understanding aerosol contributions to mortality.

Nonetheless, there have been trends in emissions especially of anthropogenic aerosols over the last 40 years (Quaas et al.,

2022; Bauer et al., 2022), and we consider these as well.

For this study we focus on the following: a) identifying and compiling available PM2 s and PMio aerosol data, including e

aerosol composition, into a new publicly available database (AERO-MAP) for the modelling community across as much of

the globe as possible; b) presenting a methodology to compare the spatial distribution of the climatological mean

observations to the aerosols in an Earth system model; c¢) briefly present some temporal trends and comparisons available

from this dataset and d) identifying the measurement and modelling gaps from this comparison. While our model evaluation

is not exhaustive, we hope that the convenience of this observational compilation enables an expanding and more thorough

set of comparisons by future investigators.

2 Description of Methods

2.1 Observational data

PM observations are made by multiple networks, or during specific field campaigns, and for different size cut-offs, with and

without a description of chemical composition. Datasets were identified by advertising at international meetings

(Wiedinmyer et al., 2018), searching the literature, contacting principal investigators and accessing publicly available
datasets. As expected, most of the observations are over North America or Europe, with much of the rest of the land areas
and most of the ocean much more poorly observed (Fig. 1; Supplemental dataset 1). For this study, we include both PM2s
and PMio daily (or multiple day averages) data sets that were made available by the investigators or are available from public

web sites (Fig. 1; supplemental dataset 1). Some measurement sites measure PMz s and coarse (PM2.s to PM1o) aerosols. For

those sites, we convert the latter to PMio for comparison. Some measurement sites have only a few observations of
composition or mass, while others have multiple years: we included less complete datasets at sites in regions with limited

data,(e.g., field data: these are identified as station datasets with less than one year of data in supplemental datasets). In some

poorly measured regions, we include total suspended particles (TSP) datasets, (information on the size fraction measured is in

the Supplemental dataset). The time period for different datasets is included in the supplemental dataset 1.

Detailed studies have shown that PMio and PM2.s samplers can differ in the sharpness of their size cut-off (Hand et al.,
2019). As an example, comparisons between data from the U.S. Environmental Protection Agency (EPA) Federal Reference

Method sites and data from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network show that
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the coarse matter from collocated sites in both networks were offset by 28% (Hand et al., 2019). There was a bias when data
were compared (slope of 0.9), but the correlation coefficient was high (0.9) suggesting overall a good agreement. We focus
here on surface station measurements of PMio and PMz s, since our model and most models only consider mass up to PMio.
For that reason, our model deposition is not directly comparable to observational bulk/total atmospheric deposition since
larger particles may dominate the deposition close to the source areas (Kok et al., 2017; Mahowald et al., 2014; Neff et al.,
2013). Measuring absolute dry and wet deposition rates is also technically more challenging (especially dry deposition, since
the particles can be re-entrained into the atmosphere), but worthwhile (Heimburger et al., 2012; Prospero et al., 1996). In
regions with little data (e.g., outside of North America and Europe) we include measurements of total suspended particulates
(TSP) with the PMio, because of the lack of size-resolved data. Data from the Japanese air quality network use a different

inlet for the PM10 cutoff as well, which will include a slightly larger size fraction (https://tenbou.nies.go.jp/download/).

In addition to particulate matter in the PMio and PMa2:s size fractions, we also compile the following observations to compare
to the model: black carbon (BC), elemental carbon (EC), organic carbon (OC) (or particulate organic material, OM, that is

here considered to be 1.8 x OC in mass), sulfate, nitrate, aluminum, sodium and chloride. To include both BC (based on light

(F ormatted: Header

absorption measurements) and EC (based on thermal oxidation induced combustion measurements) data are also a source of
uncertainty, both are proxies of the soot combustion particles since they are based on different measurements techniques, and

there is no accepted equivalence between them (Mbengue et al., 2021). Details on the measurement methods and types are

shown in Table | and vary between measurements of fine and coarse, versus PM» s and PMio, with different measurement

types for elemental and chemical analysis (Table 1). Details on how the model is compared to data for different elements are (Deleted: is
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most plentiful. In addition, annual means for each year the data is available is also calculated, as well as the climatological

monthly means. The temporal means are calculated for all values at each station that are above the detection limit and

reported here. At some stations or times, concentrations can be below the detection limit, and excluding these data or time
periods could bias our average values. We focus on the stations that have more than 50% of the data above the detection
limit, and exclude other sites. For those included stations, if the values were reported as below the detection limit, we include
in the average one-third of the minimum detection limit. The reported detection limits should bound the upper limit of
aerosol mass and allow us to include sites, whose observations were otherwise too low to include, while reducing the

potential biasing of our compilation towards higher values (Supplemental dataset 1).
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Our goal is to create easy-to-use datasets for model-data comparisons. Included in this dataset are several files with different

levels of description and analysis. One file provides traceability information. including a detailed citation, type and number

of measurements included, as well as time period. climatological and decadal (2010-2019) means and standard deviations for

each time period (Supplemental dataset 1). For each station dataset included in the database, there will be one line in this

file. This means that for some stations (for example K-puszta), there are multiple lines in the supplemental file indicating the

two different time periods where measurements were made as well as the two sizes that are measured during each time

period. For each station dataset, there are latitude, longitudes, annual mean values, number of observations, year extent of

the observations, standard deviations, etc, as well as the citation and where to obtain the data. There are also several netcdf

files available at https://zenodo.org/records/11391232 for this dataset. The most useful is likely to be the

Allobservation. AEROMAP.nc file, which contains the same quantitative data for each station dataset as the supplement,
except that the data is processed to be only PM» s and PMio (with some TSP data in places with little data, as discussed

above). That means PM» s and coarse aerosol mass are added together if the station datasets are collocated to create a PM10

dataset (e.g., see Table 1). In addition, this file contains climatological monthly means, and annual means for each year for

each station dataset, so that temporal information is also easily available. Another file includes the climatological mean

observations averaged up to a 2°x2° grid that is used for plotting the figures shown in the paper

(Allobservation. AEROMAP.2x2.nc). As indicated in the data availability, only the time-means are available and the

underlying data for some datasets cannot be openly published, but please contact the authors (identified by the citation) if

other time periods are desired.

The location of each site is as accurate as possible and for most sites is accurate to less than 1km. Some datasets provided

more limited information and those locations are accurate only to less than 10km (data downloaded from the following air

quality networks: Mexico City: http:/www.aire.cdmx.gob.mx/default.php?opc=%27aKBh%27, South Africa

https://saaqis.environment.gov.za/, India: https://app.cpcbecr.com/cer/#/caagm-dashboard-all/caagm-landing/data and Chile:
https://sinca.mma.gob.cl/index.php/).

