
Author Response to the Referee Comments to the manuscript “Water vapour 
isotopes over West Africa as observed from space: which processes control 
tropospheric H2O/HDO pair distributions?" [EGUSPHERE-2024-1613] submitted to
Atmospheric Chemistry and Physics.

We  would  kindly  thank  the  anonymous  referee for  providing  a  review  of  the  manuscript.  The
individual comments are listed below (shown in red) including our responses (shown in black).

“This article documents variations in the tropospheric water vapor isotopic composition over West 
Africa at the convective, seasonal and inter-annual scales, using 3 products of satellite observations: 
IASI, AIRS and TROPOMI. Processes respconsible for the isotopic variations are analyzed. This paper is 
consistent with many previous papers showing the impact of convective processes and air mass 
mixing on the isotopic composition of water vapor. The article is not exceptionally novel, but 
contributes to a more confident understanding of processes controlling the isotopic compositon of 
water vapor.

The article is well written and well illustrated. My comments are minor.”

Thank you very much for the valuable and insightful feedback!

General Comment

“What is the added value of {H2O, D} pairs? Can they teach us anything new? The paper explains δ
well how {H2O, D} are consistent with processes that we already know. But it doesn't show how they δ
could improve the konwledge. It's fine, maybe they just cannot improve the knowledge. But then 
maybe some sentences would need to b e toned down. e.g. l3: “quantify the atmospheric branches”; 
l20: “underlines the overall value...”; l 471-473: “underlines the strong potential”.”

As has been demonstrated in previous studies, the added value of {H2O, D} pairs is that it can shed δ
light onto the impact of isotopic processes in a way that would not be possible by individual H2O or 

D distributions alone. The comment is correctly assuming that our study does not increase our δ
knowledge about the isopotic processes per se. Instead, it shows that various processes can be 
detected on different time scales using space-based datasets of H2O and D, and, hence, fosters our δ
general understanding of {H2O, D} pair variability from an observational point of view. δ

Therefore, we understand that we will need to tone down some phrases and focus more on the actual 
scope and outcomes of this study. 

Detailed Comments

“l 3: “quantify the atmospheric branches”: unclear. We can quantify some fluxes or reservoirs, or the 
contribution of some processes, but not clear what it means to quantify a branch.”

Thank you for pointing out this inaccurate wording. The intended meaning of this phrase was to refer 
to the challenge of assessing the individual impact of atmospheric processes within the hydrological 
cycle in observations and models. We will apply the necessary adjustments to this phrase.  

“l 8-9: “from a convective as well as seasonal perspective and with respect to” -> “at the convective 
and seasonal scales and””

Ok, we will rephrase it.

“l 12: “ D depletioδ n -> D depletion in the vapor””δ

Ok, will be corrected.



“l 13: remove “without showing significant D depletion”: obvious after “enriδ ched signals””

Ok, will be removed.

“l 15: “anti-correlation”: at what time scale? How different is (3) different from (1)?”

(3) refers to the anti-correlation between precipitation amount and δD, while (1) refers to the anti-
correlation between H2O and δD. For (3), we observe the described effect on monthly averages 
compared for different years. We will adjust the description of (3) accordingly to underline the 
considered time scale. 

“l 30: what does “degree of dessication” means? Could this be clarified for people from the isotopic 
community who don't know about it?”

In the context of Africa, the term of desiccation refers to the progressive drying of soil and the 
subsequent desertification, e.g. as result of decreasing rainfalls and intensifying droughts. We will 
adjust this phrase in the manuscript accordingly to clarify its meaning.

“l 39 and around: is convection really the main source of uncertainty in climate projections over the 
Sahel? Re ent studies suggest a key role of Atlantic SSTs as well, e.g. [Monerie et al., 2023]”

Thanks for pointing this out. We agree that indeed there are further important factors driving the 
uncairtenty in climate predictions over the Sahel. We will tone down the term “major” to “one of the 
main” and refer to Atlantic SSTs as example for further factors.

