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Abstract. Long-term simulations
:::::::::
Simulations

:
of the Greenland ice sheet (GrIS) often rely on parameterisation schemes for

the precipitation rates or
::
at

::::::::
millennial

:::::
time

::::
scale

::::
and

::::::
beyond

:::::
often assume spatially and temporally uniform temperature and

precipitation anomalies over long time scales
::::::::
anomalies

::::
and

::::::::::
precipitation

::::::::::
sensitivities

::::
over

:::::
these

::::
time

::::::
scales,

::
or

:::
rely

:::
on

::::::
simple

:::::::::::::
parameterisation

::::::::
schemes

:::
for

:::
the

::::::::::
precipitation

:::::
rates. However, there is no a priori reason to assume spatially and temporally

uniform sensitivities across the whole GrIS. Additionally, parameters are often based on older generations of climate models5

and it
::
It is often assumed that precipitation increases with the standard value of circa 7

:::::::::::::
thermodynamic

::::::
scaling

::
of

::::
∼ 7%/K

based on
::::::
derived

::::
from

:
the Clausius-Clapeyron relation

:::
and

::::
often

:::::
based

:::
on

:::::
older

:::::
model

::::::::::
generations. Here, we give an update

on the commonly used parameters used for long-term modelling of the Greenland ice sheet
::::
GrIS, based on the output of the

latest generation of coupled Earth system models (CMIP6), using the historical time period and four different future emission

scenarios. We show that the precipitation sensitivities in Greenland have a strong spatial dependence, with values ranging from10

:::
less

::::
than

:
0%/K in southern Greenland up to 15

::
to

::::
more

:::::
than

::
10%/K in northeastern Greenland relative to the global mean

temperature (GMT)
::::
local

::::::
annual

:::::
mean

::::::::::
near-surface

::::::::::
temperature

:
in the CMIP6 ensemble mean. Additionally, we show that the

annual mean temperatures in Greenland increase between 1.29 and 1.53 times faster than the GMT, with northern Greenland

warming up to two times faster than southern Greenland in all emission scenarios. However, we also show that there is a

considerable spread in the model responses
:::
that

::::
can,

::
at

::::
least

::::::::
partially,

::
be

::::::::
attributed

:::
to

:::::::::
differences

::
in

:::
the

:::::::
Atlantic

::::::::::
meridional15

:::::::::
overturning

:::::::::
circulation

::::::::
(AMOC)

::::::::
response

:::::
across

::::::
models. Finally, we use the state-of-the-art ice sheet model PISM

::::::
Parallel

:::
Ice

::::
Sheet

::::::
Model

:::::::
(PISM) to show that assuming spatially uniform temperature and precipitation anomalies leads to

:::
and

::::::::::
sensitivities

::::
leads

::
to

:::::::::::::
overestimation

::
of

::::::::::
near-surface

:::::::::::
temperatures

::::
and

:::::::::::::
underestimation

::
of

:::::::::::
precipitation

::
in

::::
key

::::::
regions

::
of

:::
the

:::::
GrIS.

::
In

:::::
turn,

:::
this

:::
can

::::
lead

::
to

:
substantial overestimation of ice loss in the long-term behaviour of the GrIS.
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1 Introduction20

The Greenland ice sheet (GrIS) is the second largest terrestrial ice sheet with the potential of more than 7.4 m of sea level rise

when completely melted (Morlighem et al., 2017). Increasing atmospheric and oceanic temperatures due to climate change

(Straneo and Heimbach, 2013; Fettweis et al., 2017) led to more than a 5-fold increase in ice loss from the Greenland ice

sheet in the last three decades (Shepherd et al., 2020; Otosaka et al., 2023). Land ice melt already contributed more than

half of the global sea level rise since 1993 with an acceleration in recent years (Edwards et al., 2021). The
:::::::::::
(IPCC, 2022)

:
.25

:::
The

::::
total

:
mass balance of the GrIS, i.e. the difference between accumulation and ablation

::::
total

::::
mass

::::
gain

::::
and

::::
loss, has been

decreasing steadily in the last decades, with an average yearly mass loss of 169± 9Gt/yr between 1992 and 2020. This
::::
2020

:::::::::::::::::
(Otosaka et al., 2023)

:
.
::::
This

:::
has

:
caused a cumulative global sea level rise of more than 12 mm (Shepherd et al., 2020; Otosaka

et al., 2023).
:::::::::::
Alternatively,

:::
the

::::
total

:::::
mass

::::::
balance

:::
can

:::
be

::::
seen

::
as

:::
the

:::
sum

:::
of

::
the

:::::::
surface

::::
mass

:::::::
balance

::::::
(SMB),

:::
the

::::::::
discharge

::::
into

::
the

::::::
ocean

:::
(D)

:::
and

:::
the

:::::
basal

::::
mass

:::::::
balance

:::::::
(BMB). The decrease in

::::
total mass balance of the GrIS in the last decades is divided30

approximately equally between discharge due to ice dynamics
::
(D)

:
and increased surface melt

:
,
:::
i.e.,

:::::::::
decreasing

:::::
SMB

:
(van den

Broeke et al., 2009; Choi et al., 2021). However, projections show that increases in Greenland surface melt will dominate the

decrease of
:
in
:

the mass balance in the long-term,
::::::
mostly

::::
due

::
to

:
a
:::::::::

retreating
:::
ice

::::
front

::::
and

:::
the

::::::::::
diminishing

::::::
contact

:::
of

:::
the

:::
ice

::::
sheet

::::
with

:::
the

:::::
ocean

:
(Goelzer et al., 2020; Choi et al., 2021; Payne et al., 2021).

Many studies have investigated the past and future evolution of the Greenland ice sheet
::::
GrIS

:
from short to long timescales,35

using computational methods ranging from simple conceptual models (Levermann and Winkelmann, 2016; Boers and Rypdal,

2021), stand-alone ice sheet models (Bochow et al., 2023),
::::::::::::::::::::::::::::::::::::::::::::::::::::
(Bochow et al., 2023; Goelzer et al., 2020; Seroussi et al., 2020)

::
to

Earth system models
::::::
(ESMs) of intermediate complexity

:::
and

:::
full

::::::::::
complexity with dynamically coupled ice sheets (Robinson et al., 2012; Gregory et al., 2020; Höning et al., 2023, 2024)

, to full Earth system models (ESMs) (Muntjewerf et al., 2020a, b; Madsen et al., 2022)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Robinson et al., 2012; Gregory et al., 2020; Höning et al., 2023, 2024; Muntjewerf et al., 2020a, b; Madsen et al., 2022)

. In the latest generation of comprehensive ESMs
::::
from

:::
the

:::
6th

::::::
phase

::
of

:::
the

:::::::
coupled

:::::
model

::::::::::::::
intercomparison

::::::
project

::::::::
(CMIP6)40

::::::::::::::::
(Eyring et al., 2016)

:
, the ice sheets were not fully bidirectionally coupled to the other components, however recently

:
.
::::::::
However,

dynamically coupled ice sheets have successfully been introduced
::::::
recently

:
in several ESMs (Muntjewerf et al., 2020b; Smith

et al., 2021). While this coupling is making rapid progress, parameterisation schemes are still needed, especially to investigate

the long-term behaviour of the ice sheets. Computational constrains make it currently virtually impossible to run ESMs on

millennial or even decamillennial timescales.45

:::::::::
Long-term

:::::::::
simulations

:::
of

:::
the

:::
ice

:::::
sheet

::::::
usually

::::
rely

:::
on

::::::::::::::
parameterisation

::::::::
methods,

:::
for

::::::::
instance,

:::
for

:::::::::
calculating

:::
the

::::::
SMB.

:::::::::
Commonly

::::
used

::::::::
methods

::::::
include

:::::::::::::
positive-degree

::::
day

:::::::
methods

::::::
(PDD)

::::::::::::::::::::::::::::::
(Huybrechts and Oerlemans, 1990)

:
or

:::::::
surface

::::::
energy

::::::
balance

:::::::
models

:::::::::::::::::::::::
(Krebs-Kanzow et al., 2021).

::::::
These

::::::
models

::::::::
calculate

:::
the

:::::
SMB

:::::
based

:::
on

::::::
several

::::::
inputs

::::
such

::
as

:::::::::::
near-surface

::::::::::
temperature

:::
and

:::::::::::
precipitation

:::::
fields.

:
Two of the most commonly used parameterisation approaches in

:::::::::
approaches

::
to

:::::::
produce

::::
these

::::::
forcing

:::::
fields

:::
for long-term ice sheet modelling are (1) the use of a fixed precipitation increase per degree of temperature50

increase (e.g., Saito et al., 2016; Aschwanden et al., 2019; Rodehacke et al., 2020; Garbe et al., 2020; Albrecht et al., 2020; Zeitz et al., 2022; Bochow et al., 2023)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Greve et al., 2011; Pollard and DeConto, 2012; Saito et al., 2016; DeConto and Pollard, 2016; Cuzzone et al., 2019; Aschwanden et al., 2019; Rodehacke et al., 2020; Garbe et al., 2020; Albrecht et al., 2020; Zeitz et al., 2022; Bochow et al., 2023)

and (2) the use of scalar temperature anomalies (e.g., Robinson et al., 2012; Aschwanden et al., 2019; Garbe et al., 2020; Zeitz et al., 2022; Bochow et al., 2023)
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::::::
uniform

::::::::::
temperature

:::::::::
anomalies

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Robinson et al., 2012; Pollard and DeConto, 2012; Cuzzone et al., 2019; Aschwanden et al., 2019; Garbe et al., 2020; Zeitz et al., 2022; Bochow et al., 2023)

:
.
::
In

::::
this

:::::
study,

::::
we

:::::
focus

:::
on

:::
the

::::::
effects

:::
of

::::::::::
assumptions

::::::
made

:::
on

:::
the

::::::
forcing

::::::
fields

:::::
rather

:::::
than

:::
the

:::::::
validity

::
of

::::
the

:::::
SMB55

:::::::::::::
parameterisation

::::::::
methods

:::::::::
themselves.

The expected increase in precipitation with increasing surface temperatures is based on the Clausius-Clapeyron relationship

(Clausius, 1850), which describes the increase of
::
in the saturation water vapour pressure with increasing temperature according

to

des
dT

=
L(T )es
RT 2

LT es
RT 2
::::

, (1)60

with the saturation vapour pressure es, the temperature T , the specific latent heat of evaporation of water L(T = 0◦C ) = 2.5 · 106
:
at

:::::::
T = 0◦C

:::::::::::::
LT = 2.5 · 106 Jkg−1 (Henderson-Sellers, 1984), and the specific gas constant for water vapour R= 462JK−1 kg−1.

The saturation water vapour pressure thus increases approximately exponentially with temperature. Assuming the precipitation

P is solely governed by the saturation water vapour pressure, then also P is expected to increase exponentially. Using the chain

rule, Equation 1 can be rewritten as65

k =
dln(es)

dT
=

L(T )

RT 2

LT

RT 2
::::

, (2)

with the growth constant k.

:::::
Using

::::::::
Equation

:
2
:::
for

::
a
::::::
simple

:::::::
estimate

::
of

:::
the

:::::::::::
precipitation

:::::::::
sensitivity

::::::
already

:::::
gives

::
a

::::::::
deviation

::::
from

:::
the

:::::::::
commonly

:::::
used

::::
value

::
of

::::::
7-8%. For inland Greenland the approximate annual inland near-surface temperature between 1996 and 2019 is −23◦C

(Jiang et al., 2020). Plugging the given values into Equation 2 gives k = 0.0861/K, which corresponds to a precipitation70

sensitivity of approximately 9%/K.

In the literature a precipitation sensitivity between 4 and 8%/K is commonly used for simulating the future evolution of

the Greenland ice sheet (Huybrechts, 2002; Robinson et al., 2012; Frieler et al., 2015; Saito et al., 2016; Goelzer et al., 2020;

Zeitz et al., 2021; Aschwanden et al., 2019; Zeitz et al., 2022; Bochow et al., 2023). However, these values are often based

on older generations or a limited selection of climate models (Robinson et al., 2012; Frieler et al., 2015; Aschwanden et al.,75

2019; Zeitz et al., 2022; Zhang et al., 2024), and sensitivities are derived using inappropriate
::::::::
inaccurate

:
regions for Greenland.

For example, they often include Iceland or parts of Canada, which can substantially influence the sensitivity (Frieler et al.,

2012). Additionally, the precipitation parameterisation as well as scalar
::::::
uniform

:
temperature anomalies assume that there is

a uniform change of temperatures and precipitation rates across Greenland, which is not necessarily true. It has been shown

using observations and models that, regionally, the deviations from the thermodynamic expectation around 7%/K can be highly80

significant (Traxl et al., 2021; Nicola et al., 2023).

Here, we give an update on some commonly used parameterisation factors, informed by the projections of the ESMs that

participated in the 6th phase of the coupled model intercomparison project (CMIP6 )
:::::::::
projections

:::::::::::::::::
(Eyring et al., 2016). We

analyse temperature and precipitation changes in Greenland from the year 1850 to 2100 for four future emission scenarios

(
:::::
Shared

::::::::::::::
Socio-economic

::::::::
Pathways

:::::::::
scenarios

::::::
(SSPs)

:::::
using

:::
the

:::::::
CMIP6

:::::::::
ensemble:

:
SSP1-2.6

::::
(Low

:::::::::
challenges

:::
to

:::::::::
mitigation85

:::
and

::::::::::
adaptation), SSP2-4.5

:::::::
(Medium

:::::::::
challenges

:::
to

:::::::::
mitigation

:::
and

::::::::::
adaptation), SSP3-7.0

:::::
(High

:::::::::
challenges

::
to

:::::::::
mitigation

::::
and

3



:::::::::
adaptation) and SSP5-8.5 ) using the CMIP6 ensemble

:::::
(High

::::::::
challenges

::
to
:::::::::
mitigation,

::::
low

:::::::::
challenges

::
to

:::::::::
adaptation)

::::::::::::::::::::::::::::::
(Riahi et al., 2017; Allan et al., 2021)

. Based on this analysis, we derive scalar
::::::
uniform

:
and spatially resolved temperature scaling factors and precipitation sensi-

tivities for Greenland.
::
To

:::::::
explain

:::::::::
differences

::
in

:::
the

:::::::::
individual

:::::
model

:::::::::
responses,

:::
we

:::::::::
investigate

:::
the

::::::::
influence

::
of

:::
the

:::::::::
respective

:::::
model

::::::::
resolution

::::
and

:::::::
changes

::
in

:::
the

:::::::
Atlantic

:::::::::
meridional

::::::::::
overturning

:::::::::
circulation

::::::::
(AMOC)

::
on

:::
the

::::::::::
near-surface

::::::::::
temperature

::::
and90

::::::::::
precipitation

::::::::
changes. Subsequently, we show the difference between using spatially uniform and spatially resolved tempera-

ture and precipitation anomalies,
::
as

::::
well

:::
as

:::
the

:::::::::::
corresponding

:::::::::::
sensitivities, for the short- and long-term evolution of the GrIS,

using the Parallel Ice Sheet Model (PISM) with the simple diurnal energy balance model (dEBM-simple)
:
(Winkelmann et al.,

2011; Zeitz et al., 2021).

2 Data and methods95

2.1 CMIP6

We utilise 32 models of the Coupled Model Intercomparison Project Phase 6 (
::::
from CMIP6), which were all the models that

:::
for

:::::
which

::::::::::
simulations

:::::
could could be downloaded during the data collection (see Appendix). In addition to the historical runs, we

use the four Shared Socio-economic Pathways (SSP ) scenarios, 1-2
:::
four

::::
SSP

::::::::
scenarios:

::::::
SSP1-2.6(Low challenges to mitigation

and adaptation), 2-4,
:::::::
SSP2-4.5(Medium challenges to mitigation and adaptation), 3-7,

:::::::
SSP3-7.0(High challenges to mitigation100

and adaptation) and 5-8
:
,
:::
and

:::::::
SSP5-8.5 (High challenges to mitigation, low challenges to adaptation) (Riahi et al., 2017)

::::::::::::::::::::::::::::::
(Riahi et al., 2017; Allan et al., 2021), where the last two digits denote the forcing level in 10·W/m2.

We analyse the model-specific and ensemble mean of the historical (1850-2015) and future atmospheric near-surface tem-

perature (tas) and precipitation (pr) changes in Greenland until the year 2100. For the analysis, we regrid all models to a

common gaussian
:::::::
Gaussian

:
grid with a resolution of 0.5◦ × 0.5◦ using a bilinear grid interpolation, using the cdo command105

line tools (Schulzweida, 2023). For all models, we define Greenland as the geopandas area Greenland with a buffer distance of

0.5
:::::
toward

:::
the

::::::
outside

:
corresponding to approximately 50 km (Jordahl et al., 2020). With this approach we avoid the problem of

varying land-sea masks that arise due to the different native grids and the regridding process. For 19 out of the 33 investigated

models,
:::
We

:::::
verify

:::
our

:::::::::
geopandas

::::::::
approach

:::
by

::::::::
checking the land-ice fraction variable (sftgif) is available

:::
for

:::
the

::::::
models

::::
that

::::::
provide

:::
this

::::::::
variable,

:::
that

:::
is,

::
19

:::
out

:::
of

:::
the

::
33

::::::::::
investigated

::::::
models. We find an average land-ice cover of 77% with a minimum110

value of 63% and a maximum value of 85% for our masked region.

