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Abstract
The anticipated increase in solar energy production in West Africa requires high-quality solar
irradianceradiation estimates, which is affected by meteorological conditions and in particular
the presence of desert dust aerosols. This study examines the impact of incorporating desert
dust  into  solar  irradianceradiation and  surface  temperature  estimations.  The  research
focuses on a case study of a dust event in March 2021, which is characteristic of the dry
season in West Africa. Significant desert aerosol emissions at the Bodélé depression are
associated with a Harmattan flow that transports the plume westwards. Simulations of this
dust event were conducted using the WRF meteorological model alone, as well as coupled
with the CHIMERE chemistry-transport model,  using three different  datasets for the dust
aerosol  initial  and boundary  conditions  (CAMS, GOCART,  MERRA2).  Results  show that
considering desert dust reduces estimation errors in global horizontal irradiance (GHI) by
about  75%.  The  dust  plume  caused  an  average  18%  reduction  in  surface  solar
irradianceradiation during the event. Additionally, the simulations indicated a positive bias in
aerosol optical depth (AOD) and PM10 surface concentrations. The choice of dataset for
initial  and boundary conditions minimally  influenced GHI,  surface temperature,  and AOD
estimates,  whereas  PM10 concentrations  and aerosol  size  distribution  were significantly
affected. This study underscores the importance of incorporating dust aerosols into solar
forecasting for better accuracy.
 
Short summary
Solar  energy  production  in  West  Africa  is  set  to  rise,  needing  accurate  solar
irradianceradiation estimates, which is affected by desert dust. This work analyses a March
2021 dust event using a modelling strategy  incorporating desert dust. Results show that
considering desert dust cut errors in solar irradianceradiation estimates by 75% and reduces
surface solar radiation by 18%. This highlights the importance of incorporating dust aerosols
into solar forecasting for better accuracy.

1. Introduction
The West African region is facing significant development challenges due to global change.
One of these challenges is related to access to electricity, particularly through the use of
renewable energy. West African countries have committed to reduce their greenhouse gas
emissions  as  part  of  the  Paris  Agreement  (2015).  Furthermore,  assessments  of  solar
resources  in  West  Africa  demonstrate  the  region's  substantial  potential,  as  shown  by
Diabaté  et  al.  (2004),  Plain  et  al.  (2019)  and  Yushchenko  al.  (2018).  The  International
Energy  Agency  (IEA)  projects  that  the  installed  capacity  for  photovoltaic  (PV)  power
generation will increase by almost 20 times from 2020 to 2030 under its Sustainable Africa
Scenario  (Africa  Energy  Outlook,  IEA,  2022).  PV  energy  is  expected  to  experience
significant  growth  due  to  its  competitiveness  and  low-carbon  nature.  However,  solar
production is highly dependent on weather conditions (Dajuma et al., 2016).
The growth of  solar  energy in  West  Africa calls  for  the development of  tailored tools to
facilitate  its  integration  into  power  grids  and  ensure  optimal  operational  maintenance.
Accurate production forecasts are required by solar power plant operators, spanning various
timescales,  ranging  from a  few hours  to  several  days.  This  is  essential  for  maximising
production, reducing penalties linked to predicted deliverable energy, and optimising plant
maintenance  to  minimise  production  losses.  High-quality  forecasts  are  also  crucial  for
electricity grid operators to maintain supply-demand equilibrium and ensure system stability.
Therefore,  the  variability  of  energy  production  significantly  affects  them.  The  key
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meteorological  variables  that  influence  photovoltaic  production  are  the Global  Horizontal
Irradiance (GHI)  and the air  temperature.  These factors,  which directly  impact  electricity
production and cell  efficiency,  often reach high levels  in this region as demonstrated by
Dajuma  et  al.  (2016)  and  Ziane  et  al.  (2021).  Their  findings  indicate  that  solar
irradianceradiation is the primary factor influencing PV production, as the generated current
by the photoelectric effect is proportional to the irradiance. Furthermore, they demonstrate
that, at the second order, the air temperature affects the efficiency of solar cells, as both
parameters are inversely correlated.

Clauzel et al. (2024) identified desert dust aerosol as a significant source of GHI forecast
errors for the only two solar power plants in the Sahel region of Sococim (Senegal) and
Zagtouli (Burkina Faso), particularly during the dry season. Dust aerosols are a key element
in the West African climate and strongly influence solar farm production through their direct
effect (aerosol-radiation interaction (ARI), Briant et al., 2017) and indirect effects (aerosol-
cloud interaction (ACI), Tuccella et al., 2019) on radiation, and also through their deposition
on solar panels (fouling effect, Diop et al., 2020, Aidara et al., 2023). As mentioned by Kok et
al. (2021), the West African desert aerosol load is the highest in the world and occurs mainly
during the dry season.  In fact,  North Africa,  including the Sahara,  is  the world's  largest
contributor  to  desert  dust  emissions  (Prospero  et  al.,  2002),  and  60%  of  this  dust  is
transported  to  the  West  African  region  (D'Almeida,  1986;  Kok  et  al.,  2021).  Most  dust
emissions are associated with synoptic-scale atmospheric dynamics such as the Harmattan
flow  during  the  dry  season  (Klose  et  al.,  2010).  Engelstaedter  and  Washington  (2007)
pointed out the importance of small-scale wind events associated with the large-scale flow,
especially in the Bodele depression, which is a hotspot for dust emissions (Engelstaedter et
al., 2006). Analysing satellite observations, Schepanski et al. (2009) show that 65% of the
activation of the dust source area occurred in the early morning, demonstrating the important
role of the breakdown of the nocturnal low-level jet. Washington and Todd (2005) confirmed
the importance of the Bodele low-level jets during the dry season in initiating dust emissions
that can be transported to the West African coast within a few days. Dust aerosol emissions
are also  highly  linked to Mesoscale  Convective  Systems (MCS,  Marsham et  al.,  2008 ;
Bergametti et al., 2017) and to strong near-surface winds in the intertropical discontinuity
zone during the rainy season (Bou Karam et al., 2009). 

Some studies intend to model dust events in West Africa such as Ochiegbu (2021) who
implemented a back-trajectories model to understand the dust event reaching Nigeria. This
work revealed that most of the aerosols coming to Nigeria between 2011 and 2014 were
originating from the Bodele Depression. Menut (2023) focused on dust forecasting during the
Cloud-Atmospheric Dynamics-Dust Interactions in West Africa (CADDIWA) campaign during
summer 2021 (Flamant et al., 2024) using the CHIMERE regional chemistry-transport model
(Menut  et  al.,  2021).  The  model  was  coupled  online  with  the  Weather  Research  and
Forecasting  (WRF)  meteorological  model  (Briant  et  al.,  2017;  Tuccella  et  al.,  2019)  to
perform dust aerosol concentration forecasts. The results of this work provide confidence in
the model coupling in the region as the dust forecast quality does not decrease with time
over a few days. In addition, only a limited number of studies have been conducted on the
prediction  of  GHI  in  the  West  African  region.  Sawadogo  et  al.  (2024)  conducted  an
evaluation of WRF-solar GHI forecast (Jimenez et al., 2016) in Ghana for the year 2021. In
their work, a version of the model coupled offline with Copernicus Atmosphere Monitoring
Service  (CAMS)  Aerosol  Optical  Depth  (AOD)  forecasts  was  considered  to  integrate
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information on aerosol load. They showed that WRF-Solar outperforms in predicting GHI
under clear sky conditions while its performance under high aerosol levels remains poor, that
was mainly attributed to uncertainties in the input AOD during data assimilation within the
model. Close to the region of interest, for the northern Morocco area, El Alani et al. (2020)
compared the performance of global models (Global Forecast System, Integrated Forecast
System,  McClear)  and  demonstrated  their  proficiency  in  capturing  GHI  hourly  temporal
variability.

As far as our knowledge is concerned, no studies have been conducted to assess online
coupled  simulations  between  a  meteorological  model  and  an  aerosol  life  cycle  model
representing the emissions, the transport and the deposition in West Africa to estimate solar
irradianceradiation. This is despite the significant presence of desert dust, characterised by
high  concentrations  in  the  region.  Additionally,  scarce  attention  has  been  given  to  the
significance  of  initial  and  boundary  conditions  for  conducting  the  aerosol  model  on  the
performance  of  analysis  simulations,  and  to  our  knowledge,  investigating  these  aspects
would represent a novel contribution to research in the West African region.

Within this general context, the objectives of this study are two folds i) to evaluate the ability
to  reproduce  a  dust  event  using  a  meteorological  and  dust  life  cycle  model  coupling
configuration,  and  ii)  to  investigate  whether  the  performance  of  the  simulations  can  be
enhanced  by  modifying  the  aerosol  initial  and  boundary  conditions  employed,  and  to
estimate the uncertainty associated with this dataset selection with regard to the errors made
by the model. Section 2 introduces the case study, the simulation configuration, the data and
models selected for this work. In Section 3, the results are presented, beginning with the
variables of interest for solar production (GHI and surface air temperature), followed by the
variables  associated  with  the  desert  aerosols  (AOD,  concentration,  size  distribution,
emissions). Section 4 gives main conclusions and draws some perspectives for this study.