2.2 Model description

Most of the simulations of aerosol particles were conducted using the aerosol parameterizations within the Community

«

Atmosphere Model, version 6 (CAM6), the atmospheric component of the Community Earth System Model (CESM)
developed at the National Center for Atmospheric Research (NCAR) (Hurrell et al., 2013; Scanza et al., 2015; Liu et al.,

2012). The aerosol module in this version is closely related to the module used in the Energy Exascale Earth System Model

(Golaz et al., 2019; Caldwell et al., 2019). Simulations were conducted at approximately 17x1° horizontal resolution with 56

vertical layers for four years, with the last three years (2013-2015) used for the analysis (Computational and Information
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Systems Laboratory, 2019). The model simulates three-dimensional transport and wet and dry deposition for gases and

particles py nudging toward MERRA?2 winds (Gelaro et al., 2017).

(F ormatted: Header )

(Deleted: based on

The model included prognostic dust, sea salts, BC, OM, and sulfate particles in the default version, using a modal scheme

based on monthly mean emissions for the year 2010 (Liu et al., 2012, 2016; Li et al., 2021). The model includes separate

primary and secondary organic species which are both emitted directly, but the primary organic and black carbon aerosols

are allowed to age in the model from hydrophobic to hydroscopic, and their optical properties also change (Liu et al., 2016).

The coarse mode is included for sulfate, dust and sea salts. For this study, the coarse size mode (mode 3) was returned to the

size parameters used in the previous version of the model: CAMS5 (geometric standard deviation of 1.8) to better simulate

coarse mode particles, and improve the dry deposition scheme and optics used in the model for simulating coarse mode
particles like dust as described in Li et al. (2022).

Desert dust is entrained into the atmosphere in dry, sparsely vegetated regions subject to strong winds. We use the Dust

Entrainment and Deposition scheme (Zender et al., 2003) with the emitted size distribution given by the updated Brittle

Fragmentation Theory (Kok et al., 2014b, a) with improved incorporation of aspherical particles for optics and deposition (Li

et al., 2022; Huang et al., 2021; Kok et al., 2017). Anthropogenic emissions of sulfate, OM, and BC follow the Climate

Model Intercomparison Project 6 historical data for 2010 (Gidden et al., 2019). Emissions and mean concentrations for each

of these constituents are included in Table 2.

2.2.1 Modelling of additional aerosol sources and types

Ammonium nitrate aerosol particles are not included in the standard CAMS, but are thought to be important for aerosol

optical depth and surface concentrations (Paulot et al., 2016; Adams et al., 1999; Thornhill et al., 2020; Bauer et al., 2007,

2016), so they are included in this study. Nitrate can also react with dust particles, for example, but that is ignored in this

study (Dentener et al., 1996). Ammonium nitrate particles require tropospheric chemistry interactions because the pitrogen-

containing particles are both a source and a sink for gaseous nitrogen species, which are key elements of tropospheric
photochemistry and the particles are in chemical equilibrium with the gas phase (e.g., Nenes et al., 2021; Baker et al., 2021;
Bauer et al., 2007; 2016), so simulations using the CAM-CHEM model with tropospheric photochemistry are used covering

the same time period (Vira et al., 2022). Simulations with chemistry were conducted at 27>2° resolution and are linearly

interpolated to 17x1° resolution used for the other modelled particles. Sulfate in the CAMG6 is assumed to be in the form of
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humidity compared to nitrates, and similar optical properties as long as the nitrates and sulfates are in similar size fractions
(Paulot et al., 2016; Bellouin et al., 2020). Therefore the aerosol optical depth from ammonium nitrate (per unit mass) is

assumed to be proportional to the sulfate aerosol optical depth per unit mass in each grid box at each time interval. Detailed
comparison of the nitrate and ammonia particles, and other species was conducted in Vira et al. (2022). Overall, the model

can simulate some of the spatial distribution, but overestimates the nitrate aerosol amounts,(Vira et al. 2022).

2.3 Model-observation comparison methodology

Comparisons of the observations to model concentrations were done using BC, OC, SO+*, AL, NOs, NHs",and Na

composition measurements, Some of these elements/compounds map directly onto model constituents (BC, OC, SO4*, NOs",

and NH4¢"), while others serve as proxies for modelled constituents (Al for dust, Na for sea salts, S for sulfate, etc.). We

summarize the relationships used to obtain the values from the model (Table S1), and what observations are combined to

include as much information as possible from the observations. (Table S2). We use non-sea-salt sulfate in ocean regions for

estimating sulfate._We use the mean Na amounts in sea salt (31%: Schlesinger, 1997) to characterize the Na amounts and

include the soluble Na measurements as well (Na") if available when Na measurements are not available. Note that CI cannot

be used to evaluate sea salts as the Cl is degassed from aerosols, primarily due to sulfate interactions (e.g.,Pio and Lopes,

1998). Some observing networks like IMPROVE use a composite of elements to deduce dust amounts (e.g., Hand et al.,
2017). We do not choose to do this for two reasons: 1) at some sites not all the elements are available, and 2) because these

elements derive not only from desert dust, but also from industrial sources. Note that model values come from the midpoint

" (Deleted: and C1

of the bottom level of the model (~30 m) while the observations are usually taken at 2 or 10 m high. There are several
sources of measurement differences between different networks as well as between model and observations. Modelled
values of PM content, which assume dry particles, are used here, while gravimetric measurements in some networks are
equilibrated at 50% relative humidity, thus 5-25% of the mass of measured PM can be water (Prank et al., 2016; Burgos et

al., 2020). In addition, comparisons of coarse,mode composition at co-located sites in the US show that the inlet type can

cause ~30% difference in measured mass (Hand et al., 2017). We include these differences in our error estimate in Section

3.2.

For the most part, we use model output for which there is a pne- to-one relationship with what is being measured (BC,

; CDeleted: on

sulfate, etc), However, for dust this is not straightforward, as dust is composed of multiple elements. Here we use Al as a
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proxy for dust, as it is relatively constant (~7%) in dust (as opposed to Ca, which varies highly, or Fe which varies

moderately) (Zhang et al., 2015). Al sources are primarily from dust,(Mahowald et al., 2018). Assumptions about the model

composition and how they are compared to observations are summarized in Table S1. For example, OM is assumed to be 1.8

times OC, if OC measurements are available but not OM measurements.
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Harmonizing models with different types of measurements is critical, and yet a difficult task (Huang et al., 2021). Models
operate with the geometric or aerodynamic particle diameter, whereas in practise the measurements are done with a variety

of particle equivalent diameter, e.g., optical, volume equivalent, projected-area equivalent,or aerodynamic,diameter,

depending on the instrument used (Hinds, 1999; Reid et al., 2003; Rodriguez et al., 2012). In the inlets of the samplers used
for the mass-measurements and collection of PMa s and PMio particles for subsequent chemical analysis, such size cut-off at

2.5 pm and 10 pm is defined in terms of aerodynamic diameter (i.e., Stokes diameter (involving size and shape) weighed by

the square root of the particle density; Hinds, 1999). The sharpness of the cut-off of such inlets influences the PMzs and

PMio mass concentration (Hand et al., 2019; Wilson et al., 2002). The PMio size cut-off acrodynamic diameter is equivalent
to PMe.; geometric diameter for spherical dust particles (Hinds, 1999; Rodriguez et al., 2012) and to PMse. in the case of dust
elliptical particles (Huang et al., 2021). Similarly, for dust, PM> s (aerodynamic diameter) is equivalent to PM ¢ (geometric

diameter). These differences are jmportant to keep in mind, but the jnformation is not available for all networks, so we

include the size gutoff as an uncertainty in the model/data comparisons as described in Section 3.2,

For ease of viewing the data in this paper in the densely sampled regions as well as to compare model output to more
representative spatial scales, observational records from different sites were combined into a mean within a grid cell that is

two times the model resolution, or approximately 2° x 2°. This process averages the observations over a spatial scale

appropriate for comparison with the chemistry model (Schutgens et al., 2016). We provide both the climatological annual
average data at each site as well as the 2° x 2° grid-averaged data (with the modelled data at doi: 10.5281/zenodo.10459654,

Mahowald et al., 2024). In this dataset, the number of station datasets included in the average is included (stations) and the

number of observations add up across all the station datasets included.