We obtain spatiotemporally resolved as well as scalar
:::::::
uniform scaling factors for the near-surface temperatures and precipitations

::::::::::
precipitation

:
against the global mean temperature (GMT) and time. For the scalar

::::::
uniform

:
scaling factors, we use a linear fit

of the spatially weighted annual and seasonal (winter and summer) near-surface temperatures and precipitation rates in Green-

land against the respective model GMTs. For the precipitation we follow a similar approach to Nicola et al. (2023) and fit the115

log-scaled precipitation against the respective temperatures, motivated by the Clausius–Clapeyron relationship. We define the

sensitivity of precipitation for each degree of warming s as

s= 100
%

K
· (ek/K − 1), (3)

4



where k/K is the unitless growth factor from Equation 1. This follows from the assumption that the precipitation P increases

exponentially with the sensitivity s according to120

P = P0

(
1+

s

100%/K

)∆T/K

(4)

for a temperature change ∆T . Then a linear regression of ln(P ) against T directly gives k as a fit parameter and s can be

calculated according to Equation 3. It has to be noted that k is sometimes directly defined as the precipitation sensitivity (Held

and Soden, 2006; Nicola et al., 2023). However, for small k < 0.1, k ≈ s and they can easily be converted between one another.

For the spatial
::::::
varying

:
scaling factors, we fit the local near-surface temperatures and precipitations

::::::::::
temperature

:::
and

:::::
local125

::::::::::
precipitation

::::::
values, that is, every grid cell against the GMT. Additionally, we derive scaling factors of the local precipitation

against local near-surface temperature (Fig. I1).

We force the ice sheet model PISM with the CMIP6 outputs to show the difference in the short- and long-term behaviour

of the GrIS for spatiotemporal anomalies and for spatially uniform anomalies. For the short-term model forcing, we use the

average near-surface temperature and precipitation anomalies for each scenario compared to the time period 1980-2000. First,130

we calculate the CMIP6 ensemble average fields for each scenario and the historical time period 1980-2000. We calculate the

monthly anomalies by subtracting the historical climatology from the ensemble averages until the year 2100. Subsequently,

we regrid the average anomalies to the 20 km PISM grid using a first-order conservative algorithm (nco) (Zender, 2008).

Additionally, we smooth the obtained regridded fields using cdo smooth (Schulzweida, 2023) with a smoothing radius of

40 km to avoid artefacts stemming from the interpolation. Thereby, we obtain spatially resolved monthly anomaly fields of135

the precipitation and near-surface temperature from 2015 to 2100. For the scalar forcing, we calculate the spatially weighted

means of the regridded and smoothed monthly near-surface temperature and precipitation anomaly fields that we used for the

spatial forcing. For the long-term model forcing, we calculate the 10 year average of the monthly near-surface temperature and

precipitation anomalies from 2090-2100.

2.2 PISM
:::::
Model

::::::::::
description140

We use the Parallel ice sheet model
:::
Ice

:::::
Sheet

:::::
Model

:
(PISM) in the version v2.1-1-g6902d5502 (Winkelmann et al., 2011) with

the dEBM-simple surface mass balance module (Krebs-Kanzow et al., 2018, 2021; Zeitz et al., 2021). This model configuration

has successfully been used for future projections of the GrIS before (Zeitz et al., 2021; Bochow et al., 2023) and has been

shown to realistically reproduce past ice sheet states (Zeitz et al., 2021; Garbe et al., 2023). We mostly follow the ice sheet

initialisation and setup from Bochow et al. (2023)
::::
with

::::
some

::::::::
different

::::::
choices

:::
for

:::::
model

:::::::::
parameters

::::
that

:::
we

::::::::
explicitly

:::::::
mention145

::
in

:::
the

:::::::::
following.

PISM is a thermomechanically coupled ice sheet model using the shallow-shelf (SSA) and shallow-ice approximation (SIA).

The ice rheology is based on the Glen–Paterson–Budd–Lliboutry–Duval flow law (Lliboutry and Duval, 1985) with an exponent

of n= 3 and the enhancement factors ESIA = 3 and ESSA = 1. Furthermore, we use a pseudo-plastic sliding law (Schoof and

5



Hindmarsh, 2010) with the150

τ
:b =−

::::
τ
:c

u

uq
0|u|1−q

,

:::::::::

(5)

::::
with

:::
the

::::
basal

:::::
shear

:::::
stress

:::
τ b,

:::
the

:::::
basal

::::::
sliding

:::::::
velocity

::
u,

:::
the

:::::
yield

:::::
stress

::
τc::::

and
:
a
::::::::
threshold

:::::::
velocity

::::::::::::
u0 = 100m/yr

::::
and

:::
the

exponent factor q = 0.5.
:::
The

:::::
yield

::::
stress

:::
τc :

is
:::::
given

:::
by

:::
the

:::::::::::::
Mohr-Coloumb

:::::::
criterion

::::::::::::::::::::::::
(Cuffey and Paterson, 2010)

τ
:c =

::
c0 +(tanϕ)Ntill

::::::::::::
(6)

::::
with

::
the

::::::::
effective

:::::::
pressure

::::
Ntill,:::

the
:::
till

::::::
friction

:::::
angle

::
ϕ

:::
and

:::
and

:::
the

:::
till

::::::::
cohesion

::::::
c0 = 0.

:::
The

:::
till

::::::
friction

:::::
angle

::
ϕ

:
is
::
a
:::::::::
piece-wise155

:::::
linear

:::::::
function

::
of

:::
the

::::
bed

:::::::
elevation

::::
and

:::
the

:::::::
effective

:::::::
pressure

:::::
Ntill ::

is
:::::::::
determined

:::
by

:::
the

::::::::
subglacial

:::::::::
hydrology

::::::
model.

:
We use

the Lingle-Clark Earth deformation model with a lithosphere flexural rigidity of 5 · 1024 Nm, mantle density of 3300kg/m3

and a mantle viscosity of 1 · 1024 Pas. We apply a spatially uniform lapse rate of 6K/km across the whole ice sheet. The

precipitation scales with the surface-height-induced near-surface temperature change by a factor of 5.5
:
5%/K. We prescribe a

:::
use

:
a
:::::::::
horizontal

::::::::
resolution

::
of

:::::
10 km

::::
and

:
a
::::::
vertical

:::::::::
resolution

::
of

:::::
40 m.

::::::
Calving

::
is
::::::::
modelled

::
as

:
a
:::::::::::
combination

::
of

:::::::::
prescribed front-160

retreat calving based on the observed present-day extent of the GrIS
:::
and

::::
von

:::::
Mises

:::::::
calving

::::
with

:::::::
constant

::::::
calving

::::::::::
parameters

::::::::::::::::::::
(Morlighem et al., 2016).

::::
The

:::::::::
prescribed

:::::
front

::::::
retreat

::::::
calving

::::::
means

::::
that

:::
the

:::
ice

:::::
sheet

::
is
::::

not
:::::::
allowed

::
to

:::::
grow

:::::::
beyond

:::
the

::::::::
prescribed

::::::::::
present-day

::::::
extent.

:

::
To

::::::::
calculate

:::
the

::::::
surface

::::
mass

:::::::
balance

:::
we

:::::
utilise

::::::::::::
dEBM-simple

:::::::::::::::
Zeitz et al. (2021).

::::
The

::::::::::::
dEBM-simple

::
is

:
a
:::::::::
standalone

::::::
model

:::
that

:::::::
requires

:::::::::
(monthly)

::::::::::
near-surface

:::
air

::::::::::
temperature

:::
and

::::
total

:::::::::::
precipitation

:::::
fields

::
to

::::::::
calculate

:::
the

::::::
surface

::::::
energy

:::::::
balance.

::::
The165

::::
total

::::
melt

:
is
:::::
given

:::
by

:::
the

::::
sum

::
of

:::
the

::::::::
insolation

::::::
driven

::::
melt

::::
MI ,

::
the

:::::::::::
temperature

:::::
driven

::::
melt

::::
MT :::

and
:::
the

::::
melt

:::::
offset

:::::
MO:

MI
::

=
∆tΦ

∆tρwLm
τA(1−α)S̄Φ,

::::::::::::::::::::

(7)

MT
:::

=
∆tΦ

∆tρwLm
c1Teff,

::::::::::::::

(8)

MO
:::

=
∆tΦ

∆tρwLm
c2,

:::::::::::

(9)

::::
with

:::
the

:::::::
fraction

::
of

:::
the

::::
day

::::::
during

::::::
which

:::
the

:::
sun

::
is
::::::

above
:::
the

::::::::
elevation

:::::
angle

:::
(Φ)

:::::

∆tΦ
∆t ,

:::
the

::::::
latent

::::
heat

::
of

::::::
fusion

::::
Lm,

:::
the170

:::::::::::
transmissivity

::
of

:::
the

::::::::::
atmosphere

:::
τA,

:::
the

:::::::
surface

:::::
albedo

:::
α,

:::
the

:::::
mean

:::
top

::
of

:::
the

::::::::::
atmosphere

::::::::
insolation

::::::
during

:::::
which

:::
the

::::
sun

::
is

:::::
above

:::
the

::::::::
elevation

:::::
angle

:::
S̄Φ,

:::
the

::::
melt

::::::::::
parameters

::
c1::::

and
::
c2,

:::
the

:::::::
density

::
of

:::::
water

:::
ρw:::

and
:::

the
::::::::

effective
::::::::::
temperature

::::
Teff.::::

The

::::::
average

::::
melt

::
is

::::::::::::
approximated

::
by

:

M =

MI +MT +MO, T ≥ Tmin,

0, T < Tmin.
,

:::::::::::::::::::::::::::::::

(10)

::::
with

:::
the

::::::::
threshold

::::::::::
temperature

::::
Tmin:::::

below
::::::
which

::
no

:::::
melt

::::::
occurs.

::::
The

:::::::
effective

::::::::::
temperature

::::
Teff ::

is
:::
the

:::::::
expected

:::::
value

:::
of

:::
the175

::::::::::
temperature

:::::::::
fluctuation

:::::
above

:::
the

:::::::
positive

::::::::
threshold

::::::::::
temperature

:::
Tpos::::

and
::
is

:::::::
assumed

::
to

::::::
follow

:
a
::::::::
Gaussian

::::::::::
distribution

::::::
similar
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::
to

:::::::
common

:::::
PDD

:::::::
methods,

:::::
given

:::
by

Teff(T,σ) =
1

σ
√
2π

∞∫
Tpos

ξ exp

(
− (ξ−T )2

2σ2

)
dξ

:::::::::::::::::::::::::::::::::::::

(11)

::::
with

::
the

::::::::
standard

::::::::
deviation

:
σ. For the dEBM-simple melt equationZeitz et al. (2021), we use the parameters c1 =−90W/m2K

and c2 = 30W/m2. The orbital parameters do not vary and are fixed
::::
mean

:::
top

:::
of

:::
the

:::::::::
atmosphere

:::::::::
insolation

:::
S̄Φ::

is
:
a
::::::::

function180

::
of

:::
the

:::::
orbital

::::::::::
parameters

:::
and

:::
for

:::
our

::::::::::
simulations,

:::
we

:::
fix

:::
the

::::::
orbital

:::::::::
parameters

:
to present-day values.

::
For

::
a
:::
full

::::::::::
description

::
of

:::::::::::
dEBM-simple

:::
we

::::
refer

::
to
::::::::::::::::
(Zeitz et al., 2021)

:::
and

:::
the

:::::
PISM

:::::::::::::
documentation

:::::::::::::::::::::
(Winkelmann et al., 2011)

:
.

2.3
:::::
Model

::::::
spinup

We spinup the ice sheet to a close to present-day state by bootstrapping the modelfrom ,
::::

that
::
is
:::::::::::
heuristically

:::::
filling

:::
in

:::
the

::::::
missing

:::::
fields

::::
from

::::::::
observed present-day conditions

:::
(see

:::::
PISM

:::::::::::::
documentation

:::::::::::::::::::::
Winkelmann et al. (2011)), including ice thick-185

ness, bedrock elevation (Morlighem et al., 2017) and basal heat flux (Shapiro and Ritzwoller, 2004)and letting
:
,
:::
and

:::
let

:
it

reach equilibrium.
:::
The

:::::::::::
temperatures

::
at
:::::
depth

:::
are

::::::::::
determined

:::
by

::::::
solving

:
a
::::::::::::::

one-dimensional
::::::::::
steady-state

::::::::::
differential

::::::::
equation,

:::::
which

:::::::
balances

::::::::::
conduction

::::
and

::::::
vertical

:::::::::
advection,

::::
and

:::
the

:::::::
vertical

:::::::
velocity

::
is

::::
used

::
to
::::::::::

interpolate
:::::::
linearly

::::
from

:::
the

:::::::
surface

::::
mass

:::::::
balance

::::
rate

::
at

:::
the

:::
top

:::
to

::::
zero

::
at

:::
the

:::::::
bottom

:::::::::::::::::::::
(Winkelmann et al., 2011)

:
.
:::
We

::::
run

:::
the

:::::
model

::::
for

:::::::
150,000

:::::
years

::::
with

::
a

::::
fixed

::::::
climate

:::
to

::::
reach

::
a
:::::
close

::
to

::::::::::
present-day

::::::::::
equilibrium

::
ice

:::::
sheet

:::::
state. We force the model with the climatological

:::::::
monthly190

mean near-surface temperature and precipitation fields from the years 1980-2000 from the regional climate model MARv3.12

(Fettweis et al., 2017). We run the model for at least 100,000 years to reach an equilibrium ice sheet state. We use a horizontal

resolution of 20
::::::
forced

::
by

::::::
ERA-5

::::::::
boundary

:::::::::
conditions

:::::::::::::::::
(Fettweis et al., 2017)

:
.
:::
The

::::::::
thickness

::::
and

::
the

:::::::
velocity

:::::::
anomaly

:::::::::
compared

::
to

:::::::::::
observational

::::
data

:::
are

:::::::
depicted

::
in
::::

Fig.
::::
R1.

:::
Our

::::::
initial

::::
state

:::
has

:::
an

:::
ice

::::::::
thickness

::::::::::::::::
root-mean-squared

::::
error

::::::
(rmse)

::
of

::::::
228 m

::::::::
compared

::
to

:::::::::::
observational

::::
data

::::::::::::::::::::::::::::::::::::
(Morlighem et al., 2017; Morlighem, 2022)

:::
and

:
a
::::
rmse

:::
of

:::::::::
112 m/year

:::
for

:::
the

:::::::
velocity.

:
195

2.4
::::::::::

Experiment
:::::
setup

:::
We

::::
force

:::
the

:::
ice

:::::
sheet

:::::
model

::::::
PISM

::::
with

:::::::
spatially

:::::::
resolved

::::
and

:::::::
uniform

::::::::::
temperature

:::::::::
anomalies

:::
and

:::::::::::
precipitation

::::::::::
sensitivities

::::::
derived

::::
from

::::
the

::::::
CMIP6

::::::::
ensemble

:::
to

:::::
show

:::
the

::::::::
influence

::
of

:::::::
spatially

::::::::
uniform

::::::::
anomalies

::::
and

::::::::::
sensitivities

:::
on

:::
the

:::::
short-

::::
and

::::::::
long-term

::::::::
behaviour

:::
of

:::
the

::::
GrIS.

:::::::::
However,

:
it
::
is
::::::::
important

:::
to

::::
note

:::
that

:::
we

:::::
rather

:::
run

::
a
:::
set

::
of

:::::::
idealised

:::::::::::
experiments

:::
and

:::
do

:::
not

:::
aim

::
to

::::
give

:::::::::
prognostic

:::::::
sea-level

::::
rise

::::::::
estimates.

:
200

:::
For

:::
the

:::::::::
short-term

:::::
model

:::::::
forcing,

:::
we

:::
use

:::
the

:::::::
average

::::::::::
near-surface

::::::::::
temperature

:::::::::
anomalies

:::
and

:::::::::::
precipitation

::::::::::
sensitivities

:::
for

::::
each

:::::::
scenario

::::::::
compared

::
to

:::
the

::::
time

::::::
period

:::::::::
1980-2000.

:::::
First,

:::
we

:::::::
calculate

:::
the

::::::
CMIP6

::::::::
ensemble

:::::::
average

:::::
fields

:::
for

::::
each

:::::::
scenario

:::
and

:::
the

::::::::
historical

::::
time

::::::
period

:::::::::
1980-2000

:::
to

::::
have

:::
the

:::::
same

::::::::
reference

::::::
period

::
as

:::
the

::::::::::
MARv3.12

::::::
forcing

:::::
fields

::::
that

:::
we

:::
use

:::
as

:::::::::
background

:::::::
climate.

::::::::::::
Subsequently,

:::
we

::::::::
calculate

:::
the

:::::::
monthly

::::::::::
near-surface

::::::::::
temperature

:::::::::
anomalies

::
by

::::::::::
subtracting

:::
the

::::::::
historical

::::::
CMIP6

::::::::::
climatology

::::::::::
(1980-2000)

:::::
from

:::
the

::::::::
ensemble

:::::::
averages

::::
until

:::
the

::::
year

:::::
2100.

:::
To

:::::
obtain

:::
the

:::::::
spatially

:::::::
variable

:::::::::::
precipitation205

::::::::::
sensitivities,

:::
we

:::::
divide

::::
the

::::::::::
precipitation

:::::
fields

:::
by

:::
the

::::::
CMIP6

::::::::::::
climatologies

:::::::::::
(1980-2000).

