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Abstract. This study presents a statistical clustering method that allows avalanche forecasters to explore patterns in simulated

snow profiles. The method uses fuzzy analysis clustering to group small regions into larger forecast regions by considering snow

profile characteristics, spatial arrangements, and temporal trends. We developed the method, tuned parameters, and present

clustering results using operational snowpack model data and human hazard assessments from the Columbia Mountains of

western Canada during the 2022-23 winter season
:::
and

:::::::
2023-24

:::::::
seasons. The clustering results from simulated snow profiles5

closely matched actual forecast regions, effectively partitioning areas based on major patterns in avalanche hazard, such as

varying danger ratings or avalanche problem types. By leveraging the uncertain predictions of fuzzy analysis clustering, this

method can provide avalanche forecasters with a straightforward
::::::
practical

:
approach to interpreting complex snowpack model

output and identifying regions of uncertainty. We provide practical and technical considerations to help integrate these methods

into operational forecasting practices.10

1 Introduction

Forecasting avalanche hazard over terrain is fundamental for effectively managing short-term snow avalanche risk (Canadian

Avalanche Association, 2016). Forecasters assess the current hazard by interpreting weather, snowpack, and avalanche observations,

while also interpreting weather forecasts to predict future hazard conditions. In recent years, forecasters have shown interest in

using numerical snowpack models to reduce their uncertainties (Morin et al., 2020). Models like SNOWPACK (Lehning et al.,15

1999) and Crocus (Brun et al., 1992) use meteorological data to provide predictions of snow stratigraphy and stability across

spatial and temporal scales relevant to avalanche forecasting.

Several recent advancements have considerably enhanced the value of snowpack models for avalanche forecasting. First,

improvements to numerical weather prediction models in complex terrain (Lundquist et al., 2020) allow running snowpack

simulations in remote regions (Horton and Haegeli, 2022). Second, new post-processing models establish stronger connections20

with snow stability (Mayer et al., 2022) and avalanche hazard (Pérez-Guillén et al., 2022). Lastly, applying visual design

principles (Horton et al., 2020) and snow profile processing tools (Herla et al., 2021, 2022) can enhance the communication

of this information to forecasters. While operational model systems are beginning to incorporate these developments, their

adoption into forecasting workflows remains gradual. Therefore, we need to present model output in simple informative ways.
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Statistical clustering methods provide an effective means of identifying and summarizing patterns within complex datasets.25

Bouchayer (2017) was the first to cluster simulated snow profiles by grouping profiles based on the specific surface area of

snow layers. Using a dynamic time-warping alignment method developed by Hagenmuller and Pilloix (2016), they constructed

a hierarchical clustering tree by comparing vertical sequences of specific surface area. Herla et al. (2021) expanded on this

approach by incorporating generic categorical and numeric snowpack properties such as hand hardness and grain type into

the dynamic time-warping process. This enabled them to employ hierarchical clustering methods to group snow profiles based30

on characteristics relevant to avalanche hazard assessment. Reuter et al. (2023) applied k-means clustering to simulated snow

profiles by predicting avalanche problem types from the profiles and then clustering problem prevalences to explore the snow

climatologies in the French Alps. While these clustering methods revealed patterns in simulated snowpack properties, they did

not fully capture the spatial and temporal patterns important to avalanche forecasters.

To present
::::::
provide avalanche forecasters with more accessible and relevant snowpack model information, we developed

:::
this35

::::
paper

:::::::
presents

:
a method for clustering simulated snow profiles into avalanche forecast regions. This

:::
Our method expands upon

the approach introduced by Herla et al. (2021), which partitions snow profiles based on avalanche hazard characteristics, by

further addressing the operational requirements for coherent spatial and temporal patterns. We developed the method using

operational snowpack simulations and human avalanche hazard assessments from the Columbia Mountains of western Canada.

Sect. 2 describes the study area and data, and then Sect. 3 introduces the clustering method. After selecting appropriate40

parameters
:::
with

::::
data

:::::
from

:::
the

:::::::
2022-23

::::::
season

:
(Sect. 4), we present examples of the clustering results and compare them

with human-assessed forecasts
:::
for

::::
both

:::
the

:::::::
2022-23

::::
and

:::::::
2023-24

:::::::
seasons in Sect. 5. To help others apply these methods we

discuss practical and technical implications in Sect. 6.

2 Study area and data

2.1 Study area45

We developed the clustering method using simulated snow profiles and human-assessed avalanche forecasts in the Columbia

Mountains of western Canada (Fig. 1a). The Columbia Mountains have a transitional snow climate prone to storm slab and

persistent slab avalanche problems (Shandro and Haegeli, 2018). Variations in weather and snowpack across the range often

lead to distinct patterns in avalanche hazard, making it well-suited for exploring spatial clustering methods. For example,

storm tracks can impact the northern and southern parts of the range differently, while orographic enhancement often results in50

heavier precipitation on the western sides of each subrange.

Public avalanche forecasters at Avalanche Canada, Canada’s public avalanche warning service, have divided the Columbia

Mountains into 32 permanent subregion polygons .
::
for

:::
the

:::::::
2022-23

::::::
season

::::
(total

::::
area

::
of

::::
111

:::
801

:::::
km2).

::::
The

::::::::
subregion

::::::::
polygons

::::
were

::::::
revised

:::
for

:::
the

:::::::
2023-24

::::::
season

:::
by

:::::::
splitting

::::
one

::::::::
subregion

::::
into

::::
two,

:::::::::
increasing

:::
the

::::
total

::
to

:::
33,

::::
and

::::::
making

::
a
:::
few

::::::
minor

::::::::
boundary

::::::::::
adjustments.

:
Forecasters aggregate these subregions into larger forecast regions daily based on their assessment55

of avalanche hazard conditions. In this study, subregions refer to the individual subregion polygons and regions refer to the

aggregated groups of subregions, whether done by human forecasters or clustering methods.
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Figure 1. Study
:::
The

:::::
study area and simulated snow profiles are shown with

::
for

:::
the

:::::::
2022-23

:::::
season

::::::
include

:
(a) the Columbia Mountains

:
,

divided into 32 permanent subregion polygons and the locations of individual simulated
::::::::
subregions,

::::
with

::::::
original

:
snow profiles

:::::
profile

::::::
locations

:::::
based

:::
on

:::
grid

:::::
points

::::
from

::::
two

:::::::
numerical

:::::::
weather

::::::::
prediction

::::::
models

:::
(2.5

:::
and

:::
10

:::
km

::::::::
resolution), and (b) the snow profile time

series produced by averaging snow profiles
:::::::
averaged within each subregion.
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2.2 Simulated snow profiles

We obtained simulated snow profiles for the 2022-23 winter season
:::
and

:::::::
2023-24

::::::
seasons

:
from Avalanche Canada’s operational

snowpack modelling system (Horton et al., 2023). This model system runs the SNOWPACK model (Lehning et al., 1999) with60

meteorological data from two numerical weather prediction models.
:
,
:::
the

:::
2.5

:::
km

:::::
High

:::::::::
Resolution

::::::::::::
Deterministic

:::::::::
Prediction

::::::
System

:::
and

:::
the

:::
10

:::
km

:::::::
Regional

::::::::::::
Deterministic

::::::::
Prediction

:::::::
System

::::
(Fig.

::::
1a). The model generates daily profiles at 168 locations

in
::::::
treeline

::::::::
elevation

::::::::
locations

::::::
across

:
the Columbia Mountains, representing

::::
each

::::::::::
representing

::::::::::
conditions

::
in

:
flat, sheltered

terrainat treeline elevations. Since the focus of this paper is .
:::::
Since

::::
this

:::::
paper

::::::
focuses

:::
on presenting a clustering method that

applies to any spatially distributed snowpack simulation, the specific methods
:::::::::
techniques used for generating these profiles are65

of limited relevance. Interested readers are referred to Appendix Awhere the model configuration is explained in detail
::::::::
described

::
in

::::::::
Appendix

::
A.

To represent typical treeline elevation snowpack conditions in each subregion, we computed representative profiles using

the dynamic time-warping barycenter averaging method developed by Herla et al. (2022). This method aligns profile layers

using dynamic time-warping, computes the prevalent grain type mode for each layer, and then averages layer properties of70

each dominant mode (e.g., thickness, hardness, temperature). Averaging was done for each day of the season to produce 32
::
at

:::::
16:00

:::
PST

:::
to

::::::
produce

:
snow profile time series representing typical treeline conditions in each subregion (Fig. 1b).