Notice that we include both urban regions and rural or remote sites into the same dataset. Some of the original metadata did

not include the resolution of the location to better than 0] degrees, so that the coordinates of the locations here provided

with the gridded data should not be used for finer resolution studies. Because of the importance and size of megacities,

which cross multiple grid boxes, as well as the difficulty in separating urban vs. rural sites. we include urban and rural air

quality data in the same dataset, and previous studies show the expected differences between urban and rural concentrations

and trends (e.g., Hand et al., 2019).

Statistical comparison across the globe and different regions are included in the supplemental tables. These include model

and observational averages, Kendall correlation coefficients (rank correlations), linear regression slopes and uncertainties, as

well as root mean squared differences. We also include the fraction of the model/data comparison which is outside the error

bounds defined in Section 3.2. These results are included in tables in the supplement and referred to in the text as

appropriate.
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There are multiple sources of uncertainties in the observations used in the model-data comparisons of PM concentrations at
the global model grid scale: errors in the measurements, differences in measurement methods, variability in aerosol
concentrations during events versus background conditions, spatial variability within a model grid box, and interannual
variability. To assess the size of these uncertainties, we look at the normalized standard deviation (defined as the standard

deviation over the mean) due to these factors in the observations for within year, within a 2°x2° degree grid and for

interannual variability. To evaluate within year and between year variability, we focus on stations that have more than 10
years of data. To evaluate spatial variability within grid boxes, we use grid boxes that have more than 10 stations within
them. Notice that these grid boxes are likely to lie close to cities and fossil fuel source regions, because the measurement

network is more dense there, perhaps exaggerating the importance of spatial variability. In addition, different measurement

methods (dry vs. moist aerosol mass, different inlet geometries) complicate the comparison of data, We assume here a

measurement method uncertainty of 30% that is on the high side of previous studies (Prank et al., 2016; Burgos et al., 2020;
Hand et al., 2017). Many of the measurements also include an assessment of their uncertainty or of the minimum detected

limit: we use that to assess the average uncertainty of individual measurements (measurement errors). ,

2.4 Temporal aerosol variability

While the main goal of this study is to highlight and compile in one place the many surface concentration observational

datasets available to compare against models, and we focus on the climatological annual mean, the datasets also include

temporal variability. Annual means, standard deviations and the number of observations for each station for each year are

included to allow for analysis of interannual variability or trends. In addition, the climatological monthly mean, standard

deviation and number of observations is also available in order to assess the seasonal cycle. These values are all available in

the Allobservvations. AEROMAP.nc file available at doi: 10.5281/zenodo.10459654.

To illustrate the included data, the trends in the PMa s and PMo aerosols are calculated over 2000-2023, over 8 different

regions: North America, South America, Africa, Europe and Asia. Only data after 2000 is included because there is much

more data after 2000 than prior (see Section 3.1). All station datasets with more than 8 years of data are included in the

calculation. In order to decrease the bias and uncertainty due to the large temporal and spatial variability (similar to Hand et

al., 2024), we divide the annual mean at each station by the climatological annual mean over the two time periods, and

average this with the other stations within the region. We then use a Theil regression which calculates the slopes excluding

different datapoints and takes the median slope to reduce dependence on outliers (Hand et al., 2024). Median, 33 and 66

percentile slopes are calculated to show the median and 1-sigma uncertainties for each region.
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The seasonal cycle of aerosols can provide important information about the source strength and variability, as well as

meteorological constraints (Gui et al., 2021; Rasch et al., 2000). To illustrate the value of the evaluation of the seasonal

cycle in models, we calculate the climatological monthly mean in the observations and model and compare the correlation of

these values, as well as the standard deviation of the 12 month means in the model versus the observations. This method

allows us to separately evaluate the seasonal cycle from the spatial distribution. The correlation is only calculated at stations

where the seasonal cycle is large enough: in math terms our criteria is where the observed standard deviation across months

is larger than half of the average observed within month variability.

3 Results

3.1 AEROMAP observational data set

First, we assessed the amount of data and the number of station datasets within each ~ 2° x 2° gridded area (Fig. 1), The

observational dataset provides coverage predominately over North America and Europe for PM2s and PMio, as noted by
previous studies (e.g., Szopa et al., 2021), but in addition we provide here a synthesis of more air quality data in other

regions, especially Asia (Fig. 1).,This compilation data set comprises most of the individual observations (at daily or Jonger

time periods) of total PM> s (Fig. 1a, le: blue bars) and most of the observing stations (Fig. 1e and blue line). Approximately

15,000 stations and over 20 million observations are included in this compilation,

Notice that there are two to three orders of magnitude more jndividual observations for the total mass (PM) of particles

compared to information about the composition of particles (Fig. 1e), which is shown also by contrasting the spatial
distribution of measurements between PMz s and measured amounts of OM (Fig. 1a versus 1b), as well as a large difference

between the number of station datasets measuring the total mass versus the speciated aerosol particles like OM (Fig. 1c

versus 1d), While this dataset presents a huge increase in the amount of data available to the aerosol modelling community,

(for example, an eight-fold increase compared to the datasets included in Reddington et al., 2017), still the dominant

proportion of the total PM2.s or PM\o data are clustered over a few industrialized land regions, and there is little composition

information over most of the globe (Fig. 1).

3.2 Uncertainties in model-data comparisons

Our goal in this study was to jdentify observational datasets and compile them together into one easy-to-use dataset for<.

climate and air quality modelers. To do that we collect all available datasets, prioritizing long;term stations with composition

data, but in regions with few measurements, we include only PM data, or data collected during field campaigns, which may

last only a month or two. Previous studies have shown that even a I day average aerosol measurements, carried out on

cruises, can constrain aerosol concentrations within a order of magnitude (1-sigma) for phosphorus in dust, which varies

spatially by 4 orders of magnitude (Mahowald et al., 2008). Other studies have highlighted that even for particles that have
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highly variable sources, such as dust, that only a few months of observations are enough to characterize the mean and
standard deviation in most places across the globe (Smith et al., 2017). However, that study highlighted that for places

where dust events do not occur every year or occur with varying number, like near South America, several years are required

to characterize the mean (Smith et al., 2017).