::::::::::
Afterwards,

:::
we

:::::
regrid

::::
the

:::::
fields

::
to
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::
the

:::
10 km and a vertical resolution

:::::
PISM

:::
grid

:::::
using

::
a
:::::::::
first-order

::::::::::
conservative

:::::::::
algorithm

::::
(nco)

:::::::::::::
(Zender, 2008)

:
.
:::::::::::
Additionally,

::
we

:::::::
smooth

:::
the

::::::::
obtained

::::::::
regridded

:::::
fields

:::::
using

::::
the

:::
cdo

:::::::
smooth

::::::::
command

::::::::::::::::::
(Schulzweida, 2023)

::::
with

:
a
::::::::::

smoothing
:::::
radius

:
of

40 m
::
km

:::
to

:::::
avoid

:::::::
artefacts

::::::::
stemming

:::::
from

:::
the

:::::::::::
interpolation.

::::::::
Thereby,

:::
we

:::::
obtain

::::::::
spatially

:::::::
resolved

:::::::
monthly

::::::::
anomaly

::::
fields

:::
of

::
the

:::::::::::
near-surface

::::::::::
temperature,

:::
and

::::::::
spatially

::::::
variable

::::::::::
sensitivities

::::::
factors

:::
for

:::
the

::::::::::
precipitation

:::::
from

::::
2015

::
to

:::::
2100.

:::
For

:::
the

:::::::
uniform210

::::::
forcing,

:::
we

::::::::
calculate

:::
the

:::::::
spatially

::::::::
weighted

::::::
means

::
of

:::
the

::::::::
regridded

:::
and

:::::::::
smoothed

:::::::
monthly

::::::::::
near-surface

::::::::::
temperature

::::::::
anomaly

::::
fields

::::
and

:::::::::::
precipitation

::::::::::
sensitivities

:::
that

:::
we

::::
used

:::
for

::::
the

:::::
spatial

:::::::
forcing.

::::
For

:::::::::
simplicity,

:::
we

:::
use

:::
the

:::::::::::
precipitation

::::::::::
sensitivities

::::::
directly

:::::::
derived

::::
from

:::
the

::::::::::
precipitation

:::::::::
anomalies

::::::
instead

::
of

::::::::::
calculating

::
the

:::::::::::
precipitation

::::::::::
sensitivities

:::::
based

::
on

:::
the

:::::::::::
near-surface

::::::::::
temperature

:::::::::
anomalies.

:::::
While

:::
we

::::::::
calculate

:::
the

::::::::
anomalies

::::
and

::::::::::
sensitivities

::::
with

::::::
respect

::
to
:::
the

:::::::
CMIP6

::::::::::::
climatologies,

::::
they

:::
are

::::::
applied

::
to

:::
the

::::::::::
MARv3.12

::::::::::
near-surface

::::::::::
temperature

::::
and

:::::::::::
precipitation

:::::
fields

:::
that

:::
we

::::
use

::
as

::::::::::
background

::::::
climate

:::
for

:::
the

::::::
PISM215

::::
runs.

:::
For

:::
the

:::::::::
long-term

::::::
model

::::::
forcing,

:::
we

::::::::
calculate

:::
the

:::
10

::::
year

:::::::
average

::
of

:::
the

:::::::
monthly

:::::::::::
near-surface

::::::::::
temperature

:::::::::
anomalies

:::
and

::::::::::
precipitation

::::::::::
sensitivities

:::::
from

:::::::::
2090-2100

::
to

:::::
avoid

:::
any

::::::::
seasonal

::::
noise

::
or

:::::::
outliers

::
in

:::
the

::::::
forcing.

3 Greenlands climate in CMIP6

2.1 Temperature projections in CMIP6

Due to Arctic amplification, Greenland’s
::::
There

:::
are

::::
two

:::::::
different

:::::::::::
precipitation

:::::::::
corrections

:::::
used

::
in

::::::
PISM.

::::
First,

:::
the

:::::::
change

::
in220

:::::::::::
precipitations

:::
due

::
to

:::::::
changes

::
in

:::
the

::::::::::
background

:::::::
climate,

:::
that

:::
is,

:::::::
changes

::
in

:::
the near-surface temperatures have increased faster

than the GMT; this enhanced warming is expected to continue in the future (Serreze and Barry, 2011; Rantanen et al., 2022; Preece et al., 2023)

. Arctic amplification is the process of accelerated warming in the high latitudes compared to lower latitude because of several

feedback mechanisms, most prominently the ice-albedo feedback (Screen and Simmonds, 2010) and the
::::::
without

::::::::::
considering

::::::
changes

:::
in

:::
the

:::
ice

::::
sheet

:::::::::
geometry.

:::::::
Second,

:::::::
changes

::
in

:::
the

:::::::::::
precipitation

::::
due

::
to

:::::::
changes

::
in

:::
the

:::
ice

:::::
sheet

:::::
height

::::
and

::::::::
therefore225

::::::
changes

::
in
:::
the

:::::::::::
near-surface

::::::::::
temperature

:::
due

::
to

:::
the

:::::::::
lapse-rate.

:::::
PISM

::::
does

:::
not

:::::::
natively

::::::
support

:::::::
spatially

::::
and

:::::::::
temporally

:::::::
variable

:::::::::
lapse-rates

::
or

:::::::::::
height-change

:::::::
induced

:::::::::::
precipitation

::::::::::
sensitivities.

::::::
Hence,

:::
the lapse-rate feedback (Stuecker et al., 2018). However,

the future extent of Arctic amplification remains uncertain and and previous studies report an Arctic warming up to 4 times

faster than the global average (Rantanen et al., 2022)
:::::::::::
height-change

:::::::
induced

::::::::::
precipitation

:::::::::
sensitivity

:::
are

::::::
usually

:::::::
constant

::
in

::::
time

:::
and

:::::
space

::
in

::::::
PISM.

::::::::
However,

:::
we

:::::::::
implement

::::::::::
rudimentary

::::::::
spatially

:::::::
variable

::::::::::::
height-change

:::::::
induced

::::::::::
precipitation

:::::::::::
sensitivities.230

:::
For

::::
this,

:::
we

::::::::
manually

::::::::
calculate

:::
the

:::::::::::
precipitation

:::
and

:::::::::::
temperature

:::::::
changes

:::
that

::::::
result

::::
from

:::::::
changes

:::
in

:::
the

:::
ice

:::::
sheet

::::::
height.

::::::::::
Specifically,

:::
we

:::
run

:::::
PISM

:::
for

::::
one

::::
year,

::::::::
calculate

:::
the

:::::
height

:::::::
change

::::::::
compared

::
to
:::
the

::::::::
previous

::::
year

:::
and

:::::
apply

::
a
:::::::
spatially

::::
and

:::::::::
temporally

:::::::
uniform

::::::::
lapse-rate

::
of

:::::::
6 K/km.

::::
This

:::::
gives

:::
the

::::::::::
temperature

:::::::::
correction

:::
due

::
to
:::::::

changes
:::

in
:::
the

:::
ice

::::
sheet

::::::
height,

::::::
which

::
we

:::::
apply

:::
as

::::::::::::::
near-temperature

:::::::::
anomalies

::
in

:::
the

::::::::
following

:::::
year.

:::::::::::
Subsequently,

:::
we

::::::::
calculate

:::
the

::::::::::::::
scenario-specific

:::::::::::
precipitation

::::::::
correction

:::
by

::::::::::
multiplying

:::
the

:::::::::::::::
monthly-resolved

::::::
initial

:::::::::::
precipitation

:::::
given

::
by

::::::::::
MARv3.12

:::::
with

:::
the

:::::::
spatially

::::::::
resolved

:::::
local235

::::::::::
precipitation

::::::::::
sensitivities

::::
(Fig

:::
I1)

:::::
given

::
the

::::::::::::
height-change

:::::::
induced

::::::::::
temperature

::::::::
changes.

:::::
Lastly,

:::
we

::::::
restart

:::::
PISM

::::
with

:::
the

::::
new

::::::
updated

::::::
fields.

::::
This

::::::
method

::
is

::::::::::::::
computationally

:::
not

::::
very

:::::::
efficient,

::::::::
therefore

:::
we

::::
only

:::
run

:
a
::::::
limited

:::
set

::
of

:::::::::
short-term

::::::::::
simulations

:::::
(1,000

::::::
years).

:
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::
In

::::
total,

:::
we

:::
run

:::::
three

:::::::
different

::::
sets

::
of

::::::::::
experiments

:::::::
varying

:::::::
between

:::::::
spatially

:::::::
variable

:::
and

:::::::
uniform

:::::::::::
near-surface

::::::::::
temperature

:::::::::
anomalies,

::::::::::
precipitation

::::::::::
sensitivities,

::::
and

:::::::::::
height-change

:::::::
induced

:::::::::::
precipitation

:::::::::
sensitivities

:::::
(Tab.

::
1).

:::
We

::::
only

:::::
show

:::
the

:::::::::
simulations240

::::
with

:
a
:::::
lapse

:::
rate

:::
of

::::::
6 K/km

::::
and

:
a
::::::::::::
height-change

:::::::
induced

:::::::::::
precipitation

:::::::::
sensitivity

::
of

:::::
5%/K

:::
for

:::
the

::::::::::
experiments

:::::
with

:::::::
uniform

::::
lapse

::::
rates

::::
and

::::::::::
sensitivities

::
in

:::
the

:::::
main

::::::
figures.

:::
For

:::::
plots

:::::::
showing

:::
the

:::
ice

:::::::
volume,

:::
we

::::::::
normalise

:::
the

:::
ice

:::::::
volume

::::
such

::::
that

:::
the

:::::
initial

::::::
volume

::::::::::
corresponds

::
to

:::
the

::::::::
observed

:::
ice

::::::
volume

::
of

::::
7.42

::
m
::::::::
sea-level

:::::::::
equivalent

::::::::::::::::::::
(Morlighem et al., 2017).

3
::::::
Results

3.1
::::::::::
Greenland’s

:::::::
climate

::
in

:::::::
CMIP6245

3.1.1
:::::::::::
Temperature

::::::::::
projections

::
in

:::::::
CMIP6

The projected rise in the GMT in CMIP6 is generally higher than in the previous model intercomparison CMIP5 (Tebaldi

et al., 2021). For Greenland, most CMIP6 models have a higher near-surface temperature sensitivity than the corresponding

CMIP5 models (Zhang et al., 2024). The near-surface temperatures in Greenland are relatively constant in all models until the

year 1980 (Fig. 1a). However, there is an accelerated rise in the near-surface temperatures between 1980 and 2100. Only the250

most optimistic SSP1-2.6 scenario shows a relatively constant near-surface temperature in Greenland after 2050. We find an

ensemble mean model near-surface temperature rise in Greenland of ∆T = 3.27± 1.50◦C (SSP1-2.6), 4.98± 1.75◦C (SSP2-

4.5), 6.73±2.06◦C (SSP3-7.0) and 8.15±2.30◦C (SSP5-8.5) above
:::
the pre-industrial (1850-1900) level by 2090-2100 (Fig. 1a).

There is a considerable spread in the model response
:
,
:
with one model even predicting a near-surface temperature decrease by

2100 under the SSP1-2.6 scenario (Fig. 1a).
:
It
::
is

::::::::
important

::
to

::::
note

:::
that

::
all

:::::::::::
near-surface

::::::::::
temperature

:::
and

::::::::::
precipitation

::::::::::
projections255

::::
from

:::
the

::::::
CMIP6

:::::::::
ensemble

::::::
assume

:
a
::::::::::::

non-evolving
:::::::::
topography

:::
of

:::
the

:::
ice

:::::
sheet,

:::
that

:::
is,

:::::::
changes

::
in

:::
the

:::
ice

:::::
sheet

::::::::
geometry

:::
are

:::
not

:::::::::
considered

::
in

::::
these

:::::::::::
simulations.

In all scenarios, the ensemble mean of the annual mean near-surface temperature responds in good approximation linearly

to the increase in the GMT (Fig. 2a). We find a scaling factor
:::::
scaling

::::::
factors

:
ranging from s= 1.29 (SSP1-2.6)to ,

::::::::
s= 1.49

:::::::::
(SSP2-4.5),

:
s= 1.54 (SSP3-7.0)

:::
and

::::::::
s= 1.53

:::::::::
(SSP5-8.5)

:
of the annual regional near-surface temperature against the GMT260

until 2100 (Fig. 2a), suggesting a state-dependence of the scaling factor. The scaling factor or sensitivity
:::
(or

:::::::::
sensitivity)

:
can be

interpreted as a Greenland specific amplification factor analogously to the Arctic amplification. While the annual near-surface

temperature in the historical period also shows a linear response, it shows a stronger warming of Greenland with s= 2.0

compared to the future scenarios
::::
direct

::::::::
analogy

::
of

::::::
Arctic

:::::::::::
amplification,

::::
but

:::
for

:
a
:::::::::
Greenland

:::::::
specific

:::::::
context. The warming

is generally stronger in the winter season (DJF) with more than 40% faster warming than in the summer (JJA) for all future265

scenarios, except SSP1-2.6 (Fig. 2b,c). In the SSP1-2.6 scenario, the warming in winter and summer shows the same response

with s= 1.16. However, the winter
:::::::::
near-surface

:
temperatures in SSP1-2.6 do not follow a strong linear trend (R2 = 0.46).

:::::
While

:::
the

::::::
annual

::::::::::
near-surface

::::::::::
temperature

::
in

:::
the

:::::::
historical

::::::
period

::::
also

:::::
shows

:
a
:::::
linear

::::::::
response,

::
it

:::::
shows

:::::::
stronger

::::::::
warming

::
of

::::::::
Greenland

::::
with

:::::::
s= 2.0

::::::::
compared

::
to

:::
the

:::::
future

::::::::
scenarios.

:
In the historical period, the winter

::::::::::
near-surface temperatures increase

more than 50% faster than the summer
::::::::::
near-surface

:
temperatures. This is less than some previously reported values which

:::
that270
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indicated twice as much warming in winter than in summer (Robinson et al., 2012).
::
In

::::
total,

:::
the

::::::::
historical

::::
runs

:::::
show

:::
the

::::::
highest

::::::
scaling

::::::
factors

::
for

::::::::
summer,

::::::
winter,

:::
and

::::::
annual

::::::::::
near-surface

:::::::::::
temperatures

:::
out

::
of

:::
all

::::::::
scenarios.

:

There is a considerable inter-model spread in the spatially averaged scaling factors (Fig. A1). Specifically, the SSP1-2.6

scenario shows a large inter-model spread, ranging from 0 to 2.25 in the summer and from -2 to 4 in the winter (Fig. A1a,b).

In other words, in some models the spatially averaged winter near-surface temperature in Greenland decreases two times275

faster than the GMT increases, while in other models the near-surface temperature increases 4 times faster than the GMT. In

general, the spread in the response of the winter
::::::::::
near-surface

:
temperatures is larger than in the summer and annual

::::::
annual

::::::::::
near-surface temperatures (Fig. A1b). Furthermore, the more extreme the future scenario, the smaller the range in the scaling

factors, besides the annual
::::::::::
near-surface

:
temperatures in the SSP2-4.5 scenario. The historical runs show the highest scaling

factors for summer, winter and annual temperatures. Additionally, we show the relationship between the winter and summer280

::::::::::
near-surface temperatures.

In all future scenarios, besides SSP1-2.6, the majority of the models show
:::::
shows

:
a faster increase of the winter temperatures

than the summer
::
in

:::
the

:::::
winter

:::::::::::
near-surface

::::::::::
temperatures

::::
than

:::
in

:::
the

:::::::
summer

::::::::::
near-surface temperatures, i.e. s > 1 (Fig. A1d).

However, the uncertainty is considerable. The ensemble mean of the spatially-averaged scaling factors agrees
::::::::::::
approximately

with the scaling factors derived from the ensemble mean of the near-surface temperatures,
::::
that

::
is

:::::::::::
quasi-linearly

:::::::::::
s(T )≈ s(T ).285

This suggests that the response of the ensemble mean
::::::::::
near-surface temperatures is an adequate representation of the mean

scaling factors. It also has to be noted that the relationship between the GMT and the spatially averaged seasonal
::::::::::
near-surface

temperatures for some models does not necessarily follow a clear linear relationship. This is especially visible when comparing

the scaling factors for each season against the GMT and the scaling factors of the individual seasons against each other

(Fig. A1d).
::::::::
However,

:::::
since

:::
the

:::::::
majority

::
of

::::::
models

::::::
shows

:
a
:::::
strong

:::::
linear

:::::::::::
relationship,

:::
the

::::::::::::
quasi-linearity

::
of

:::
the

::::::::
ensemble

:::::
mean290

:::::::
generally

::::::
holds.

There is a clear spatial dependency of the temperature sensitivity in Greenland (Fig. 2d-g). Generally, there is a north-south

gradient in the ensemble mean annual
:::::
There

::
is

:
a
:::::
clear

::::::
spatial

::::::::::
dependency

::
of

:::
the

:
near-surface temperature with decreasing

temperature sensitivity towards the South in all scenarios. For SSP1-2.6, all of Greenland approximately south of the Ilulissatfjord

shows a sensitivity below 100%, that is, it warms slower than the GMT. This 100%-contour migrates southward the more295

extreme the scenario (Fig. 2d-g). For the SSP3-7.0 and the SSP5-8.5 scenario, only the southernmost part of Greenland shows

a slower mean annual warming than the global mean (Fig. 2g) However, there is a pronounced seasonal difference in the spatial

response. While the summer temperatures increase faster in the interior of the GrIS than at the margins, the winter temperatures

show a north-south gradient with considerably more warming in the northern parts of the ice sheet
::::::::::
temperature

:::::::::
sensitivity

::
in

::::::::
Greenland

:
(Fig. C1). While this spatial dependence varies in intensity between the scenarios, it is consistent across all future300

scenarios.