:::::
While

:::::
these

:::::::::
generalized

:::::::
profiles

::::::::
represent

::::::::
conditions

::
in
::::
flat,

::::::::
sheltered

::::::
treeline

::::::
terrain

::
at

:::
the

::::
scale

::
of

:::::::::
Avalanche

:::::::
Canada

:::::::::
subregions,

::::
they

:::
do

:::
not

::::::
capture

:::
the

:::
full

:::::
range

::
of

:::::::::
conditions

:::
that

:::::::::
avalanche

:::::::::
forecasters

:::::::
consider

:::::
when

::::::::
assessing

:::::::::
conditions,

::::
such

::
as

:::::
those

:::::::
specific

::
to

:::::
certain

:::::::::
elevations

::
or

:::::::
aspects.

::::::::
However,

:::
the

:::::::::
generalized

:::::::
profiles

::
do

::
a
::::
good

:::
job

::
of

::::::::
capturing

::::::::::
widespread

::::
new

::::
snow

::::
and

::::::::
persistent75

::::
weak

::::::
layers,

:::::
which

:::
are

::::
key

::::::
drivers

::
of

::::::::
avalanche

::::::
hazard

::
in

:::
the

::::::::
Columbia

::::::::::
Mountains.

2.3 Human-assessed forecast regions

Avalanche Canada issues daily public avalanche forecasts for the Columbia Mountains. Expert forecasters
:::::::::
Forecasters

:
group

subregions into semi-homogenous forecast regions and assign danger ratings and avalanche problems to three elevation bands

for each region. This study analyzed forecasts between November 26, 2022 and April 24, 2023, starting when daily forecasts80

were published and ending when the
:::
Our

:::::
study

::::::
periods

::::::
started

:::::
when

:::::
daily

::::::::::
forecasting

:::::
began

::
in

:::
the

:::::
early

::::::
winter

:::
and

::::::
ended

::::
when

:
forecasts switched to a single large region for spring conditions . Operational

:::::::::
(November

:::
11,

:::::
2022

::
to

:::::
April

:::
23,

:::::
2023

:::
and

:::::::::
December

::
1,

::::
2023

:::
to

::::
April

::::
25,

:::::
2024).

:::::::
System

:::::::
outages

::::::
caused

:::
the

:::::::::
operational

:
snowpack model data was unavailable for

35 days during this period due to system outages, resulting in
:
to

:::
be

:::::::::
unavailable

:::
on

::::::
several

::::
days

::::
each

:::::::
season,

::::::
leaving

:
115 days

when both
:::
and

::
98

::::
days

:::::
when

::
a

:::::::
complete

:::
set

::
of

:
model and human data were available for analysis

::
in

::::
each

::::::
season,

::::::::::
respectively.85
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3 Clustering method

3.1 Distance between subregions

Many clustering methods use a distance matrix to quantify differences among data points (Kaufman and Rousseeuw, 2009). A

distance metric measures the distance between each pair of points: identical points have a distance of 0, while dissimilar points

have larger values. These pairwise
:::::::
Pairwise

:
distances are arranged in a matrix with rows and columns representing each data90

point. Our clustering method derives a metric to quantify the distance between subregions in a way that encourages similar

subregions to be grouped (Fig. 2). Our distance metric dist considers three relevant criteria:

1. Snow profile characteristics: The snow profile distance distpro quantifies the similarity of snow profiles so that

clustering will produce forecast regions with similar avalanche hazard characteristics.

2. Spatial arrangement: The spatial distance distgeo quantifies the spatial arrangement of subregion polygons so that95

clustering will produce spatially contiguous regions.

3. Temporal stability: The sequential distance distseq quantifies the previous day’s clustering results so that clustering

will only change forecast regions when there are substantial changes in snow profile characteristics.

After calculating these individual distance metrics, we compute the overall distance between subregions dist using a

weighted mean:100

dist= (α)distgeo +(β)distseq +(1−α−β)distpro (1)

where α is a weight controlling the relative significance of the spatial distance and β is a weight controlling the relative

significance of the sequential distance.

3.1.1 Snow profile distance
:::::::::::::
characteristics

We quantify the snow profile distance (distpro) with the snow profile similarity measure introduced by Herla et al. (2021).105

This method aligns two profiles onto a common height grid using dynamic time-warping then compares the properties of the

layers to assign a similarity score ranging from 0 to 1. The similarity scores are calculated using the sarp.snowprofile.alignment

package for R (Herla et al., 2021, 2022), which offers various approaches to calculate the similarity of aligned profiles. These

approaches weigh different combinations of grain type, grain size, layer hardness, and instability. We
::
To

:::::::::
emphasize

:::::
layer

::::::::
instability,

:::
we

:
use an approach that computes a weighted sum of grain type similarity (37.5 %), hand hardness similarity (12.5110

%), and layer stability
::::::::
instability

:
similarity (50 %). We quantify layer stability using

:::::
Layer

::::::::
instability

::
is

::::::::::
determined

::::
with the

random forest method developed by Mayer et al. (2022) to predict the probability of instability for each layer in a profile.

This approach assigns more weight to unstable layers to reward profiles with similar stability patterns. Among the available

approaches for quantifying the snow profile similarity
:::::::
similarity

::::::::::
approaches

:
in sarp.snowprofile.alignment, this method

:::
one

most closely aligns with forecasters’ criteria for relating snowpack layers to avalanche characteristics. The method calculates115
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Figure 2. The clustering method derives an overall distance matrix integrating three key criteria: snow profile distance, spatial distance, and

sequential distance. Snow profile distance is based on snow profile characteristics in simulated snow profiles, spatial distance is based on the

arrangement of polygons, and sequential distance is based on the previous day’s forecast regions.

the
::::::::
avalanche

::::::::::
forecasting

::
by

::::::::::::
incorporating

::::
both

::::::::::
mechanical

::::::::
properties

:::::
(i.e.,

:::::::::
instability)

::::
and

::::::::
structural

:::::::::
properties

::::
(i.e.,

:::::
grain

:::
type

::::
and

:::::::::
hardness).

:::::::
Methods

::::
that

:::::
focus

::::::
purely

:::
on

::::::::
structural

::::::::
properties

::::
can

::::::::::::
overemphasize

::::
the

:::::::::
importance

::
of
:::::

thick
::::::::
cohesive

:::::
layers,

:::
but

::::
this

::::::::
approach

:::::::
weights

:::
thin

::::::::
unstable

:::::
layers

:::::
more

:::::::
heavily.

:::
We

:::::::
calculate

:::
the

:
pairwise similarity of profiles each day

then subtracts
::
and

::::
then

:::::::
subtract

:
them from 1 to produce snow profile distance values.

3.1.2 Spatial distance
:::::::::::
arrangement120

We consider the spatial distance between subregions to encourage geographically contiguous forecast regions. We designed the

spatial distance (distgeo) to reduce the distance between subregions in close geographic proximity while increasing the distance

for spatially separated subregions. We derived the spatial distance matrix using a binary neighbourhood-based approach, where

polygons sharing borders have a distance of 0 and polygons without shared borders have a distance of 1 (Chavent et al., 2018).

The neighbourhood approach encourages spatially connected forecast regionsthat are more likely to align with the elongated125

shape of mountain rangesthan would result from basic Euclidean distances ,
:::::
often

:::::::
forming

::::::::
elongated

::::::
shapes

:::
that

::::::
follow

:::::
snow
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:::::::
climates

:::::
along

:::::::
mountain

:::::::
ranges.

::
In

:::::::
contrast,

::::
tests

:::::
using

::::::::
Euclidean

::::::::
distances

::::::::
produced

::::::
forecast

:::::::
regions

:::
that

::::
were

:::::::::::::
geographically

::::
close

:::
but

:::::
more

:::::
likely

::
to

::::
span

:::::::
multiple

:::::
snow

:::::::
climates.

3.1.3 Sequential distance
::::::::
Temporal

:::::::
stability

When clustering on consecutive days, the arrangement of forecast regions should vary in response to changing avalanche130

hazard conditions. However, clustering can be overly sensitive to subtle changes in the dataset which can lead to excessive

changes in forecast region boundaries that may not be practical for forecasting applications. To address this issue, we use a

sequential distance (distseq) to incorporate some weight from the previous day’s clustering results in a way that encourages

subregions to remain in the same groups. Sect. 4.4 explains this approach in detail.

3.2 Fuzzy analysis clustering135

Given the complexities of avalanche hazard assessment and snow profile data
:::::::::
simulations, we chose a fuzzy clustering method to

explicitly highlight the uncertainties associated with assigning data points to clusters. Fuzzy clustering methods use membership

degrees
::::::
produce

:::::::::::
membership

::::::::::
probabilities

:
that allow data points to belong to multiple clusters simultaneously (Kaufman and

Rousseeuw, 2009).