Uncertainties in the observation-model comparisons can include both uncertainties in the observations, as well as interannual

variability in both the model and observations that are temporally averaged. Uncertainties used in the comparisons of
aerosols at the global model grid scale come from multiple sources: errors in the measurements, differences in measurement
methods, variability in aerosol concentrations during events versus background conditions, spatial variability within a model
grid box, and interannual variability, as discussed in Section 2.3. To assess the size of the variability contribution to the
uncertainties, we look at the normalized standard deviation (defined as the standard deviation over the mean) due to these

factors in the observations for within year, within grid and interannual variability. Nonctheless, our estimate of spatial

variability will underestimate the true value in the absence of sufficient spatial coverage. In addition, different measurement

methods (dry vs. moist aerosol mass, different inlet geometries) complicate the comparison of data, (Section 2.3 discusses

sources of uncertainties in more detail). We assume here a measurement method uncertainty of 30% that is on the high side

wsed in previous studies (Prank et al., 2016; Burgos et al., 2020; Hand et al., 2017). Many of the measurements also include

an assessment of their uncertainty; we use that to assess the average uncertainty of individual measurements , due to

measurement errors,

We focus on the uncertainties in the PM2.5 measurements first. The largest uncertainties are associated with within-year

variability (0,53) (Figure ,If; Table S3). This is because most of the aerosol mass can sometimes come in a few pollution

events. Uncertainty due to combining different measurement methods (0.3) and from spatial variability within a model grid

cell (0.24) are also important (Figure 1g). Both interannual variability (0,18) and measurement errors (0,08) are smaller but

important contributions to uncertainty. The importance of within year variability (which is similar to within month

variability: see Table S4) is consistent with studies showing that in most places, there are a few pollution events carrying

much of the mass, and with otherwise much lower background concentrations (Luo et al., 2003; Fiore et al., 2022).
Obviously, interannual variability is important for secular trends (Gupta et al., 2022; Watson-Parris et al., 2020, Mahowald

et al, 2010), but in this compilation the interannual variability is much smaller than the 2-4 orders of magnitude of the spatial

variability across the globe, and thus can be neglected for understanding global spatial distributions (Figure | f).

These sources of uncertainties occur simultaneously and if we sum them assuming orthogonality, we obtain an normalized

uncertainty of ~068 (Table S3), which was interpreted as meaning that model/data comparisons within a factor or three

CDeleted:

should be considered adequate. To ease the visual evaluation of the comparison we show in the following scatter plots both

the 1:1 line and the range within a factor of 3. We discuss an example of uncertainties in more detail in Section 3.3. Notice
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model simulates a similar range (Figure 3a). For composition measurements, there is larger uncertainty in some individual

species (e.g., BC and Al) than for PM. However there are many fewer composition observations (Table S3). Since the

statistics of the uncertainty calculations are likely more robust with the bulk PM measurements, as there are an order of

magnitude more data for the bulk PM data, we use the uncertainty estimate derived for PM for all of the composition data in

this paper.

There is time variation in how much data is available for both PM»s and PMio_data (Figure 2a and 2b), with the most data

available between 2010 and 2020. Different regions have slightly different trends in the amount of data (Figure 2). For

much of this paper we will discuss global and regional comparisons, and the regions we focus on are Africa, Asia, Australia.

Europe, North America, South America and the high latitudes (Figure 2c¢).

Trends in aerosols are an important scientific question, although for most of this paper we use the climatological annual

mean. What if there were strong trends in the aerosols; would that lead to differences between our climatological means and

what we expect for some decades? In order to assess this, we look at the individual annual means for each station with more

than 8 years of data and see if the individual annual mean is ever outside of the 3x uncertainty calculated here. Out of the
13320 station datasets for PM»s or PMio which have more than 8 years of data, only 175 (1.3%) have an annual average

outside the uncertainty estimated here. Of those with a value outside the uncertainty, only 10 (<0.01%) have a statistically

significant trend. This suggests that for the temporal interval we have chosen for the climatology, long term trends are not a

significant source of differences in the spatial climatological dataset presented here. Nonetheless, we acknowledge that in

regions where aerosol emissions increase and then decrease over our multi-decadal observational record (e.g. China), our test

for trends will not reveal where the climatology over the full period is less representative of individual decades. We also

supply in the compiled dataset a decadal mean for the time period of 2010-2019, which is made publicly available. A

comparison of the climatological mean versus the decadal mean for the PM» s and PMio_concentrations show that for almost

all locations, there is a small difference between the two values, and they lie on a one-to-one line (Figure 2d and 2e; Table

S4). There are a few station datasets ( <5% ) which have a difference between the climatological mean and the decadal

mean that is larger than 20%, and very few (<0.05%) have a difference which is larger than the uncertainties described in
this section (factor of 3; Table S4). The biggest difference between the climatological and decadal average values is the

number of station datasets and observations and thus spatial coverage: we lose between 20% and 100% of the station
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datasets, depending on the size and composition, when we use the decadal means (Table S5). This is because even though

this is the most observed decade, still some datasets are outside this time period. In order to emphasize the spatial

distribution of the datasets, and because the climatological values are so similar to the decadal means, we will show just the

climatological values in the next few sections, although both are available (Supplemental dataset 1 and
https://zenodo.org/records/10459654).

3.3 PM:s model-data comparison

Modelled concentrations of PM2 s are more often compared against observations than for PMio or other size fractions, and
comprise an important portion of the particulate matter associated with human activities. Therefore, we describe first the
observational synthesis and comparison to model results for PM2 s. Because the high number of observations in some parts of

the world would make the figures unreadable, the observations are gridded onto an approximately 2°x2° orid for

comparisons with the model, although individual data points are still difficult to read (Fig. 3a). The maps illustrate where the

observational comparison in the scatter plot is made, and focused maps of each major region are available in the supplement

(Figure S1) as well as global and regional statistics (Table S5). As expected, in the model the highest concentrations are over

the desert dust regions, such as North Africa, and over heavily industrialized regions in Asia. For the heavily industrialized
regions in Asia, these high values are consistent with the observations, but the regions in North Africa with the highest

modelled values do not have similar observational validation for high concentration values due to a lack of data (Fig. 3a).

Overall, the model is able to simulate much of the spatial variability in PM2.s over two orders of magnitude (Fig. 3a and 3c),

however there is a tendency to overestimate in the PMas over India and China (Fig. 3b). although the mean overall the

regions is within the 3x uncertainty (Fig. 3c: bold symbols). In addition, there are some observations (globally ~6% Table

= (Deleted: 2a
5= CDeleted: 2a

: ) CDeleted: an

i CF ormatted: Header )

= CDeleted: °x2° grid for comparisons with the model (Fig. 2a).)
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S6) that are outside the 3x uncertainty estimates (Figure 3¢ and 3d). The scatterplots show the comparisons of the model to

CDeleted: 2b), which for

the observations using the gridded data (Fig. 3¢) and all original data (Fig. 3d), and the correlation coefficients are similar

" CDeleted: is

(0.60 vs. 0.67 in Fig 3¢ and Fig 3d. respectively). It is interesting that the correlation using the ungridded data (Fig 3d) is

slightly higher, perhaps because the model does better in regions with more data, although this is not a statistically

significant result. The averages over different regions show that on average, the model is simulating the regions within the
uncertainty (bold black symbols in Fig 3d; Table S5).

