1 Supplement of

N dynamics during a 3-year crop rotation fertilized with digestates and cattle effluents

4

5 Victor Moinard et al.

6 Correspondence to: Florent Levavasseur (<u>florent.levavasseur@inrae.fr</u>)

7

9 Supplementary material 1: meteorological conditions

- 11 Figure S1.1: Monthly average air temperature (line, °C), and rainfall (bars, mm) during the field
- 12 experiment.
- 13

14 Supplementary material 2: Map of the experimental design

15

16 Figure S2.1 – Map of the experiment design. The five treatments consisted in: (MN) fertilization

17 with only mineral N solution in late winter and spring, and synthetic mineral P fertilizer when

18 needed; (CSM) fertilization with cattle farmyard manure in summer and cattle slurry in late

19 winter and spring; (RD) application of raw digestate (without phase separation) in both summer

- and late winter and spring; (LSD) application of solid digestate in summer and liquid digestate in late winter and environment (0N) as fartilization
- 21 late winter and spring; and (0N) no fertilization.
- 22

23 Supplementary material 3: Crop management

Crop	Date	Action			
2016 - 2017	26 October 2016 and	Soil tillage: disc harrow (15 cm),			
Wheat	27 October 2016	Dish harrow (10 cm), followed by wheat sowing (cultivar Syllon, 260 gr m ⁻²) Herbicide Fertilization (mineral fertilizers or EOMs) Fertilization (mineral fertilizers or EOMs)			
	27 October 2016				
	22 November 2016				
	22 March 2017				
	19 April 2017				
	04 May 2017	Herbicide			
	15 May 2017	Fungicide			
	20 July 2017	Grain harvest			
	23 July 2017	Straw harvest			
2017 - 2018	02 August 2017	Application of EOMs			
Rapeseed	03 August2017	Burying and soil tillage: ploughing (20 cm), disc harrow (10 cm),			
		roller (2 cm)			
	21 August 2017	Rapeseed sowing (cultivar Fernando, 40 gr m ⁻²)			
	21 August 2017	Herbicide			
	25 October 2017	Insecticide			
	21 March 2018	Fertilization (mineral fertilizers or EOMs)			
	23 March 2018	Fungicide and insecticide			
	04 July 2018	Harvort			
2018 2019	10 September 2018	Application of EOMs			
2010 - 2019 Wheat	20/00/2018	Burying: disc barrow (10 cm)			
vv ficat	20/09/2018 24 October 2018	Soil tillage: disc harrow (10 cm) followed by wheat sowing			
	24 October 2018	(cultivar Descartes 300 gr m^{-2})			
	26 October 2018	Herbicide			
	19 February 2019	Fortilization (minoral fartilizars or FOMs)			
	17 March 2019	Fortilization (mineral fortilizers or EOMs)			
	26 April 2019	Herbicide			
	01 May 2019	Fertilization (MN and CSM treatments only ammonium nitrate)			
	03 May 2019	Fungicide			
	0.5 Way 2019 07 May 2010	Fungicide			
	27 July 2019	Grain harvest			
	22 July 2019 23 July 2019	Straw harvest			
	25 July 2019				

24 Table S3.1 – Technical management of the crops.

27 **Supplementary material 4: Detailed method for incubations**

The soil used in the experiments was sampled once in summer (incubations of manure, raw digestate, solid digestate) and once in winter (incubations of liquid digestate and slurry), in the field experiment on the 0N control treatment. The soil was sieved fresh to a size of 4 mm. The field capacity of the sieved soil was measured with a Richards press (30,990 Pa) and was 25% w/w. Soil was stored in a closed container at 5°C before being used.

Raw digestate, solid digestate, and cattle manure were sampled on 19th of September 2018 during
amendment. Cattle slurry and liquid digestate were sampled on 12th of March 2019 during fertilization.
Solid digestate and cattle manure were chopped by hand for homogenization. The EOMs were stored at
4°C in plastic containers at most two months before the incubations.