:::::
2d-g). For the historical period, there is rather a clear warming gradient between the interior and the margin of the GrIS than

a gradient between north and south (Fig. C1a). However, this gradient is inverted in summer compared to winter (Fig. C1f).

In winter, the margins of the ice sheet warm considerably faster than the interior, with a scaling factor exceeding 300% at the

margin and less than 200-250% in the interior of the GrIS. On the other hand, in the summer most of the interior ice sheet305
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warms up to 150% faster than the global average, with a decrease of the
::::::::
decreasing

:
scaling factor toward the margin. The

gradient in summer is not as pronounced as in winter. These sensitivities are in accordance with observational
::::::::::
near-surface

temperature records in southwestern Greenland, which show a 2.4 times stronger warming in the winter than in the summer

for the time period 1850-2019 (Cappelen, 2020; Bochow et al., 2023). In both seasons, almost entire Greenland shows stronger

warming
::::::
T/GMT

::::::
scaling in the historical period than in the future scenarios.310

::
In

:::
the

:::::
future

::::::::
scenarios,

:::::
there

:
is
::
a

:::::::::
north-south

:::::::
gradient

::
in

:::
the

::::::::
ensemble

:::::
mean

::::::
annual

::::::::::
near-surface

::::::::::
temperature

::::
with

:::::::::
decreasing

::::::::::
temperature

::::::::
sensitivity

:::::::
towards

::::
the

:::::
South,

::::::
rather

::::
than

:
a
::::::::

gradient
:::::::
between

:::
the

:::::::
interior

:::
and

::::
the

::::::
margin

::
of

:::
the

:::::
GrIS

::
as

:::
in

:::
the

:::::::
historical

:::::
runs.

:::
For

:::::::::
SSP1-2.6,

::
all

:::
of

::::::::
Greenland

:::::::::::::
approximately

::::
south

:::
of

:::
the

::::::::::
Ilulissatfjord

::::::
shows

:
a
:::::::::
sensitivity

:::::
below

::::::
100%,

::::
that

::
is,

:
it
::::::
warms

::::::
slower

::::
than

:::
the

:::::
GMT

:::::
(black

:::
star

::
in

::::
Fig.

:::
2d).

::::
This

::::::::::::
100%-contour

::::::::
migrates

::::::::
southward

:::
the

:::::
more

:::::::
extreme

:::
the

:::::::
scenario

::::
(Fig.

:::::
2d-g).

:::
For

:::
the

::::::::
SSP3-7.0

::::
and

::
the

::::::::
SSP5-8.5

::::::::
scenario,

::::
only

:::
the

:::::::::::
southernmost

::::
part

::
of

:::::::::
Greenland

:::::
shows

:
a
::::::
slower

:::::
mean

::::::
annual315

:::::::
warming

::::
than

:::
the

::::::
global

:::::
mean

:::::
(Fig.

:::
2g)

::::::::
However,

:::::
there

::
is

:
a
:::::::::::

pronounced
:::::::
seasonal

:::::::::
difference

::
in

:::
the

::::::
spatial

::::::::
response.

::::::
While

::
the

::::::::
summer

::::::::::
near-surface

:::::::::::
temperatures

:::::::
increase

:::::
faster

::
in

:::
the

:::::::
interior

::
of

:::
the

:::::
GrIS

::::
than

::
at

:::
the

:::::::
margins,

::::
the

:::::
winter

:::::::::::
near-surface

::::::::::
temperatures

:::::
show

::
a
::::::::::
north-south

:::::::
gradient

::::
with

:::::::::::
considerably

:::::
more

:::::::
warming

:::
in

:::
the

:::::::
northern

:::::
parts

::
of

:::
the

:::
ice

:::::
sheet

:::::
(Fig.

::::
C1).

:::::
While

:::
this

::::::
spatial

::::::::::
dependence

:::::
varies

::
in

::::::::
intensity

:::::::
between

:::
the

::::::::
scenarios,

::
it

::
is

::::::::
consistent

::::::
across

::
all

:::
the

:::::
SSPs.

:

The inter-model spread in the spatial responseis relatively ,
:::::::
relative

::
to

::
the

:::::
GMT

::::::::
increase,

:
is
:
large. Here, we only show the spa-320

tial differences for the annual temperatures
::::::::::
near-surface

:::::::::::
temperatures, but similar pictures arise for the individual seasons. Es-

pecially for the most optimistic SSP1-2.6 scenario, there is a pronounced difference in the different model responses (Fig. E1).

Several models show a near-surface temperature decrease for the 21st century, mostly in the southern and southwestern parts

of Greenland. The two models CESM2 and CESM2-WACCM even project a near-surface temperature decrease for most of

Greenland except for the northernmost part. This is mostly due to a strong decrease of the winter
:
in
::::

the
:::::
winter

:::::::::::
near-surface325

temperatures in these models. For the SSP2-4.5 scenario, a minority of models show a decrease of the
::
in

:::
the

:::::::::::
near-surface

temperatures at the southwestern margins (Fig. F1). In the SSP3-7.0 scenario, only one model (FGOALS-g3) shows a decrease

of the annual
:
in

:::
the

::::::
annual

::::::::::
near-surface

:
temperatures at the southern margin (Fig. G1).

:::::::::::
Interestingly,

::::::::::
FGOALS-g3

::
is
:::
the

::::::
lowest

::::::::
resolution

::::::
model

::::::::
analysed. Similarly, only the FGOALS-g3 model shows a minimal near-surface temperature decrease at the

southernmost margin in the SSP5-8.5 scenario (Fig. H1). In general, the more extreme the scenario, the more uniform the330

model responses become.

For the historical runs, all models show a clear increase of
:
in
:
the mean annual

:::::::::
near-surface

:
temperatures in all of Greenland

(Fig. D1). However, similar to the future scenarios, there are clear differences in the magnitude
:::::::::
magnitudes

:
of temperature

change (relative to the model GMT). The EC-Earth3-Veg-LR model shows the strongest response out of all models, with a

temperature sensitivity of more than 300% in most of Greenland. In contrast, several models such as NorESM2-LM show a335

slower warming than the GMT, i.e. a scaling factor smaller than 100%, in some parts of Greenland.

The regional ensemble mean
::::::::::
near-surface temperatures show a relatively strong linear dependence on the GMT in all sce-

narios and seasons, with a mean R2 > 0.7 (Fig. C1,2&B1). Only the winter
::::::::::
near-surface temperatures in the SSP1-2.6 scenario

(Fig. C1b) show a relatively small coefficient of determination R2 = 0.36. The R2 values show the lowest values in southwest-

ern Greenland (Fig. B1a) with a steady increase towards the north. However, this spatial dependence is only pronounced for340
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the low emission scenarios. The linear relationship between the regional
:::::::::
near-surface

:
temperatures and the GMT is also clearly

visible in the single model regional scaling factors, especially for the SSP3-7.0 and SSP5-8.5 scenarios, where R2 > 0.7 for

most models (Fig. D1-H1).

3.2 Precipitation projections in CMIP6

:::::
Some

::
of

::
the

::::::::
analysed

::::::
models

:::
are

:::::::
available

::
in

:::::
lower

:::
and

::::::
higher

::::::::
resolution

::::::::
versions,

::::
such

::
as

:::::::::
NorESM2,

::::::::::
MPI-ESM1,

::::::::::::
MIROC-ES2,345

::
or

:::::::::::::
EC-Earth3-Veg.

::::
This

::::::
allows

::
for

::
a

:::::
direct

:::::::::
comparison

::::::::
between

::
the

:::::
same

:::::
model

:::
but

::::::::
different

:::::::::
resolutions.

::::::
While

::::
there

:::
are

:::::
some

:::::
visible

::::::::::
differences

::
in

::::
the

::::::
spatial

:::::::
patterns

:::::::
between

::::::
higher

::::
and

:::::
lower

:::::::::
resolution

:::::::
models,

:::::
these

:::::::::
differences

:::::::
cannot

::
be

::::::
easily

::::::::
attributed

::
to

:::
the

:::::::
different

:::::::::
resolutions

::::::
alone.

:::
For

::::::::
example,

::
in

:::
the

::::::::
SSP5-8.5

:::::::
scenario,

:::
the

::::
high

:::::::::
resolution

::::::
version

:::::::::::::
MIROC-ES2H

:::::
seems

::
to

::::::
resolve

:::
the

::::::::::
topography

::
of

:::
the

:::::
GrIS,

:::
and

:::::
hence

:::
the

::::::::::
temperature

::::::::
response,

::
in

:::
the

::::::
interior

:::
of

::
the

:::
ice

:::::
sheet

:::::
better

::::
than

:::
the

:::
low

::::::::
resolution

:::::::
version

::::::::::::
MIROC-ESL2

:::::
(Fig.

::::
H1).

::::::::
However,

:::
the

:::::
lower

:::
and

::::::
higher

:::::::::
resolution

:::::::
versions

::
of

:::
the

:::::
same

:::::
model

:::
do

:::
not350

::::
show

::
a

:::::::::
systematic

::::::::
difference

::
in

:::
the

::::::::::
temperature

::::::::
response

::::
(Fig.

:::::
Q1a).

:::
We

::::::
analyse

:::
the

::::::::::
relationship

::::::::
between

:::
the

::::::::::
near-surface

::::::::::
temperature

:::::::
changes

::::
and

:::::::
changes

::
in

:::
the

:::::::
AMOC

:::::::
strength

:::
for

:::
all

:::
the

::::::
models

:::::
where

::::::::::
information

:::
on

:::
the

:::::::
AMOC

:::::::
strength

::
is

::::::::
available

::::::::
(between

::
19

::::
and

::
21

:::::::
models)

:::::::::::::::::
(Baker et al., 2023).

::::
The

::::::
annual

::::::::::
near-surface

::::::::::
temperature

::::::::
anomaly

:::
by

:::::::::
2090-2100

::::
has

::
a

::::::::
moderate

::::::::::
relationship

::::
with

::::
the

::::::::
response

::
of

:::
the

:::::::
AMOC

:::::::::
(r = 0.59

::::::::
SSP1-2.6;

::::::::
r = 0.62

:::::::::
SSP2-4.5;

:::::::
r = 0.64

:::::::::
SSP3-7.0;

::::::::
r = 0.47

:::::::::
SSP5-8.5)

::::
(Fig.

::::
5a).

:::::::::
Generally,

:::
for

::::
each

::::::::
scenario,

:::
we

::::
find

::::
that355

::
the

::::::::
stronger

::
the

:::::::
decline

::
of

:::
the

::::::
AMOC

::
in
:::
the

:::::::::
respective

::::::
model,

:::
the

::::::
smaller

:::
the

:::::::::::
near-surface

::::::::::
temperature

:::::::
increase

::
by

:::
the

::::
end

::
of

::::
2100

::
in

::::::::::
Greenland.

::::
This

::
is

:::
not

:::::::::
surprising,

:::::
given

:::
that

::
a
:::::::::
weakening

::
of

:::
the

:::::::
AMOC

::
is

::::::::
expected

::
to

::::
have

:
a
:::::::

cooling
:::::
effect

::
in

:::::
parts

::
of

:::
the

::::::::
Northern

:::::::::
hemisphere

:::::::::::::::::::
(Bellomo et al., 2021).

::::
The

:::::::::
differences

::
in

:::
the

:::::::
AMOC

::::::
decline

:::::
seem

::
to

:::::::
explain

::::
why

::::
some

:::::::
models

::
in

::::::::
moderate

::::::::
scenarios

::::
show

::
a

:::::::
stronger

::::::::::
near-surface

::::::::::
temperature

:::::::
increase

::
in
:::::::::
Greenland

::::
than

:::::
other

::::::
models

::
in

:::
the

:::::
most

:::::::
extreme

:::::::
scenario

:::
(i.e.

:::::::::::::
NorESM2-LM

::
in

::::::::
SSP5-8.5

::::::
against

:::::::::
CanESM5

::
in

::::::::
SSP2-4.5,

::::
Fig.

:::
5a).

::::::::
However,

::
it
::
is

:::::::
difficult

::
to

:::::::
quantify

:::
the

:::::
effect360

::
of

:::
the

::::::
AMOC

::::::
change

:::
on

:::
the

::::::
spatial

::::::::::
temperature

::::::::
response.

:::
For

::::::::
example,

:::
the

::::::
models

:::::::::::::
NorESM2-MM

:::
and

::::::::::::
GFDL-ESM4,

::::::
which

::::
have

:::
the

::::
same

::::::
model

::::::::
resolution,

:::::
show

:::
the

::::
same

:::::::
average

::::::::::
near-surface

::::::::::
temperature

:::::::
increase

:::
by

:::
the

:::
year

:::::
2100

:::
but

:::::::::::::
NorESM2-MM

:::::
shows

:
a
:::::
50%

:::::::
stronger

::::::
AMOC

:::::::
decline

::::
(Fig.

:::
5).

:::
For

::::
both

:::::::
models,

:::
the

::::::
spatial

::::::::::
near-surface

::::::::::
temperature

:::::::
scaling

::::::
factors

:::
are

::::
very

::::::
similar

::
for

:::
all

:::::::
seasons

::::
(Fig.

::::
H1).

:::::
This

::::::
implies

::::
that

:::
the

:::::::
strength

::
of

:::
the

::::::
AMOC

:::::::
decline

:::::
alone

::::::
cannot

::::::
explain

:::
the

::::::::::
differences

::
in

::
the

:::::::::::
near-surface

::::::::::
temperature

::::::
change

::
in

:::::::::
Greenland.

:
365

3.1.1
:::::::::::
Precipitation

::::::::::
projections

::
in

:::::::
CMIP6

Similar to the near-surface temperature projections, the precipitation rates in Greenland are expected to increase in the future,

with a stronger response in CMIP6 than in CMIP5 (Zhang et al., 2024). Similar to the near-surface temperature anomalies, the

:::
The

:
precipitation anomalies stay relatively constant until 1980.

:::::::
constant

::::
until

:::::
1980,

::::::::
analogous

::
to
:::
the

:::::::::::
near-surface

::::::::::
temperature

:::::::::
anomalies. In all scenarios, we find an increase of

:
in

:
the ensemble mean annual precipitation rates compared to the reference370

period 1850-1900 (Fig. 1b). However, some models in the SSP1-2.6 and SSP2-4.5 scenarios predict a decrease of
::
in the annual

precipitation rates at the end of the 21st century. We find an ensemble mean of the annual precipitation increase of ∆P =

(804±633)mm/year (SSP1-2.6), 1302±715mm/year (SSP2-4.5), 1866±954mm/year (SSP3-7.0) and 2326±1093mm/year
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(SSP5-8.5) by the year 2090-2100 (Fig. 1b). While the ensemble mean precipitation anomalies show a similar response as the

::::::::::
near-surface temperature anomalies, the uncertainty, or ensemble spread, is larger than for the

::::::::::
near-surface

:
temperatures.375

The log of the ensemble mean annual precipitation shows an increase in all scenarios, including the historical period (Fig. 3a).

The highest precipitation sensitivity is observed in the historical period with s= 8.35%/K, followed by the SSP5-8.5 scenario

with s= 6.09%/K, SSP3-7.0 with s= 5.53%/K, SSP2-4.5 with s= 3.74%/K and SSP1-2.6 with s= 3.02%/K. However, the

relationship between log
:::
the

::::::::
logarithm

::
of precipitation and GMT is not necessarily clearly linear, i.e. the precipitation rates do

not necessarily increase exponentially with the GMT. Specifically, for the SSP1-2.6 scenario, the coefficient of determination380

is only R2 = 0.27, and for the historical period R2 = 0.58. This might be a consequence of the small increase in the GMT in

these two scenarios, leading to a larger contribution of the interannual precipitation variability to the observed precipitation

changes. For the more extreme scenarios (SSP3-7.0 and SSP5-8.5), the linear relationship between log precipitation and GMT

is very clear (R2 > 0.9).

A similar picture arises for the ensemble means of the summer and winter precipitation changes (Fig. 3b,c). The sensitivity385

of the summer precipitation is higher in all future scenarios and more uniform across all scenarios than
::::::::
compared

::
to

:
the winter

sensitivity, ranging from .
:::
We

::::
find

:
a
:::::::

summer
:::::::::::

precipitation
:::::::::
sensitivity,

:::::::
relative

::
to

:::
the

::::::
GMT,

::
of

:::::::::::
s= 6.45%/K

::::::::::
(SSP1-2.6),

:
s=

4.6%/K in the
:
(SSP2-4.5scenario to

:
),
:::::::::::
s= 6.51%/K

::::::::::
(SSP3-7.0),

:
s= 7.03%/K in the (SSP5-8.5scenario

:
)
:::
and

::::::::::::
s= 5.75%/K

:::::::::
(Historical)

:
(Fig. 3b). We find a winter precipitation sensitivity of −2.79%/K (SSP1-2.6), 2.82%/K (SSP2-4.5), 4.37%/K

(SSP3-7.0), 4.61%/K (SSP5-8.5) and 11.30%/K for the historical time period. This implies a reduction of winter precipitation390

rates with increasing GMT for the SSP1-2.6 scenario. However, similarly to the changes in the annual precipitation anomalies,

the historical, SSP1-2.6 and partially the SSP2-4.5 precipitation sensitivities show a small coefficient of determination for

seasonal precipitations
::::::::::
precipitation (Fig. 3b,c). Additionally, the inter-model spread is considerable, especially for the winter

precipitation sensitivity (Fig. K1c). For example, for the SSP1-2.6 scenario, the standard deviation of the winter precipitation

sensitivity is considerably larger than the sensitivity itself. The SSP1-2.6 winter precipitation sensitivity ranges from -29%/K395

for the NorESM2-LM model to 26%/K for the BCC-CSM2-MR model. It also has to be noted that the R2-coefficient of the

spatially averaged precipitation sensitivity is very small for most fits, i.e. R2 < 0.1, especially for the moderate scenarios. This

indicates that a spatially and seasonally uniform precipitation sensitivity for the whole GrIS is not an appropriate modelling

choice
::::
fails

::
to

::::::
capture

:::::::
spatially

::::::::::::
heterogeneous

:::::::
patterns.