As an example of the source of the uncertainties discussed in Section 3.2, we discuss the differences over India and Chinain

the Asia region in more detail. It seems likely that at least some of these errors are due to an overestimate in the emission

databases, since satellite based remote sensing has suggested that models overestimate in SOz over China (Luo et al., 2020).
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In addition, these discrepancies could be due to an error in the aerosol transport modelling or the time period: the

observations are more recent while the assumptions for the emissions are for the year 2010,(Quass et al., 2021). The

comparison using the decadal averages (2010-2019) show similar biases (Figure S2) as expected since the decadal averages
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are so similar to the climatological averages (Figure 2d), which suggests the time differences may not be the most important

factor. In addition, notice that once averaged over the 2°x2° grids more observations are within a factor of 3, our uncertainty

bound (contrast 3¢ and 3d). However, there could also be methodological and analytical differences due to which group or

network did the observations or the exact locations of the different monitors. Much of the data in those regions are not

usually included in routinely used previous compilations of data, (e.g.. Reddington et al., 2017), so the fact that previous
model studies have not been able to assess emission datasets in these regions could also partially explain this discrepancy.

Comparison between different observations in some cities (Fig. 4) shows that in these grid boxes there can be very large

*(Deleted: 2d

differences (~factor of 3) between the annually averaged values reported at nearby stations within 1° distance radially.

Notice that the AirNow measurements (https://www.airnow.gov/international/us-embassies-and-consulates/ on the US

embassies) tend to be higher than those reported from government air quality networks. The sites compared are in large cities
and thus are likely to have strong local sources and intense gradients in pollutants. For now, we keep in mind this large

difference, but continue to use the observations. As indicated below, in these regions we do not have measurements of

composition so we do not know which constituents are poorly simulated in our emissions or transport modelling. More

statistics describing the model data comparisons are shown in Table S5.

Next, we consider the composition of the PM: s aerosol in the model versus the observations, The model simulates high and

low values of sulfate observed with a correlation coefficient of 0.64. Sulfate particles concentration are on the high side in

the model in several regions: more so in North America, Africa, but Jess so for Europe and other regions (Fig. 5a and b;

Figure S3: Table S5). although all of the regional means are within the 3x uncertainty (bold symbols in Fig. 5b). Previous

studies have compared SO4* aerosol observations to some model simulations and have not noted this bias (e.g., Barrie et al.,

2001; Aas et al., 2019) but this bias was seen in this model and attributed to the simple chemistry included in the model (Liu

etal., 2012; Yang et al., 2018). About 18% of the climatological mean model values are outside the 3x uncertainty, and a

larger fraction is outside for Africa, Australia and South America, where there is less data (Table S5).

BC comparisons suggest the model results are roughly able (r=0,63, within the 3x uncertainty) to capture the spatial

dynamics of this aerosol across more than 2 orders of magnitude, although in some regions model values are on the low side

(Europe and Asia) (Fig.,5c and d; Fig. S4; Table S5). This is similar to previous model intercomparisons (Koch et al., 2009;

Bond et al., 2004, 2013; Liu et al., 2012, 2016). About 18% of the model values are outside the uncertainty bounds, and

many of these values come from Europe, where 36% of the values in Europe are outside the uncertainty bounds (Table S5).

Simulations of OM in the default model (Fig. 5e) suggest that the model is within the uncertainty of most of the data, and the

regional averages are close to the 1:1 line (Fig. 5f). Correctly modelling organic material is very difficult both due to the

sparsity of data for comparison, as well as the importance of both primary and secondary OM in PM (Heald et al., 2010;
Kanakidou et al., 2005; Olson et al., 1997; Tsigaridis et al., 2014), and previous studies with this model have noted an

overestimate in comparison with surface observations (Liu et al., 2012).
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As a proxy for sea salts, we use the elemental data of the major component, Na, and ywe see the highest values over oceans

and lower values over land, as expected and seen in the observations (Fig. 5g). Although most of the data is within the

uncertainties,(30% is outside the uncertainties; Table S5), the model tends to be too high at low Na and too low at high Na in

North America, where much of the data are available (Fig. 5g and h; also seen in slopes Table S5), which has been seen

previously with this model (Liu et al., 2012). Notice that we do not include industrial emissions of Na, but the

concentrations far inland include some Na, suggesting land-based natural or industrial sources. As a proxy for dust, we use

Al amounts (Fig. i and j), which globally and over dust regions are dominated by dust, although there are few observational

datasets in high dust regions. The comparisons suggest the model is able to simulate dust (correlation coefficient=0.5, Table

S5) across 4 orders of magnitude, similar to previous studies (Liu et al., 2012; Albani et al., 2014a; Li et al., 2022; Huneeus
et al., 2011) although there is a tendency for a high bias in the models over low dust regions and a low bias in high dust

regions, similar to sea salts (Fig.,5i and 5j; also seen in the slopes in Table S5). One reason for this overestimate of PM> s

aerosol mass for constituents like sea salt and dust that are predominantly in the coarse mode, is that the coarse mode in this

model has a wide enough standard deviation that it contributes significantly to the PMa s size fraction (Ke et al., 2022; Li et

al., in prep.). Better resolution of the coarse mode aerosol may be required to better simulate these aerosols (Ke et al., 2022;

Li et al., in prep.).

Next, we consider the,ammonium nitrate that requires complicated gas-aerosol phase equilibrium to correctly simulate (e.g.,

Bauer et al., 2007; Thornhill et al., 2021; Adams et al., 2001; Regayre et al., 2018; Seinfeld and Pandis, 2006; Wolff, 1984).