2. Material and methods
2.1. Case study

The case study is a dust event that occurs in West Africa from March 26 th-00 UTC to April
2nd-00 UTC,  2021,  i.e.,  during the dry season.  High dust  emissions  occur at  the Bodélé
Depression (Chad), the plume being then transported westward. The dust plume reached its
maximum  intensity  in  terms  of  AOD  and  dust  concentration  over  West  Africa,  and  in
particular over the Zagtouli solar farm (Burkina-Faso, Fig. S11a), on March 30th. The event
was also chosen because it was not predicted in the solar forecast currently implemented for
the Zagtouli solar farm, leading to solar forecast errors during the passage of the dust plume
(Clauzel et al., 2024).
Figure 1 illustrates that this event is characterised by a strong Harmattan flow, with surface
winds from the South/South-West sweeping across the Bodélé Depression (Chad), where
the potential for desert dust emissions is very high (Prospero et al., 2002; Washington et al.,
2006). Additionally, this event is characterised by a westward flow between Chad and the
Atlantic  coast,  which  facilitates  the  transportation  of  the  dust  plume.  Fig.  1a  shows
MODerate-resolution Imaging Spectroradiometer (MODIS) satellite observations of the AOD,
identifying the initial dust source area on the Bodélé Depression, as well as the westward
movement  of  the  plume.  This  event  is  characteristic  of  the  West  African  dry  season
climatology,  with a dominant  Harmattan flow as described in the introduction.  Figure S1
provides further insight into the dust plume transport during the case study.  
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Figure 1 - a) Mean aerosol Optical Depth at 550nm from  MODIS  satellite observations over
the period 28 March-00 UTC to 02 April-00 UTC 2021. The Global Horizontal  Irradiance
(GHI) observations and AERONET aerosol measurement network, introduced in 2.4, are
presented, as well as the boundaries of the simulated domain (red rectangle) and the area of
interest for analysis (black rectangle). b) Mean synoptic conditions of the geopotential height
(Zg) at 975hPa and the 10m-wind (white arrows - in m/s) over the period 28 March-00 UTC
to  02  April-00  UTC  2021  from  ERA5  reanalysis.  The  surface  temperature  and  aerosol
concentration observations from the INDAAF network, introduced in 2.4, are presented.

2.2. Modelling tools
2.2.1. WRF model

The meteorological Weather and Research and Forecasting model (WRF) model version
3.7.1 is taken for compatibility with the CHIMERE coupling procedure. It is used in its non-
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hydrostatic configuration (Skamarock et al.,  2008) and is forced at the boundaries of the
domain every hour by the meteorological reanalysis data of ERA5 (ECMWF) provided on a
regular 0.25° x 0.25° grid.
The model  is  run with a 9 km horizontal  resolution,  a 45s integration time step and 50
vertical levels,  from the surface to 50 hPa. The updated Rapid Radiative Transfer Model
(RRTMG) radiation scheme (Iacono et al., 2008), which is mandatory for the aerosol optical
properties feedback, is employed for both long- and short-wave radiations. Additionally, the
Thompson  aerosol-aware  microphysics  scheme  (Thompson  and  Eidhammer,  2014)  is
applied. The Yonsei University planetary boundary layer’s surface layer scheme (Hu et al.,
2013) is also used, and the cumulus parameterisation is based on the Grell-Freitas scheme
(Arakawa,  2004).  The  Revised  MM5  surface  layer  scheme  (Jiménez  et  al.,  2012)  is
employed, while the Noah-MP Land Surface Model (Niu et al. 2011) is implemented for the
land surface physics scheme.

2.2.2. CHIMERE model
The chemistry-transport model CHIMERE version v2020r3 (Menut et al., 2021) is used in
conjunction with the WRF model. Both models have a 9 km horizontal grid. The CHIMERE
model has 30 pressure-dependent vertical levels from the surface up to 200 hPa, with a first
layer thickness of 3 hPa. The model is configured for dust-only, with no chemistry and only
considering dust aerosols (details in section 2.3). The threshold friction velocities for dust
emission  are  estimated  using  the  Shao  and  Lu  scheme  (2000)  and  the  6-km  spatial
resolution  GARLAP  (Global  Aeolian  Roughness  Lengths  from  ASCAT  and  PARASOL)
dataset from Prigent et al. (2012). Mineral dust emission fluxes were calculated employing
the Alfaro and Gomes (2001) scheme on 10 aerosol size bins ranging from 0.01 to 40 µm.
The Fécan et al. (1999) parametrization is employed to account for the inhibitory effect of
soil moisture on dust emission. Dry deposition is treated as described in Zhang et al. (2001).
Wet scavenging for aerosol is computed following the Willis and Tattelman scheme (1989).
The CHIMERE model includes the Fast-JX module, version 7.0b (Wild et al., 2000; Bian et
al., 2002) for the calculation of radiative processes. It considers the radiative properties for
each  aerosol  species  and  each  aerosol  size  bin  independently  to  compute  the  aerosol
optical depths, the single scattering albedo and the aerosol asymmetry factor. More details
on the dust aerosol radiative properties are given in Tables S1 and S2. Finally, we test three
different initial and boundary condition datasets for mineral dust load (see 2.2.3).

Table 1 - Parameterizations used in WRF and CHIMERE

WRF

microphysics Thompson aerosol-aware (Thompson and
Eidhammer, 2014)

radiation RRTMG scheme for LW and SW (Iacono et
al., 2008)

land surface Noah-MP land surface scheme
(Niu et al., 2011)

planetary boundary layer Yonsei University scheme
(Hu et al., 2013)
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surface layer Revised MM5 surface layer scheme
(Jimenez et al., 2012)

cumulus Grell-Freitas scheme
(Arakawa, 2004)

CHIMERE

threshold friction velocities Shao and Lu (2000) scheme

soil moisture Fécan et al. (1999) scheme

dust emission fluxes Alfaro and Gomes (2001) scheme

radiative processes Fast-JX model, version 7.0b
(Wild et al., 2000; Bian et al., 2002)

aerosol size distribution bins
(diameters in µm)

0.010 - 0.022
0.022 - 0.048
0.048 - 0.107
0.107 - 0.235
0.235 - 0.516
0.516 - 1.136
1.136 - 2.500
2.500 - 5.000
5.000 - 10.00
10.00 - 40.00

WRF

microphysics Thompson aerosol-aware (Thompson and
Eidhammer, 2014)

radiation RRTMG scheme for LW and SW (Iacono et
al., 2008)

land surface Noah-MP land surface scheme 
(Niu et al., 2011)

planetary boundary layer Yonsei University scheme
(Hu et al., 2013)

surface layer Revised MM5 surface layer scheme
(Jimenez et al., 2012)

cumulus Grell-Freitas scheme
(Arakawa, 2004)

CHIMERE

threshold friction velocities Shao and Lu (2000) scheme 

soil moisture Fécan et al. (1999) scheme

88



dust emission fluxes Alfaro and Gomes (2001) scheme 

radiative processes Fast-JX model, version 7.0b
(Wild et al., 2000; Bian et al., 2002)

aerosol size distribution bins
(diameters in µm) 

0.010 - 0.022
0.022 - 0.048
0.048 - 0.107
0.107 - 0.235
0.235 - 0.516
0.516 - 1.136
1.136 - 2.500
2.500 - 5.000
5.000 - 10.00
10.00 - 40.00

2.2.3. Dust aerosol initial and boundary condition datasets
In this study, the uncertainty in the solar estimate associated with the initial and boundary
conditions of the dust aerosol load is evaluated. Three datasets were used: a climatology
derived  from  the  Global  Ozone  Chemistry  Aerosol  Radiation  and  Transport  (GOCART,
Ginoux et al., 2001), the Modern-Era Retrospective analysis for Research and Applications
Version 2 (MERRA2) reanalysis (Gelaro et al., 2017) and the CAMS reanalysis (Inness et
al., 2019). 
The GOCART climatology is provided with the distribution of the CHIMERE model. It is a
monthly climatology on a coarse horizontal grid (2°x2.5°), which is corrected by applying a
factor of 0.3 as in Vautard et al. (2005). 
The  MERRA2  reanalysis  combines  the  Goddard  Earth  Observing  System  (GEOS)  and
GOCART  models,  which  are  online  coupled  and  implemented  with  a  data  assimilation
system. It has a 3-hour temporal resolution and is presented on a 0.5°x0.635° horizontal
grid. The observational data considered in the data assimilation process are AOD satellite
observations from MODIS, Advanced Very High Resolution Spectroradiometer (AVHRR),
Multi-angle Imaging SpectroRadiometer (MISR) and ground observations from the AErosol
RObotic NETwork (AERONET).  
The  CAMS  reanalysis  was  constructed  using  4DVar  data  assimilation  in  ECMWF's
Integrated Forecast System (IFS). It has a temporal resolution of 3 hours and is computed
on  a  regular  0.75°  horizontal  grid.  The  AOD  data  from  the  Visible  Infrared  Imaging
Radiometer Suite (VIIRS), the MODIS and the Infrared Atmospheric Sounding Interferometer
(IASI) satellite observations are used as observational information in the data assimilation
process.  The version 48R1 of CAMS is used in this study.
These  three  dust  aerosol  initial  and  boundary  datasets  differ  in  type  (climatological  or
reanalysis), in horizontal, vertical and temporal resolution, and in the resolution and range of
their aerosol size distribution. While GOCART has the highest number of aerosol classes
with 7 bins, CAMS covers a wider size spectrum despite a lower size resolution with only 3
classes.  MERRA2  has  an  intermediate  resolution  with  5  classes,  but  covers  a  smaller
particle size spectrum than CAMS. The CHIMERE model pre-processes these dust aerosol
size  distributions  by  applying  a  transfer  coefficient  δ  to  compute  the  dust  aerosol
concentration on the 10 aerosol size bin defined for the simulations : 
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c j=∑
i
δ i , j×c i

(1)

where  c i is the dust aerosol concentration of the  ith size bin from the initial and boundary
condition dataset considered,  c j is the dust aerosol concentration of the  jth size bin in the
CHIMERE simulation, and δ i , j is the transfer coefficient. This transfer coefficient is derived
as : 

- δ i , j=0 if the ith size bin from the initial and boundary condition dataset is found to be

wholly outside the jth size bin in the CHIMERE simulation;
- δ i , j=1 if  the  ith size bin from the initial  and boundary condition dataset  is wholly

encompassed by the jth size bin in the CHIMERE simulation;

- δ i , j=
log (r j , max)− log (r j ,min)
log (Ri , max)− log (Ri ,min)

 if the ith size bin from the initial and boundary condition

dataset wholly encompasses the jth size bin in the CHIMERE simulation;

- δ i , j=
log (Ri ,max )− log (r j ,min )
log (Ri , max)− log (Ri ,min)

 if the ith size bin from the initial and boundary condition

dataset partially overlaps the  jth size bin in the CHIMERE simulation, but extends
below the start of this size bin;

- δ i , j=
log (r j ,max )− log (Ri ,min )
log (Ri , max)− log (Ri ,min)

 if the ith size bin from the initial and boundary condition

dataset partially overlaps the  jth size bin in the CHIMERE simulation, but extends
beyond the end of this size bin;

where Ri ,min and Ri ,max are respectively the radius of the lower and upper limit of the ith size
bin from the initial and boundary condition dataset, and r j ,min and r j ,max are respectively the
radius of the lower and upper limit of the jth size bin in the CHIMERE simulation.