Our method uses a fuzzy variant of k-medoid clustering called fuzzy analysis clustering, or fanny. The fanny method,140

implemented in the cluster package for R and described by Kaufman and Rousseeuw (2009), assigns each data point i

membership values uiv between 0 and 1, quantifying its degree of belonging to cluster v. The method aims to minimize

the objective function:

k∑
v=1

∑n
i=1

∑n
j=1u

r
ivu

r
jvdist(i, j)

2
∑n

j=1u
r
jv

∑n
i=1

∑n
j=1(uiv)

r(ujv)
rdist(i, j)

2
∑n

j=1(ujv)r
::::::::::::::::::::::::::::

(2)

where n is the number of data points, k is the number of clusters, dist(i, j) is the distance between data points i and j, and145

r is the fuzziness parameter. The fuzziness parameter r, whose value can range between 1 and infinity, controls the degree of

fuzziness in the clusters. As r approaches 1, clusters become increasingly crisp (i.e., k-medoid clustering), while higher values

lead to complete fuzziness (i.e., data points have equal membership in every cluster). The method iteratively defines
::::::
updates

cluster centers using the medoid data point and recalculates the membership values until they converge within a specified

threshold tolerance.
:::
the

:::::::
objective

::::::::
function

::
in

:::
Eq.

:
2
:::::::::
converges

::::
(i.e.,

:::::::
changes

:::
less

::::
than

::::::
10−15

:::::::
between

:::::::::
iterations).

:
150

We arrange the distances between subregions (dist) into a matrix and input them into the fanny method to derive cluster

membership values for each subregion. This process requires specifying appropriate values for the fuzziness parameter r and

the number of clusters k, as explained in Section
::::
Sect.

:
4.
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Figure 3. The percentage of regions
:::
grid

:::::
search

:::::
results that were

::::::
produced

::::
fully

:
spatially contiguous in a grid search over the study period

:::::
regions

:
when changing the spatial weight α. The

:::::
violin

:::
plot

:::::
shows

:::
data

:::::::::
distribution

::::
with

:
a
:::
dot

::
for

:::
the

::::::
median,

::::
thick

:::
bars

:::
for

::
the

::::::::::
interquartile

::::
range,

::::
thin

::::
lines

::
for

:::
the

:::
full

:::::
range,

:::
and

::::
light

:::
grey

:::::
areas

:::::::
indicating

:::::
higher

::::
data

::::::
density.

:::
The

:
optimal value chosen for this study was 0.3

:::
0.25

(vertical dashed line).

4 Optimizing clustering parameters

To apply our clustering method, several
::::
four parameters must be defined, including α and β, which specify how much weight155

is given to the spatial and sequential distances (Eq. 1), the fuzziness parameter r, which determines the crispness of the cluster

memberships, and the number of clusters to be estimated k (Eq. 2). Optimal values for these parameters will vary between

contexts, so this section outlines methods for appropriate parameter selection.

We used a grid search
:::
grid

::::::::
searches

::::::::::::::::::::::
(Feurer and Hutter, 2019) to systematically explore various parameter combinations

(Feurer and Hutter, 2019)
:::
with

::::
data

::::
from

:::
the

::::::::
2022-23

:::::
season, then used two approaches to select optimal values from the grid160

search: cluster validation metrics and comparisons
:
a
::::::
cluster

::::::::
validation

::::::
metric

:::
and

::
a

:::::::::
comparison

:
with human-assessed forecast

regions. We conducted two grid searches, both using data from the entire study period. The first grid search systematically

explored combinations of α= {0.05,0.1, ...,0.4}, r = {1.05,1.10, ...,1.5}, and k = {2, ...,12}
:::::::::::::::::::::
α= {0,0.05,0.1, ...,0.5},

::::::::::::::::::
r = {1.05,1.10, ...,2},

:::
and

::::::::::::
k = {2, ...,15}

:
with each day treated as independent (i.e., β = 0). Optimal values from this initial grid search informed a

second grid search where sequential clustering was done over the study period with β = {0,0.01, ...,0.1}.
:::::::
2023-23

::::::
season

::::
with165

::::::::::::::::::
β = {0,0.01, ...,0.25}.

::::
The

:::::::
rationale

:::
for

:::::
these

::::::
ranges

:
is
:::::::::
explained

::
in

:::
the

::::::::
following

:::::::
sections.

:

4.1 Spatial weight

We examined the spatial arrangement of clusters resulting from the grid search to find the proportion of spatially contiguous

versus non-contiguous regions.
:::
The

:::
grid

::::::
search

:::::::
covered

:::::::::::::::::::::
α= {0,0.05,0.1, ...,0.5},

:::::::
ranging

::::
from

::::::::
scenarios

::::::
where

:::
the

:::::::
distance

8



Figure 4. The impact of varying the fuzziness parameter r on fuzzy analysis clustering results. Average values
::::
Violin

::::
plots

:::::
show

:::
the

::::::::
distribution

:
of within-between ratio, average silhouette width , and normalized gamma from the

::
for

:
grid search are plotted for

:::::
results

::::
with

different values of r . Metrics are normalized between their maximum
:::
with

:::
dots

:::
for

:::
the

::::::
median,

::::
thick

::::
bars

::
for

:::
the

:::::::::
interquartile

:::::
range,

::::
thin

:::
lines

:::
for

:::
the

:::
full

:::::
range, and minimum values to emphasize relative maxima and minima

:::
light

::::
grey

::::
areas

::::::::
indicating

:::::
higher

:::
data

::::::
density. The

proportion
::::::::
percentage of

::::::
reliable results that converged is denoted by

:
to
:
the black line and the proportion

:::::
correct

::::::
number of results that were

not completely fuzzy
:::::
clusters

::::::
without

:::::::
complete

:::::::
fuzziness

:
is donated by

::::
shown

::::
with the gray

::::
black line. The optimal

::::
range

::
of r value chosen

:::::
values for this study was 1.25

::
1.2

::
to

:::
1.3 (

::::::
between vertical dashed line

:::
lines).

:::
was

:::::
based

::::::
solely

:::
on

:::::
snow

:::::
profile

:::::::::::::
characteristics

::
to

:::::
those

:::::
where

:::::
snow

::::::
profile

::::
and

::::::
spatial

::::::::
distances

:::::
were

::::::
equally

:::::::::
weighted.170

When considering only snow profile characteristics (i.e., α= 0), approximately 42 % of regions were spatially contiguous
::
47

::
%

::
of

::::
grid

:::::
search

::::::::
solutions

:::::::::
contained

::::
fully

:::::::::
contiguous

:::::::
regions across all combinations of r and k (Fig. 3). The proportion of

:::::::::
percentage

::
of

::::::::
solutions

::::
with

::::
fully contiguous regions increased with higher values of α, exceeding 95 % for α= 0.3.

:::::::
reaching

::
96

::
%

:::
for

:::::::
α= 0.5.

:

The optimal level of spatial contiguity depends on user preferences and the number and arrangement of subregions. While175

some non-contiguous regions may offer insights into similar snowpack patterns across large distances, an excessive number can

result in incoherent
:::::
spatial

:
patterns. In this study, we chose α= 0.3 as it produced mostly contiguous regionswithout making

spatial constraints dominate the clustering results
:::::::
selected

::::::::
α= 0.25

::
to

:::::::::
maximize

:::
the

::::::
weight

:::
on

:::::
snow

::::::
profile

::::::::::::
characteristics

::::
while

:::::::::::
constraining

:::
the

:::::::
majority

::
of

::::::::
solutions

::
to

:::::::
produce

::::
fully

:::::::::
contiguous

:::::::
regions.

4.2 Fuzziness parameter180

The fuzziness parameter r plays a crucial role in balancing the crispness and fuzziness of clusters, ensuring they are neither

overly sharp (all membership values are 0 or 1) nor completely fuzzy (all membership values are 1/k). We used cluster

validation metrics from
:::
The

::::
grid

::::::
search

:::::::
covered

:::::::::::::::::
r = {1.05,1.1, ...,2},

:::::::
ranging

::::
from

::::
just

:::::
above

:::
the

::::::::
minimum

:::::
value

::
of

::
1

::
to the

9



fpc package for R (Hennig, 2023) to evaluate the clustering results from the grid search
:::::
default

:::::
value

::
of

::
2.
::::

We
:::
did

:::
not

::::::
extend

:::
our

::::
grid

:::::
search

:::::::
beyond

:::::
r = 2

:::::::
because

::::::
higher

::::::
values

::::::::::
consistently

:::::::
resulted

::
in

::::::::
complete

:::::::::
fuzziness

:::
for

:::
our

:::::::
dataset.