This is further supported by the spatial patterns of the ensemble mean of the annual precipitation sensitivities (Fig. 3d-g). In400

all scenarios, there is a clear northeast-southwest gradient in the sensitivity. The northeastern part of Greenland shows the high-

est annual precipitation increase with increasing GMT in all scenarios. Interestingly, the
:::
The

:
spatial sensitivity differences are

largest in the SSP1-2.6 scenario with s > 15%/K in the northeast of Greenland to s < 0%/K at the southern and southeastern

margin (Fig. 3d). In the SSP2-4.5 scenario, only the southernmost tip of Greenland shows a negative precipitation sensitivity

(Fig. 3e). In all other scenarios, the annual precipitation sensitivity is positive, i.e. there is an increase of
::
in

:
the precipitation405

with an increase of
:
in
:

the GMT in all of Greenland. The seasonal difference in the spatial responses is relatively pronounced

(Fig. J1). In winter (Fig. J1a-e), the precipitation increase is most pronounced in northern Greenland, with less precipitation

increase in western and southeastern Greenland. For the SSP1-2.6 scenario, large parts of southern Greenland show a negative
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precipitation sensitivity. In summer (Fig. J1f-j), eastern Greenland shows the highest sensitivity. In the historical period, the

spatial sensitivity patterns are relatively similar to the other scenarios (Fig. J1a,f). However, western and northeastern Green-410

land show a slightly lower precipitation sensitivity in the historical period for both winter and summer than the future scenarios

(Fig. J1). At the same time, the winter precipitation sensitivity of southeastern Greenland is substantially higher for the his-

torical period. While we show sensitivities of the ensemble mean precipitation rates, the ensemble mean of the single-model

sensitivities show
:::::
shows similar patterns and intensities.

Interestingly, the R2-values of the fit of the ensemble mean precipitation rates against GMT are relatively low for the mod-415

erate emission scenarios (Fig. B1e,f & J1). At the margins and especially at the southeastern margin, the R2-values are small

due to high precipitation variability in these regions (Fig. B1e-h). Similarly, the R2-values of the single model precipitation

sensitivities are very low for most models in all scenarios, i.e. R2 < 0.2, indicating that there is not a clear linear relationship

between ln(P ) and the GMT or mean
:::::::::
near-surface

:
temperatures in Greenland in individual models (Fig. L1-P1). However, for

the SSP3-7.0 and SSP5-8.5 scenario, the log
::::::::
logarithm

::
of

:::
the

:
ensemble mean annual precipitation rates show

:::::
shows a clear420

linear relationship with the GMT (R2 > 0.77) (Fig. B1g,h).

Since the spatially averaged annual and seasonal
::::::::::
near-surface temperatures in Greenland show a strong linear relationship

with the GMT (Fig. 2a-c), the precipitation sensitivities relative to the GMT can easily be converted to precipitation sensitivities

relative to the spatially averaged regional Greenland near-surface temperatures. The resulting sensitivities are slightly lower due

to the accelerated increase of
::
in near-surface temperatures in Greenland compared to the GMT, but do not show a substantial425

change in the spatial patterns (Fig. I1).

The inter-model spread in the spatial response is large for the summer precipitation and for the winter precipitation in all sce-

narios. Several models show strong variation from the cross-model mean of the summer precipitation sensitivity, with predicted

precipitation decreases in large parts of Greenland, especially for the moderate scenarios. This is also visible in the annual pre-

cipitation sensitivities (Fig. L1-P1). The spatial response differs wildly
::::::
widely between the single models, especially for the430

SSP1-2.6 scenario (Fig. M1).
::::::::
Generally,

::::
there

:::
are

:::::
some

:::::::::
differences

::
in

:::
the

::::::
spatial

:::::::
patterns

:::::::
between

:::
the

::::
low-

:::
and

:::::::::::::
high-resolution

:::::::
versions

::
of

:::
the

:::::
same

:::::
model

::::
and

:::
the

:::::::::::::
high-resolution

:::::::
versions

:::::
seem

::
to

::::::
resolve

:::::
local

::::::
effects

:::::
better

::::
(Fig.

:::::
Q1b).

::::
For

::::::::
example,

::
in

::
the

:::::::::
SSP5-8.5

:::::::
scenario,

:::::::::::::::
MPI-ESM1-2-HR

:::::::
predicts

::
a
:::::
lower,

:::::
even

:::::::
negative,

:::::::::::
precipitation

:::::::::
sensitivity

::
at

:::
the

::::::::::
southeastern

:::::::
margin

::
of

:::
the

::::
GrIS,

:::::
while

:::
the

:::
LR

:::::::
version

::::
does

:::
not

::::
(P1).

:::::::
Similar

:::::::::
differences

:::
are

::::::
visible

:::
for

::::::::::::
NorESM2-LM

:::
and

:::::::::::::
NorESM2-MM

::::
and

:::
the

::::::::::::
MIROC-ES2H

:::
and

::::::::::::
MIROC-ES2L

:::::::
versions

::
in

:::
the

::::::::
SSP5-8.5

::::::::
scenario.

::::::::
However,

::
for

::::::::
instance,

::::::::::::
CNRM-CM6-1

::::::
shows

:::
the

:::::::
opposite435

::::::::
behaviour.

::::::::::::
Additionally,

:::
the

::::::
lowest

::::::::
resolution

::::::
model

::::::::
analysed,

::::::::::::
FGOALS-g3,

::::::
shows

:
a
:::::

very
::::::
similar

:::::::::::
precipitation

:::::::::
sensitivity

::::::
pattern

::
in

:::
the

::::::::
SSP5-8.5

:::::::
scenarios

:::
as

::::
some

:::
of

::
the

:::::::
highest

::::::::
resolution

:::::::
models

::::
such

::
as

:::::::::::::::
MPI-ESM1-2-HR.

:

4 Modelling the response of the ice sheet

::::::
Similar

::
to

:::
the

::::::::::
near-surface

:::::::::::
temperature,

:::
we

:::
find

::
a
::::::::::
relationship

:::::::
between

:::
the

:::::::::::
precipitation

::::::::
anomalies

::::
and

:::
the

::::::
change

::
in

:::::::
AMOC

::::::
strength

:::
by

:::
the

::::
year

::::
2100

::::::::
(r > 0.62

:::
for

:::
all

::::::::
scenarios,

::::
Fig.

::::
5b).

:::
The

:::::::
stronger

:::
the

:::::::
AMOC

::::::
decline,

:::
the

::::
less

:::
the

::::::::::
precipitation

:::::
rates440

:::::::
increase

::
in

:::::::::
Greenland.

:::::::::::
Analogously,

:::
the

:::::::::::
precipitation

:::::::::
sensitivity

::
is

::::::
smaller

:::
the

:::::::
stronger

:::
the

::::::
decline

:::
in

:::
the

::::::
AMOC

::::::::
strength,

::
in
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::
the

:::::::::
respective

:::::::
scenario

:::::
(Fig.

::::
5c).

::
In

:::::
other

::::::
words,

:::
the

:::::::::::
precipitation

::::::::
increases

::::
less

:::
for

::::
each

::::::
degree

::
of

::::::::
warming

::
if

:::
the

:::::::
AMOC

:::::
shows

:
a
:::::::
stronger

::::::::::
weakening.

::::
This

::
is

::
in

:::::::::
accordance

::::
with

::::::::
previous

::::::
studies,

::::
that

::::
show

::::
that

:
a
:::::
strong

:::::::
AMOC

::::::
decline

:::
has

::
a

:::::::
negative

:::::
effect

::
on

:::::::::::
precipitation

::
in

:::::::::
Greenland,

::::::::
especially

::
in
:::
the

::::::
wetter

::::::
regions

::
in

::::::::
southern

::::::::
Greenland

::::
and

:::::::::
particularly

::
at
:::
the

:::::::::::
southeastern

::::::
margin

::::::::::::::::::
(Bellomo et al., 2021).

::::::::::::
Consequently,

::::
this

:::::
effect

::
is

::::
also

::::::
visible

::
in

:::
the

::::::
spatial

:::::::::::
precipitation

::::::::::
sensitivities.

::::
For

::::::::
example,445

:
4
:::
out

:::
of

:
5
::::::::

available
:::::::

models
::::
with

:::
an

:::::::
AMOC

::::::
decline

:::::::
> 13Sv

::
in
::::

the
::::::::
SSP5-8.5

:::::::
scenario

:::::
show

::
a
::::
clear

::::::::
negative

:::::::::::
precipitation

::::::::
sensitivity

::
at
::::

the
:::::::::::
southeastern

::::::
margin

:::::::::::::::::
(CESM2-WACCM,

:::::::::::
FGOALS-g3,

:::::::::::::
MRI-ESM2-0

:::
and

::::::::::::::
NorESM2-MM,

::::
Fig.

::::::::
P1&5c).

::::::::
However,

:::::
while

::::::::::::
NorESM2-LM

:::::
shows

:::
the

::::::::
strongest

:::::::
AMOC

::::::
decline

::
in

:::
the

::::::::
SSP5-8.5

:::::::
scenario

::::::
among

:::
all

::::::
models

::::
with

::::::::
available

::::::
AMOC

::::::::::
information,

:::
the

:::::::::::
precipitation

:::::::::
sensitivity

:
is
:::::::
negative

::::
only

:::
in

:
a
:::::
small

:::
part

::
of

:::
the

:::::::::::
southeastern

::::::
margin

:::::::
(Fig.P1).

:::::::::
Similarly,

::::::::::::
ACCESS-CM2

::::::
shows

:
a
:::::::
slightly

:::::::
stronger

::::::
AMOC

:::::::
decline

::
in

:::
the

::::::::
SSP5-8.5

:::::::
scenario

::::
than

::::::::::::::
CNRM-ESM2-1,

:::
but

:::::
does

:::
not

::::
show

::
a450

:::::::
negative

::::::::::
precipitation

:::::::::
sensitivity

::
in

:::::::
southern

::::::::::
Greenland,

::
in

:::::::
contrast

::
to

::::::::::::::
CNRM-ESM2-1.

3.1
::::::::

Modelling
:::
the

::::::::
response

::
of

::::
the

::
ice

:::::
sheet

To show the influence of the modelling choices, we run simulations with the ice sheet model PISM-dEBM-simple with spatially

resolved and spatially uniform scaling factors
:::
and

::::::::::
sensitivities for all analysed SSP scenarios.

3.2 Short-term response455

3.1.1
::::::::::
Short-term

:::::::
response

We initialise the ice sheet to a close to present-day state corresponding to the year 2015. Subsequently, we run the model

with the dEBM-simple surface mass balance module (Zeitz et al., 2021), which only needs precipitation and
::::::::::
near-surface

temperatures as input until the year 2100. We keep the orbital parameters fixed in all runs to exclusively extract the influence

of the sensitivity choices
::::
(c.f.

::::
2.2).

::
In

::::
total,

:::
we

:::
run

:::::
three

:::::::
different

:::::::::::
experiments:

:
460

::
(i)

::::::
uniform

::::::
scaling

::::::
factors

::::
and

:::::::::
sensitivities

::::
with

:::::::
constant

:::::::::::::::::::
height-change-induced

:::::::::::
precipitation

:::::::::
sensitivities

::::::::
(Uniform

::::::::::::::
Anomaly/Sens.),

::
(ii)

:::::::
spatially

:::::::
resolved

::::::
scaling

::::::
factors

:::
and

::::::::::
sensitivities

:::
and

::::
with

:::::::
constant

:::::::::::::::::::
height-change-induced

:::::::::::
precipitation

:::::::::
sensitivities

::::
and

::::::
(Spatial

::::::::::::::
Anomaly/Sens.)

:::
(iii)

:::::::
spatially

:::::::
resolved

::::::
scaling

::::::
factors

:::
and

::::::::::
sensitivities

:::
and

::::
with

:::::::
spatially

:::::::
varying

::::::::::::::::::
height-change-induced

:::::::::::
precipitation

::::::::::
sensitivities465

::::::
(Spatial

:::::::::::::
Anomaly/Sens.

::
+

::
sp.

::::::::::::::
height-induced).

:

:::
For

:::::
details

:::
on

:::
the

:::::::::::
experimental

:::::
setup,

:::
we

::::
refer

::
to

:::::::
Section

:::
2.2.

There is a clear difference in
::::::
between

:
the ice sheet volume

::::::
volumes

:
after 85 years

:::::::
between

::::::::::
experiment

::
(i)

:::
and

:::::::::::
experiments

:::::
(ii/iii) (Fig. 4a). The runs begin to branch

::::::
diverge after approximately 15 to 20 years. In each case, the simulations with

a spatially uniform scaling factor (dashed lines in Fig. 4a) show a smaller ice volume than the corresponding simulations470

with spatially resolved scaling factors
::::::::::
(dash-dotted

:::
and

:::::
solid

:::::
lines). The difference is more pronounced the more extreme the
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scenario.
::
In

:::
the

::::::::
SSP1-2.6

::::::::
scenario,

:::
the

:::
ice

:::::::
volume

::::::::
difference

::::::::
between

:::
the

::::::::
different

::::::::::
experiments

::
is

::::
less

::::
than

::::::
0.5 cm

::::::
global

:::::::
sea-level

:::::::::
equivalent

::
in

:::
the

::::
year

:::::
2100,

:::::
while

:::
in

:::
the

::::::::
SSP5-8.5

:::::::
scenario

:::
the

:::::::::
difference

::::::::::
corresponds

::
to

:::
ca.

::::
1 cm

::::::
global

::::::::
sea-level

::::::::
equivalent

:::::
(Fig.

:::
4a).

:::::::::::
Interestingly,

:::
the

:::::::::
difference

::
in

::::
total

:::
ice

:::::::
volume

::::
after

::
85

:::::
years

:::::::
between

::::::::::
experiment

:::
(ii)

:::
and

::::
(iii)

::
is

::::::
almost

:::::::::::
unnoticeable.475

The spatial differences
:::::::
absolute

::::::::::::
height-change

::
by

:::
the

::::
end

::
of

:::
the

:::::::::
simulation

::
is
:::::::

greatest
::
at
:::

the
:::::::

margin,
:::::::::
exceeding

::::::
100 m

::
in

::::
large

::::
parts

::
of

:::
the

::::::
margin

::
in

:::
the

::::
most

:::::::
extreme

:::::::
scenario

:::::
(Fig.

:::
S1).

::::
The

:::::
spatial

::::::::::
differences

:::::::
between

:::
the

::::::::::
experiments show the same

pattern for each scenario (Fig. 4b-e). The ice sheet thickness is generally smaller at the southwestern margin when the model

is forced with the scalar anomalies
:::::::
uniform

::::::
scaling

::::::
factors

:::
and

::::::::::
sensitivities

:
(blue in Fig. 4b-e). In contrast, the ice thickness at

the southeastern margin, and partially in the interior of Greenland, is larger for the simulations with scalar anomalies
:::::::
uniform480

::::::
scaling

::::::
factors

:::
and

::::::::::
sensitivities for each scenario (red). These differences

:::
The

::::::
spatial

:::::::::
differences

:::::::
between

::::::::::
experiments

:::
(ii)

::::
and

:::
(iii)

:::
are

::
in

:::
the

:::::::::
magnitude

:::
of

:::
less

:::::
than

::::
10 m

::
in

:::::
most

::::
parts

:::
of

:::
the

::::
GrIS

::::
and

:::
are

:::
not

::::::
shown

::::
here.

:::::
Little

:::::::::::
surprisingly,

:::
the

::::::
height

:::::::::
differences

:::::::
between

::::::::::
experiment

:::
(ii)

:::
and

::::
(iii)

:::
are

:::::
more

::::::::::
pronounced

::
in

:::::
some

::::::::
peripheral

:::::
parts

::
of

:::
the

:::
ice

::::::
sheet.

:::::
These

:::::
areas

:::
are

::::
those

::::::
where,

:::
on

:
a
:::::::
decadal

::::
time

:::::
scale,

:::
the

:::::::
influence

:::
of

:::::::
different

:::::::::::::::::::
height-change-induced

::::::::::
precipitation

::::::::::
sensitivities

::
is

::::::::
expected

::
to

::
be

:::::::
greatest.

::::
The

:::::
height

::::::::::
differences

:::::::
between

:::
the

::::::::
spatially

::::::
varying

::::
and

:::::::
uniform

:::::
setups

:
are more pronounced the more extreme485

the scenario. For the moderate scenarios SSP1-2.6 and SSP2-4.5, the difference in the ice thickness after 85 years is in the

magnitude of 10 m to 20 m (Fig. 4b,c). For the SSP5-8.5 scenario, the ice thickness difference is more than 40
::
30 m at the

southeastern and southwestern marginsand partially extending
:
,
:::
and

:::::::
partially

:::::::
extends further into the ice sheet.