For  the  sake  of  simplicity,  throughout  this  article,  we  will  refer  to  the  WRF-CHIMERE
simulations runned with the GOCART, the MERRA2, and the CAMS dust aerosol initial and
boundary  conditions  as  wrf_chimere-G,  wrf_chimere-M,  and  wrf_chimere-C simulations
respectively.
Table  2  summarises  the  characteristics  of  the  three  dust  aerosol  datasets  and  their
associated size distributions. 

Table 2. Summary of the characteristics of the dust initial and boundary condition products. 

GOCART MERRA2 CAMS

type climatology reanalysis reanalysis

temporal resolution monthly 3h 3h

vertical levels 20 72 60

horizontal resolution
(lat x lon)

2°x2.5° 0.5°x0.635° 0.75°x0.75°
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dust aerosol size
distribution

(radius in µm)

0.20 - 0.36 µm 0.1 - 1.0 µm 0.03 - 0.55 µm

0.36 - 0.60 µm 1.0 - 1.8 µm 0.55 - 0.90 µm

0.60 - 1.20 µm 1.8 - 3.0 µm 0.90 - 20.00 µm

1.20 - 2.00 µm 3.0 - 6.0 µm

2.00 - 3.60 µm 6.0 - 10.0 µm

3.60 - 6.00 µm

6.00 - 12.00 µm

GOCART MERRA2 CAMS

type climatology reanalysis reanalysis

temporal resolution monthly 3h 3h

vertical levels 20 72 60

horizontal resolution
(lat x lon)

2°x2.5° 0.5°x0.635° 0.75°x0.75°

aerosol size distribution
(radius in µm)

0.20 - 0.36 µm 0.1 - 1.0 µm 0.03 - 0.55 µm

0.36 - 0.60 µm 1.0 - 1.8 µm 0.55 - 0.90 µm

0.60 - 1.20 µm 1.8 - 3.0 µm 0.90 - 20.00 µm

1.20 - 2.00 µm 3.0 - 6.0 µm

2.00 - 3.60 µm 6.0 - 10.0 µm

3.60 - 6.00 µm

6.00 - 12.00 µm

2.3. Modelling strategy
The domain of simulation extends from 2° to 35°N and from 19°W to 24°E, , as illustrated by
the red box in Figure 1b. The domain is large enough to represent the primary atmospheric
flows, including the Harmattan North/North-West flow and the monsoon South flow, as well
as the transport of the emitted aerosol plumes. A horizontal resolution of 9 km has been
selected  in  order  to  ensure  that  the  grid  ratio  is  approximately  3  with  the  ERA5
meteorological forcing. This choice is also motivated by the a priori intention to achieve a
resolution higher than that of previous CHIMERE simulations performed in this region and
compared to the operational solar forecast model used for the Zagtouli solar farm, which are
based on global forecast models (see 2.4.1). The CHIMERE model is configured in a “dust
only” model, which models only the mineral dust type. This hypothesis is supported for this
dust  case  study  by  Fig.  S2,  as  desert  dust  is  the  dominant  aerosol  during  the  event,
particularly above 10°N. This hypothesis is also reinforced by the dust optical depth (DOD)
to AOD ratio derived from the CAMS reanalysis, which exceeds 80% during this case study
and  for  the  domain  of  interest  (not  shown).  It  is  notable  that  biomass  burning,  which
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represents  the  other  principal  aerosol  source  in  this  region,  is  no  longer  a  significant
contributor to aerosol levels at that time of the year (Evans et al., 2018).
The WRF and CHIMERE models are coupled online through the OASIS3 MCT coupler. A
two-way coupling  strategy is  selected,  in  which  WRF sends meteorological  variables  to
CHIMERE which in  turn exchanges aerosol  information such as AOD, Single  Scattering
Albedo (SSA) and Asymmetry Factor.  This  coupling  strategy  imposes most  of  the WRF
parameterisations. The exchange frequency is set to 15 minutes. The WRF model computes
fields on 50 levels, which are linearly interpolated over the 30 CHIMERE vertical levels via
the OASIS coupler.  The coupling includes the feedbacks of aerosol-radiation interactions
(ARI,  direct  aerosol  effect)  and  aerosol-cloud  interactions  (ACI,  indirect  aerosol  effects)
simultaneously.
The simulation starts on March 14th-00 UTC and ends on April 2nd-00 UTC, 2021. The first
two weeks served as the spin-up period. The simulation outputs are analysed for the period
of March 28th-00 UTC UTC to April 2nd-00 UTC, which corresponds to the passage of the
dust plume in the Sahel region, in particular around the Zagtouli solar farm in Burkina Faso.
Four simulations were conducted: a meteorological simulation using WRF model alone, and
dust  simulations  with  the coupled WRF-CHIMERE models  using as initial  and boundary
conditions the GOCART climatology, the MERRA2 reanalysis and the CAMS reanalysis. The
simulation using only WRF allows for the evaluation of the impact of taking into account dust
aerosols  in  estimating  solar  irradianceradiation.  This  is  compared  to  the  other  three
simulations, which are also used to evaluate the uncertainties associated with the choice of
the aerosol initial and boundary condition dataset. A domain of interest, spanning 10°N to
25°N (Fig. 1a), was selected for analysis and comparisons. This choice was guided by the
dust plume trajectory (Fig. S1) and the “dust only” hypothesis (Fig. S2).

2.4. Evaluation datasets
This section presents the local and regional data that are employed in the evaluation of the
simulations.

2.4.1. GHI 
The Global Horizontal Irradiance (GHI) is the total shortwave irradiance from the Sun on a
horizontal surface on Earth.  It is the sum of direct irradiance, which takes into account the
solar  zenith  angle,  and  diffuse  horizontal  irradiance.  It  is  measured  in   W .m−2 for  the
wavelength range 0.3 - 3.0 µm.

The national electricity company of Burkina-Faso, Sonabel, operates a solar farm in Zagtouli
(12.31°N;1.64°W; Fig. 1a), approximately 15 km west of the capital, Ouagadougou. It has an
installed capacity of 34 MWp and contributes up to 4% of Burkina Faso's annual electricity
production.  Ground  GHI  measurements  from  pyranometers  are  available  at  a  temporal
resolution of 15 minutes for the Zagtouli solar plant and undergo pre-processing to ensure
quality control. This involves removing outliers and days with missing data, visually checking
the consistency of  the measured values and selecting  data corresponding to production
hours (positive values for solar irradianceradiation at the top of the atmosphere). Operational
GHI forecasts for this solar farm are computed by the French company Steadysun. These
forecasts are based on a multi-model, multi-member and multi-mesh grid aggregation, which
is derived from the NCEP Global Ensemble Forecast System and the ECMWF Integrated
Forecast System (Clauzel et al., 2024).
In-situ measurements of GHI from pyranometers (Fig. 1a) are also available at a 15-minutes
temporal  resolution for  the Banizoumbou (Niger)  surface station,  installed  as part  of  the
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AMMA-CATCH observatory (Analyse Multidisciplinaire de la Mousson Africaine - Couplage
de l’Atmosphère Tropicale et du Cycle Hydrologique, AMMA-CATCH (2005)).
The two measurement sites were selected because they are the only locations where GHI
observations have been made available along the dust plume transport for the case study,
with the Zagtouli power station being one of the first large solar farms in West Africa and the
AMMA-CATCH observatory being the only one to offer continuous GHI measurements for
the region and period of interest.

The CAMS gridded solar radiation dataset (CAMS solar radiation services v4.6, Schroedter-
Homscheidt et al., 2022), based on the Heliosat-4 method (Qu et al., 2017), provides several
variables related to solar  irradianceradiation, such as clear-sky and all-sky GHI. It  has a
horizontal resolution of 0.1°x0.1° and provides data every 15 minutes. The clear sky model
includes aerosols through the CAMS chemical transport model (Inness et al., 2019), which
integrates data assimilation of AOD and is coupled online to a numerical weather prediction
model. Cloud information for the all-sky model is derived from MeteoSat Second Generation
(MSG) satellite observations using the AVHRR Processing scheme Over cLouds, Land and
Ocean (APOLLO)  Next  Generation  cloud  processing  scheme (Klüser  et  al.,  2015).  The
dataset was selected for comparison with the simulations as it integrates a description of
aerosol processes. While Yang and Bright (2020) and Sawadogo et al. (2023) show that it is
the best  performing  product  for  estimating  surface  solar  irradianceradiation in  the  West
African region among several satellite-based gridded irradiance products, this dataset still
has a negative bias of about 10% for all-sky solar irradiance estimates at desert stations in
North Africa (CAMS solar radiation regular validation report, Lefèvre, 20222020).