::::
The

:::::
fanny185

::::::::
algorithm

::
in

::
R

:::::
warns

::
of

::::::
poorly

:::::
fitted

::::::
clusters

:::::
when

:::
the

:::::::
solution

::::
does

::::
not

:::::::
converge

::
(r

::
is
:::
too

::::::
small),

:::
or

:::::
when

:::
the

:::::::::::
memberships

::
are

::::::::::
completely

:::::
fuzzy

::
(r

::
is
::::
too

:::::
large),

::::::
either

::
of

:::::
which

::::
can

:::::
cause

:::
the

::::::::
algorithm

:::
to

:::::::
partition

:::
the

::::
data

::::
into

::::
less

::::
than

:
k
:::::::

clusters.

Among these metrics, three were particularly informative indicators of cluster quality:
::
We

:::::::
flagged

::::
grid

:::::
search

::::::
results

:::::::
without

::::
these

:::::
issues

:::
as

::::::
reliable

:
.

Within-between ratio: This metric evaluates cluster separation and compactness. The numerator calculates the sum of190

squared distances between data points and their respective cluster centroids, indicating compactness. The denominator computes

the sum of squared distances between cluster centroids and the centroid of the entire dataset, indicating separation. A lower

ratio suggests well-defined clusterswith distinct separations. Average silhouette width : Silhouette widths assess the coherence

of each data point within its cluster by comparing its distance to other points
:::
We

::::
used

:::
the

:::::::
average

::::::::
silhouette

:::::
width

:::::::
(ASW)

::
to

:::::
assess

:::
the

::::::
quality

::
of

::::
each

::::::
reliable

::::::::
clustering

::::::
result.

::::
This

:::::
metric

::::::::
compares

:::
the

:::::::
average

:::::::
distance

::
of

::::
each

:::
data

:::::
point

::
to

:::::
others

:
within195

the same cluster against distances to points in neighbouring clusters . The average silhouette width measures whether clusters

have clear boundaries. Values near
:
to

:::
its

::::::
average

:::::::
distance

::
to

:::::
points

::
in

:::::
other

::::::
clusters

::::::::::::::::::::::::::::
(Kaufman and Rousseeuw, 2009).

:::
An

:::::
ASW

::::
close

::
to

:
1 indicate appropriate clustering, while values near -1 suggest overlapping clusters with potential misclassifications.

Normalized gamma: This metric evaluates the quality of a clustering result by examining its ability to organize data points

into meaningful clusters based on pairwise distances. A reference distance matrix is produced with binary values indicating200

whether pairs of data points belong to the same or different clusters. Normalized gamma is the correlation between these

reference distances and the actual distances between data points (i.e., dist). Values close to 1 indicate agreement between

distances and cluster memberships, indicating a higher-quality clustering result.
::::::::
indicates

:::
that

::::
data

:::::
points

:::
are

::::::::::::
well-matched

::
to

::::
their

::::
own

::::::
clusters

::::
and

::::::
poorly

:::::::
matched

::
to
:::::

other
:::::::
clusters,

::::::
values

::::
near

::
0

::::::
suggest

::::
that

::::
data

:::::
points

::::
are

::
on

:::
the

::::::::
boundary

::::::::
between

:::::::
clusters,

:::
and

:::::::
negative

::::::
values

:::::
imply

::::
that

::::
data

:::::
points

::::
may

:::
be

:::::::::::
misclassified,

::
as

::::
they

:::
are

::::::
closer

::
to

:::::
points

::
in

:::::
other

:::::::
clusters

::::
than

::
to205

::::
those

::::::
within

::::
their

::::
own.

:

We calculated the validation metrics for every clustering result generated by the grid search . Additionally, we logged

warning messages from the fanny clustering function to detect instances of non-convergence or when memberships approached

complete fuzziness. These occurrences are direct indicators that the fuzziness parameter was either too small or too large,

respectively.210

The average silhouette width and normalized gamma metrics favoured r values of 1.2 and above , indicating improved

clustering coherence and stronger agreement between distances and cluster memberships within this range. The within-between

ratio also showed enhanced performance with increasing r, suggesting tighter and more well-defined clusters. An elbow in the

within-between ratio graph suggested similar outcomes for r values between 1.2 and 1.35. Warning messages about complete

fuzziness began at r = 1.35 and became more common as r approached 1.5. While convergence errors occurred for all r values,215

they were least frequent for 1.05< r < 1.3.

To
:::
The

::::
grid

::::::
search

::::::::
produced

::::::
reliable

::::::::
solutions

:::
in

::::
over

::
95

:::
%

::
of

:::::
cases

:::::
when

:::::::::::::::
1.1<= r <= 1.3,

:::::
with

::::
99.5

::
%

:::::::::
reliability

::
at

:::::::
r = 1.25

::::
(Fig.

:::
4).

:::
The

::::::
highest

:::::
ASW

::::::::
occurred

::::
when

:::::::::::::::
1.2<= r <= 1.5,

::::
with

::::::
median

::::::
values

:::::
above

::::
0.25.

:::::
Only

:::
the

::::::::::::::
1.2<= r <= 1.3
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::::
range

::::::::
avoided

:::::::
negative

:::::::
ASWs,

:::::::::
suggesting

::::
this

:::::
range

::
is

:::::::
optimal

:::
for

:::::::::
producing

:::::::
reliable

::::::
results

::::
that

:
balance crispness and

fuzziness , we chose r = 1.25 as the optimal value for our dataset, as it offered a meaningful level of uncertainty while220

promoting well-structured clusters with clear boundaries
::
in

:::
our

:::::::
dataset.

:::
Our

:::::::::
clustering

:::::::::::::
implementation

::::::::
computed

::::::::
solutions

:::
for

::::::::::::::::::::::::::
r = {1.2,1.225,1.25,1.275,1.3}

::::
and

::::
then

:::::::
selected

:::
the

::::::
reliable

:::::::
solution

::::
with

:::
the

::::::
largest

:::::
ASW.

4.3 Number of clusters

:::
The

::::
grid

::::::
search

:::::::
spanned

:::::::::::::
k = {2, ...,15},

::::
with

:::
15

:::::
being

:::
the

::::::::
maximum

::::::::
possible

:
k
:::
for

:::::
fuzzy

:::::::
analysis

:::::::::
clustering

::
of

:::
our

:::::::
n= 32

::::::
regions.

:
We considered two approaches for selecting the optimal value of kfrom the grid search: optimizing clustering validation225

metrics and aligning the number of clusters with the number
:
:
:::
(1)

::::::::::
maximizing

:::
the

:::::
ASW,

::
or

:::
(2)

:::::::
aligning

:::
the

::::::
cluster

:::::::::
resolution

::::
with

::
the

:::::::::
resolution of human-assessed regions. The within-between ratio decreased with increasing k (

Fig. 5 a) , while the average silhouette width and normalized gamma reached peaks at intermediate
::::
shows

:::
the

::::::
ASWs

:::::
from

::
the

::::
grid

::::::
search

:::::
using

:::
the

::::::
optimal

::::::
spatial

::::::
weight

:::::::::
(α= 0.25)

::::
and

::::::::
fuzziness

::::::::
parameter

:::::
range

:::::::::::::::::
(1.2<= r <= 1.3).

:::::::::
Removing

:::
the

:::::
results

::::
with

::::::::::
suboptimal

:::::
values

::
of

::
α

:::
and

::
r

:::::
better

::::::::
highlights

:::
the

::::::
typical

:::::
trends

::
in

:::::
ASW

::
as

:
k

:::::::
changes.

::::
The

:::::
ASW

:::::::
typically

:::::::
reached230

::::
peak

:::::
values

:::
for

::
k
:
values (Fig. 5b-c). Plotting average silhouette width or normalized gamma

:::::::
between

::
8

:::
and

:::
12,

::::
with

:::::::
median

:::::
values

::::::
greater

::::
than

:::::
0.28.

::::::::
However,

::::::
plotting

:::::
ASW

:
on individual days (not shown) found these metrics had

:::::
found relatively flat

peaks
:::
(not

:::::::
shown), indicating that selecting k

::
the

:::::::
number

::
of

:::::::
clusters from the maximum value of these metrics

:::::
ASW could

result in arbitrary and fluctuating clustering results on consecutive days
::::::
regions

::::
over

::::
time.

A more favourable
:::::
better

:
strategy for selecting the optimal number of regions involved choosing

:::
was

::
to

::::::
choose the smallest235

k when a specified metric surpassed a predefined threshold. This aimed for smaller,
:::::
where

:::
the

:::::
ASW

:::::::::
exceeded

:
a
:::::::::
threshold,

:::::::
ensuring

::::::
smaller

::::
and

::::
more

:
consistent k values over time. We used the number of human-assessed regions to determine these

thresholds by selecting
::
set

:::
the

::::::::
threshold

:::
by

:::::::::
comparing

:
grid search cases from each day when

:::::
where

:
k equalled

:::::::
matched the

number of human-assessed regions . Selecting
::::
each

::::
day,

:::
and

:::::
when

:
k when the within-between ratio was below 0.65, the

average silhouette width exceeded 0.27, or the normalized gamma exceeded 0.54 would, on average, produce a similar number240

of regions as human forecasters.

