Supplementary Information

Influence of minor hydrocarbon seepage on sulfur cycling in marine subsurface sediments and its significance for hydrocarbon reservoir detection

Ellen Schnabel¹, Aurèle Vuillemin¹, Cédric C. Laczny², Benoit J. Kunath², André R. Soares³, Jens Kallmeyer^{1*} and the PROSPECTOMICS Consortium⁺

Content

5

- Supplementary Figure S1. Sulfate profiles, modeled and measured sulfate reduction rates
- Supplementary Figure S2. Alkalinity and sulfide profiles
- 10 Supplementary Figure S3. Sulfate and Alkalinity flux
 - Supplementary Figure S4. Phylogenetic tree of rpoD protein-encoding genes
 - Supplementary Figure S5. Phylogenetic tree of dsrA-D protein-encoding genes
 - Supplementary Figure S6. Phylogenetic tree of *aprA-B* protein-encoding genes.
 - Supplementary Figure S7. Phylogenetic tree of mcrA-G protein-encoding genes
- 15 Supplementary Table S1. Results of *de novo* assemblies
 - Supplementary Table S2. Pearson correlations

Supplementary Figure S1. Measured pore water sulfate concentrations (blue dots) and modelled sulfate reduction rates (red lines) and sulfate concentrations (blue lines).

Supplementary Figure S2. Measured pore water alkalinity (black dots) and sulfide profiles (yellow dots) and their respective

25 linear regressions

Supplementary Figure S3. Fluxes of SO_4^{2-} (top) and HCO_3^{-} (bottom) at each sampling site.

Supplementary Figure S4. Phylogenetic tree of *rpoD* **protein-encoding genes.** PhyML maximum likelihood tree of transcript ORFs (708 aligned amino acids) encoding the RNA polymerase sigma-70 factor (*RpoD*), based on 100 bootstrap replicates with BLOSUM62 as evolutive model. Boldface types signify sequence accession numbers to the NCBI database.

Supplementary Figure S5. Phylogenetic tree of *dsrA-D* **protein-encoding genes.** PhyML maximum likelihood tree of transcript ORFs (493 aligned amino acids) encoding the dissimilatory sulfite reductase subunit alpha (*dsrA*), beta (*dsrB*) and

delta (*dsrD*), based on 100 bootstrap replicates with BLOSUM62 as evolutive model. Boldface types signify sequence accession numbers to the NCBI database.

Supplementary Figure S6. Phylogenetic tree of *aprA-B* **protein-encoding genes.** PhyML maximum likelihood tree of transcript ORFs (714 aligned amino acids) encoding the adenylylsulfate reductase subunit alpha (*aprA*) and beta (*aprB*), based

on 100 bootstrap replicates with BLOSUM62 as evolutive model. Boldface types signify sequence accession numbers to the

NCBI database.

mcrA-G transcrip PhyML Blosum62 Likelih	ts <u>scale</u> od 0.20
HC-positive sites	NAT11324.1 ANME-1 single-cell genome, Gulf of Mexico sediment NAS89931.1 ANME-1 single-cell genome, Gulf of Mexico sediment CAE46369.1 archaeon, methane-rich Black Sea microbial mat Zone 1 - Core 03 (transcript) ANME-1 NOR77166.1 New Zealand Glendhu Ridge methane seep AAU84252.1 reverse methanogenesis archaeon, Eel River sediment Zone 10 - Core 14 (transcript) AUB255422.1 euryarchaeote, South China Sea Jiaolong cold seep MQY54111.1 Eastern North Pacific methane hydrate sediment AAU82226.1 reverse methanogenesis archaeon, Eel River sediment AAU83542.1 reverse methanogenesis archaeon, Eel River sediment AAU82391.1 reverse methanogenesis archaeon, Eel River sediment RCV63910.1 Hydrate Ridge methane seep
component A2	AAU82224.1 reverse methanogenesis archaeon, Eel River sediment AAU82225.1 reverse methanogenesis archaeon, Eel River sediment AAU82225.1 reverse methanogenesis archaeon, Eel River sediment AAU82225.1 reverse methanogenesis archaeon, Eel River sediment Cone 1 - Core 03 (transcript) AAU82869.1 reverse methanogenesis archaeon, Eel River sediment Zone 1 - Core 03 (transcript) AAU82869.1 reverse methanogenesis archaeon, Eel River sediment Zone 1 - Core 03 (transcript) AAU82869.1 reverse methanogenesis archaeon, Eel River sediment Zone 1 - Core 03 (transcript) AAU82869.1 reverse methanogenesis archaeon, Eel River sediment Zone 1 - Core 03 (transcript) AAU82869.1 reverse methanogenesis archaeon, Eel River sediment AAU82202.1 reverse methanogenesis archaeon, Eel River sediment AAU82869.1 reverse methanogenesis archaeon, Eel River sediment AAU82869.1 reverse methanogenesis archaeon, Eel River sediment AAU82869.1 reverse methanogenesis archaeon, Eel River sediment AAU82202.1 reverse methanogenesis archaeon, Eel River sediment AAU82869.1 reverse methanogenesis archaeon, Eel River sediment AAU82869.1 reverse methanogenesis archaeon, Eel River sediment AAU82202.2 reverse methanogenesis archaeon, Eel River sediment AU82202.2 reverse methanogenesis archaeon, Eel River sediment