2.4.2. Surface temperature
In-situ  surface  temperature  measurements  are  available  for  three  stations  of  the
International Network to study Deposition and Atmospheric composition in Africa (INDAAF) :
Banizoumbou (Niger, 13.54° N, 2.66° E, 6.2m above surface; Rajot et al, 2010a; Marticorena
et al, 2010; Kaly et al., 2015), Cinzana (Mali, 13.28° N, 5.93° W, 2m above surface; Rajot et
al,  2010b;  Marticorena et  al,  2010;  Kaly  et  al.,  2015)  and Bambey (Senegal,  14.70° N,
16.47° W, 5.2m above surface; Marticorena et al, 2021a) (Fig. 1b). The measurement sites
were selected since they are almost aligned around 13-15° North, which represents the main
pathway of Saharan and Sahelian dust towards the Atlantic Ocean during the case study. 
The ERA5 atmospheric  reanalysis  (Hersbach  et  al.,  2020)  provides  spatially  continuous
hourly values of surface temperature at 2 metres and has a horizontal resolution of 0.25° x
0.25°. 

2.4.3. Aerosol
The  INDAAF  network  also  provides  data  on  aerosol  concentration  through  ground
measurements  of  PM10,  i.e.  the  concentration  of  atmospheric  particles  having  an
aerodynamic diameter less than 10 μm. For this case study, hourly PM10 measurements are
available for two stations (Fig. 1b): Cinzana (Rajot et al, 2010c; Marticorena et al, 2021; Kaly
et al, 2015) and Bambey (Marticorena et al, 2021b). 
The CAMS atmospheric reanalysis (Inness et al., 2019) is also used to evaluate regional
surface PM10 concentration and AOD. It provides 3-hourly data with a horizontal resolution of
0.75° x 0.75°, with a surface layer thickness of 2.4 hPa. 
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Local ground measurements of AOD are retrieved from the AErosol RObotic NETwork level
1.5 dataset (AERONET, Holben et al., 1998; Giles et al., 2019). AOD is calculated from sun
photometer recordings, along with Ångström Exponent, and is only available during clear sky
conditions in daylight hours, with a resolution of 1 minute. The AOD at 400 nm simulated
with the WRF-CHIMERE model is converted to 440 nm for comparison with AERONET,
using the Ångström formula : 

AODλ

AOD λ0

=( λλ0 )
−α (2)

AODλ

AOD λ0

=( λλ0 )
−α

 
(2)

where AOD λ is the AOD at the desired wavelength, λ=440nm here ; AOD λ0 is the AOD at
the wavelength  simulated in  the model,  λ0=400 nm here ;  α  is  the Ångström exponent,
derived from the simulated AOD at different wavelengths and here given for the range from
400 nm to 600 nm. 

AERONET also provides an aerosol size distribution dataset estimated through inversion of
the photometers data, as described in Dubovik and King (2000). The algorithm for inversion
provides a volume particle size distribution for 22 bins, which are logarithmically distributed
for  radii  between  0.05  µm and  15  μm.  For  comparison  with  the  modelled  aerosol  size
distribution,  this  distribution  is  interpolated  on  the  CHIMERE  simulated  aerosol  size
distribution which is composed of 10 bins ranging from 0.01 µm to 40.00 µm in diameter (see
Table 1). Given that the coarsest bin (10.00-40.00 µm) is at the limit of the capabilities of the
inversion method, and the two thinnest bins (0.010-0.022 µm and 0.022-0.048 µm) are out of
the range of the inversion product, the AERONET dataset size sections are interpolated on
the CHIMERE size sections ranging from 0.048 to 10.0 µm. Consequently, only comparisons
between the three simulations can be made for the three size sections which are out of the
range of AERONET product. The column aerosol volume size distribution simulated by the
model is calculated for each bin “i” as in Menut et al. (2016) : 

dV (r i )
d ln (r i)

= ∑
k=1

nlevels mk ,r i
×Δ zk

ρdust× ln (r i ,max /r i ,min ) (3)

where r i is the mean mass median radius (in µm) and r i ,min and r i ,max the boundaries of the

ith bin. mk ,ri is the dust aerosol mass concentration (the mass of aerosol in one cubic metre
of air, in µg .m−3). ρdust is the dust aerosol density (the mass of the particle in its own volume,

ρdust=2300 kg .m
−3). Δ zk is the model layer thickness (in metres), for a total of n levels (here

30 vertical levels).

AERONET provides an aerosol size distribution dataset estimated through inversion of the
photometers data, as described in Dubovik and King (2000). The algorithm for inversion
provides a volume particle size distribution for 22 bins, which are logarithmically distributed
for radii between 0.05 µm and 15 μm.
The locations of the five AERONET sites used for comparison in this study are illustrated in
Figure 1a.
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The spatially continuous AOD is also derived from level 2 aerosol products of MODIS Terra
and Aqua satellites (combined Dark Target, Deep Blue AOD at 0.55 micron, Collection 6.1,
Platnick et al., 2015). It provides a measure of the AOD at 550 nm during daytime for clear
sky conditions, with a spatial resolution of 10 km. To compare simulated AOD from WRF-
CHIMERE models with AOD from MODIS, the former is converted from 600 nm to 550 nm.
The conversion is performed using the Ångström formula (eq. 2). 

Table 3 provides a general overview of the data used to evaluate the simulations in this
study.

Table 3 - Summary of data used to evaluate the simulations. 

product type resolution

GHI

Zagtouli solar farm 
monitoring system

pyranometer GHI 
measurement local

AMMA-CATCH 
observational network

pyranometer GHI 
measurement local

CAMS gridded solar 
radiation

atmospheric reanalysis 0.01°x0.01°

temperature

INDAAF network ground measurements local

ERA5 atmospheric reanalysis 0.25°x0.25°

INDAAF network ground measurements local

CAMS (v48R1, EAC4) atmospheric reanalysis 0.75°x0.75°

Aerosol Size
Distribution

AERONET network inversion product local

Aerosol Optical
Depth

AERONET network sunphotometer ground 
measurements

local

MODIS satellite observations 10km

product type resolution

GHI

Zagtouli solar farm 
monitoring system

pyranometer GHI 
measurement local

AMMA-CATCH 
observational network

pyranometer GHI 
measurement local

CAMS gridded solar 
radiation

atmospheric reanalysis 0.01°x0.01°

INDAAF network ground measurements local
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temperature
ERA5 atmospheric reanalysis 0.25°x0.25°

PM10

INDAAF network ground measurements local

CAMS (EAC4) atmospheric reanalysis 0.75°x0.75°

Aerosol Size
Distribution

AERONET network inversion product local

Aerosol Optical
Depth

AERONET network sunphotometer ground 
measurements

local

MODIS satellite observations 10km

3. Results
The  analysis  starts  by  assessing  the  errors  and  uncertainties  associated  with  the  dust
aerosol initial and boundary condition dataset employed to estimate the variables of interest
for  solar  production,  i.e.  GHI and surface temperature. Subsequently,  we investigate the
potential causes of these uncertainties by evaluating the AOD, aerosol size distribution, and
surface aerosol concentration (PM10), as well as by examining mineral dust emissions and
the flux of these aerosols at the boundaries of the domain. The metrics used to assess the
quality of the simulations are described in Supplementary Materials.  

3.1. GHI

Figure 2 -  Local comparison of CAMS gridded solar radiation product and simulated GHI
against  a)  the Zagtouli  solar  farm observations and b) the Banizoumbou AMMA-CATCH
observations.  wrf_chimere-G,  wrf_chimere-M and  wrf_chimere-C refer  to  the  WRF-
CHIMERE simulations  using  GOCART,  MERRA2 and CAMS as dust  aerosol  initial  and
boundary condition dataset respectively. 
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In Fig. 2, the local evaluation demonstrates the effect of taking into account dust aerosol for
GHI  estimation  with  the  WRF-CHIMERE  coupling  over  the  WRF  meteorological  model
alone. The coupling reduces the MAE by a factor of 3.6 at Zagtouli and by a factor of 4.6 at
Banizoumbou  on  average.  The  simulations  accurately  represent  the  reduction  in  GHI
intensity  caused  by  the  dust  plume  at  both  stations.  However,  the  reduction  persists
compared to the observations at Zagtouli.  At Banizoumbou, the simulations overestimate
GHI at the beginning and end of the case study.
Figure 2 also indicates that the CAMS gridded solar radiation product fails to fully reproduce
the dust event, with only a small reduction in GHI during the passage of the dust plume and
an intermediate MAE between the WRF only and the WRF-CHIMERE simulations. This point
serves to highlight  the advantages of  using a regional  model  in  comparison to a global
product for the simulation of dust conditions and the estimation of solar irradianceradiation. 
Furthermore, the uncertainty in GHI estimation related to the choice of the dust aerosol initial
and boundary condition dataset is limited, particularly when compared to the errors. This is
evidenced by the fact that the mean standard deviation between the three WRF simulations
is  only  7%  of  the  average  MAE  of  these  simulations  at  Zagtouli,  and  only  5%  at
Banizoumbou.
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Figure 3 -  Mean day-time GHI during the period of 28 March-00 UTC to 02 April-00 UTC
2021  as  estimated  by  a)  the  CAMS  gridded  solar  radiation  dataset,  b)  the  WRF  only
simulation,  and  the  WRF-CHIMERE  simulations  with  c)  GOCART,  d)  MERRA2  and  e)
CAMS as dust aerosol initial and boundary condition dataset;  + is the Zagtouli solar farm
and x is the Banizoumbou site. μ is the mean GHI estimates over the domain. 