We found selecting k with an ensemble approach of multiple metrics was more effective than using any single metric. This

approach identified the k value that met the threshold criteria for each validation metric, then averaged and rounded these k

values to determine
:::
was

:::
one

::::::
fewer.

::
A

::::::::::
two-sample

::::
t-test

:::::
found

::::
that

:
a
::::::::
threshold

:::::
ASW

:::::
width

::
of

::::
0.23

::::
best

::::::::
separated

::::
these

:::::::
groups.

:::
Our

::::::::
clustering

::::::::::::::
implementation

::::
used

:::
this

::::::::
threshold

::
to

:::::
select

:
the optimal number of forecast regions for that

::::::
clusters

::::
each day.245

4.4 Sequential weight

We implemented sequential clustering by introducing a sequential weight β that considered the previous day’s clustering

results. This involved computing distances
:::
The

:::::::::
sequential

:::::::
distance

:
distseq :::

was
:::::::
derived

:
from the previous day’s clustering

membership vectors uiv .
::::
The

:::::::::::
membership

::::::
vectors

:::::
were

::::::::::
transformed

::::
into

::
a

:::::::
distance

::::::
matrix

:
using the maximum difference

between vector components (supremum norm method). A grid search with sequential clustering over the study period was250

conducted for different
:::
The

::::
grid

:::::
search

::::::::
spanned

::::::::::::::::::
β = {0,0.01, ...,0.25},

:::::::
ranging

::::
from

:::
no

::::::
weight

::
on

:::
the

::::::::
previous

:::
day

::::::::
(referred

11



Figure 5. Performance of clustering results
::::::
Average

::::::::
silhouette

::::
width

::::::
(ASW) for different numbers of regions k = {2, ...,12}

:::::::::::
k = {2, ...,15}

over the study period based on
:::
grid

:::::
search

:::::
results

::::::
where

:::::
spatial

::::::
weight (a

::::::
α= 0.25) the within-between ratio,

::
and

::::::::
fuzziness

::::::::
parameter

(b
::::::::::::::
1.2<= r <= 1.3)

:
.
:::
The

::::
violin

::::
plot

::::
shows

:
the average silhouette width

::::::::
distribution

::
of

:::::
ASW

:::
with

:
a
:::
dot

:::
for

::
the

::::::
median, and (c)

::::
thick

:::
bars

:::
for

the normalized gamma. Horizontal dashed
:::::::::
interquartile

:::::
range,

:::
thin

:
lines represent each metric’s median

::
for

::
the

:::
full

:::::
range,

:
and interquartile

values when k equalled
::::
light

:::
grey

::::
areas

::::::::
indicating

:::::
higher

::::
data

::::::
density.

:::
The

::::::::
horizontal

:::::
dashed

:::
line

:::::
shows

:
the

:::::::
threshold

::::
ASW

::::
used

::
to

::::
select

::
a

:::::
similar number of

::::::
clusters

::
to human-assessed regions

::::
(0.23).

::
to

::
as

:::::::::::::
non-sequential)

::
to

:::
25

::
%

:::::::
weight.

::::
For

::::
each

:
βvalues (β = {0,0.01, ...,0.1}) . We evaluated the results for the 107

:
,
:::
we

::::::
applied

:::::::::
sequential

::::::::
clustering

::::
over

::::
the

:::::::
2022-23

::::::
season

:::::
using

::::
only

:
days when data was available on consecutive days .

::::
(106

:::::
cases).

::::
We

::::
used

:::
the

:::::::
optimal

::::::
values

::::::::
α= 0.25,

::::::::::::::::
1.2<= r <= 1.3,

:::
and

::
a

::::
fixed

::::::
k = 5

:::
(the

:::::::
median

:::::::
number

::
of

::::::::::::::
human-assessed

:::::::
regions)

::
to

::::::
remove

:::::::::
variability

::::
from

::::::::
changing

:::
the

::::::
number

:::
of

::::::
regions

::::
over

:::::
time.255

We evaluated performance for each value of β by counting the number of times
::::
value

:::
by

::::::::
counting

::::
how

:::::
often forecast

regions changed , and by quantifying
:::::::::::
arrangements

:::
and

:::::::::
measuring

:
the complexity of the changes with

:::::
those

:::::::
changes

:::::
using

the Adjusted Rand Index . The Adjusted Rand Index
:::::
(ARI)

:::::::::::::
(Hennig, 2023).

::::
The

::::
ARI

:
quantifies the similarity between two

clustering resultsby comparing how data points are grouped (Hennig, 2023). A value of
:
: 1 signifies an identical assignment of

data points to clusters
::::::::
indicates

:::::::
identical

:::::::::
groupings, and -1 indicates completely different clusters. We computed similar metrics260

for
:::
The

::::
ARI

::::
was

:::::::::
calculated

:::
for

::::::::
clustering

::::::::
solutions

:::
on

::::::::::
consecutive

::::
days

::
to

::::::::
measure

:::
the

:::::::::
complexity

:::
of

:::::::
changes,

::::
and

:::
for

:::
the

human-assessed forecast regions on the same days, offering
:::::::
providing

:
a benchmark to gauge changes in region arrangements

across different values of
::::
assess

:::::::
changes

::::::
across

:::::::
different

:
β

::::::
values.

The number of human-assessed forecast regions changed 12 times over 107 days, with region arrangements changing on 34

days . The average Adjusted Rand Index value was 0.94
::::::::::
arrangement

:::
on

:::
32

::
%

::
of

:::
the

::::
days

::::
with

::
a
::::::
median

::::
ARI

:::
of

:::
1.0

::::
over

:::
the265

:::::
season, indicating infrequent and simple changes. In contrast, clustering without sequential clustering (β = 0) resulted in the

number of regions changing on 57 days and arrangements changing on 97 days, with the average Adjusted Rand Index at 0.69,
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Figure 6. Quantifying changes in clustering results on consecutive days: (a) Number
:::::
percent

:
of

::::
days

:::
that

:
forecast regions over the

season
::::::
changed

::::::::::
arrangements, and (b)

:::::::::
distribution

::
of Adjusted Rand Index measuring

::::
(ARI)

:::::
values

::::
over the

::::
season

::
to
:::::::
measure

::
the

:
similarity

of clustering results on consecutive days. The leftmost plots display the distribution of values for human-assessed forecast regions
:
in

::::
dark

:::
grey

:
as a benchmark, followed by non-sequential clustering (β = 0), and

:::
then

:
sequential clustering with β values ranging from 0.01 to

0.1
:::
0.25. The

::::
violin

:::
plot

:::::
shows

:::
the

:::::::::
distribution

::
of

:::
ARI

:::::
values

::::
with

:
a
:::
dot

:::
for

::
the

:::::::
median,

::::
thick

:::
bars

:::
for

:::
the

:::::::::
interquartile

:::::
range,

:::
thin

::::
lines

:::
for

::
the

:::
full

:::::
range,

:::
and

::::
light

:::
grey

:::::
areas

:::::::
indicating

:::::
higher

::::
data

::::::
density.

:::
The optimal β value chosen for this study was 0.02 (vertical dashed line).

suggesting
:::::::
changes

::
on

:::
94

::
%

::
of

:::
the

::::
days

::::
with

:::
an

::::::
median

::::
ARI

::
of

::::
0.74

:::::
over

:::
the

::::::
season,

:::::::::
suggesting

:::::
more frequent and complex

changesin the regions. Such frequent rearrangement of regions is impractical for operational forecasting, highlighting the need

for sequential clustering to stabilize the results.270

Applying sequential clustering led to fewer and less drastic changes on consecutive days, especially as β approached 0.1

::::
0.25 (Fig. 6). Large values of β tended to decrease the number of regions over the season and forced clustering solutions to

converge to a stable solution and remove
:::::::
removed

:
responsiveness to changing

::::::::
snowpack

:
conditions. We selected β = 0.02 to

balance result stability with responsiveness to significant changes in snowpack conditions, recognizing that the optimal value

could depend on the forecasting context. With β = 0.02, the number of regions changed on 34 days, the arrangements changed275

on 93 days , and the average Adjusted Rand Index was 0.79, reflecting a moderate complexity of changes compared to human

forecasters
::
74

::
%

:::
of

::
the

:::::
days and

::
the

::::::
median

::::
ARI

::::
over

:::
the

::::::
season

::::
was

::::
0.90.