This observed influence of the scaling factors is in accordance with the spatial sensitivities shown before. The southwestern

margin of the GrIS shows a smaller near-surface temperature increase than the average GrIS, especially for the annual melt490

period (summer) (Fig. C1f-j). This leads to an overestimated melt rate in this region for the scalar
::::::
uniform

:
temperature anoma-

lies. In contrast, the precipitation sensitivity at the southwestern margin is relatively close to the GrIS-wide average (Fig. J1).

Similarly, the temperature-driven melt is larger for the spatially resolved anomalies at the northern ice sheet margins. For the

southeastern margin, the changes in the simulated ice sheet thickness are mostly due to the differences in the precipitation sen-

sitivities. The precipitation increase per degree of warming is smaller at the southeastern margin than the GrIS-wide average495

(Fig. 3d-g). In the SSP1-2.6 scenario, there is even a decrease of
:
in
:
the precipitation rates. This leads to less accumulation and

hence reduced SMB in this region compared to the uniform scaling factors
:::::::::
sensitivities. In fact, the

::
ice

::::::::
thickness

::::::::::
differences

::::
agree

:::::
very

::::
well

::::
with

:::
the

:
spatial patterns of the precipitation sensitivity agree very well with the ice thickness difference in

eastern Greenland observed by the year 2100.

3.2 Long-term response500

::
To

:::::::::
investigate

:::
the

::::::::
dynamic

:::::::::::
contribution

::
to

:::
the

:::
ice

::::::::
thickness

::::::::
changes,

:::
we

::::::
follow

:::
the

::::::::
approach

:::
by

:::::::::::::::::
Goelzer et al. (2020).

::::
We

:::::::
calculate

:::
the

:::::::::::::
time-integrated

:::::
SMB

::::::::
anomaly

:::
for

:::
the

:::::
whole

:::::
time

::::
span

::::
and

::::::::
calculate

:::
the

::::::::
difference

:::::
from

:::
the

::::
total

:::::
local

:::::
mass

::::::
change

:::::::
(residual

::::::
height

:::::::
change,

::::
Fig.

::::
S1).

::
To

::::::::
calculate

:::
the

:::::
SMB

::::::::
anomaly,

:::
we

::::
run

:
a
::::::
control

::::
run

:::::::
without

:::
any

::::::::::
temperature

:::
or

::::::::::
precipitation

:::::::::
anomalies

::
or
:::::::::::::

height-induced
::::::

effects
::::

and
::::
take

:::
the

:::::::::
difference

::::::::
between

:::
the

:::::
SMB

:::::
from

:::
the

::::::
control

::::
run

:::
and

::::
the

::::::::
respective

:::::::
scenario

::::
run.

::::
This

:::::
gives

:::
all

:::
ice

::::::::
thickness

:::::::
changes

::::
that

:::
are

:::
not

:::::::
directly

::::::
related

::
to

:::::::
changes

:::
in

:::
the

:::::
SMB.

:::
We

::::
find

::
a505
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::::::
positive

::::::::
dynamic

::::::::::
contribution

::
to

:::
the

:::
ice

::::::::
thickness

:::::
along

::::
large

:::::
parts

::
of

:::
the

:::
ice

::::
sheet

:::::::
margin.

::::
This

:::
can

:::
be

::::::::
explained

::
by

::::::::
dynamic

::::::::
thickening

::
in
::::::::
response

::
to

::
the

::::::::
negative

::::
SMB

:::::::::
anomalies

:::
that

::::::
steepen

:::
the

::::::
surface

::::::
slopes

::
at

::
the

::::::
margin

::::::::::::::::::::::::::::::::::::::::::
(Huybrechts and Wolde, 1999; Goelzer et al., 2020)

:
.
::::::
Further

:::::::
inwards,

:::
the

::::::::::::
corresponding

:::::::
thinning

:
is
:::::::
visible.

:::
The

:::::::
dynamic

::::::::::
contribution

::
is
::::::::
generally

::::::
slightly

::::::
greater

::
in

:::
the

::::::::::
simulations

::::
with

::::::
uniform

::::::::::
sensitivities

::::
and

::::::::
anomalies

::::
than

:::
for

:::
the

::::::::::
experiments

::::
with

::::::::
spatially

:::::::
resolved

::::::::::
sensitivities

:::
and

:::::::::
anomalies.

:

3.1.1
:::::::::
Long-term

::::::::
response510

We extend the short-term simulations for another 100,000 years with temporally constant monthly near-surface temperature

and precipitation anomalies
::::::::
anomalies

::::
and

:::::::::::
precipitation

::::::::::
sensitivities, derived from the average 2090-2100 CMIP6 climatolo-

gies.
::::
Due

::
to

::::::::::::
computational

::::::::::
constrains,

:::
we

::::::
extend

:::
the

::::
runs

:::::
with

:::::::
spatially

:::::::
varying

:::::::::::::
height-induced

:::::::::::
precipitation

::::::::::
sensitivities

::::::::::
(experiments

:::::
(iii))

::::
only

::
for

:::::::
another

:::::
1,000

:::::
years.

:

The long-term response of the ice sheet varies substantially between spatially resolved and uniform scaling factors (Fig. 6515

& 7). Similar to the short-term response, the ice volume is generally smaller for scalar
:::::::
uniform

:
near-surface temperature

and precipitation anomalies
::::::::
anomalies

::::
and

:::::::::::
precipitation

::::::::::
sensitivities

:
than for spatially resolved anomalies

:::
and

::::::::::
sensitivities

(Fig. 6). The difference is
::::::::
long-term

::::::::::
differences

:::
are

:
most pronounced for the SSP2-4.5 scenario. In this scenario, the ice

sheet is completely lost temporarily with scalar anomalies
::::
loses

::::::
almost

::::
60%

::
of

:::
its

:::::
initial

:::::::
volume

::::
with

:::::::
uniform

::::::::
anomalies

::::
and

::::::::::
sensitivities,

::::::::
followed

::
by

::
a
:::::::::
temporary

::::::::
recovery

:::
and

::::::::::
subsequent

::::::::::
oscillations

::
in

:::
the

:::
ice

:::::::
volume. In contrast, for the spatially520

resolved anomalies, the ice sheet recovers to 50% of its initial volume after first reaching approximately
::::
does

:::
not

::::
lose

:::::
more

:::
than

:
30% of its initial volume. Also for the scalar anomalies, the ice sheet shows a temporary rebound to 50% of its initial

volume after circa 70,000 years after the complete loss. However, the ice volume decreases equally fast as it recovers in this

case.

For the SSP1-2.6 scenario, the ice sheet response between spatially resolved and uniform anomalies is very similar. The525

ice sheet loss is limited to 15-20
::::
10-25% of the initial ice sheet volume in both cases. While the simulations with scalar

::::::
uniform

:
anomalies generally show a 5-10% smaller ice volume than the corresponding simulations with spatial anomalies,

both simulations show oscillations of the ice sheet on decamillennial time scales
:::
that

::::::
almost

::::
seem

::::::::::::
synchronised. These quasi-

periodic decamillennial oscillations of the ice sheet have been observed before and are believed to be a nonlinear interplay

between the glacial isostatic adjustment (GIA) and the melt elevation feedback (Zeitz et al., 2022; Bochow et al., 2023; Petrini530

et al., 2023). The reduced ice sheet volume due to increased surface
::::::::::
near-surface temperatures leads to less load on the bedrock

below the ice sheet. Subsequently, the bedrock lifts up and leads to decreasing
::::::::::
near-surface temperatures at the ice surface,

enabling partial regrowth of the ice sheet, which in turn depresses the bedrock again, closing the feedback loop.

For the SSP3-7.0 and SSP5-8.5 scenarios, the ice sheet is lost almost completely without any recovery, independently of

choosing spatially resolved or uniform scaling factors. However, the time scale of the loss differs between the scalar
:::::::
uniform535

and spatially resolved anomalies. For the SSP3-7.0 scenario, the ice sheet is completely lost (ice volume below 0.25 · 1015 m3)

after 11
::
12,400 years (spatially resolved anomalies) and after 5,200 years (scalar

::::
7,800

:::::
years

::::::::
(uniform

:
anomalies), respec-

tively. Similarly, the ice sheet is lost after 4,900
::::
6,300

:
years (spatially resolved anomalies) and after 2,900 years (scalar

:::::
4,000

::::
years

::::::::
(uniform

:
anomalies), respectively, in the SSP5-8.5 scenario.

:::
The

:::::::::
differences

::
in
:::

ice
:::::::

volume
::::
after

::::::
1,000

::::
years

::::::::
between
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::::::::::
experiments

:::
(ii)

::::
and

::::
(iii),

::::
that

:::
is,

::::
with

::
or
:::::::

without
::::::::

spatially
::::::::
resolved

:::::::::::::::::::
height-change-induced

:::::::::::
precipitation

::::::::::
sensitivities,

::::
are540

::::::::
negligible

::::::::
compared

:::
to

:::
the

:::::::::
differences

:::::::
between

:::
(i)

:::
and

::::::
(ii/iii).

:::
For

:::
the

::::
high

::::::::
emission

::::::::
scenarios,

:::
the

::::
runs

:::::::
diverge

::::::
slightly

:::::
after

::::
circa

:::
750

::::::
years,

::::
with

::::
(iii)

::::::::
generally

:::::::
showing

::::
less

:::
ice

::::
loss,

:::::
while

:::
the

:::::::::
differences

:::
are

::::::
almost

:::::::::::
indiscernible

::
in
:::

the
::::

low
::::::::
emission

::::::::
scenarios.

The spatial evolution of the ice sheet shows similar patterns for spatially resolved and uniform scaling factors (Fig. 7).

However, there are differences in the time scale and extent of the ice sheet retreat. For the spatially resolved anomalies, the545

southwestern part of the ice sheet is most sensitive to warming, followed by a gradual retreat from the south to the north of the

GrIS with a rather abrupt loss of the remaining northern part. In the SSP2-4.5 scenario with spatially varying anomalies, the

southeastern part regrows
:::
due

::
to

:::
the

::::
GIA, simultaneously with the loss of the remaining northern part of the GrIS, which is also

visible in the minimum extent during the 100,000 years of simulation (red line in Fig. 7b). This leads to the observed quasi-

oscillatory behaviour in the ice volume (Fig. 6). Similarly, the southwestern GrIS is most sensitive to warming in the case of550

scalar
:::::::
uniform anomalies. However, in contrast to spatially resolved anomalies, the northern part retreats almost simultaneously

with the southern part of the GrIS.

For the SSP1-2.6, SSP3-7.0 and SSP5-8.5 scenarios, the spatial extent of the ice sheet after 100,000 years is similar for

scalar
:::::::
uniform and spatially resolved anomalies (Fig. 7). Furthermore, the minimum extent during the whole simulation is very

similar between spatially resolved and uniform scaling factors. Only the SSP2-4.5 scenario shows a very different minimum555

extent and extent at the end of the simulation (Fig. 7b,f), which is also visible in the ice volume (Fig. 6). The interplay between

GIA and melt-elevation feedback becomes more important close to the critical temperature threshold
:
, beyond which the ice

sheet melts completely. While the surface
::::::::::
near-surface

:
temperatures are high enough to melt large parts of the ice sheet, the

subsequent bedrock rebound still allows partial regrowth of the ice sheet. The SSP2-4.5 anomalies are close to this threshold,

therefore the difference between the scalar
::::::
uniform

:
and spatially resolved near-surface temperature and precipitation anomalies560

is especially pronounced. In contrast, for the SSP3-7.0 and SSP5-8.5 scenario, the GIA does not allow a regrowth anymore.

::
To

:::::
show

:::
the

::::::::
influence

:::
of

:::::::
different

:::::::::
lapse-rate

::::::
values

:::
and

::::::::::::
height-change

::::::::
induced

::::::::::
precipitation

:::::::::::
sensitivities,

:::
we

::::
vary

:::::
both

:::::::::
parameters

:::
and

:::
run

:::::::::
ensemble

:::::::::
simulations

:::
for

:::::::
100 kyr

::::
(Fig.

::::
T1).

:::::::::
Generally,

:::
the

::::::
higher

:::
the

::::::::
lapse-rate

:::
the

:::::
faster

::::
and

:::
the

::::::
greater

::
the

:::
ice

::::
loss

::::
(Fig.

:::::::
T1c,d).

:::::::::::::
Unsurprisingly,

:::
the

:::::
lower

:::
the

:::::::::::
height-change

:::::::
induced

:::::::::::
precipitation

:::::::::
sensitivity,

:::
the

::::::
slower

:::
and

:::::::
smaller

::
the

:::
ice

::::
loss.

:::::::::
Generally,

:::
the

:::::::::
qualitative

::::::::
behaviour

::
is

:::
the

:::::
same

::
for

::::::::
different

::::::::
parameter

::::::::::::
combinations

::::::
besides

:::
the

:::::::::
magnitude

::
of

:::
ice565

::::
loss.

::::
Only

:::
for

::
a

::::
lapse

::::
rate

::
of

:::::::
0K/km,

:::
the

:::
ice

::::
sheet

::::::::
stabilises

:::::
after

::::
some

::::
time

:::::
even

:::
for

:::
the

:::::::::::
high-emission

::::::::
scenarios

:::::
(Fig.

:::::
T1a).

:::
The

::::::::::
simulations

::::
with

:::::::
uniform

::::::::
anomalies

::::
and

::::::::::
sensitivities

::::
show

::
a

::::
faster

::::
and

::::::
greater

:::
ice

:::
loss

::::
than

:::
the

::::::::::::
corresponding

::::::::::
simulations

::::
with

:::::::
spatially

::::::
varying

:::::::::
anomalies

:::
and

:::::::::::
sensitivities.

4 Conclusions & Discussion

We analysed the precipitation and near-surface temperature changes in Greenland for the time period from the year 1850 until570

the year 2100
:
, based on the output of the latest coupled model intercomparison project (CMIP6). We find a temperature sen-

sitivity between
::
of

:
s= 1.29 (SSP1-2.6)

:
,
:::::::
s= 1.49

::::::::::
(SSP2-4.5),

::::::::
s= 1.54

:::::::::
(SSP3-7.0)

:
and s= 1.53 (SSP5-8.5) between annual
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mean
::::::::::
near-surface temperatures in Greenland and the GMT. Additionally, we find a sensitivity of the mean annual precipita-

tion rates
::
to

::::
GMT

:
between s= 3.02%/K

:::::::::
(SSP1-2.6),

:::::::::::
s= 3.74%/K

::::::::::
(SSP2-4.5),

::::::::::::
s= 5.53%/K

:::::::::
(SSP3-7.0) and s= 6.09%/K ,

compared to the GMT
:::::::::
(SSP5-8.5). We find a clear seasonal dependency, both for the temperature scaling and the precipitation575

sensitivities. Our precipitation sensitivities,
::::
with

:::::::
respect

::
to

::::
local

::::::::::
near-surface

::::::::::::
temperatures, are below the theoretically derived

value from the Clausius-Clapeyron relationship of
::
ca.

:
9%/K, in accordance with other studies (Robinson et al., 2012; Frieler

et al., 2012, 2015; Nicola et al., 2023; Bochow et al., 2023)
::::
(Fig.

:::
3&

:::
I1). Our temperature scaling factors are in accordance

with an earlier study, which only investigated temperature scaling factors for the historical and SSP5-8.5 scenarios (Bochow

et al., 2023). At the same time, our summer temperature scaling factors are higher for all scenarios than a previous estimate580

based on CMIP3, which estimated a scaling factor of s= 0.9± 0.2 between summer near-surface temperature in Greenland

and the GMT (Robinson et al., 2012). Similarly, our winter temperature scaling factors are lower than reported by Robinson

et al. (2012). Robinson et al. (2012) report a 2.1 times faster warming in winter compared to the summer, while we only find a

ca. 1.4 times faster warming during the winter than during the summer. These differences are very likely due to the substantial

changes in the climate models between CMIP3 and CMIP6.585

::::::::::
Interestingly,

:::
the

:::::::
average

:::::::
regional

::::::::
warming

::
in

:::::::::
Greenland

:::
by

:::
the

::::
year

:::::
2100,

::
as

::::::::
predicted

:::
by

:::
the

::::::
CMIP6

:::::::
models,

::
is

::::
close

:::
or

::::
even

:::::
above

:::
the

::::::
critical

:::::::::::
temperature

::::::::
threshold

::
of

:::
the

:::::
GrIS,

::::::
which

:::
has

:::::
been

::::::::
estimated

::
to

:::
lie

:::::::
between

::::::
0.8◦C

:::
and

::::::
3.0◦C

:::::
GMT

::::::
relative

::
to

:::::::::::
pre-industrial

:::::
levels

:::::::::::::::::::::::::::
(Armstrong McKay et al., 2022).

:::::
Even

:::
for

:::
the

::::::::
SSP1-2.6

::::::::
scenario,

:::
the

::::::::
ensemble

:::::
mean

:::::::
regional

:::::::
warming

::
in
::::::::::

Greenland
:::
for

:::::::::
2090-2100

::
is
:::::::::::::
∆T = 3.27◦C

:::::
above

::::::::::::
pre-industrial

:::::
levels

:::::
(Fig.

::::
1a),

:::::
which

:::::::::
translates

::
to

::
a
::::::
global

:::::::
warming

:::::
level

::
of

::::::::::::::
∆TGMT = 2.5◦C

:::::
using

:::
the

:::::::::::::
corresponding

::::::
scaling

:::::
factor

:::
for

::::
the

::::::::
SSP1-2.6

:::::::
scenario

:::
of

:::::::
s= 1.29

:::::
(Fig.