The  regional  comparison  presented  in  Fig.  3  provides  more  insight  into  the  impact  of
incorporating dust on GHI estimation with the WRF-CHIMERE coupling, when compared to
the  WRF  meteorological  model  alone.  As  anticipated  the  WRF-only  simulation  has  the
highest GHI estimates. The WRF-CHIMERE simulations indicate that dust aerosols reduce
the mean GHI estimation by approximately 115W .m−2 (-18%) as compared to the WRF-only
simulation,  while  the CAMS gridded solar  radiation  global  product  shows a reduction  of
88W .m− 2 (-14%). The three WRF-CHIMERE simulations exhibit identical regional patterns,
with  lower  mean  GHI  values  observed  on  the  dust  plume  trajectory  from  the  Bodélé
Depression to the West, and also in the South Atlas region. In contrast, the CAMS gridded
solar  radiation dataset  does not  show this  regional  pattern,  which may indicate that  this
global product does not fully capture the dust event.
Furthermore, the uncertainty in GHI estimation associated with the choice of the dust aerosol
initial and boundary conditions dataset is limited, particularly when compared to the changes
brought by the taking of dust aerosol into account. Indeed, the standard deviation between
the three WRF-CHIMERE simulations represents only 5% of the mean difference between
these three simulations and the WRF-only simulation without dust.
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3.2. Temperature

Figure 4 - Local comparison of ERA5 and simulated surface temperature with the INDAAF
observations  for  a)  Bambey  (Senegal),  b)  Cinzana  (Mali)  and  c)  Banizoumbou  (Niger)
measurement sites.  wrf_chimere-G,  wrf_chimere-M and  wrf_chimere-C refer to the WRF-
CHIMERE simulations  using  GOCART,  MERRA2 and CAMS as dust  aerosol  initial  and
boundary condition dataset respectively.  IOA is the Indicator of Agreement and MAE is the
Mean Absolute Error. 
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Figure 4 illustrates the contrasting outcomes of taking into account dust aerosols into the
WRF-CHIMERE coupling  in  comparison to the WRF meteorological  model  alone for  the
estimation of surface temperature. At Bambey (Fig. 4a), which is far from the dust source
areas,  the  coupling  has  no  effect  on  daytime  temperatures  but  does  affect  night-time
temperatures. The WRF-CHIMERE and WRF-only simulations have IOA and MAE of the
same order of magnitude. At Cinzana (Fig. 4b), the WRF-only simulation performed better,
with a MAE 0.6°C lower than the coupled simulations, especially for night-time temperatures
but also for estimating the daily temperature peak. Finally, at Banizoumbou (Fig. 4c), which
is near the dust source areas, the coupling leads to a significant improvement in surface
temperature estimation, with an IOA of approximately 0.79 compared to 0.56 for the WRF-
only  simulation  and  a  MAE reduced  by  around  3.6°C.  The  impact  of  dust  aerosols  on
temperature is particularly pronounced at night-time. However, dust also affects the daily
temperature peak, with a reduction of 1.1°C of the daily maximum temperature observed on
the 30th of March.
Depending on the position of the measurement station, the results show a contrast, with a
significant improvement with the model coupling close to the source zones at Banizoumbou.
However, this improvement is reversed with increasing distance at Cinzana. This suggests
errors in the simulation of the transport of the dust plume from the source zones (Bodélé
Depression) towards the West. Overall, the main differences between WRF only and WRF-
CHIMERE coupled simulations occur at night time when there is no solar production. These
differences highlight the warming effect due to the dust aerosol interaction with the longwave
earth radiation. 
In general, the uncertainty associated with the choice of the dust aerosol initial and boundary
condition dataset for the WRF-CHIMERE simulations is negligible compared to the errors in
temperature estimation or the difference with the WRF-only simulation.
The value of the ERA5 reanalysis for surface temperature evaluation is also reinforced in
Fig.  4,  since it  shows the lowest  MAE and highest  IOA.  This  dataset  can therefore  be
considered reliable for a regional evaluation of surface temperature.
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Figure 5 - Mean difference in surface temperature as compared to the ERA5 reanalysis for
a) the WRF only simulation, the WRF-CHIMERE simulations with b) GOCART, c) MERRA2
and d) CAMS as dust aerosol initial and boundary condition dataset, during the period of 28
March-00 UTC to 02 April-00 UTC 2021; the black point is the Bambey, x is the Cinzana and
+ is the Banizoumbou INDAAF sites.  e) Probability Density Function for the differences in
surface temperature between simulations and the ERA5 reanalysis.

The regional surface temperature evaluation in Fig. 5 also reveals a contrast benefit of the
coupling approach for the surface temperature estimation. While the WRF alone simulation
(Fig.  5a)  underestimates  the  surface  temperature  all  over  the  domain,  WRF-CHIMERE
simulations are overestimating surface temperature in the dusty areas (Saharan region, Fig.
5bcd).  Overall,  taking into account dust aerosol in the estimation of surface temperature
reduces the MAE by 14% (Fig. 5e) when comparing the surface temperature estimates from
simulations with the ERA5 reanalysis. 
Furthermore,  the  uncertainty  associated  with  the  choice  of  the  dust  aerosol  initial  and
boundary conditions dataset is limited. This is demonstrated by the fact that the standard
deviation  between  the  three  WRF-CHIMERE  simulations  averaged  over  the  period  of
analysis  is  12%  of  the  mean  bias  of  those  three  simulations  in  comparison  to  ERA5
reanalysis, and only 7% of the difference between the coupled simulations and the WRF-
only simulation without dust.
 
Finally, the incorporation of dust aerosol into the estimation of GHI appears to be a crucial
element in this case study. However, the value of this approach is more debatable in the
context of surface temperature estimation. Furthermore, the uncertainty related to the dust
aerosol  initial  and  boundary  condition  dataset  selection  is  limited,  particularly  when
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compared to the simulation  errors,  and to the differences between including dust  in  the
simulation  and  not  including  it.  The  following  sections  will  examine  the  simulated  dust
aerosol condition during the case study in order to explain the discrepancies observed in
GHI and surface temperature, which are key parameters for solar production.

3.3. Aerosol Optical Depth

Figure 6 - Local comparison of simulated AOD with AERONET in-situ measurements at 440
nm for a) Tamanrasset, b) Zinder, c) Banizoumbou, d) Cinzana and e) Dakar Belair stations.
wrf_chimere-G, wrf_chimere-M and wrf_chimere-C refer to the WRF-CHIMERE simulations
using GOCART, MERRA2 and CAMS as dust aerosol initial and boundary condition dataset

22

554
555
556
557
558
559

560
561
562
563
564

22



respectively;  MODIS and  CAMS  refer  to  the  AOD at  440 nm from the MODIS satellite
observations and the CAMS atmospheric reanalysis respectively.  nMAE is the normalised
mean absolute error in % and  corrcoef  is the Person correlation coefficient, both derived
with AERONET measurements as the reference. 
The local evaluations presented in Figure 6 reveal an overestimation of the AOD for stations
close to dust sources such as Tamanrasset ( Fig. 6a), Zinder ( Fig. 6b) and Banizoumbou
( Fig. 6c). This overestimation is more limited with increasing distance from the dust source
at Cinzana (Fig. 6d) and Dakar (Fig. 6e). The order of magnitude of the dispersion between
the three simulations is small when compared to the errors of the simulation in representing
the observed AOD. As a consequence, the uncertainty associated with the choice of the dust
aerosol  initial  and  boundary  condition  dataset  is  limited.  Overall,  the  AERONET  AOD
measurements  appear  to  be  very  scarce,  particularly  close  to  the dust  aerosol  sources
(Zinder, Tamanrasset, Banizoumbou, Cinzana). The AOD measurements are performed by
sun photometers which give recording by pointing at the sun. Thus these recordings are only
available  during  daytime and  with  clear  sky  conditions.  In  some  cases  of  intense  dust
plumes with very high concentration, leading to strong solar radiation absorption, the sun
photometers  are  technically  limited  and  cannot  produce  any  record  or,  sometimes,  the
AERONET quality control system removes them. This may be the reason for the scarcity of
observations in  this case study,  which focuses on an intense dust  event,  increasing the
perceived overestimation of the simulations.  To compensate for  this,  the AOD estimates
from MODIS satellite observations have been added to Figure 6 to complete the data.
Furthermore, the CAMS reanalysis appears to be a reliable dataset for dust AOD estimation,
as it  has no overestimation and has the lowest  nMAE for all  sites. Although it  does not
reproduce the AOD dynamics close to the dust source at Tamanrasset and Zinder, it has the
highest correlation coefficient for the other sites. 

The local evaluations presented in Figure 6 reveal an overestimation of the AOD for stations
close to dust sources such as Tamanrasset ( Fig. 6a), Zinder ( Fig. 6b) and Banizoumbou
( Fig. 6c). This overestimation is more limited with increasing distance from the dust source
at Cinzana (Fig. 6d) and Dakar (Fig. 6e). The order of magnitude of the dispersion between
the three simulations is small when compared to the errors of the simulation in representing
the observed AOD. As a consequence, the uncertainty associated with the choice of the dust
aerosol  initial  and  boundary  condition  dataset  is  limited.  Overall,  the  AERONET  AOD
measurements  appear  to  be  very  scarce,  particularly  close  to  the dust  aerosol  sources
(Zinder, Tamanrasset, Banizoumbou, Cinzana). The AOD measurements are performed by
sun photometers which give recording by pointing at the sun. Thus these recordings are only
available  during  daytime and  with  clear  sky  conditions.  In  some  cases  of  intense  dust
plumes with very high concentration, leading to strong solar radiation absorption, the sun
photometers  are  technically  limited  and  cannot  produce  any  record  or,  sometimes,  the
AERONET quality control system removes them (Mueller et al., 2015 ; Giles et al., 2019).
This may be the reason for the scarcity of observations in this case study, which focuses on
an  intense  dust  event,  increasing  the  perceived  overestimation  of  the  simulations.  To
compensate  for  this,  the  AOD estimates  from MODIS  satellite  observations  have  been
added to Figure 6 to complete the data.
Furthermore, the CAMS reanalysis appears to be a reliable dataset for dust AOD estimation,
as it  has no overestimation and has the lowest  nMAE for all  sites. Although it  does not
reproduce the AOD dynamics close to the dust source at Tamanrasset and Zinder, it has the
highest  correlation  coefficient  for  the  other  sites.  Nevertheless,  this  result  should  be
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interpreted  with  caution,  given  the  limited  data  available  for  calculating  the  dataset
evaluation metrics. More research is needed to substantiate this conclusion. 