37 The EOMs were incubated fresh, in non-limiting conditions for moisture, SMN, and temperature. They 38 were mixed homogeneously into 500 g of soil in the proportion of 2000 mg of C per kg of dry soil (mgC. 39 kgDS⁻¹), i.e. 16.6, 20.5, 77.1, 106.1, and 145.1 g FW kg DS⁻¹ (mass of Fresh Weight per mass of dried 40 soil) for cattle manure, solid digestate, raw digestate, liquid digestate, and cattle slurry, respectively. 41 After soil mixing, KNO₃ solution (farmyard manure) or deionized water (other EOMs) was added to the 42 mixture to reach a minimum SMN content of 35 mgN_{min} kgDS⁻¹, and a soil moisture of 25% w/w 43 (weight/weight), corresponding to soil moisture at field capacity. The addition of the liquid digestate 44 and slurry to the soil provided large amounts of water, which had been considered in the incubation experiments to achieve a common soil moisture level in all treatments. Because of the large amount of 45 46 water linked to organic matter in the EOMs, the DM content of the EOMs is not relevant for this adjustment of soil moisture. Thus, we used a "moistening power" of an EOM as the quantity of water 47 48 significantly humidifying soils in microcosm experiments. It was determined by weighing free water 49 after the centrifugation of the EOMs for 10 min at $614 \times g$ (3 replicates). This method was previously 50 described on the same soil by Moinard et al. (2021). Soil moisture was maintained constant during the 51 incubation, with regular additions of deionized water. Mixtures were incubated in darkness at 28 ± 1 °C 52 for 175 days.

53 The following of N mineralization or immobilization used destructive replicates. Four replicates per 54 treatment and per date of measurement were used. Mixture was added in an open 1 L plastic vessel, 55 covered by a perforated plastic film, in order to allow oxygen and air circulation while limiting soil 56 water evaporation. At dates 0, 3, 7, 14, 25, 49, 91, 175 days, SMN was extracted with KCl solution. 120 57 g of mixture were mixed with 400 mL of KCl solution (1 mol L⁻¹), then agitated during 1h. Supernatant 58 is filtrated on glass-fiber filter (pores: 1.2 µm) and frozen at -20°C before dosage. Pure KCl solution 59 were also filtrated and stored on each date to evaluate any exogeneous N contamination (blank). N-NH4⁺ and N-NO3⁻ contents were dosed by colorimetry on a continuous flow analyser (Skalar, The 60 Netherlands). N-NH₄⁺ and N-NO₃⁻ contents were corrected by subtracting mean N-NH₄⁺ and N-NO₃⁻ 61 contents in blank sample. At each date, to avoid accounting for initial mineral N, mineralized N-NH4⁺ 62 and N-NO₃⁻ contents were computed by subtracting total N-NH₄⁺ and N-NO₃⁻ contents by their contents 63 at t=0 day in each treatment. Net N mineralization or immobilization was computed by subtracting 64 mineralized N-NH₄⁺ and N-NO₃⁻ contents in soil by the one in unamended control (soil mineralization). 65 Net N mineralization or immobilization was then expressed in % N_{org} initially present in the EOM. We 66 67 also computed the available mineral N brought by the EOM, expressed in kg Nmin in soils per kg FW of 68 EOM brought, taking into account both mineralization/immobilization cited above and initial TAN 69 content in the EOM.

Moinard, V., Redondi, C., Etiévant, V., Savoie, A., Duchene, D., Pelosi, C., Houot, S., Capowiez, Y.,
2021. Short- and long-term impacts of anaerobic digestate spreading on earthworms in cropped soils.
Applied Soil Ecology 168, 104149. https://doi.org/10.1016/j.apsoil.2021.104149

73

Supplementary material 5: Detailed methods for assessing agricultural performance of crops

77 Yield uncertainty

The balance that measured grain and straw yield had a precision of ± 10 kg. Therefore, the uncertainty

of the mass of grain was $\pm \frac{10}{\sqrt{3}} = 5.8$ kg for 1800 m² (rectangular probability distribution, type B

80 evaluation of uncertainty). It was then scaled in t ha⁻¹.

81 Computing of N uptake

- 82 In each subplot, we computed two intermediary variables. The N concentration in the whole
- 83 aboveground crop ([N]_{aerial}, gN kgDM⁻¹), including grain and straw, was computed with Eq S5.1:

84
$$[N]_{aerial} = ([N]_{grain} \cdot m_{grain} + [N]_{straw} \cdot m_{straw}) / (m_{grain} + m_{straw})$$
(S5.1)

- 85 where [N]_{grain} is the N content in grain (gN kgDM⁻¹), m_{grain} is the mass of grain in the subplot (kgDM),
- 86 [N]_{straw} is the N content in straw (gN kgDM⁻¹), m_{straw} is the mass of grain in the subplot (kgDM).
- 87 The mass ratio of grain to aboveground crop organs (ratio_{grain:aerial}) was computed with Eq S5.2:

88
$$ratio_{grain:aerial} = m_{grain} / (m_{grain} + m_{straw})$$
 (S5.2)