::::
2a).590

::::::
Hence,

:::
the

::::::
critical

::::::::::
temperature

::::::::
threshold

:::
for

:::
the

::::
GrIS

::::::
might

::
be

:::::::
crossed,

::
at
:::::
least

::::::::::
temporarily,

::::
even

::
in
:::
the

:::::::::
optimistic

::::::::
emission

::::::::
scenarios.

::::::::
However,

::
it

:::
has

:::::
been

:::::
shown

::::
that

:
a
:::::::::

temporary
:::::::::
overshoot

::
of

:::
the

::::::
critical

::::::::
threshold

:::
for

:::
the

:::::
GrIS

::::
does

:::
not

::::::::::
necessarily

:::::
imply

:
a
:::::::::
large-scale

::::
loss

::
of

:::
the

:::
ice

::::
sheet

:::::::::::::::::::::::::::::::::::
(Bochow et al., 2023; Höning et al., 2024).

:

The differences in the precipitation sensitivities between the different emission scenarios and the historical period can be in-

terpreted as a state-dependency of the precipitation sensitivities, that is, the sensitivity is dependent on the background climate595

and not only on the regional
:::::::::
near-surface

:
temperatures. We attribute this to other global warming induced

::::::::::::::
warming-induced

changes such as changes in dynamic processes,
:::
i.e.

::::::::::
atmospheric

::::::::::
circulation

:::::::
patterns, that strongly influence precipitation pat-

terns and rates in Greenland (Mernild et al., 2015; Auger et al., 2017; Lewis et al., 2017, 2019)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Mernild et al., 2015; Auger et al., 2017; Lewis et al., 2017, 2019; Bellomo et al., 2021)

. While our approach takes all changes in the precipitation rates into account, we do not distinguish between thermodynamic

and dynamically induced changes in the precipitation rates. In other words, our approach assumes that all changes in the precip-600

itation rates are a direct consequence of temperature change. The low R2 values for individual model fits supports
::::::
support the

conclusion that the changes in precipitation are not necessarily driven by temperature changes alone, but rather by warming-

induced changes in, for example, atmospheric circulations
:::::::::
circulation

:::::::
patterns. Especially for the moderate emission scenarios,

the low R2 values are a consequence of strong precipitation variability for low levels of warming.
::
For

::::
the

::::
high

::::::::
emission

::::::::
scenarios,

::::
this

:::::::::
interannual

:::::::::
variability

::
is

:::::::
masked

:::
by

:::
the

:::::
strong

:::::::::::::::
warming-induced

::::::::
changes.

:
It has been shown that the North605

Atlantic Oscillation, Atlantic Multidecadal Oscillation and the Icelandic low have significant correlation with observational

precipitation rates across Greenland (Mernild et al., 2015; Auger et al., 2017). Specifically, the eastern margin of Greenland
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shows a high precipitation variability in CMIP6 and observations, which has been linked to the North Atlantic storm track

(Groves and Francis, 2002; Bogerd et al., 2020). Auger et al. (2017) conclude that increased blocking events in a warmer cli-

mate would lead to an increase of
::
in variability and likelihood of precipitation in southwest in Greenland

::::::::
Greenland,

:
and to the610

opposite effect in southeast Greenland. While this does not directly translate to precipitation sensitivities, we find a generally

lower or even negative precipitation sensitivity in southeastern compared to southwestern Greenland (Fig. 3d-g). However, the

representation of such atmospheric changes in the current generation of climate models is not clear (Delhasse et al., 2021).

The observed state dependency of the sensitivities also implies that historical changes might not be an appropriate predictor

for future changes. For example, the average regional
::::::::::
near-surface temperatures in Greenland show a higher scaling with the615

GMT than
::
in

:::
the

::::::::
historical

:::::
period

:::::
than

::
in all future scenarios, even though the linear relationship holds across all scenarios.

Scaling factors or sensitivities solely derived from historical data might over- or underestimate future responses. Nevertheless,

ideally, observational data should be included for parameterisations to complement modelling results.

:::
We

:::
find

:::::
large

:::::::::
differences

:::
in

::::::::::
temperature

:::
and

:::::::::::
precipitation

::::::::
responses

::::::
across

:::
the

:::::::
different

:::::::
CMIP6

:::::::
models.

:::::::
Possible

:::::::
reasons

::::::
include

:::::::::
differences

::
in
::::::

model
:::::::
physics

:::
and

::::::::::::::
parameterisation

:::::::
schemes

::::
and

:::::::::
subsequent

:::::::
changes

:::
in

::::
other

:::::::::
large-scale

:::::::::::
phenomena,620

::::
such

::
as

:::
the

:::::::
AMOC,

:::::
which

::::::::
influence

:::
the

:::::::
climate

::
in

::::
the

::::
GrIS

:::::::
region.

::::::
Indeed,

:::
we

::::
find

:
a
::::::::::
relationship

:::::::
between

:::
the

:::::::
change

::
in

:::
the

::::::
AMOC

:::::::
strength

:::
and

:::
the

:::::::::::
temperature

::::::::
anomalies

::::
and

::::::::::
precipitation

:::::::::::
sensitivities.

:::::::::
Generally,

:
a
:::::::
stronger

:::::::
AMOC

:::::::::
weakening

:::::
leads

::
to

:::
less

::::::::
warming

:::
and

:::
less

:::::::::::
precipitation

:::::::
increase

::
in

:::::::::
Greenland.

:::::::
Models

:::
that

::::::
predict

:
a
::::::
strong

::::::
AMOC

::::::
decline

:::
by

:::
the

:::
end

::
of

:::
the

::::
21st

::::::
century

:::::
seem

::
to

::::::
predict

:
a
::::::
decline

::
in
:::::::::::
precipitation

::::
rates

::
in

:::
the

::::::
wettest

::::::
region

::
of

:::
the

:::::
GrIS,

:::
i.e.,

:::
its

::::::::::
southeastern

:::::::
margin.

::::
This

::
is

::
in

:::::::::
accordance

::::
with

:::::::
previous

::::::
studies

::::
that

::::
show

:
a
:::::::
negative

:::::
effect

::
of

::
a
:::::
strong

:::::::
AMOC

::::::
decline

::
on

:::
the

::::::::::
precipitation

:::::
rates

::
in

::
the

::::::::
subpolar625

:::::
North

:::::::
Atlantic

:::::
region

::::::::::::::::::::::::::::::::
(Liu et al., 2020; Bellomo et al., 2021).

::::
The

::::::::
reduction

::
of

::::::::::
precipitation

:::
in

:::
this

:::::
region

:::
for

::
a
:::::
strong

:::::::
AMOC

::::::
decline

:::
has

::::
been

:::::::::
associated

::::
with

::
a

:::::::
decrease

::
in

:::
the

::::::::::
evaporation

::::
rates

::::
over

:::
the

:::::
ocean

::::
into

:::
the

::::::::::
atmosphere

:::
and

::
a

::::::::
reduction

::
in

:::
the

::::
eddy

:::::::
moisture

::::::::
transport

:::::::::::::::::::::::::::::::
(Liu et al., 2020; Bellomo et al., 2021)

:
.
::::::::::::::::::
Bellomo et al. (2021)

::::
even

:::::::
suggests

:::
that

:::::::::::
precipitation

:::::::
changes

::
in

::::::
models

::::
with

::::::
strong

:::::::
AMOC

::::::
decline

:::
are

::::::::
primarily

::::::
driven

:::
by

:::::::
dynamic

:::::::
changes

::::::
rather

::::
than

:::::::::::::
thermodynamic

::::::
effects.

:::::
This

::
is

::
in

:::::::::
accordance

::::
with

:::
our

::::::::
findings,

:::::
which

:::::
show

::::
that

:::
the

::::
pure

:::::::::::::
thermodynamic

::::::
effects

::::::
cannot

::::::
explain

:::
the

:::::::
changes

::
in

:::::::::::
precipitation630

:::::
alone.

::
An

:::::::
obvious

::::::::::
explanation

:::
for

:::::
some

::
of

:::
the

::::::::
observed

:::::::::
differences

::
is

:::
the

:::::
model

:::::::::
resolution,

::
as

::::::
higher

:::::::::
resolution

::::::
models

::::::
should

::
at

::::
least

::::::
resolve

:::
the

::::::::::
topography

::
of

:::
the

:::::
GrIS

:::::
better

:::
and

:::::::
capture

::::
local

::::::
effects

:::::
more

:::::::::
accurately.

::::::
While

:::
we

:::
find

:::::
some

::::::::::
differences

::
in

::
the

::::::
spatial

:::::::
patterns

::
of
::::

the
::::::::::
sensitivities

:::::::
between

:::::
higher

::::
and

:::::
lower

:::::::::
resolution

:::::::
versions

::
of

:::
the

:::::
same

:::::::
models,

:::
we

::
do

::::
not

:::
find

::::
any

::::::::
systematic

::::::::::
differences.

::::
That

:::
is,

:::
we

::
do

:::
not

::::
find

:
a
:::::
clear

::::::::::
relationship

:::::::
between

:::::
model

:::::::::
resolution

:::
and

:::
the

:::::::::::
near-surface

::::::::::
temperature635

:::
and

:::::::::::
precipitation

:::::::::
sensitivity.

:::::
While

::
it

::::::::
generally

:::::
seems

::::
that

:::
the

:::::
spread

::
in
:::
the

::::::::
spatially

:::::::
averaged

::::::
model

:::::::
response

:::::::::
decreases

::::
with

::::::::
increasing

:::::::::
resolution,

:::::
both

:::
for

:::
the

:::::::::::
near-surface

::::::::::
temperature

::::
and

:::::::::::
precipitation,

::::
this

::
is

::::
hard

:::
to

:::::
verify

::::
due

::
to

:::
the

:::::::
limited

:::
set

::
of

::::::
models

::::
with

::::
low

:::::::::
resolution.

:::
As

:::::
such,

:::
the

::::::::
different

::::::
model

:::::::::
resolutions

:::
are

::::
not

::::::::
sufficient

::
to

:::::::
explain

:::
the

:::::::::
differences

:::
in

:::
the

:::::::::
sensitivities

::::::
across

:::
the

::::::
CMIP6

:::::::::
ensemble.

Given the strong differences in model responses, the use of a limited selection of climate models or even of individual models640

to estimate precipitation or temperature changes can lead to vastly different values
:::::
results. Similarly, using single climate model

runs as forcing for standalone ice sheet modelling can produce very different outcomes. We therefore argue that the use of single
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model runs as forcing for ice sheet modelling, especially on long time scales, needs to be treated with caution. We either suggest

the use of (i) ensemble mean climate fields as forcing, which minimise the influence of short-term climate variability on the

ice sheet, or (ii) ensemble simulations with single model forcing fields. Additionally, the second
:::
The

:::::
latter option allows, in645

principle, a statistical treatment of the different outcomes. However, running ensemble simulations with different forcing is

computationally substantially more expensive.

Interestingly, the average regional warming in Greenland by the year 2100, as predicted by the CMIP6 models, is close or

even above the critical temperature threshold of the GrIS, which has been estimated between 0.8◦C and 3.0◦C GMT relative

to pre-industrial levels (Armstrong McKay et al., 2022). Even for the SSP1-2.6 scenario, the ensemble mean regional warming650

in Greenland for 2090-2100 is ∆T = 3.27◦C above pre-industrial levels (Fig. 1a), which translates to a global warming level

of ∆TGMT = 2.5◦C using the corresponding scaling factor for the SSP1-2.6 scenario of s= 1.29 (Fig. 2a). Hence, the critical

temperature threshold for the Greenland ice sheet might be crossed, at least temporarily, even in the optimistic emission

scenarios. However, it has been shown that a temporary overshoot of the critical threshold for the GrIS does not necessarily

imply a large-scale loss of the ice sheet (Bochow et al., 2023; Höning et al., 2024).655

We show that scalar
::::::
uniform

:
near-surface temperature and precipitation anomalies, that are often used for long-term mod-

elling of ice sheets, can lead to over- or underestimation of the accumulation and ablation rates and hence the surface mass

balance. For the Greenland ice sheet
::::
GrIS, simulations with scalar

::::::
uniform

:
near-surface temperature anomalies based on a

Greenland-wide average might overestimate melt rates in large parts of the GrIS. On the other hand, spatially and seasonally

uniform precipitation sensitivities might lead to an overestimation of accumulation rates in southern Greenland and an un-660

derestimation in northern Greenland. The difference between spatially varying and uniform scaling factors is already clearly

visible in short-term simulations
::::::::::::
(century-scale)

::::::::::
simulations,

:
but has an even bigger influence on long-term

:::::::::::::::
(millennium-scale)

simulations. Ultimately, spatially uniform sensitivities and anomalies in simulations might lead to an underestimation of the

long-term stability of parts or even the whole GrIS. Similar concerns have been raised about scalar lapse rates
::::::
uniform

:::::
lapse

::::
rates,

:
which are often used in ice sheet modelling (Crow et al., 2024). It is known that the lapse rate in Greenland has a seasonal665

and spatial dependency (Erokhina et al., 2017) and it has been shown that using spatially and temporally varying lapse rates

has a substantial influence on the ice sheet evolution (Crow et al., 2024).

While we have shown that spatially uniform anomalies capture the overall evolution of the GrIS,
::
we

::::
have

::::::
shown

::::
that they

tend to over- or underestimate the surface mass balance of parts of the ice sheet. They therefore lead to over- or underestimated

projections of sea level or long-term stability of the GrIS. Since fully coupled
::
As

::::
long

::
as

:::::
fully

:::::::
coupled

::::
ESM

:
simulations on670

long time scales will most likely not be feasiblein the near future
:::
are

:::::::::::::
computationally

::::
not

::::::
feasible, we recommend the use

of spatially and monthly resolved anomalies
::
and

::::::::::
sensitivities

:
for long-term ice sheet modelling

:
, instead of spatially uniform

anomalies.
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Figure 1. Ensemble mean of Greenland mean annual near-surface temperature and precipitation anomalies in CMIP6 relative to

pre-industrial levels.
::::::::
Ensemble

::::
mean

::
of
:::::::::
Greenland

:::::
mean

:::::
annual

:::::::::::
near-surface

::::::::::
temperature

::::::::
anomalies

:::
and

::::::::::
precipitation

::::::::::
sensitivities

::
in

::::::
CMIP6

::::::
relative

:
to
::::::::::::
pre-industrial

::::
levels. (a) Ensemble mean of annual near-surface temperature anomalies as predicted by CMIP6 models

for all SSP scenarios relative to pre-industrial level (1850-1900). The solid lines denote the ensemble mean, while the dashed lines denote

the minimum and maximum anomalies for the respective scenario. The horizontal lines on the bar denote the end-value in the year 2100 for

each model, while the dot is the mean of the near-surface temperature in the year 2100. (b) Same as a but for the annual precipitation. In

each scenario, the ensemble mean of the near-surface temperature and precipitation increase.
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Figure 2. Ensemble mean and spatial scaling factors for near-surface temperatures relative to global mean temperatures.
::::::::
Ensemble

::::
mean

:::
and

:::::::
spatially

:::::::
varying

:::::
scaling

::::::
factors

:::
for

::::::::::
near-surface

::::::::::
temperatures

::::::
relative

::
to
:::::
global

:::::
mean

:::::::::::
temperatures.

:
(a) Fit of the ensemble

mean of the annual regional near-surface temperature in Greenland against the ensemble mean GMT for all SSP scenarios and the historical

time period. (b,c,) Same as a but for the summer (JJA) and winter (DJF) temperatures in Greenland, respectively. The DJF temperatures

generally increase faster than the JJA temperatures for all scenarios except for SSP1-2.6. (d) Regional scaling factors for
::
the

:
ensemble mean

of annual surface temperatures in Greenland against GMT for SSP1-2.6. The contour at 100% denotes
:::::::
delineates the area where the regional

near-surface temperature increases faster than the GMT.
:::
The

:::::::
Ilulissat

::::::
Icefjord

::
is

::::::
denoted

::
by

:::
the

:::
star.

:
(e, f, g) Same as d but for SSP2-4.5,

SSP3-7.0 and SSP5-8.5, respectively. In all scenarios, northern Greenland warms fastest compared to the GMT,
:
with a gradient towards to

the South. The Southern tip of the GrIS warms slower than the GMT in each scenario.
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Figure 3. Ensemble mean and spatial scaling factors for precipitation rates relative to global mean temperatures.
::::::::
Ensemble

:::::
mean

:::
and

::::::
spatial

::::::
varying

::::::
scaling

::::::
factors

::
for

:::::::::::
precipitation

::::
rates

::::::
relative

::
to
::::::

global
::::
mean

::::::::::::
temperatures. (a) Fit of the ensemble mean of the

annual precipitation rates in Greenland against the ensemble mean GMT for all SSP scenarios and the historical time period. (b,c,) Same

as a but for the summer (JJA) and winter (DJF) precipitation rates in Greenland, respectively. The JJA precipitation rates generally increase

faster than the DJF precipitation for all scenarios except for the historical time period. (d) Regional scaling factors for
::
the

:
ensemble mean of

annual precipitation rates in Greenland against GMT for SSP1-2.6. The contour at 0%/K denotes the area where the regional precipitation

rates decrease. (e, f, g) Same as d but for SSP2-4.5, SSP3-7.0 and SSP5-8.5, respectively. In all scenarios, precipitation rates increase most

strongly in north-eastern Greenland, with a north-south and east-west gradient.
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Figure 4. Comparison of simulated short-term ice volume change between scalar and spatially resolved near-surface temperature

and precipitation anomalies.
::::::::::
Comparison

::
of

::::::::
simulated

:::::::::
short-term

:::
ice

::::::
volume

:::::::
change

:::::::
between

:::::::
uniform

:::
and

::::::::
spatially

:::::::
resolved

::::::::::
near-surface

::::::::::
temperature

::::::::
anomalies

::::
and

::::::::::
precipitation

::::::::::
sensitivities. (a) Simulated ice volume change from 2015 until 2100. PISM is

forced with the ensemble mean of the near-surface temperature
::::::::
anomalies and precipitation anomalies

::::::::
sensitivities

:
derived from CMIP6.