“l 63: “in both liquid hydrometeors and ambiant vapor” -> “in ambiant vapor”. Evaporation rather 
enriches the droplets”

Ok, we will rephrase it.

“l 87: “interannual seasonal -> “interanual”.”

Ok, we will rephrase it.

“l 182: clarify the average: average over the previous day? 

Yes, the term “average” refers to the averaged precipitation of the previous day.

l 184: why do we need half-hourly IMERG observations rather than just daily? Are air masses followed
along back-tra je tories to calculate average rainfall? Or is the rainfall local?”

We agree with the reviewers comment that the description of the clustering method is somewhat 
confusing. 
We have to add the comment that we actually utilize daily IMERG observations instead of hourly to 
run the precipitation clustering method. Following the IMERG data description, the daily IMERG 
observations are derived from averaging all corresponding half-hourly IMERG observations at the 
considered 0.1 x 0.1 degree grid. Based on this, the daily IMERG observations are distributed via the 
data provider as daily precipitation (i.e. mm per day). As we make direct use of these daily 
precipitation products, no further averaging is required for identifying post-rain events with the 
considered clustering method.

Further, we agree the consideration of air mass backward-trajectories would be indeed interesting to 
consider for improving the detection mechanism of non-rain and post-rain events. As this exceeds the
scope of this study, we will add it as perspective. 

“Fig 2: give some more context for these lines, e.g. in the caption. What difference between the 2 
mixing lines? How are initial conditions and end members chosen?”

We will add following descriptions based on Diekmann et al. 2021a into the caption of Fig. 2:



• The air mass mixing curves are representative for dry and moist mixing processes over West 
Africa, with considering the mixing members x1 = (5e1 ppmv, -700 ‰,)  and x2 = (1.53e4 
ppmv, -120 ‰,) for the dry mixing curve (upper mixing curve) and x1 = (1e3 ppmv, -450 ‰,) 
and x2 = (2.2e4 ppmv, -120 ‰,) for the moist mixing curve (lower mixing curve).

• The Rayleigh curve is computed as Rayleigh process with initial conditions of  δD0 = - 80 ‰, 
relative humidity of 90 % and T0 = 30 deg. The Super-Raleigh curve is branching off of the 
Rayleigh curve following predominant signals observed along the backward trajectories in 
Diekmann et al. 2021a.

“l 252: you may cite [Risi et al., 2021] to support the impact of snow melt on the water vapor 
composition”

Thanks for pointing out this study, which we will add as reference here.

“l 273-276: If I understand well, you interpret the absence of isotopic difference between non-rain 
and post-rain events by the compensation at lowest levels of the enrichment by surface evaporation 
and depletion by convection? If the case, how an you explain the depletion of the vapor observed 
after rain events in surface observations [Tremoy et al., 2012, Tremoy et al., 2014]?
l 278 and around: I'm not sure about this rationale. The depleting effect actually accumulates along 
the descent in unsaturated and mesoscale downdrafts of convective systems, as shown by cloud-
resolving simulation [Torri, 2022, Risi et al., 2023]. So we do expect, and generally observe, depletion 
near the surface after convective systems in the Sahel.
Actually, Fig 6 shows that the humidity is not even larger for post-rain events. This questions whether 
the clustering methods applied to TROPOMI observation is really comparing non-rain and post-rain 
events. Is it possible that near the surface, the water vapor recovers more quickly after the event due 
to surface evaporation, and so the clustering methods based on average rain over the previous days 
might not properly capture post-rain vapor?

As these three comments point to the same issue, we will hereafter provide a combined answer. 

We appreciate this insightful comment and the constructive suggestions. We understand that in the 
discussion for the TROPOMI data we have underestimated the near-surface depleting effect 
associated with convection. In addition to the studies referred in the comment, it can be seen in Fig. 
3.9 of Lafore et al. (2017) that warming and drying behing squall lines is very strong due to the dry 
downdrafts in the rear of the squall line. 