At last, we computed the N uptake by the crop in the whole plot. N export in grain at harvest (N_{grain}, kgN
ha⁻¹) was computed as:

91
$$N_{grain} = yield . [N]_{grain}$$
 (S5.3)

where yield is grain yield (t DM ha⁻¹). Total aboveground N uptake (including straw and grain) (N_{aerial},
kgN ha⁻¹) was computed as:

94
$$N_{aerial} = yield \cdot [N]_{aerial} / ratio_{grain:aerial}$$
 (S5.4)

95 N exported in straw N_{strawexp} (kgN ha⁻¹) was computed as:

96
$$N_{\text{strawexp}} = \text{straw yield} \cdot [N]_{\text{straw}}$$
 (S5.5)

Where the straw yield is expressed in t DM ha⁻¹ and [N]_{straw} is the concentration of N in straws (gN kgMS⁻¹). N returned to soil through aerial crop residues (N_{returned}, kgN ha⁻¹) were then computed as:

99 $N_{returned} = N_{aerial} - N_{strawexp} - N_{grain}$

- 100 Uncertainties on Ngrain and Nuptake, Nstrawexp, and Nreturned were computed using error propagation formulas
- 101 from yield measurement uncertainty and standard error of [N]_{grain}, [N]_{aerial}, [N]_{straw}, and ratio_{grain:aerial}.

103 Supplementary material 6: Detailed method for SMN analysis

104 SMN (i.e. NO_3^- and NH_4^+ contents in soil) were analyzed by colorimetry after extraction with a KCl

solution. 25 g of soil were mixed with 100 mL of KCl solution (1 mol L^{-1}), then agitated during 1h.

106 Supernatant is filtrated on glass-fiber filter (pores: 1.2 µm) and frozen at -20°C before dosage. Pure KCl

- 107 solution were also filtrated and stored on each date to evaluate any exogeneous N contamination (blank).
- 108 N-NH₄⁺ and N-NO₃⁻ contents were dosed by colorimetry on a continuous flow analyser (Skalar, The
- 109 Netherlands). N-NH₄⁺ and N-NO₃⁻ contents were corrected by subtracting mean N-NH₄⁺ and N-NO₃⁻
- 110 contents in blank sample.

112 Supplementary material 7: Detailed method for N₂O emissions

N₂O emissions were measured with the static chamber method (Gu et al., 2013; Jeuffroy et al., 2013). 113 Each plot was equipped with 5 static chambers. The position of each chamber was semi-randomly 114 115 chosen to be representative of the whole plot surface. They were located more than 1.5 m from the plot border, avoiding wheel tracks. After a spring fertilizer application, N₂O emissions were measured twice 116 117 a week during 2 weeks, then once a week for one month and once a month during late spring and 118 summer. After a summer fertilizer application, N2O emissions were measured twice a month, and once 119 a month in late autumn and winter before the next application event. In total, N₂O emissions were 120 measured at 40 dates. The static aluminum chambers measured 50 cm x 50 cm. They were 25 cm high 121 in autumn and winter, and 75 cm high in spring when vegetation was higher. They were buried 10 cm 122 within the soil. At each measurement date, chambers were sealed, and air with accumulated N₂O was 123 sampled at time 0 min, 30 min, 60 min, and 90 min. The measurement of N₂O emissions started between 124 10 am and 2 pm. N₂O in air samples was analyzed by Gas Chromatography with Electron Capture Detector (Trace GC Ultra, Thermo Scientific). When the N₂O concentration in the chamber was 125 126 positively correlated with time (r > 0.9), there was an accumulation of N_2O and the slope of the regression line was used to compute N₂O emission rate. When the N₂O did not accumulate in the 127 chamber (correlation between N₂O content and time r < 0.9), N₂O emissions were set to 0. 128

N₂O emissions were measured on 40 dates: 14/03/2017, 24/03/2017, 27/03/2017, 31/03/2017,
06/04/2017, 12/04/2017, 21/04/2017, 26/04/2017, 04/05/2017, 10/05/2017, 17/05/2017, 30/08/2017,
15/09/2017, 29/09/2017, 06/10/2017, 07/11/2017, 20/12/2017, 29/01/2018, 23/03/2018, 26/03/2018,
29/03/2018, 06/04/2018, 11/04/2018, 18/04/2018, 24/04/2018, 02/05/2018, 27/09/2018, 17/10/2018,
31/10/2018, 14/11/2018, 18/12/2018, 05/02/2019, 21/02/2019, 07/03/2019, 13/03/2019, 19/03/2019,
28/03/2019, 09/04/2019, 14/05/2019, 12/06/2019.