To summarize these complicated interactions, because SO4> is a stronger acid than NO3™ in the atmosphere, the basic NH4" is

preferentially found with SO4*. Thus NOs™ particles will only form if there is sufficient NHa" available, As described in the

methods, to include these particles we added to the aerosol mass simulations from a different version of the same model

which include chemistry (Vira et al., 2022), and a more process-based source of ammonia (Vira et al., 2020) since the default

CESM2 version used here does not include chemistry. Note that even in the chemistry version of the model for CESM2 the

complicated gas-aerosol phase thermodynamic equilibrium galculations are not included, which causes errors in the

simulation of the amounts of nitrogen aerosol (e.g., Bauer et al., 2007; Thornhill et al., 2021; Adams et al., 2001; Regayre et
al., 2018; Nenes et al., 2021). Thus while the NH3 agricultural emission scheme used in this model is state-of-the-art, the

lack of an adequate gas-aerosol phase separation may lead to biases as discussed in Vira et al. (2022). In addition, recent

studies have suggested that emissions of NH4 from vehicles should be 1.8x higher than previously estimated (Toro et al.,
2024), highlighting the difficulty of adequate emission datasets for nitrogenous aerosol precursors. NOs™ particles compared
against available observations show that over 2 orders of magnitude, the model results are able to simulate the spatial

variability, (correlation coefficient=0.55), but the model tends to overestimate the observations by about a factor of 2 (except

in South America), similar to what was seen in Vira et al., (2022) (Fig. 5k, 51, Table S5). The model surface concentration

NOs values are with most of the data within the uncertainties (Fig. 5k and I; 46% are outside the uncertainty bounds in Table :

S6). The model and data distribution of NH4" show the high values of NH4" over agricultural regions especially (e.g., Vira et
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al., 2022), Jike the mid-western US or central Europe (Fig. 5m and Fig. 5n; correlation coefficient=0.52). The NH4" in the
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simulation used here compares well to available observations across the different regions by having the regional averages
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being close to the 1:1 line (Fig. 5n), most of the individual model-data comparisons being within the uncertainties at most

observational sites (Fig. 5m and n; and 16% of the data is outside the uncertainty bounds in Table S5).

How would these comparisons change if we used the decadal 2010-2019 averages instead of the climatological averages of

the observations? As expected from the similarity between the observations averaged over these two time periods (Section

3.2; Table S4) the results do not substantially change (>20%) in most regions where there is a similar amount of data (Fig.

S2a; Table S6). But for some regions and composition datasets, there is much less data (>25% less data), and in those cases
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there can be large differences between using the decadal averages versus the climatological averages (Table S6). This

suggests that using the climatological averages for our comparisons for PM> s allows us to include more data and evaluate

more regions, without including much bias, since interannual variability is a small source of uncertainty compared to other

uncertainties (Table S4).

3.4 PMio model-data comparison

PM)o was the first size selective standard for particulate air quality until more studies showed that smaller particles (PMa.s or

| described as measurements of PMo (acrodynamic diameter)

PM)) were more relevant for health impacts and PM. s standards were added (e.g., https://www.epa.gov/pm-
pollution/timeline-particulate-matter-pm-national-ambient-air-quality-standards-naags, accessed October 4, 2023).

However, there are still many PMio measurements routinely made (Fig 1d; Fig. 7a). The model is able to simulate PMio

concentrations across 2 orders of magnitude with some skill, (correlation=0.55; Fig. 7a and 6b), as most of the data is within
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the uncertainties (Fig. 5a, b and £: 8% of data is outside the uncertainty Table S7). Gridding the data before comparing to

the model results in a slightly higher correlation across space as including all data (0.55 vs. 0.72; Fig 5b vs. ¢). More

statistical comparisons are shown in Table S7. The regional averages are all within the uncertainty bounds for all regions.
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comparisons simulations for OM suggest a good spatial distribution of OM (correlation coefficient=0.43) and the modelled
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available for comparison. The few regions which lose less than 25% of the data sets when we temporally limit our

comparison have similar statistics similar as in the PM> s comparisons. Again, this suggests that using the climatological

averages includes more regions in the comparisons without evidence that it increases bias, because of the small amount of

interannual variability in this data set (Section 3.2).

3.5 Temporal variability

This paper emphasizes the expanded spatial coverage in this compiled dataset with the spatial comparisons in Section 3.2-

3.5, but the dataset also contains temporal variability as well. To illustrate the type of temporal data within this dataset we

present briefly some common metrics. First, we consider what trends this data suggests in the surface concentrations for

PM..s and PMio. Because most of this data comes from after 2000 (Figure 2a and 2b), we focus on the trends between 2000-

2023. We also average by region in order to obtain a large-scale trend in surface concentrations (see details of methods in
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Section 2.5). Overall, the observations suggest that there is a statistically significant (1-sigma) decrease in aerosols over this

time period of about 1% per year for PM> 5 for North America, South America, Africa, and Europe, but not a statistically

significant change over Asia and Australia (Figure 8a). These downward trends are similar to those seen in other studies
including North America and Europe (Hand et al., 2024; Gui et al., 2021; Gupta et al., 2020; Mortier et al., 2020) and South

America (Mortier et al., 2020), and the more ambivalent signals over Asia and Australia have also been seen (Gui et al.
2021; Gupta et al., 2020; Mortier et al., 2020). For PM10, there are different trends: North America and Europe have a

statistically significant downward trend of about 1%/year while Asia has a larger downward trend of about 3% per year, but

the error bar overlaps the 0 line for the south American, Africa and Australian regions, indicating that those regions do not

have statistically significant downward trends. There are no other studies we know of that looked at trends in PM10

specifically. Note that we do not compare against the model results here, as our example model simulation does not include

emission trends, but these datasets include each station's annual average so that more detailed comparisons could be

conducted. In addition, apparently these trends do occur long enough to cause a large bias in the climatology (Section 3.2)

Next, we use the climatological monthly mean data for PM» s and PMio and compare against the model to see how well the

models simulate the seasonal cycle. There are many ways to evaluate the seasonality in the literature (Gleckler et al., 2008;

Henriksson et al., 2011; Huneeus et al., 2011; Rasch et al., 2000). We chose one way here, but this dataset could be used in

other ways as well. The models can simulate the timing of the seasonal cycle well across most regions as seen in correlations

between the climatological monthly mean in the model and observation (Figure 9a and 9b), but there are several regions

where the model is not capturing the timing of the seasonal cycle (e.g., northern India, Turkey, New Zealand). The spatial
distribution of the size of the seasonal cycle (defined here as the standard deviation in the climatological monthly mean) is

less well simulated than the annual mean (contrast Fig. 8d with Fig. 3¢ and 8f with 6¢: the correlation coefficients are

smaller and there is more spread in the comparisons with the scatter plot). Examining whether this is a model-specific result

or more generally occurs in the models would help discriminate between errors in the input emission datasets or

meteorological errors in the model (e.g.. Huneeus et al., 2011).

3.6 Data and model coverage

The compilation shown here is the most comprehensive currently available for describing the spatial variability of the total

mass and composition of in situ particulate surface concentration data, and yet it highlights the lack of sufficient data to

constrain the current global distribution of particles and their composition (Fig. /0a and b). Only 3% of the grid boxes

«
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(22%2°) have PM2 s data (about 10% of land grid boxes), and only 0.3% have sufficient data to constrain most of the
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composition (defined as having 90% of the variables considered here: total mass, SO4*, BC, OM, Na or Cl, Al or dust, NO3*

and NH4"). There are even less data available to characterize PMig/(Fig. 10b). which is less important for air quality and
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aerosol-cloud interactions but more important for aerosol-biogeochemistry interactions and long wave interactions
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(Mahowald et al., 2011; Li et al., 2022a; Lim et al., 2012; Kanakidou et al., 2018). Because of the high spatial and temporal

variability of coarse aerosols and the lack of satellite or other remote sensing data to characterize coarse sizes, this lack of

data is a severe handicap in constraining aerosol radiative forcing, its uncertainties and other impacts of particles in the

climate system._Indeed, many of these regions have also been identified as regions lacking sufficient remote sensing data for

climate and air quality purposes (Millet et al., 2024).