Figure 7 - a) Mean from March 28th-00 UTC to April 2nd-00 UTC 2021 of MODIS AOD at
550 nm satellite observations; x is the Zagtouli solar farm and + corresponds to AERONET
stations. For panels b, c and d, AOD at 550 nm mean differences from March 28th-00 UTC
to  April  2nd-00  UTC  2021  between  each  of  the  WRF-CHIMERE  simulations  driven  by
GOCART, MERRA2 and CAMS, respectively, and the MODIS satellite observations.

The AOD differences shown in Fig. 7bcd show that the simulations significantly overestimate
the AOD as compared to the MODIS satellite observations, particularly in the Saharan and
North  Sahelian  zones and  in  the  South  Atlas,  with  an average overestimation  of  +1.25
between 15°N and 20°N. It is important to note that this overestimation is localised close to
the desert aerosol source zones. The simulated AOD error in the Sahel zone, particularly
around the Zagtouli solar power plant, is more limited with an average of +0.51 between
10°N  and  15°N.  The  mean  standard  deviation  between  the  three  WRF-CHIMERE
simulations  is  only  10%  of  the  mean  error  and  5%  of  the  mean  simulated  AOD.
Consequently the uncertainty in the AOD estimate associated with the selection of the dust
aerosol initial and boundary condition dataset is small. 
The observed overestimation of AOD by the WRF-CHIMERE simulations could be due to an
overestimation  of  the  aerosol  concentration,  or  to  an  inaccurate  estimation  of  the  size
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distribution of the dust plume, or to excessive aerosol emissions within the domain, or to an
excessive  inflow  of  desert  aerosols  at  the  domain  boundaries.  These  hypotheses  are
investigated  below.  Another  potential  explanation  may  also  be  the  uncertainties  in  the
radiative  properties  of  the  dust  aerosol  incorporated  in  the  CHIMERE  model,  or  an
underestimation of the aerosol deposition flux; these aspects are not investigated here. 

3.4. Aerosol size distribution
As presented in section 2, the AERONET inversion products provide aerosol size distribution
for 22 bins logarithmically distributed ranging from 0.05 to 15 μm. For comparison with the
modelled  aerosol  size  distribution,  this  distribution  is  interpolated  on  the  CHIMERE
simulations aerosol size distribution which is composed of 10 bins ranging from 0.01 µm to
40.00 µm in diameter (see Table 1). Given that the last bin (10.00-40.00 µm) is at the limit of
the capabilities of the inversion method, with a maximum wavelength at which the AOD is
measured  of  875  nm,  it  is  not  shown  for  the  AERONET  dataset.  Consequently,  only
comparisons between the three simulations can be made for the bigger size section. The
column aerosol volume size distribution simulated by the model is calculated for each bin “i”
as in Menut et al. (2016) : 

dV (r i )
d ln (r i)

= ∑
k=1

nlevels mk ,r i
×Δ zk

ρdust× ln (r i ,max /r i ,min ) (3)

where r i is the mean mass median radius (in µm) and r i ,min and r i ,max the boundaries of the

ith bin. mk ,ri is the dust aerosol mass concentration (the mass of aerosol in one cubic metre
of air, in µg .m−3). ρdust is the dust aerosol density (the mass of the particle in its own volume,

ρdust=2300 kg .m
−3). Δ zk is the model layer thickness (in metres), for a total of n levels (here

30 vertical levels).

25

636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652

653
654
655

656
657
658
659

25



Figure  8  -  Aerosol  volume  size  distribution  for  the  AERONET  station  located  in  a)
Tamanrasset,  b)  Zinder,  c)  Banizoumbou  and  d)  DakarBelair.  t A and  tm indicate  the
timesThe time indicated corresponds to the time of the AERONET inversion product and the
WRF-CHIMERE model respectively used for the comparisonused for the comparison with
the simulated aerosol size distribution.  wrf_chimere-G,  wrf_chimere-M and  wrf_chimere-C
refer  to  the  WRF-CHIMERE simulations  using  GOCART,  MERRA2 and  CAMS as  dust
aerosol initial and boundary condition dataset respectively. 

The evaluation of the aerosol size distribution in Fig. 8 shows that the simulations generally
have  a  dominant  aerosol  size  mode  shifted  towards  coarser  sizes  compared  to  the
AERONET inversion product. The ground-based size distribution has a strong peak between
1.14 µm and 5.00 µm,  whereas the size  distributions  estimated by  the WRF-CHIMERE
simulations peak for coarser aerosol. For the Dakar Belair station (Fig. 8d), the AERONET
inversion product indicates a first peak of lower intensity between 0.05 and 0.11 µm, which
suggests  the  presence  of  aerosols  other  than  desert  dust.  These  aerosols  may  be  of
anthropogenic origin, given the proximity of the measurement site to the Senegalese capital.
When comparing the size distributions  between the three simulations  with different  dust
aerosol initial and boundary condition dataset, it can be seen that the simulations driven with
CAMS and MERRA2 reanalysis are relatively close and well separated from the one driven
with  the  GOCART  climatology.  Notably,  the  dominant  size  bin  in  the  simulation  using
GOCART  dataset  is  consistently  the  largest  particles,  whereas  with  the  aerosol  from
reanalyses,  it  is  the aerosols  between 5 µm and 10 µm.  Consequently,  the  uncertainty
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associated with the selection of the dust aerosol initial and boundary condition dataset is
high when examining the aerosol size distribution, particularly for particles exceeding 5.00
µm in diameter.  The aforementioned uncertainties in the aerosol size distribution, which are
linked to the choice of  the dust  aerosol  initial  and boundary conditions dataset,  may be
attributed  to  differences  in  the  flow  of  desert  dust  entering  the  domain,  as  well  as
uncertainties in the transfer method carried out by the CHIMERE model to match the aerosol
classes of these datasets to its own size distribution, described in section 2.2.3.
As  a  result,  the  shift  in  the  WRF-CHIMERE  size  distribution  towards  coarser  particles
compared  to  AERONET  observations  would  result  in  a  simulated  AOD  smaller  than
AERONET measurements. However, the opposite is observed (section 3.3). This suggests a
positive bias in the simulated aerosol concentration, which would explain the positive bias in
the AOD, while the coarser size distribution would tend to compensate.

3.5. Aerosol concentrations
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Figure 9 - Local comparison of CAMS reanalysis and simulated PM10 surface concentrations
with INDAAF network observations for a) Cinzana and b) Bambey stations. wrf_chimere-G,
wrf_chimere-M and wrf_chimere-C refer to the WRF-CHIMERE simulations using GOCART,
MERRA2 and CAMS as dust aerosol initial  and boundary condition dataset respectively.
MBE is the mean bias error and MAE refers to the mean absolute error.  

The three simulations properly capture the dynamics of the PM10 surface concentration with
respect to the INDAAF ground measurement (Fig. 9) as correlation coefficients are around
0.6 at Cinzana and close to 0.7 at Bambey. The WRF-CHIMERE simulations driven with
MERRA2 and CAMS dust  aerosol datasets overestimate the surface PM10 concentration
peaks for Bambey (Fig. 9a) and Cinzana (Fig. 9b), with high positive bias values of around
63 g.m-3 at  Bambey and 247 g.m-3 at  Cinzana.  The latter  station is closer  to the dust
aerosol  sources.  In  contrast,  the  simulation  using  the  GOCART  dust  aerosol  dataset
demonstrates  superior  performance  in  representing  this  variable,  with  an  MAE  that  is
approximately 60% and 70% lower than the two other simulations at Bambey and Cinzana,
respectively.  
Furthermore, the uncertainty associated with the selection of initial and boundary condition
dataset for dust aerosols is of a comparable magnitude to the simulation errors observed for
surface PM10 concentrations. Section 3.4 partly explains these discrepancies in surface PM10

concentration estimates between the simulation driven with the GOCART climatology and
those driven with CAMS or MERRA2 reanalysis in terms of aerosol size distribution. These
differences  may  also  be  attributed  to  variations  in  the  size  distribution  of  dust  aerosol
emissions or in the inflow of dust into the simulation domain and its aerosol size distribution.
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Furthermore,  Fig.  9  indicates  that  the  CAMS  reanalysis  provides  reliable  estimates  of
surface  PM10 concentration,  as  evidenced  by  the  fact  it  has  the  lowest  MAE  values.
However, the Bambey and Cinzana ground measurements, which are the only two available
for the case study, are situated at a considerable distance from the dust sources, limiting our
ability to assess the accuracy of the CAMS reanalysis in capturing the dust event. Moreover,
the CAMS reanalysis exhibits a negative bias at Cinzana, which is the closest site to the dust
sources.

Figure 10 - a) Mean from March 28th-00 UTC to April 2nd-00 UTC 2021 of CAMS reanalysis
PM10 surface concentration; x refers to the Bambey and + corresponds to Cinzana INDAAF
stations. For panels b, c and d, PM10 surface concentration mean differences from March
28th-00 UTC to April 2nd-00 UTC 2021 between each of the WRF-CHIMERE simulations
driven by GOCART, MERRA2 and CAMS, respectively, and the CAMS reanalysis.
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Figure 10 illustrates an overestimation of the PM10 concentrations as compared to the CAMS
reanalysis. This is particularly evident in dust source areas such as the Bodélé Depression.
The WRF-CHIMERE simulation driven with the GOCART dataset is the closest to the CAMS
reanalysis, with a mean estimate 3.6 times higher. However, this ratio reaches 8.6 for the
simulations driven with the CAMS and MERRA2 reanalysis dataset.
The mean standard deviation between the three WRF-CHIMERE simulations is 35% of their
mean PM10 surface concentration estimate. Consequently the uncertainty in the estimation of
dust PM10 surface concentration associated with the selection of the dust aerosol initial and
boundary condition dataset is significant. The discrepancies between the simulation using
the GOCART climatology and the two other ones using CAMS or MERRA2 reanalysis can
be partly explained by the differences in the simulated aerosol size distribution, as shown in
section 3.4.