::::
This

:::::::::
represents

:
a
::::::::
midpoint

::
in

::::::::::
complexity

:::::::
between

:::::::::::::
human-assessed

::::::
regions

::::
and non-sequential clustering

:
,
:::
and

:::::
could

:::
be

:
a
:::::::::
reasonable

::::::::
workload

:::
for

:::::::::
forecasters.
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Figure 7. Map of (a) human-assessed forecast regions on February 3, 2023 colour-coded by treeline danger rating (red = 4-High, orange

= 3-Considerable, yellow = 2-Moderate) and labelled with avalanche problems in order of importance (SS = storm slab, WS = wind

slab, PS = persistent slab, DPS = deep persistent slab). Clustering results for (b) k = 3, (c) k = 4, and (d) k = 5 regions are shown with

subregions colour-coded by their primary cluster membership with greater transparency for low membership values and their membership

values labelled.
::::::::::::
Human-assessed

:::::
regions

:::
are

::::::
outlined

::::
with

::::
thick

::::
black

::::
lines

::
on

::::
each

::::
map.

5 Clustering results

This section demonstrates the clustering method ’s capability with examples from the 2022-23 winter. Using the
::
by

::::::::
applying280

::
the

:
optimized parameters from Section

:::
Sect.

:
4 , these results serve as a case study rather than a comprehensive cross-validated

evaluation
::
to

::::
both

:::
the

:::::::
2022-23

:::
and

::::::::
2023-24

::::::
seasons.

5.1 Clusters for February 3, 2023

The February 3, 2023 clustering results highlight the method’s effectiveness in partitioning meaningful forecast regions. On

this day, the Columbia Mountains had four human-assessed forecast regions with varying avalanche hazard conditions (Fig.285

7a). The northernmost region had a treeline danger rating of 4-High, while the central region was 3-Considerable and regions

in the south and east were 2-Moderate. Avalanche problems varied across regions, with storm slabs posing the primary problem

in the regions with High and Considerable danger, while wind slabs and deep persistent slabs were the primary problems in

regions with Moderate danger. Persistent slabs were the secondary problem in all regions, with deep persistent slabs also listed

as a third problem in the northern and central regions.290

The results for k = {3,4,5} demonstrate the clustering method’s ability to partition regional patterns at different resolutions

(Fig. 7b-d). These regions generally correspond to major avalanche hazard patterns assessed by forecasters. For k = 3, regions

align with danger rating trends, while k = 4 and k = 5 further divide areas with Moderate danger, potentially reflecting distinct

snowpack conditions and avalanche problemsin these areas. Fuzzy cluster memberships are most pronounced near region

borders, with some subregions shifting their primary membership as k changes, particularly in southern areas.
::::::::
However,

:
a
::::
few295

:::::::::
subregions

:::
also

:::::
show

:::::
strong

:::::::::::
membership

:::::
values

:::::::
outside

::::
their

:::::::
apparent

:::::::::::::
human-assessed

:::::::
regions.

:
The maps of memberships for

14



Figure 8. Each region produced with k = 4 clustering on February 3, 2023 is shown with a map of the memberships of each subregion to that

region
::::::::::::
(human-assessed

::::::
regions

::::::
outlined

::::
with

::::
thick

::::
black

:::::
lines), an average snow profile from all subregions with membership values above

75 %, a textual summary of snow depth, 3-day snowfall, and unstable persistent weak layers (average values are provided first followed by

the minimum and maximum values in brackets), and finally, the grain type profiles for all subregions that have the strongest memebership

with
:::::::::
membership

:
to
:
that region.
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each cluster region further illustrate how fuzzy analysis clustering can reveal overlapping patterns, as some subregions exhibit

similar membership to multiple regions (Fig. 8).

The snow profile characteristics for the k = 4 clustering results illustrate the primary factors driving the partitions (Fig. 8).

Similar plots for k = 3 and k = 5 are provided in Appendix B. Distinct snow depth patterns are clear, with deep snowpack300

areas separated from shallow ones. The northern region (Region 1) had the greatest amount of 3-day snowfall (12 to 25 cm),

compared to the central region (Region 2) with 4 to 18 cm, and the other regions with less than 8 cm. Great
::::::
Greater

:
amounts

of 3-day snowfall in the northern and central regions align with their elevated danger ratings and storm slab problems.

All subregions contain faceted grains
::::::
crystals

:
or depth hoar near the bottom of the snowpack (Fig. 8), which aligns with the

deep persistent slab problem listed in all regions except the southernmost region. Forecasters did not assess a deep persistent305

slab problem in the southern region on February 3 because melt-freeze crusts in the upper snowpack reduced the likelihood of

triggering. These crusts are present in the simulated profiles. In the eastern region (Region 4), 4 of 5
:
4
:
profiles had unstable

persistent weak layers, while the other regions had smaller proportions of unstable persistent weak layers (Region 1: 4 of 8;

Region 2: 4 of 9; Region 3: 2 of 10
::
11). These proportions align with the fact that deep persistent and persistent slab problems

were the most important problems in the eastern region but were secondary problems in other regions.310

5.2 Temporal patterns
:::::::
Clusters

:::
for

::::::::
different

:::::::::
snowpack

::::::::::
conditions

::::::::
Clustering

::::::
results

:::::
from

::::::
several

:::::
days

:::::
during

::::
the

:::::::
2023-24

::::::
winter

:::
are

::::::
shown

::
in

::::
Fig.

::
9

::
to

::::::::::
demonstrate

::::
the

::::::::
method’s

:::::
ability

:::
to

:::::::
partition

:::::::
different

:::::
types

::
of

::::::::
snowpack

:::::::::
conditions.

:::
On

:::::::::
December

::
3,

:::::
2023,

:::
the

::::::::::
early-season

:::::::::
conditions

::::
were

::::
split

:::
into

::::
two

:::::::
regions:

:::
one

::::
with

::
an

:::::::
average

:::::
snow

:::::
depth

::
of

::
50

::::
cm,

:::
the

::::
other

:::
25

:::
cm.

::::
The

::::::
deeper

::::::::
snowpack

::::::::
contained

::::::
mostly

:::::::
faceted

:::::::
crystals,

:::::
while

:::
the

::::::::
shallower

:::
one

::::
was

:::::::::
dominated

:::
by

:::::
depth

::::
hoar.

:::
By

::::::
March

::
3,

:::::
2024,

:
a
:::::

more
::::::::
complex

::::::::
snowpack

::::::::
emerged,

::::
with

:::::
large

:::::
storm

:::::
snow315

::::::::::::
accumulations,

::::::
buried

::::::::::
melt-freeze

::::::
crusts,

:::
and

::::::
depth

::::
hoar

::::::
layers,

::::::::
resulting

::
in

::::
four

:::::::
distinct

:::::::
regions

:::::
based

:::
on

:::::::::
differences

:::
in

:::
new

:::::
snow

:::::::
amounts

::::
and

:::
the

::::::::
presence

::
of

::::
crust

::::
and

:::::
depth

::::
hoar

::::::
layers

::
at

::::::
various

::::::
depths.

:::
By

:::::
April

:::
19,

:::::
2024,

:::
the

:::::::::
snowpack

::::
was

::::::::::
transitioning

::
to

::::::
spring

:::::::::
conditions.

:::
In

:::
the

:::::::
southern

:::::::
regions,

:::
the

:::::
upper

:::::::::
snowpack

::::::::
consisted

::::::::
primarily

::
of

::::
melt

:::::
forms

::::
and

::::::
crusts,

::::
while

:::
the

::::::::
northern

::::::
regions

:::
had

:::::
fewer

::::
melt

::::::
forms.

:

5.3
::::::::
Temporal

:::::::
patterns320

Sequential clustering over the
:::::::
2023-24

:
season resulted in gradual changes in the number and arrangement of forecast regions

(Fig. 10). Some subregions formed consistent groupings with high membership values over the season, especially in the

northern and central areas. In contrast, the southern and eastern areas were more variablewith subregions showing sustained
:
,

::::
with

:::::::
changes

::
in

:::
the

::::::
number

::
of
:::::::

regions
:::
and

:::::
some

:::::::::
subregions

:::::::
showing

:::::::::::
consistently low membership valuesthat caused them to

fluctuate
:
,
::::::
causing

:::::
them

::
to

::::
shift

:
between regions.325
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Figure 9. Clustering results for each day between December 1, 2022
::::::
solutions

:
and February 10

::::
snow

::::::
profiles

::::
show

:::
the

::::::
splitting

::
of
:::::

snow

:::::
profiles

:::::
under

::
(a)

::::::::::
early-season, 2023. Subregions within

::
(b)

:::::::::
mid-winter,

:::
and

::
(c)

:::::::::
early-spring

::::::::
conditions

::::::
during the clusters are colour-coded

based on
::::::
2023-24

::::::
season.