135

Gu, J., Nicoullaud, B., Rochette, P., Grossel, A., Hénault, C., Cellier, P., Richard, G., 2013. A regional
experiment suggests that soil texture is a major control of N2O emissions from tile-drained

- 138 winter wheat fields during the fertilization period. Soil Biol Biochem 60, 134–141.
- 139 https://doi.org/10.1016/j.soilbio.2013.01.029
- 140 Jeuffroy, M.H., Baranger, E., Carrouée, B., de Chezelles, E., Gosme, M., Hénault, C., Schneider, A.,
- 141 Cellier, P., 2013. Nitrous oxide emissions from crop rotations including wheat, oilseed rape
- 142 and dry peas. Biogeosciences 10, 1787–1797. https://doi.org/10.5194/bg-10-1787-2013
- 143

145 Supplementary material 8: Individual analyses of cattle slurry

146	Table S8.1 – Individual analyses of cattle slurries. TS: total solid. FW: Fresh weight. TAN:
147	ammoniacal N. TN: total N.

EOM	Application	TS (%FW)	TAN	TN	VS (g kgFW ⁻¹)	pН
	date		(g kgFW ⁻¹)	(g kgFW ⁻¹)		
Cattle slurry	22/03/2017	1.6	0.6	1.1	11.3	7.7
	19/04/2017	0.8	0.8	1.0	4.8	7.5
	21/03/2018	7.5	1.3	3.3	56.1	6.6
	19/02/2019	4	2.0	2.7	27.6	7.5
	12/03/2019	3.2	1.1	2.2	22.1	7.9

150 Supplementary material 9: Rapeseed growth from sowing to

151 February

152 Aerial biomass and N uptake of rapeseed were evaluated on 3 subplots per treatment (total 3 m²) on

153 20th of November 2017 and 20th of February 2018 to drive N fertilization, similarly to N uptake at

- 154 harvest. No significant differences were highlighted between the different treatments.
- 155

157 Figure S9.1: A) Aerial biomass and B) N uptake from rapeseed at the end of winter (February).

158 Error bars show one standard error.

159

160 Supplementary material 10: Evolution of soil mineral N stocks

161 during the 3-year experiment

Figure S10.1: A) Soil mineral N (SMN) stocks (0-100cm), on the same x-scale as B) Crop management. Arrows indicate the fertilization dates in late winter and spring (light gray, MN,

165 CSM, RD, and LSD treatment), and in summer (dark gray, CSM, RD, and LSD treatments).

166

167 Supplementary material 11: Daily N₂O emissions

- 168 At each date, we used a Kruskal-Wallis test to verify whether N₂O emissions were different between
- 169 treatments. If the treatments had significantly different N₂O emissions, (p <0 .05), a post-hoc Dunn's
- 170 test was used to find which treatment was different from one another (p < 0.05). We used the kruskal.test
- 171 function, and the dunn.test function from the R *dunn.test* package (Dinno, 2017).
- 172 Dinno, A., 2017. dunn.test: Dunn's Test of Multiple Comparisons Using Rank Sums. R package version
- 173 1.3.5. https://CRAN.R-project.org/package=dunn.test.
- 174
- 175

177 Figure S11.1: N₂O emissions, evolution of total ammonium N and nitrate N stocks in the upper 178 soil layer (0 - 20 cm) and evolution of topsoil water content expressed as the water filled pore 179 space during wheat cropping season in 2017. In each subfigure, error bars show one standard 180 error. All subfigures share the same x-axis (time): punctual N₂O emissions, topsoil ammonium N 181 content, topsoil nitrate content, crops and fertilization dates, soil water content. Only for N_2O 182 emissions, at each date, a Kruskal-Wallis test followed by a post-hoc Dunn's test was realized to 183 test whether the emissions were significantly different from one another. When no differences 184 were highlighted between treatments, no letters are drawn. When treatments are shown different 185 by Kruskal-Wallis test (p-value < 0.05), letters are drawn for each treatment and treatment sharing no letters are significantly different (Dunn's test, p-value <0.05). The periods considered 186 187 for total emissions were highlighted in gray.

Figure S11.2: N₂O emissions, topsoil mineral N (ammonium and nitrate) content and water
 content (rapeseed 2017-2018). See legend of Figure S13.1 for more details.

Figure S11.3: N₂O emissions, topsoil mineral N (ammonium and nitrate) content and water
 contents (wheat 2018-2019). See legend of Figure S13.1 for more details.