In this paper, we included pitrate aerosols, which are not included in the default CESM simulations conducted for climate

and represent about 10% of the globally averaged surface concentration mass (Table2; Fig. S18 and S19). When we look
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spatially, the default particles are the dominant particles over most of the planet,(Fig. 11), but in many regions for both PM> s '

%, CDeleted: model to investigate their importance. For the

and PM o, the default aerosol scheme includes less than 50% of the aerosol particles (Fig. 1 0a and c), with substantial

contributions from the pitrate particles that we add to the simulation (Fig. l0b and d). The CESM2 (and some other climate

(Deleted: this simulation includes agricultural dust, nitrogen

models) do not include nitrogen particles (NO3™ and NH4"), because of the substantial complexity and computation load of

W (Deleted:S

chemistry and gas-aerosol equilibrium (Bauer et al., 2007; Thornhill et al., 2021; Adams et al., 2001; Regayre et al., 2018)).
Previous studies have highlighted the importance of nitrogen particles for climate, air quality and ecosystem impacts (e.g.,
Adams et al., 2001; Bauer et al., 2007, 2016; Kanakidou et al., 2016; Baker et al., 2021). Changes in nitrogen aerosol
precursor emissions are likely to follow different future trajectories than SO4*, BC or OC, whose anthropogenic sources are
mostly fossil fuel derived and should decrease in the future as renewable energy resources expand (Gidden et al., 2019).
Ammonia has substantial sources from agriculture, which will likely to stay constant or expand (Gidden et al., 2019;
Klimont et al., 2017; Bauer et al., 2016). This suggests there could be a substantial bias, especially regionally. in both

historical and future aerosol forcings due to the exclusion of these important sources (e.g., Bauer et al., 2007; Thornhill et al.,

\ 3 (Deleted: s

L (Deleted: 8a

2021; Adams et al., 2001; Regayre et al., 2018).

4. Conclusions

In this study, we collect acrosol surface concentration datasets and present a new aerosol compilation (AERO-MAP)

designed to evaluate the spatial and temporal variability of particulate matter in Earth system and air quality models. [The in

situ surface measurements complement the column totals typically retrieved by satellites. This dataset includes both total

mass and composition, where available, including 15,000 station datasets and over 20 million daily to weekly averaged

_(Deleted: 10

(Deleted: represents the largest source of variability in

measurements. Climatological and decadal averages (2010-2019) are presented, and we recommend that the climatological

averages be used, because they include more datasets, and multi-decadal and decadal means are extremely similar when

compared (Section 3.2). Spatial variability of aerosols (Figure 1f and Section 3.2) is important to simulate accurately in

7 (Deleted: ), and thus the most
W ‘,CDeleted: especially

models, as a prerequisite to identifying their human impacts. In addition, we make available annual means across time, and

the climatological monthly means so that temporal trends can be assessed. Here we expand beyond the usual limited

coverage of North America and Europe to present a more global view for observations of both PMz.s and PMio (Fig. 1).
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Unfortunately, there are still very limited data characterizing both the surface concentration, size and composition of aerosol
particles (Fig.,10), and the locations where we lack data have also been identified as lacking sufficient remote sensing data as
well (Millet et al., 2024). While satellite remote sensing can indicate the total atmospheric loading during cloud free

conditions, it cannot yet provide jnformation about the size or composition of particles (Kahn et al., 2005; Tanr¢ et al., 1997;

Remer et al., 2005). Surface based remote sensing may provide more information about size and absorption properties
(Holben et al., 2001; Dubovik et al., 2002; Schuster et al., 2016, Gongalves Ageitos et al., 2023; Obiso et al., 2023), but

single scattering albedo, for example, is only available under very high (>0.4 AOD) aerosol loading conditions, and thus is
not available most of the time and space (Dubovik et al, 2002). Knowing the size and the composition of acrosols is key to

their impacts on air quality and climate (Mahowald et al., 2011). Knowing what particles are dominant in a region is

required, as fossil fuel derived aerosols will likely be reduced, while agriculturally based aerosols may well increase (Gidden

etal., 2019). We also present a method that is generalizable to other models hat use this dataset to evaluate both mass and

composition for intercomparison projects and improvements in air quality and Earth system models. The novel aspect of this

paper is to present this compilation in an easy to use netcdf format and some example comparisons that can be used in the

future to evaluate and improve model simulations for individual models or for AEROCOM intercomparisons. The

underlying data could also be used for data assimilation efforts or for estimating from the observations what the

contributions are from different aerosols (e.g., similar to Prank et al., 2016).

This study has highlighted the value of surface concentration data, by showing fhat it can identify where models do well or

poorly not just for total mass, but also for different compositions and size, complimenting other data sources, such as remote

sensing. A recent, independent and complementary effort collects all atmospheric composition data (not just aerosols) from
many networks into one easy to use framework called GHOST (Globally harmonised dataset of surface atmospheric

composition measurements; Bowdalo et al., 2024).,The approach used in GHOST includes presenting the data in netcdf

format, at the original resolution, with meta data about measurement type, etc. included, and is an important step forward

(Bowdalo et al., 2024). At this point GHOST only includes a subset of the data available in this study: we hope that the

GHOST effort can be expanded to include more spatial variability and be maintained into the future.

This study also highlights the importance of including all acrosol components into the models, and shows that in the CESM2,

approximately 10% is missing. In many places, there is 50% of the particulate mass missing, due to lack of the nitrate

particles (Fig. 10; Paulot et al., 2016; Adams et al., 1999; Thornhill et al., 2020). Because these particles are largely driven

by agricultural sources and not fossil fuels, their concentrations will be hardly affected by the transition to renewable energy

and may increase if agricultural production expands with population. Therefore, these nitrate aerosol particles represent

important air quality and climate impacts that should be represented more accurately in future studies.
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Data availability: The data compiled here is available as a csv table with citations as a supplemental data 1. This same file

is available as well as gridded datasets with the compiled observations and modelled data in netcdf format at

https://zenodo.org/records/10459654, 10.5281/zenodo.11391232 Mahowald et al., 2024. Additional underlying datasets

available by request to mahowald@cornell.edu.