:::
The

::::
maps

:::::::::
colour-code

::::::::
subregions

:::
by their primary cluster membership , with lower membership values indicated

by greater transparency
::
for

::::
low

:::::::::
membership. Human-assessed forecast regions

::
on

::::
each

:::
day are outlined in

:::
with

::::
thick

:
black

:::
lines.

5.4 Comparison with human forecast regions

To compare the clustering method’s typical forecast regions with public forecasts (Fig. 11)
::
the

::::::::::::::
human-assessed

::::::
regions, we

identified common arrangements
::
for

::::
each

::::::
season

:
by counting how often each pair of subregions was grouped together. Using

these
::::::
pairwise

:
counts, we applied the fanny clustering method with k = 4 and the default fuzziness parameter r = 2 to generate

groups representing the four most frequent forecast region arrangementsover the study period
:
.
::
A

:::::
larger

::::::::
fuzziness

:::::::::
parameter330

:::
was

::::::
needed

:::
for

:::
the

:::::
count

::::
data

::
to

::::::
handle

:::
the

::::
large

:::::::::
proportion

:::
of

::::
zero

::::::::
distances,

:::::
which

:::::
after

:::::::::
optimizing

:::
for

:::::
ASW

:::
was

::::::
found

::
to

::
be

:::::
r = 2.

The clustering method consistently grouped subregions into similar regions as human forecasters
:::
each

::::::
season

:
(Fig. 11).

These regions ’ arrangements roughly match the patterns observed on February 3, 2023, as the conditions that day were

representative for most of the 2022-23 season
:::
The

::::::::::
arrangement

:::
of

:::::
these

::::::
regions

:::::::
reflects

:::
the

::::::::
dominant

:::::
snow

:::::::
climates

:::
in

:::
the335

::::::::
Columbia

:::::::::
Mountains,

::::::::
identified

:::
by

::::
both

::::::
human

:::::::::
forecasters

::::
and

::
the

:::::::::
clustering

::::::
method. However, for some specific subregions

:
,

there were differences between the clustering and human forecast regions
::::::
regions,

:::::::::
especially

::
in

:::
the

:::::::
southern

:::
and

::::::
eastern

:::::
parts

::
of

::
the

:::::
range

::::::
where

::::::
changes

::
to
:::
the

::::::
regions

:::::
were

::::
more

:::::::
frequent

:::
for

::::
both

:::::::
humans

:::
and

::::::::
clustering. Discussions with Avalanche Canada

forecasters revealed two main reasons for these differences. First, some of these subregions have limited data availability,

leading to lower confidence in forecasters’ assessments. Second, some were areas where the operational snowpack model had340
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Figure 10.
::::::::
Clustering

:::::
results

::
for

::::
each

:::
day

::::::
between

::::::
January

::
1,

::::
2024

:::
and

::::
April

:::
25,

::::
2024.

::::::::
Subregions

:::::
within

:::
the

::::::
clusters

::
are

::::::::::
colour-coded

:::::
based

::
on

::::
their

::::::
primary

:::::
cluster

::::::::::
membership,

:::
with

:::::
lower

:::::::::
membership

:::::
values

:::::::
indicated

::
by

::::::
greater

::::::::::
transparency.

::::::::::::
Human-assessed

::::::
forecast

::::::
regions

:::
are

::::::
outlined

::
in

:::::
black.

known accuracy issues, such as underestimating snowfall. Either case could cause inaccurate arrangements, and it is not clear

which solution
::::::::
solutions would better align with reality.

6 Discussion

6.1 Quality of clustering results

Clustering simulated snow profiles effectively captured major hazard patterns in the Columbia Mountains during the 2022-23345

winter season
:::
and

:::::::
2023-24

:::::::
seasons. The clustering of subregions into forecast regions closely aligned with human-assessed

regions (Fig. 11). On February 3, 2023, these groupings captured differences in avalanche danger ratings and avalanche

18



Figure 11. The four most common arrangement of subregions for the 2022-23 season
::
and

:::::::
2023-24

::::::
seasons

:
according to (a

::
,c) human

forecasters and (b
:
,d) clustering results.
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problems across the Columbia Mountains (Fig. 7 and 8). The fuzzy analysis clustering method conveyed the inherent uncertainty

associated with simulated snow profiles, making it more suitable than deterministic clustering methods
:
a

::::::::::
deterministic

:::::::::
clustering

::::::
method. Clustering over the season suggested that the number and arrangement of forecast regions could change more often350

than the human-assessed region arrangements
:::::
regions.

A limitation of this study was the clustering results were presented with the same dataset used for parameter optimization.

While
::::
Our

:::::
results

:::::::::::
demonstrate

:::
the

::::::::
method’s

:::::::
potential

:::
for

:::::::::
avalanche

::::::::::
forecasting,

:::
but

::::
with

::::::
several

::::::::::
limitations.

::
It

:::
was

::::::
tested

::
in

::::
only

:::
one

::::::::
mountain

:::::
range

::::
over

::::
two

:::::::
seasons,

:::::::
limiting

::
its

:::::::::::::
generalizability

::::::
across

:::::::
different

:::::
snow

:::::::
climates

:::
and

:::::::
regions.

::::::
While

:::
we

:::
did

:::
not

:::::::
conduct

::::::::::::
comprehensive

:
cross-validation across multiple seasonswould provide a more rigorous evaluation, our goal355

was to demonstrate the potential value of this method for avalanche forecasting through a case study.
:::::
under

:::::
varied

::::::::::
conditions,

:
it
::
is

::::::::::
encouraging

::::
that

:::
the

::::::
method

:::::::::
performed

:::::::
similarly

:::
in

::::
both

:::::::
seasons,

::::::
despite

:::
the

:::::::::
parameters

:::::
being

:::::
tuned

:::::
using

:::
data

:::::
from

::::
only

:::
one

::::::
season.

:

:::::::::::
Comparisons

::::
with

:::::::::::::
human-assessed

:::::::
regions

::::::
provide

:::::
only

::::::
limited

::::::
insight

:::
due

:::
to

:::::::
inherent

:::::::::::
uncertainties

::
in

::::
their

:::::::::::
assessments.

::::
Also,

:::::::::
forecasters

::::
may

:::::
have

::::
been

:::::::::
influenced

::
by

:::::::
viewing

:::
the

::::
same

:::::::::
simulated

::::
snow

:::::::
profiles

::
on

::::
their

::::::::::
operational

::::::::
snowpack

::::::
model360

:::::::::
dashboard,

:::::
which

:::::::
included

::
a
::::::::
prototype

::::::::
clustering

:::::::
product.

::::
This

:::::::
product

::::
used

:
a
:::::::::
simplified

:::::
snow

:::::
profile

:::::::
distance

::::::
metric,

::
a

:::::
larger

:::::::
domain,

:::::::::::
hierarchical

:::::::::
clustering,

:::
and

:::::::
different

:::::::::
validation

:::::::
metrics

::
for

:::::::::::
determining

:::
the

:::::::
number

::
of

:::::::
clusters.

::::
This

:::::::::
dashboard

::::
was

:::::
likely

::::
used

::::
more

::
in
::::::
remote

:::::::
regions

:::::
where

::::
field

:::::::::::
observations

:::
are

:::
less

::::::::
abundant

::::
than

::
in

:::
the

::::::::
Columbia

::::::::::
Mountains.

6.2 Practical avalanche forecasting considerations

Clustering could help forecasters identify spatial patterns in complex datasets such as snowpack model simulations. While365

a similar approach could be applied to traditional field observations, spatially distributed snowpack simulations provide the

advantage of continuous spatial and temporal coverage.

The operational snowpack model used in this study was primarily configured to predict avalanche problems associated with

new snow and persistent weak layers
:::
and

:::
did

:::
not

:::::::
account

:::
for

::::::::::::
aspect-specific

::::::::
conditions. Consequently, the snow profile distance

metric distpro emphasized these specific snow profile characteristics. However, this distance metric could be changed to370

incorporate other relevant
::::::::
snowpack characteristics, such as those associated with wind slab or wet snow problems. Furthermore,

expanding this distance metric to also integrate field observations could provide a more comprehensive understanding of hazard

patterns.