Therefore, we believe that the proposed explanation of a rapidly recovering near-surface water vapor 
after the passing of convection sounds reasonable. This would be supported by Fig. 5 and 6, where 
H2O and Dδ   are overall similar for non-rain and post-rain conditions. A more sophisticated clustering 
method with higher temporal frequency would be beneficial in order to create better links between 
individual convective events and collocated TROPOMI data. Therefore, we will adjust the 
interpretation of these data accordingly and add the potential improvements for the clustering 
method as perspective.

“Fig 6: this compares non-rain and post-rain events. It would have been interesting to document the 
impact of the intensity of rain events, e.g. through the rainfall rate. If this is too much work for this 
article, this could be mentionned as a perspective.”

Thank you for this suggestion. The current design of the considered clustering method only foresees 
to detect samples for the discrete groups of non-rain and post-rain. The consideration of the impact 
of rainfall intensity on the post-rain event would be a very interesting analysis, which would require a
further evolution of the clustering method, e.g. to define further post-rain events with different 
rainfall selection criteria. Thus, we will add this as perspective to the discussion of Fig. 6.



“l 286 and next lines: “types of convection”: the impact of convection type was not addressed in this 
study. Only non-rain and post-rain onditions are compared. To analyze the role of convection type, a 
more sophisticated clustering method would be useful, e.g. squall line vs isolated systems. This 
paragraph up to l 296 needs to be completely revised.
It would have been interesting to link the D to convection type. If this is too much work for this arti δ
le, this could be mentionned as a perspective

We appreciate this constructive comment and understand that the clustering method for identifying 
non-rain and post-rain conditions actually does not provide conclusions on D as result of different δ
types of convection. We observe regional differences in the isotopic signature of the post-rain events 
between the Guinea Coast and the Sahel, and we agree that further work would be needed in order to 
investigate to the reasons for these differences and to which extent different types of convection may
account for these findings. Therefore, we will revise the corresponding paragraph and add the 
analysis with respect to convection types as further perspective.

l 295: “unaggregated convection (as is the case in Sahelian squall lines)”: this is the contrary! Squall 
lines are highly aggregated convective systems e.g. [Abramian et al., 2022]. Aggregated means that 
convection is gathered into one big system, whereas unaggregated means that convection is 
scattered into several isolated systems, e.g. [Bretherton et al., 2005, Tobin et al., 2012]”

Thank you for the clarification and correction. We will remove the interpretation with respect to the 
study of Galewsky et al. (2023) and instead add the link to “aggregated and unaggregated 
convection” to the perspective as described in the response of the previous comment.

“l 311: I can see only a few permil drop in fig 7”

The average value for IASI δD in August, as given as difference to the median over all years and as 
shown in Fig 7, are as follows

YEAR δD (‰)
2015 5.96
2016 7.02
2017 14.72
2018 -3.97
2019 -4.17
2020 -11.48

l. 311 refers to the drop of δD value in 2017 compared to the values between 2018 – 2020, which lies
between -19 and -25 ‰. We will correct the referred δD drop from “-25 ‰” to “down to -25 ‰”. 

“Fig 7: clarify in the caption what the error bars mean. Is it the standard deviation of all instantaneous 
values?”

The bars denote the [2.5, 97.5] percentiles of the corresponding distributions. We will add this 
information into the caption of Fig. 7.

“Interpretation of fig 7: To better see the link between rainfall and D, could a scatter plot of D vs δ δ
rainfall anomalies be added?”

We agree that such an analysis can provide interesting insights into the observed amount effect and 
hence support the interpretation of Fig. 7. Therefore, we will add a corresponding figure showing the 
correlation of rainfall vs. H2O and rainfall vs. D using the monthly averaged data for Sahel for IASI δ
and AIRS for the respectively available years (same data as used for Fig. 7):



Here, we observe the discussed anti-correlation between rainfall and D with decreasing D as δ δ
rainfall increases, while H2O is increasing with intensifying rainfall. In this way, it fits well with the 
discussion of Fig. 7, where corresponding features were observed.