45 **Supplementary Figure S7. Phylogenetic tree of** *mcrA-G* **protein-encoding genes.** PhyML maximum likelihood tree of transcript ORFs (698 aligned amino acids) encoding the methyl-coenzyme M reductase reductase subunit alpha (*mcrA*), beta (*mcrB*), gamma (*mcrG*) and component A2, based on 100 bootstrap replicates with BLOSUM62 as evolutive model. Boldface types signify sequence accession numbers to the NCBI database.

Supplementary Table S1. Assembly statistics for all samples.

		Sampling area				
		Zone 1	Zone 10	Zone 12	Reference 5	Reference 6
MetaG	Replicates	4	2	2	3	1
	Reads	25119029	13313285	12378731	21674342	7,700,785
	Scaffolds	228,637	153,150	144,433	285,446	116,305
	Average length	2,780	2,876	2,361	2,443	2,344
	Predicted genes*	353,429	233,499	234,922	404,878	144,642
	ORFs	153,976	111,101	108,403	140,145	85,781
	High-Q MAGs	61	51	45	98	23
MetaT	Replicates	1	1	1	1	1
	Sequencing depth	93.9 Gps (pooled)			1.2 Gps (pooled)	
	Mapped reads	86.30%	94.60%	47.90%	95.20%	94.70%
	ribosomal RNA	72.5%	80.3%	20.5%	78.8%	78.2%
	Assigned CDS	8.9%	2.9%	15.7%	7.0%	5.6%
	Predicted genes	4,072	35,288	1,151	6,169	636
	ORFs	3,743	24,098	1,137	5,461	614

Supplementary Table S2. Pearson correlations

Zone	Core	SO ₄ ²⁻ /Alkalinity	SO ₄ ²⁻ /Sulfide	Alkalinity/Sulfide
Ref5	1	-0.51	N.A.	N.A.
Ref5	2	-0.60	N.A.	N.A.
Ref5	3	-0.90	N.A.	N.A.
Ref5	4	-0.57	N.A.	N.A.
Ref5	5	0.53	N.A.	N.A.
Ref6	6	1.00	N.A.	N.A.
Ref6	7	-0.84	N.A.	N.A.
Ref6	8	-0.98	N.A.	N.A.
Ref6	9	-0.91	N.A.	N.A.
Ref6	10	-0.76	N.A.	N.A.
Z01	1	-0.99	-0.86	0.87
Z01	2	-0.97	-0.98	0.92
Z01	3	-0.99	-0.93	0.99
Z01	4	-0.98	-0.92	0.88
Z01	5	-0.99	-0.98	0.97
Z01	6	-1.00	-0.65	0.60
Z01	7	-0.96	-0.89	0.75
Z01	8	-0.99	-0.68	0.61
Z01	9	-0.82	-0.97	0.91
Z01	10	-0.97	-0.52	0.55
Z01	11	-0.97	-0.99	0.93
Z01	12	-0.98	-0.97	0.94
Z01	14	-0.97	N.A.	N.A.
Z01	15	-0.99	N.A.	N.A.
Z01	16	-0.99	N.A.	N.A.
Z10	1	-0.95	N.A.	N.A.
Z10	7	-1.00	-1.00	1.00
Z10	8	-0.76	-0.62	0.98
Z10	9	-0.99	-0.90	0.94

710	10	0.08	NA	ΝA	
210	10	-0.98	п.л.	N.A.	
Z10	11	-1.00	N.A.	N.A.	
Z10	17	-0.94	-0.90	0.98	
Z12	1	-0.97	N.A.	N.A.	
Z12	2	-0.95	N.A.	N.A.	
Z12	3	-0.58	N.A.	N.A.	
Z12	4	-0.90	N.A.	N.A.	
Z12	5	-0.92	N.A.	N.A.	
Z12	6	-0.82	N.A.	N.A.	
Z12	7	-0.98	N.A.	N.A.	
Z12	8	-0.99	N.A.	N.A.	
Z12	9	-0.99	N.A.	N.A.	
Z12	10	-0.99	N.A.	N.A.	
Z12	11	-0.97	N.A.	N.A.	
Z12	12	-0.99	N.A.	N.A.	
Z12	13	-0.97	N.A.	N.A.	
Z12	14	-0.86	-0.87	0.63	
Z12	15	-0.98	N.A.	N.A.	
Z12	16	-0.99	N.A.	N.A.	
Z12	17	-0.98	N.A.	N.A.	