Code availability: The model used here is a version of the Community Earth System Model, and the modifications and

input files to that code are available at https://zenodo.org/records/10459654, Mahowald et al., 2024.
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Figure 2: The temporal change in the number of observations of PM2.5 (a) and PM10 (b) available in this study

(black) and by region: Dark blue: Australia, Blue: Asia, Light Blue: Europe, Yellow: Africa, Orange: South

America, Red/orange: North America and Red: High latitudes; the regions are shown in (¢), and are used

throughout this study. Scatterplots comparing the climatological mean versus the decadal (2010-2019) mean

surface concentration for PM2.5 (d) and PM10 (e). using symbols which indicate the region of the dataset point

plotted.
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air quality network (downloaded from https://quotsoft.net/air/) (Beijing 39.9N 116.4E, Guangzhou 23N 113E,
Shanghai 31N 121E) and the Indian (Chennai 13N 80E, Kolkata 23N 88E, New Delhi 27N 77E) network
(https://app.cpcbecr.com/cer/#/caagm-dashboard-all/caagm-landing/data); and observations (Barraza et al.,
2017) from Santiago, Chile (23.7S 70.4W) against the Chilean air quality network

(https://sinca.mma.gob.cl/index.php/). The numbers after each city name are the number of stations found within

1° distance of the AirNow (or Chile observations) station.
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Figure 5: Model results and gridded observations for different types of PMys in pg/m’ spatially mapped globally

where the model is plotted as the background and the observations are circles with the colors indicating the
amount PM, 5 using the same scale for (a) SO4%, (c) BC (black carbon), (¢) OM (organic material=1.8 times
organic carbon (OC)), (g) Na, (i) Al, (k) NOs", (m) NH4". A scatter plot comparison of the model (x-axis) to the
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observations (y-axis) is shown for the gridded observational data for for (b) SO, (d) BC (f) OM, (h) Na, (j) Al,
(1) NOs,, (n) NH4". In the scatter plots, the colors and symbols indicate the regions, the bold black symbols are

the average across each region (indicated by the symbol), the dotted line is the 1:1 line and the dashed lines are

the factor of 3 uncertainty estimates. More statistics are shown in Table S5, and the maps focused on specific

regions are available in Figure S3-S9 for S0O.*. BC, OM, Na, Al, NOs, and NH,, respectively.
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Figure 6: Model results and gridded observations for PM in ug/m? spatially mapped globally (a). A comparison

of the model (x-axis) to the obsevations (y-axis) is shown for the gridded data (b) and including all stations (c). In

the scatter plots, the colors and symbols indicate the regions, the bold black symbols are the average across each

region (indicated by the symbol), the dotted line is the 1:1 line and dashed lines are the factor of 3 uncertainty

estimates. More statistics are shown in Table S7, and ymaps focused on different regions are shown in Fig. S10
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Figure 7: Model results and gridded observations for different types of PM;o in pg/m? spatially mapped globally

where the model is plotted as the background and the observations are circles with the colors indicating the
amount PM o using the same scale for (a) SO4*, (c) BC (black carbon), (¢) OM (organic material=1.8 times
organic carbon (OC)), (g) Na, (i) Al, (k) NOs’, (m) NH4". A scatter plot comparison of the model (x-axis) to the
observations (y-axis) is shown for the gridded observational data for (b) SO4?, (d) BC (f) OM, (h) Na, (j) AL (1)
NOs, (n) NH4". In the scatter plots, the colors and symbols indicate the regions, the bold black symbols are the

average across each region (indicated by the symbol), the dotted line is the 1:1 line and the dashed lines are the

factor of 3 uncertainty estimates. More statistics are shown in Table S7, and the ymaps focused on specific

regions are available in Figure S11-S17 for SO,*, BC, OM, Na, Al, NO5’, and NH,", respectively.
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Figure 8: Trends in the observations of aerosols in different regions during the 1980-2000 and 2000-2024 time

periods for PM> 5 (a) and PM,¢ (b). Error bars indicate the 1-sigma uncertainty using a Thiel regression approach.
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Figure 9: Model data comparison for the seasonal cycle. The correlation coefficient between the 12

climatological monthly means in the observations and the model for those station datasets with a larger seasonal

cycle than within monthly variability (see Section 2.5 for more details), averaged to 2°%2° grid for plotting for

PM>s (a) and PM,¢ (b). A comparison of the magnitude seasonal cycle in the observations versus the model

(defined as the standard deviation of the 12 climatological monthly means) spatially for (c¢) PM»s and (¢) PMio
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and a scatterplot for PM, s (d) and PM, (f). The correlation coefficient is only calculated in locations where the

standard deviation from the seasonal cycle is stronger than the within month variability (see Section 2.5 for

details).

Figure 10: Observational coverage (%) for gridded observations, showing within each grid box (2°x2°) the % of
the constituents that are measured assuming that PM, S04*, BC, OM, Na, Al, NOy, and NH," are required to
constrain the PM distribution for (a) PMzs and (b) PMjo.

66

(F ormatted: Header

( Deleted: 2x2)




18
19
20
21
22
23
24

a. PM2.5 concentration default sources (%) b. PM2.5 concentration new sources (%)

d. PM10 concentration new sources (%)

[T 1T T 1
0.0 10. 20. 30. 40. 50. 60. 70. 80. 90. 100.

<

Figure 11: Modelled estimates of what percent of the surface concentration of PM, s is considered in the default

LAMBG climate model (a) or is new in this study (b). Similarly PM, is shown for the default model (c) and new

sources in this study (d). The new sources added in this study are the nitrogen oxides as described in Section 2.3.
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Table 1: Aerosol measurement types.

Composition Measurement Method Variables Example Example
Networks Citations
Fine and Coarse Stacked Filter Unit (SFU) Fine, Coarse U. Gent Maenhaut et al.
2002a
PM2.5 and PM10 | Reference Method/Federal | PM2.5, PM10 IMPROVE Hand et al, 2019
Equivalent Method CASNET, EMEP | Putaud et al.
(FRM/FEM), 2004
PM2.5 and PM10 | Hi Vol Sampler EMEP, SINCA Putaud et al.
2004
Elemental Particle Induced x-ray | Al, S, Na U. Gent, EMEP Maenhaut et al.
emission Spectrometry 2002a
(PIXE). Instrumental nuclear
activation analysis (INAA)
Elemental Inductively Coupled Plasma- | Al, S, Na EMEP Putaud et al.,
Mass _Spectromet; ICP- SPARTAN 2004; Phillip et
MS al., 2017
Elemental XRF Al S, Na IMPROVE Hand et al, 2019
CASNET
Chemistry Ion Chromatography SO4--, NO3-, NHr IMPROVE Hand et al, 2019
CASNET, EMEP | Putaud et al.
2004
Carbonaceous Thermal Optical Reflectance | EC, OC IMPROVE Hand et al, 2019
CASNET
Evolved Gas Analysis Non- | OC, EC EMEP Putaud et al.

dispersive Infrared

(EGA+NDIR

2004

Table 2: Global Aerosol Modelling Budgets

Global modelled deposition (Tg/year), percentage of aerosol that is PMas, and globally and annually averaged surface

concentration (pg/m?®) and aerosol optical depth for each of the sources used in the model. An asterisk indicates that there

are additions to the model from the default CAM6.

PMio PMas
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Deposition Conc AOD
(Tg/year) % (ng/m?) (unitless)
Sulfate 121 100 2.1 0.018
Black carbon 10 100 0.5 0.009
Primary
organic
aerosol 34 100 1.6 0.008
Secondary
organic
aerosol 37 100 1.0 0.007
Sea salts 2520 3 13.0 0.045
Dust 2870 1 19.4 0.030
NH4NOs* 20 100 0.4 0.013
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