We will add this figure and its discussion in the context of Fig. 7 to Sec. 4 accordingly.

Interpretation of fig 7: Why are more rainy years more depleted? Is it b ecause there are more rainy 
events, which are more depleted (fig 6)? Or is it because non rainy events are more depleted? Or 
because rainy events are more depleted, e.g. because they are more intense? To answer this question,
it could be easy to link Fig 7 to fig 6 with a decomposition method: ∆ D = ∆r · ( Drain − Dnorain) + r ·δ δ δ
∆ Drain + (1 − r) · ∆ Dnorain, where ∆ D is the anomaly between high and low rainfall years and r is δ δ δ
the fraction of rain samples in the yearly average”

We appreciate this suggestion of utilizing the clustering results for deriving a decomposition method 
that assesses the contribution of the different factors to the overall D. δ

For this purpose, we have investigated the impact of the three factors to the D anomaly as suggestedδ
in the comment:

• ∆r · ( Dδ post-rain − Dδ non-rain) as the impact of yearly variations in the fraction of rainfall events

• rpost-rain · ∆ Dδ post-rain as the impact of yearly variations in Dδ post-rain 

• rnon-rain · ∆ Dδ non-rain as the impact of yearly variations in Dδ non-rain

The following figure shows the results evaluated for IASI, AIRS and TROPOMI for the data used in Fig. 6
(i.e. for June – July of the respective years):



This figure shows that for the considered years the anomalies in Dδ post-rain exhibit high variability in 
their contribution to the overall D anomaly, while respective anomalies in rainfall fractions as well δ
as anomalies in Dδ non-rain show only low contribution to ∆ D. Since the latter implies that rainfall δ
fractions have been overall stable during the considered time period, this lets us assume that the 
strong variations in Dδ post-rain are resulting from rainfalls with varying intensity. 

Since Fig. 6 (and consequentially also the decomposition results) refer to June – July data and Fig. 7 to
August data, their results cannot be linked directly to each other. However, we observe in Fig. 7 that 
the rainfall peaks have been stronger for the years 2018 – 2020 compared to 2015 – 2017, what 
matches with the overall results from the decomposition method, where e.g. for IASI the Dδ post-rain 
anomalies reach minimum values for 2018 and 2019 and are substantially lower compared to 2015 
and 2016. This would let us assume that stronger rainfall events account for the negative Dδ post-rain 
anomalies and, hence, for the drop in D for 2018 – 2020 as observed in Fig. 7. δ

This assumption would be supported by the correlation plot of Dδ  vs rain (shown in the response for 
the previous comment), where stronger rainfall rates go along with decreased Dδ  values.

“Around l 365: is it possible that the smaller sensitivity of AIRS could be due to the larger impact of 
the a-priori profile on AIRS than on IASI, i.e. smaller sensitivity?”

Thank you for pointing out this detail. We agree that the observed discrepancies in the {H2O, D} pairδ
data between IASI and AIRS in low H2O regimes might result from differences in the sensitivity. As is 
described in Sec. 2.1, the processing of the IASI data considers of a post-processing step that aims at 
increasing the sensitivity of the {H2O, D} pairs at dry conditions, what however is not considered for δ
AIRS. We will update this paragraph accordingly. 

“l  384: “As result” -> “As a result”

Ok, will be corrected..

“Somewhere: the recent study by [Dahinden et al., 2023] would deserve to be cited.”

Thank you for pointing out this study, which sounds indeed very interesting. We will add a reference 
to this study in Sec. 5.2 when describing the impact of Saharan air layers to the mid-tropospheric 
{H2O, δD} pair data.
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