The clustering results presented here focus on regional-scale patterns, as the rows and columns in the distance matrix

represent entire subregions. However, the concept of spatial constraints can be extended to other spatial scales by adapting375

the distance metric distgeo to quantify other types of spatial relationships. For example, distgeo could be redefined to measure

the distance between profiles on
:::::::
quantify

:::::::::::
relationships

:::::::
between

:
different aspects and elevation bands, or between profiles

distributed across a single slope. Integrating aspect and elevation bands into the clustering analysis would enable a more

comprehensive representation of the spatial scales relevant to forecasters
:::::::
regional

::::::::::
forecasters,

:::
and

::::::::::
particularly

:::::::::
important

:::
for

::::
wind

:::
and

::::
wet

:::::
snow

::::::::
problems. For example, Bouchayer (2017) demonstrated that clustering simulated snow profiles on a 1.3380
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km grid in France revealed local-scale snowpack patterns and elevation effects, highlighting the potential of incorporating more

spatial considerations into clustering analyses.

While clustering offers insights into complex model output, forecasters should treat them with some level of caution. Due

to the challenge of validating the accuracy of spatially distributed snowpack simulations, we currently do not recommend

using this clustering method for unsupervised automation. Instead, forecasters should consider clustering as a data exploration385

tool. For example, forecasters could adjust the number of regions k to view clustering results at different resolutions and gain

insights into potential hazard patternswithout blindly relying on automated processes.

6.3 Technical considerations for snow profile clustering

A critical aspect of this clustering method was the distance metric used to compare snow profile characteristics, which took

advantage of the recent developments of Herla et al. (2022) and Mayer et al. (2022). Condensing snow profile comparisons into390

a single numerical value is inherently challenging and represents a serious simplification. Hence, careful consideration must

be given to quantifying snow profile distance, given the impact it can have on clustering results. Deriving a meaningful snow

profile similarity metric for
:::::::::::::::
Herla et al. (2022)

:::
and

:
this study required meticulous

:::::
careful

:
trial-and-error to properly weigh

relevant snowpack features.

The distance between subregions dist can easily integrate into other clustering methods such as hierarchical clustering or395

partition-based methods like k-means and k-medoids. Hierarchical clustering generates intuitive tree-like structures with nested

clusters, visualizing patterns at different resolutions. Herla et al. (2021) presented a simple example of hierarchical clustering

of snow profiles. An enhancement to k-means clustering could involve applying dynamic barycenter averaging to define cluster

centroids (Petitjean et al., 2011), as Herla et al. (2022) recently adapted this method for snow profiles. Additionally, clustering

simple scalar indices derived from snow profiles would be more computationally efficient than evaluating the entire snow400

stratigraphy. For example, Reuter et al. (2023) derived avalanche problem types from simulated snow profiles and clustered

their frequencies to predict snow climatologies.

Selecting parameters for a clustering method must be done with care for each application. Sect. 4 presents possible approaches

for tuning parameters to test data
::::
new

:::::::
datasets. Factors such as the variability within a snow profile dataset, the number of

subregions, and their spatial arrangement will influence parameter selection. Recent attempts to apply this method across405

::
the

::::::
larger

::::::
domain

::
of

:
western Canada suggest that the parameters may need re-tuning to accommodate other datasets,

::
as

::::::
would

::::::::::
applications

::
in

::::
other

:::::::
climates

:::
and

::::::::
countries. Tuning parameters to make the clustering results align with human-derived forecast

regions proved to be helpful.

Computational time is a critical consideration for operationalizing clustering methods. While computing pairwise similarities

for a small number of profiles is relatively efficient, scalability becomes an issue with larger datasets. Applying different410

clustering methods or changing k is relatively fast after computing the distance matrix. Real-time applications should consider

code optimization and parallelization to manage computational demands efficiently.
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7 Conclusions

Statistical clustering offers a valuable approach for identifying avalanche hazard patterns within complex snowpack model

datasets. This study shows the effectiveness of a clustering method that accounts for spatial and temporal trends, as the major415

patterns across the Columbia Mountains during the 2022-23 winter season
:::
two

::::::
winter

:::::::
seasons

::::::
closely

:
aligned with human-

assessed forecast regions. The application of fuzzy analysis clustering facilitates the representation of uncertainty in simulated

snow profiles, providing nuanced insights for forecasters. Adjusting the number of clusters can reveal patterns at various levels

of spatial resolution.

These methods can adapt to consider different criteria, such as different snowpack characteristics or spatial relationships.420

With numerical snowpack modelling advancing rapidly, forecasters need intuitive tools to explore model outputs. Avalanche

Canada plans to implement and refine these methods in their operational snowpack model system. Embracing clustering as a

form of exploratory data analysis should enhance the interpretability of snowpack model outputs and support more informed

decision-making in avalanche forecasting.
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Appendix A: Configuration of operational modelling system435

This appendix summarizes Avalanche Canada’s operational snowpack modelling system for the 2022-23 winter
::
and

::::::::
2023-24

::::::
seasons

:
(Horton et al., 2023). The system forced SNOWPACK version 3.4.5 (Lehning et al., 1999) with meteorological data

from two numeric weather prediction (NWP) models run by Environment and Climate Change Canada: The High-Resolution

Deterministic Prediction System (2.5 km horizontal resolution) and the Regional Deterministic Prediction System (15 km

resolution) (Milbrandt et al., 2016).440

To capture regional-scale patterns across large forecast regions, the system selected representative grid points from each

NWP model with a stratified sampling approach . Mountainous areas
::
to

::::::
balance

::::::
spatial

:::::::::
resolution

::::
and

::::::::::
computation

::::::
costs.

:::::::
Forecast

::::::::
subregion

:::::::::
polygons were divided into small microregions, from which up to three grid points were sampled to
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represent weather conditions at
::::::::::
microregion

::::::::
polygons

::::
with

::::::
typical

:::::
areas

::
of

::::
300

::
to

::::
600

::::
km2

::::
each.

:::::::
Within

::::
each

:::::::::::
microregion,

alpine, treeline, and below treeline elevations
:::::::
elevation

::::
grid

:::::
points

::::
were

:::::::
sampled

:::::
from

::::
each

:::::
NWP

:::::
model

:::::::::
(depending

:::
on

:::::::
whether445

::
the

::::::
actual

:::
and

::::::::
modelled

::::::
terrain

::::::::
extended

:::
into

::::
that

::::::::
elevation). This study used 168 treeline elevation grid points, including 126

from the high-resolution NWP model and 42 from the regional model (see Fig. 1a).
::::::::::
Information

::::
from

::::
both

:::::::
models

:
is
:::::::::
combined

::::
when

:::::::::
averaging

:::
the

::::
snow

:::::::
profiles,

::::
with

:::
the

::::::
higher

::::::
number

::
of
:::::::::::::
high-resolution

::::::
model

:::::
points

::::::::
typically

:::::::::
dominating

:::
the

:::::::
average

::
in

::::
most

:::::::::
subregions.

Hourly time series data for precipitation amount, precipitation type, air temperature, humidity, wind speed, incoming450

shortwave radiation, and incoming longwave radiation were compiled six hours at a time from each successive NWP model run

to generate the necessary meteorological forcings for SNOWPACK. SNOWPACK was configured to simulate flat field snow

profiles with wind transport disabled, ensuring simulations represented widespread regional snowpack characteristics.

As part of the operational model, snow depth observations were assimilated weekly following a method based on Horton

and Haegeli (2022). The method compares changes in modelled snow depth over the previous week with changes observed at455

nearby sites (i.e., automated weather stations and manual observations by avalanche professionals). Snow depth observations

from these sites were lapse rate adjusted to local treeline elevations and then spatially interpolated to the model grid points.

Potential errors in snowfall amounts were identified by comparing modelled snow depth increases over the past week with

increases in interpolated observations. Cases where either the modelled or observed snow depth increased by more than 10 cm

were identified, and then corrective action was taken if the increases differed by more than 10 %. Specifically, SNOWPACK460

was rerun with the input precipitation amount adjusted by a constant factor to nudge the modelled snow depth towards observed

values.

Simulated snow profiles were stored in a database, which fed an online visualization dashboard used by operational avalanche

forecasters. For this study, we queried a subset of profiles from this database.

Appendix B: Clustering results on February 3, 2024 for other values of k465

.
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Figure B1. Comparison of regions produced with clustering results for k = 3 on February 3, 2023. Each column summarizes a region with

a map of the memberships of each subregion to that region, an average snow profile from all subregions with membership values above 75

%, a textual summary of snow depth, 3-day snowfall, and unstable persistent weak layers (average values are provided first followed by the

minimum and maximum values in brackets), and finally, the grain type profiles for all subregions belonging to that region.
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Figure B2. Comparison of regions produced with clustering results for k = 5 on February 3, 2023. Each column summarizes a region with

a map of the memberships of each subregion to that region, an average snow profile from all subregions with membership values above 75

%, a textual summary of snow depth, 3-day snowfall, and unstable persistent weak layers (average values are provided first followed by the

minimum and maximum values in brackets), and finally, the grain type profiles for all subregions belonging to that region.
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