3.6. Dust emissions

Figure 11 - a) Total dust emissions flux from March 28th-00 UTC to April 2nd-00 UTC 2021,
averaged between the three WRF-CHIMERE simulations. For panels b, c and d, total dust
emissions individual differences between each of the WRF-CHIMERE simulations driven by
GOCART, MERRA2 and CAMS, respectively, and the mean of the three WRF-CHIMERE
simulations.

In terms of dust emissions (Fig.  11), the Bodélé Depression is, as expected, identified as
the primary dust source area, with emissions reaching up to 244 g/m2. The differences of the
simulations  with  each of  the  three dust  aerosol  initial  and  boundary  conditions  dataset,
relative to their  mean, exhibit  highest  values in  the source zones located at  the Bodélé
Depression and the South Atlas. Nevertheless, it is worth noting that there is a factor of 100
in between the emissions in  the Bodélé area (approximately 200g/m2)  and the observed
differences between the three simulations. Consequently, the uncertainties in dust emissions
resulting from the choice of the dust aerosol initial and boundary conditions dataset can be
considered  negligible.  As  emissions  are  primarily  influenced  by  surface  wind,  it  can  be
inferred that the uncertainty generated by the dust aerosol driving dataset on the surface
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wind is negligible too, which is confirmed by Fig. S4. Additionally, the size distributions of the
aerosols emitted during the case study are found to be identical (not shown). Therefore, the
differences in  dust surface concentration  AOD  and dust  aerosol size distribution may be
partlyconcentration may be attributed to the dust flows at the boundaries of the domain and
are not linked to differences in simulated dust emissions within the domain. However, there
is no observational data available to enable a quantitative evaluation of the accuracy of the
emissions computed within the WRF-CHIMERE simulations.  

3.7. Dust boundary flux

Figure 12 - Cumul of the dust flux at the eastern boundary of the simulation from March
28th-00 UTC to April 2nd-00 UTC 2021 for the WRF-CHIMERE simulation with a) GOCART,
b) MERRA2 and c) CAMS as dust aerosol initial and boundary conditions dataset; d) Dust

31

769
770
771
772
773
774
775
776
777
778

779

780
781
782
783

31



size distribution at the eastern boundary limit average during the case study period, from the
surface to 200hPa and over latitude. In panel abc, the dust flux is derived as the product
between the dust aerosol concentration and the zonal wind, and positive values of the dust
flow indicate a flow entering the simulation domain.

As  shown  in  Fig.  1b,  the  dust  event  is  associated  with  a  strong  Harmattan  flow,
characterised by a northeasterly flow in the lower layer. It is thus interesting to quantify the
dust inflow associated with each of the dust aerosol initial and boundary conditions dataset
for the eastern domain boundary. The lowest dust flux is observed with GOCART (Fig. 12a),
with a maximum of approximately 480 g/m2. In contrast, MERRA2 and CAMS (Fig.  14 b
and c respectively) exhibit higher dust fluxes, with maximum values of around 1650 g/m2.
The maximum flow is around 10°N for MERRA2, while for CAMS, it is closer to 16°N. Given
that GOCART is a climatology, it is reasonable to expect a lower dust flux compared to the
CAMS  and  MERRA2  reanalyses,  which  are  real  case  simulations  incorporating  data
assimilation of AOD. This is particularly true for the presented case study, which involves an
intense dust event associated with a Harmattan flow.
There are also significant differences in both quantity and distribution by aerosol size bin
(Fig. 12d). MERRA2 exhibits a strong dominant mode for the class between 1.14 µm and
2.50 µm, while CAMS shows significant values from 0.52 µm to 40 µm, with a maximum for
the size class between 0.52 µm and 1.14 µm. Finally, the GOCART model displays a lower
variability between 1.14 µm and 40.00 µm, with the maximum occurring for the size class
between 2.55 µm and 5.00 µm.
The eastern dust fluxes at the boundary significantly vary depending on the dataset used as
dust aerosol initial and boundary conditions, both in terms of quantity and size distribution.
The reanalysis  dataset,  CAMS and MERRA2,  are  expected to provide a more accurate
representation of dust flux in terms of quantity as they are real case simulations assimilating
observational data in their calculations, as compared to GOCART which is a climatology.
However, GOCART provides a more comprehensive description of aerosol size distribution
with seven classes, in comparison to CAMS, which has only three classes but proposes a
higher  horizontal  resolution.  While  GOCART considers  the  effect  of  aerosol  size  to  be
essential, CAMS assumes the horizontal resolution to be a key parameter. MERRA2 is the
most comprehensive of the three datasets, with the highest horizontal resolution, and an
aerosol size distribution that is close to the GOCART one with five classes.  Despite the
absence of observational data that would permit a quantitative evaluation of the eastern dust
fluxes,  the  aforementioned  elements  suggest  that  the  MERRA2 dataset  might  be  more
accurate.  
As a result, and in consideration of the negligible uncertainty in dust emissions within the
simulation domain related to the choice of the dataset for dust aerosol initial and boundary
conditions  (see 3.6),  these differences in  eastern  dust  fluxes  appear  to  account  for  the
uncertainties of the simulated surface dust aerosol concentrations (see 3.5) and dust aerosol
size distribution AODs (see 3.43).

3.8. Discussions
The evaluation of the simulated GHI at the Zagtouli solar power plant and the Banizoumbou
site (Fig. 2)  indicates a significant enhancement in surface solar irradiance  shows a clear
improvement  in  its  estimation  when  WRF  is  coupled  with  CHIMERE.  Specifically,  to
CHIMERE rather than not as the local MAE is reduced by approximatelyaround 75%. This
confirms the relevance of incorporating the dust radiative effect with a coupling approach, in
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comparison  with  the  operational  forecasts  currently  employed  based  on  meteorological
models alone. During the dry season, dust events similar to the one presented here, with
emissions at Bodélé and then transport of the plume westwards, are common. This work
therefore calls for forecasters in the photovoltaic sector to better account for the desert dust
cycle in their forecast products. This local evaluation also highlights the potential benefits of
using a regional  model  rather than a global  product,  as the WRF-CHIMERE simulations
outperform the CAMS gridded solar  radiation  product  with an average MAE reduced by
approximately 38% at the Zagtouli solar farm and by 70% at the Banizoumbou site, which is
closer to dust sources. These discrepancies are corroborated by the regional comparison
presented in Figure 3, which reveals that the mean WRF-CHIMERE GHI estimate is 5%
lower  than  the CAMS solar  radiation  dataset.  Additionally,  the  latter  does  not  exhibit  a
geographical pattern with lower GHI estimation along the dust plume trajectory, in contrast to
the WRF-CHIMERE simulations.  These results confirm those from Sawadogo et al. (2023)
who recently showed that the CAMS reanalysis have low performances in estimating solar
irradiance during high AOD episodes like the one studied here. Furthermore, the comparison
reveals that incorporating indicates that the incorporation of  dust in the simulation reduces
surface solar  irradianceradiation by  18%  infor this  case study.  This  reduction  is  notably
higher but remains within the same order of magnitude as previous studies that integrated
dust aerosol information for solar estimation. For example, Masoom et al. (2021) in India and
Mostamandi et al. (2023) in the Arabian Peninsula reported GHI reductions due to dust of
approximately  5-10%.  This  discrepancy  underscores  the  potential  variability  of  the  dust
impact on solar irradiance depending on the method used to account for dust effects in the
simulations. In light of the anticipated expansion of PV production in West Africa, this point
underscores  the  potential  consequences  of  such  dust  events  if  they  are  not  accurately
predicted.

The evaluation of local surface temperature (Fig. 4) reveals contrasting results regarding the
effectiveness of the coupled approach. It demonstrates an average local MAE reduction of
approximately 10% compared to the WRF-only simulation. However, the main differences
occur mainly at night, when no photovoltaic is produced, as previously observed by Yue et
al.  (2010)  and Briant  et  al.  (2017).  It  can be attributed to the opposing radiative forcing
effects of dust aerosols across different wavelength ranges. In the case of longwave, which
corresponds to terrestrial  radiation,  the presence of dust aerosols has a warming effect.
Conversely,  for  shortwave,  which  corresponds  to  solar  radiation,  the  presence  of  dust
aerosols induces a cooling effect.  Consequently,  during night-time when solely terrestrial
radiation  is  present,  there  is  an  increase  in  surface  temperature.  During  day-time  a
competition between the warming effect of terrestrial radiation and the cooling effect of solar
radiation ensues. The net impact is a decrease in surface temperature, indicating that the
effect  of  solar  radiation  dominates,  with  the cooling  effect  exceeding the warming effect
(Sokolik  and Toon,  1999)..  The regional  evaluation  in  Fig.  5  confirms these contrasting
results and indicates a reduction of regional MAE by about 14% with the coupling rather than
WRF alone. The overestimation of surface temperature in dusty areas with the coupling, not
present in the WRF only simulation,  reveals  the dominant  aerosol  warming effect  during
night  time as compared to the cooling  effect  during daytime. These statements strongly
depend on the accuracy of the ERA5 reanalysis which serves as reference. ERA5 integrates
data assimilation but does not consider aerosol information in its calculation.  Due to the
limited ground measurements in the Saharan region to constrain the reanalysis, it is possible
that ERA5 underestimates the aerosol effect in dusty areas.   
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The regional evaluation in Fig. 5 confirms these contrasting results and indicates a reduction
of regional MAE by about 14% with the coupling rather than WRF alone. The overestimation
of  surface  temperature  in  dusty  areas  with  the  coupling,  not  present  in  the  WRF only
simulation, reveals the dominant aerosol warming effect during night time as compared to
the cooling effect during daytime. These results align with those of Briant et al. (2017), who
estimated dust-induced warming of up to +5°C during nighttime and cooling of approximately
-1°C during daytime in a 2012 dust event in West Africa. These statements strongly depend
on the accuracy of the ERA5 reanalysis which serves as reference. ERA5 integrates data
assimilation of  temperature and incorporates aerosol radiative effects through prescribed
monthly climatologies from the GOCART model, but does not dynamically simulate aerosols.
Due to the limited ground measurements in the Saharan region to constrain the reanalysis,
and to the significant biases that can come when considering a coarse climatology for the
radiative effects of aerosols to represent an intense dust event,  it  is  possible that ERA5
underestimates the aerosol effect in dusty areas.   

Nevertheless,  despite  the  improvements  demonstrated  in  solar  irradianceradiation and
surface temperature estimation, the WRF-CHIMERE simulations exhibit a notable positive
bias in terms of AOD, as evidenced by the local and regional evaluations presented in Figs.
6  and  7.  This  overestimation  cannot  be  attributed  solely  to  differences  in  aerosol
concentrations, as the simulations yield markedly disparate surface concentrations of PM10,
depending on the dust aerosol initial and boundary condition dataset chosen (Fig. 10) , while
this discrepancies do not appear in the AOD estimates. However, the results from Yahi et al.
(2013) and Léon et al. (2020) emphasized the importance of considering dust plume height
when linking surface PM10 concentrations to AOD. Therefore,  differences in  the vertical
distribution of the dust plume, not evaluated in this study due to the lack of quantitative
observational data, could account for part of the observed discrepancies between simulated
AODs and surface PM10 concentrations. This excess of aerosol load may be attributed to an
overestimation of emissions within the domain, but this cannot be verified as there is not any
such measurement. The incoming flux of dust in the domain plays a minor role as shown in
Fig.  12 where the flux significantly  also varies depending on the dust  aerosol initial  and
boundary condition dataset employed, while these differences are not any more present in
the simulated AOD estimates.  Additionally,  the underestimation of  aerosol deposition,  by
sedimentation (not studied in this research) could be at the origin of the overestimation of the
simulated dust loads. Finally, another potential explanation for these AOD biases may be the
inaccuracies in the dust radiative properties incorporated in the CHIMERE model calculation
(see Table S1 and S2). These depend on the mineralogical composition of the desert dust
particles  emitted,  which are considered uniform in  this  work.  The radiative  properties of
aerosols  also  depend on their  granulometry.  In  the CHIMERE model,  dust  aerosols  are
treated as spherical particles in the calculation of their radiative properties using Mie theory,
which introduces biases. Adbiyi et al. (2023) showed that ellipsoidal dust particles have a
slightly  higher  mass  extinction  efficiency  compared  to  spherical  particles.  As  a  result,
accounting for ellipsoidal dust aerosols would lead to a slight increase in AOD associated
with  a  small  decrease  in  GHI.  This  study  further  indicates  that  dust  particles  with  radii
smaller than 20.0 µm are the primary contributors to dust AOD for shortwave radiation, with
the contribution from larger particles being an order of magnitude lower. Therefore, including
particles larger than 40.0 µm in the CHIMERE model would not significantly affect AOD and
GHI estimates. This is corroborated by Mostamandi et al. (2023), who demonstrated that
dust particles with radii smaller than 3 µm are primarily responsible for the reduction in solar
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irradiance, while particles larger than 10 µm mainly contribute to dust deposition, which was
not examined in this study.               

The  uncertainty  associated  with  the  choice  of  the  large  scale  dust  aerosol  initial  and
boundary condition dataset is very low when considering the variables of interest for solar
production, namely GHI and surface temperature (Fig. 3 and 5). This uncertainty is also low
compared to the performance of simulations for AOD estimation (Fig. 7). This result is similar
when examining dust emissions within the domain, which are nearly identical for the three
coupled simulations (Fig. 11). This can be explained by the fact that dust emissions depend
on the cubesquare of surface wind speed (Marticorena and Bergametti, 1995) which present
no significant signature of the selection of the dust aerosol initial and boundary conditions
(Fig.  S4).  The aerosols  emitted within  the chosen domain  are much greater  than those
entering, as the domain accounts for the main source zones. This is why the simulations are
not that sensitive to dust aerosol large-scale dataset employed. The results regarding the
uncertainty associated with the choice of  the dust  aerosol  initial  and boundary condition
dataset differs when examining various elements of the dust life cycle. Indeed, aerosol size
distributions vary significantly between the simulation driven with GOCART on one hand,
and simulations driven with CAMS and MERRA2 on the other hand. GOCART climatology
over-represents  aerosols  larger  than  10  µm  compared  to  the  CAMS  and  MERRA2
reanalyses. These differences partially account for the significant deviation in surface PM10

concentration  estimates (Fig.  10),  indicating  that  reanalysis-type datasets result  in  much
higher values, up to 3 times higher, compared to climatological-type data which is closer to
ground  observations.  The  dust  flux  entering  the  domain  may  also  partly  explain  these
differences. In fact, this flux is very low with GOCART, with values up to 3.5 times lower than
CAMS and MERRA2 (Fig. 12). The size distribution of this incoming aerosol flux is also a
determining factor.

4. Conclusion and perspectives
This  study  aims to  evaluate  the ability  of  the WRF-CHIMERE coupling  to  simulate  GHI
during a typical dust event in the dry season in West Africa. This event is characterised by a
Harmattan  flux  associated  with  significant  desert  dust  emissions  over  the  Bodélé
Depression,  with  the  dust  plume  subsequently  transported  westward.  This  work
demonstrates the utility of coupling a meteorological model with a desert aerosol life cycle
model  to  represent  such  events,  particularly  for  improving  solar  forecasts.  Indeed,  GHI
estimations are markedly enhanced with this approach compared to using a meteorological
model alone with a 75% reduction of local MAE. Nevertheless, the performance of the WRF-
CHIMERE simulations in representing the aerosol load of this event is more controversial.
There is an overall overestimation of AOD and PM10 surface concentration by the coupled
model in the North Sahelian-Saharan zone.
This work also aims at investigating whether the performance of  the simulations can be
improved  by  changing  the  dust  aerosol  initial  and  boundary  condition  dataset,  and  to
estimate the uncertainty associated with this choice. The results show that this selection has
almost no influence on the estimation of the solar  irradianceradiation, surface temperature
and AOD. On the contrary, the choice of the dust aerosol initial  and boundary condition
dataset has a significant  impact on the surface PM10 concentration and the aerosol size
distribution.
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This work outlines new research perspectives. Firstly, we observe the difficulty of evaluating
simulations  in  West  Africa  due  to  the  scarcity  of  available  observations.  Establishing  a
denser measurement network or conducting observation campaigns,  particularly  for GHI,
would  help  research on solar  estimation  and forecasting  in  this  region.  Additionally,  the
WRF-CHIMERE  simulations  demonstrate  significant  biases  in  terms  of  AOD  and  PM10

surface concentration which are not fully explained here. One potential explanation for this is
an  overestimation  of  dust  emission,  for  which  no  evaluation  is  possible.  Furthermore,
studying aerosol deposition (not conducted in this work) would complement the study of the
desert  aerosol life cycle. On the one hand, an underestimation of deposition might be a
contributing factor to the overestimation of the simulated aerosol load. On the other hand,
dust  deposition  on  solar  panels  affects  solar  production  by  masking  the  available  solar
irradianceradiation (soiling  effect),  and  this  should  be  taken  into  account  in  forecasting
systems to conduct optimised cleaning operations. Finally, the study focuses on a typical
dust  event  during  the  dry  season,  presenting  essentially  aerosol-radiation  interaction.  It
could be beneficial to test such simulation configuration for more complex cases involving
cloud presence.  Indeed,  the interaction  between aerosols  and clouds have a significant
impact on solar forecasting by increasing albedo, extending cloud lifespan, and promoting
cloud  formation  through  increased  condensation  nucleus  concentration  (indirect  aerosol
effects).

Code and data availablitiy
WRF namelist configuration files, CHIMERE parameter files, Python codes exploited in this
study and GOCART climatology  data  can be found on the following  Zenodo  repository:
https://zenodo.org/records/10808476 
ERA5  data  can  be  found  on  the  Copernicus  Climate  Data  Store  service  :
https://cds.climate.copernicus.eu/cdsapp#!/home
CAMS  data  were  downloaded  on  the  Copernicus  Atmosphere  Data  Store  service  :
https://ads.atmosphere.copernicus.eu/cdsapp#!/home
MERRA2  data  can  be  found  on  the  dedicated  platform  from  NASA  :
https://goldsmr5.gesdisc.eosdis.nasa.gov/data/MERRA2/
Data  from  AMMA ground  measurements  stations  can  be  accessed  from  the  dedicated
website : https://amma-catch.osug.fr/-jeux-de-donnees- 
INDAAF web page allows access to the data : https://indaaf.obs-mip.fr/catalogue/
AERONET data measurements and inversion products are available through the following
link: https://aeronet.gsfc.nasa.gov/
The MODIS satellite observations are available on the “Level-1 and Atmosphere Archive &
Distribution  System  Distributed  Active  Archive  Center”  platform  from  NASA  :
https://ladsweb.modaps.eosdis.nasa.gov/
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