Solid lines denote the ice volume for spatially resolved anomalies, while the dashed lines denote a spatially uniform scalar anomaly. In

each case, the spatially resolved anomalies lead to less ice loss than the scalar
::::::
uniform anomalies. (b,c,d,e) Height difference in the ice

thickness in the year 2100 between simulations with spatial
::::::
spatially

:::::::
resolved and scalar

::::::
uniform near-surface temperature and precipitation

anomalies
:::::::::
/sensitivities. Blue areas denote regions where the simulated ice thickness is smaller for the scalar

:::::
uniform

:
anomalies than for

the spatially resolved anomalies. Red areas denote regions where the ice is thicker in the scalar
::::::
uniform anomaly case. Especially on the

southwestern margin of the GrIS, the ice is thinner in the scalar
::::::
uniform

:
anomaly case in the year 2100. The differences are most pronounced

in the SSP5-8.5 scenario.
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Figure 5. Simulated long-term ice volume for scalar and spatial anomalies. Simulated ice volume with PISM for 100 ka. PISM

is forced with
::::::::::
Relationship

:::::::
between

:::::::::::
temperature,

::::::::::
precipitation

::::
and

::::::
change

::
in
:::::::

AMOC
:::::::
strength.

::
(a)

::::::
Change

::
in

:::::::
spatially

:::::::
averaged

:::::
annual

:::::::::
near-surface

::::::::::
temperatures

:::
by

::::::::
2090-2100

::::::::
compared

::
to

::::::::
historical

:::::
period

:::::::::
(1850-1900)

:::
in

::::::
relation

::
to

:
the ensemble mean

::::::
change of

the near-surface temperature
:::::
AMOC

::::::
strength

:::::::::
AMOCmax ::

by
::::
2100

:::::::::::::::
(Baker et al., 2023).

:::
All

::::::::
scenarios and precipitation anomalies derived

from CMIP6 for
::
all

:::::::
available

::::::
models

::
are

::::::
plotted

:::
(19

::
to

::
21

:::
out

::
of

::
32

::::::
models,

::::::::
dependent

::
on

:
the years 2090-2100

:::::::
scenario). Solid lines denote

::::
There

::
is

:
a
::::::::
moderate

:::::::::
relationship

::::::
between

:
the ice volume for spatially resolved

:::::::::
near-surface

:::::::::
temperature anomalies , while

::
and

:
the dashed

lines denote a uniform anomaly. In each case,
:::::
change

::
in
:

the spatially resolved anomalies lead to less ice loss than
::::::
AMOC

:::::::
strength.

::::
(b,c)

::::
Same

::
as

:
a

::
but

:::
for the scalar

:::::::::
precipitation

:
anomalies

::
and

::::::::::
precipitation

:::::::::
sensitivities. Oscillations

::
The

::::::::
respective

:::::::
r-values of the ice volume on

decamillennial scales is visible
::
fits

:::
are

::::::
denoted

::
in

:::
the

:::::
legend.

::::::
AMOC

::::
data

::::
taken

::::
from

::::::::::::::
Baker et al. (2023).
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Figure 6.
::::::::
Simulated

::::::::
long-term

:::
ice

::::::
volume

:::
for

::::::
uniform

::::
and

:::::::
spatially

:::::::
resolved

::::::::
anomalies.

:::::::::
Simulated

::
ice

::::::
volume

::::
with

::::
PISM

:::
for

::::::
100 ka.

::::
PISM

::
is

:::::
forced

::::
with

:::
the

:::::::
ensemble

::::
mean

::
of
:::

the
::::::::::
near-surface

:::::::::
temperature

::::::::
anomalies

:::
and

:::::::::
precipitation

:::::::::
sensitivities

::::::
derived

::::
from

::::::
CMIP6

:::
for

::
the

:::::
years

::::::::
2090-2100.

::::::
Dashed

:::::
lines

:::::
denote

:
a
:::::::

uniform
:::::::
anomaly

:::
and

::::::::
sensitivity

:::
(i),

::::
solid

::::
lines

:::::
denote

:::
the

:::
ice

::::::
volume

::
for

:::::::
spatially

:::::::
resolved

:::::::
anomalies

:::
(ii)

:::
and

:::::::::
dash-dotted

::::
lines

:::::
denote

::::::
spatially

:::::::
resolved

::::::::
anomalies

:::
and

:::::::::
sensitivities

:::::::
including

::::::
spatially

:::::::
resolved

:::::::::::::::::
height-change-induced

:::::::::
precipitation

::::::::
sensitivity

::::
(iii).

::
In

:::
each

::::
case,

:::
the

:::::::
spatially

::::::
resolved

::::::::
anomalies

:::
lead

::
to

:::
less

:::
ice

:::
loss

::::
than

::
the

:::::::
uniform

::::::::
anomalies.

:::
The

:::::::::
experiment

:::
(iii)

:
is
::::
only

:::
run

::
for

:::::
1,000

:::::
years.

:::::::::
Oscillations

::
of

::
the

:::
ice

::::::
volume

::
on

:::::::::::
decamillennial

:::::
scales

::
are

::::::
visible.
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Figure 7. Maps of simulated long-term ice volume for scalar and spatially resolved near-surface temperature and precipitation

anomalies.
:::::
Maps

::
of

::::::::
simulated

::::::::
long-term

:::
ice

::::::
volume

:::
for

:::::::
uniform

:::
and

:::::::
spatially

:::::::
resolved

:::::::::::
near-surface

::::::::::
temperature

::::::::
anomalies

::::
and

::::::::::
precipitation

::::::::::
sensitivities. (a) Simulated ice volume after 100 ka for the SSP1-2.6 scenario and spatially resolved anomalies. The black

outline denotes the ice margin at the end of the simulation
:
, while the red line denotes the ice margin of the minimum ice volume within the

100 ka of simulation. (b, c, d) Same as a but for the SSP2-4.5, SSP3-7.0 and SSP5-8.5 scenario, respectively. (e, f, g, h) Same as a, b, c, d

but for scalar
::::::
uniform anomalies. The minimum ice volume and the ice volume at the end of the simulation is generally smaller than in the

case of spatially resolved anomalies. The differences are very
::::
most pronounced for the SSP2-4.5 scenario, where a huge mistake would be

made when assuming a scalar scaling, while for the more extreme scenarios the ice sheet is completely lost in both cases.
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Table 1.
::::::::
Overview

::
of

:::::::::::
experiments.

:::
Each

::::
row

::::::::::
corresponds

::
to

:::
one

:::
set

:::
of

::::::::::
experiments.

:::
We

:::
run

:::::
three

:::::::
different

:::
sets

:::
of

::::::::::
experiments,

::::
where

:::
we

::::
vary

::::::
between

::::::::::::::::
(scenario-dependent)

:::::::
spatially

::::::
uniform

:::
and

:::::::
spatially

::::::
varying

:::::::::
precipitation

::::::::::
sensitivities,

:::::::::
temperature

::::::::
anomalies

:::
and

::::::::::
height-change

::::::
induced

::::::::::
precipitation

::::::::::
sensitivities.

:::
The

:::::::::
experiments

::::
with

:::::::
spatially

::::::
varying

:::::::::::
height-change

::::::
induced

::::::::::
precipitation

:::::::::
sensitivities

::
are

::::
only

:::
run

::
for

:
a
::::::::

maximum
::
of

:::::
1,000

::::
years.

:::
All

:::::::::
experiments

:::
are

:::
run

::
for

:::
all

:::::::
emission

:::::::
scenarios.

:::::::::
Experiment

:::::
Name ::::::::

Simulation
:

:::::
length [

::
yr]

::::::::::
Precipitation

:::::::::
sensitivities

::::::::::
Temperature

:::::::
anomaly :::::::::

Lapse-Rate [
::::
K/km] :::::::::::

Height-change
:::::::
induced

::::::::::
precipitation

:::::::::
sensitivities

:
[
::::
%/K]

::::::
Uniform

:::
(i)

::
85

::
&

::::::
100,000

: ::::::
uniform

::::::
uniform

::::::
uniform [

:
0,
:::
5-8]

::::::
uniform [

::
0-7]

:::::::
Spatially

::::::
Variable

:::
(ii)

::
85

::
&

::::::
100,000

: ::::::
spatially

::::::
varying

: ::::::
spatially

::::::
varying

: ::::::
uniform [

:
0,
:::
5-8]

::::::
uniform [

::
0-7]

::::::
Spatially

:::::::
Variable

:
+

::
sp.

:::::::::::
height-induced

:::
(iii)

:

::
85

::
&

::::
1,000

: ::::::
spatially

::::::
varying

: ::::::
spatially

::::::
varying

: ::::::
uniform [

:
6]

::::::
spatially

::::::
varying

:
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Code and data availability. The CMIP6 data is freely available at https://aims2.llnl.gov/search/cmip6/. The regridded data for Greenland as

well as the anomalies and sensitivities are available on Zenodo at https://doi.org/10.5281/zenodo.11378716. The source code for the ice sheet675

model PISM is freely available at https://github.com/pism/pism. Scripts used for the analysis are available from the corresponding author

upon request.

Appendix A

A1 Temperatures in CMIP6
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Figure A1. Histograms of seasonal and annual near-surface temperature scaling factors against GMT for all scenarios and models.

(a) Scaling factors between spatially averaged summer near-surface temperature (JJA) in Greenland and GMT derived from a linear fit for

each model and all scenarios. The ensemble mean and standard deviation for each scenario is denoted
:::
are

::::
given

::
in

:::
the

:::::
legend. (b) Same as

a but for winter temperatures (DJF). The model spread is larger than for summer scaling factors, especially for the SSP1-2.6 scenario. In

all cases, the winter near-surface temperature warms faster than the summer temperatures. (c) Same as a but for mean annual temperatures

in Greenland. (d) Same as a but for scaling factors between regional summer and winter temperatures in Greenland. There is considerable

spread in the model response.
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temperature↔

precipitation↔

SSP-1.26↕ SSP-2.45↕ SSP-3.70↕ SSP-5.85↕

a b c d

e f g h

Figure B1. Maps of R2-values for fit of annual mean temperatures and precipitation rates for all scenarios.
:::::
Maps

::
of

::::::::
R2-values

:::
for

::
the

:::::
linear

::
fit

::
of

::::::
annual

:::::
mean

::::::::::
temperatures

:::
and

:::::::::::
precipitation

::::
rates

:::
for

::
all

::::::::
scenarios. (a) Map of R2-values of linear fit between ensemble

mean of regional annual mean near-surface temperature in Greenland and ensemble mean GMT for the SSP1-2.6 scenario. The spatially

averaged R2-value is denoted
:
in

:::
the

::::
right

::::::
bottom. There is a clear southwest-northeast gradient with southwest Greenland showing the

lowest R2-values. (b,c,d) Same as a but for the SSP2-4.5, SSP3-7.0 and SSP5-8.5 scenarios, respectively. (e,f,g,h) Same as a,b,c,d but for
:
a

fit of
::
the

:
logarithm of ensemble mean precipitation rates against ensemble mean GMT. The ice sheet interior shows the highest R2-values,

while the margins, especially he
::
the southeastern margin, show low R2-values in all scenarios.
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Figure C1. Maps of scaling factors of ensemble mean temperatures in Greenland for winter (DJF) and summer (JJA) and all scenar-

ios. (a) Scaling factors between ensemble mean winter temperatures and ensemble mean GMT for the historical period (1850-2015). The

margins warm faster than the interior of the ice sheet. The spatially weighted mean R2-value is denoted
:::

given
::

in
:::
the

::::
right

::::::
bottom. (b,c,d,e)

Same as a but for SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5 scenario, respectively. A clear gradient between southern and northern Green-

land is visible, with the northern part warming up to 3 times faster than the southern part. (f,g,h,i,j) Same as a,b,c,d,e but for ensemble mean

summer (JJA) temperatures. In all scenarios, the interior of the ice sheet warms faster than the margins.
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Figure D1. Maps of annual near-surface temperature scaling factors for each CMIP6 model for the historical period. Maps of the

annual near-surface temperature scaling factors for all models for the historical period (1850-2015). Most models show a faster warming

of Greenland compared to the GMT. The white contour denotes the areas which
:::
that

:
show a slower increase than the GMT. The spatially

weighted R2-value is denoted
::::
given for each model.

34



R²=0.25

AC
CE

SS
-C

M
2

100 R²=0.20
AC

CE
SS

-E
SM

1-
5

100

R²=0.22

AW
I-C

M
-1

-1
-M

R

R²=0.25

BC
C-

CS
M

2-
M

R

R²=0.09

CA
M

S-
CS

M
1-

0

100

10
0

R²=0.41

CA
S-

ES
M

2-
0

100

R²=0.12

CE
SM

2-
W

AC
CM

100

R²=0.15

CE
SM

2

100

R²=0.30
CN

RM
-C

M
6-

1-
HR

10
0

R²=0.26

CN
RM

-C
M

6-
1

10
0

R²=0.07

CN
RM

-E
SM

2-
1

100

R²=0.47

Ca
nE

SM
5-

Ca
nO

E

R²=0.47

Ca
nE

SM
5

R²=0.19

EC
-E

ar
th

3-
Ve

g-
LR

100

R²=0.22

EC
-E

ar
th

3-
Ve

g

R²=0.20
EC

-E
ar

th
3

100

10
0

R²=0.06

FG
OA

LS
-f3

-L
10

0
10

0

R²=0.04

FG
OA

LS
-g

3

100

100

R²=0.05

GF
DL

-E
SM

4

10
0

R²=0.08

IN
M

-C
M

4-
8 100

R²=0.17

IN
M

-C
M

5-
0

R²=0.28

IP
SL

-C
M

6A
-L

R

R²=0.07
M

IR
OC

-E
S2

H

100

R²=0.12

M
IR

OC
-E

S2
L

100

R²=0.27

M
IR

OC
6

100

R²=0.06

M
PI

-E
SM

1-
2-

HR

100
R²=0.02

M
PI

-E
SM

1-
2-

LR

100

10
0

R²=0.08

M
RI

-E
SM

2-
0

100

R²=0.04

No
rE

SM
2-

LM

100

R²=0.06
No

rE
SM

2-
M

M

100

10
0

R²=0.42

Ta
iE

SM
1

10
0

R²=0.48

UK
ES

M
1-

0-
LL

100

0

100

200

300

Sc
al

in
g 
T a

/G
M

T 
[%

/K
]

Figure E1. Maps of annual near-surface temperature scaling factors for each CMIP6 model for the SSP1-2.6 scenario. Maps of the

annual near-surface temperature scaling factors for all models for the SSP1-2.6 scenario (2015-2100). Most models show a slower warming

of most parts of Greenland compared to the GMT. Some models even predict a decrease of
:
in the annual temperatures in parts of Greenland.

The white contour denotes the areas which show a slower increase than the GMT. The spatially weighted R2-value is denoted for each model.
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Figure F1. Maps of annual near-surface temperature scaling factors for each CMIP6 model for the SSP2-4.5 scenario. Maps of the

annual near-surface temperature scaling factors for all models for the SSP2-4.5 scenario (2015-2100). Most models show a faster warming

of most parts of Greenland compared to the GMT. The white contour denotes the areas which show a slower increase than the GMT. The

spatially weighted R2-value is denoted
:::

given
:

for each model.
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Figure G1. Maps of annual near-surface temperature scaling factors for each CMIP6 model for the SSP3-7.0 scenario. Maps of the

annual near-surface temperature scaling factors for all models for the SSP3-7.0 scenario (2015-2100). Most models show a faster warming

of most parts of Greenland compared to the GMT. The white contour denotes the areas which show a slower increase than the GMT. The

spatially weighted R2-value is denoted for each model.
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Figure H1. Maps of annual near-surface temperature scaling factors for each CMIP6 model for the SSP5-8.5 scenario. Maps of the

annual near-surface temperature scaling factors for all models for the SSP5-8.5 scenario (2015-2100). Most models show a faster warming

of whole Greenland compared to the GMT. Some models predict a slower warming of southern Greenland compared to the GMT. The white

contour denotes the areas which show a slower increase than the GMT. The spatially weighted R2-value is denoted
::::
given

:
for each model.
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Figure I1. Ensemble mean and spatial scaling factors for precipitation rates relative to annual near-surface temperature in

Greenland.
::::::::
Ensemble

:::::
mean

:::
and

:::::::
spatially

::::::
varying

::::::
scaling

::::::
factors

::
for

:::::::::::
precipitation

::::
rates

::::::
relative

::
to

::::::
annual

::::::::::
near-surface

::::::::::
temperature

::
in

:::::::::
Greenland. (a) Fit of the ensemble mean of the annual precipitation rates in Greenland against the ensemble mean annual near-surface

temperatures for all SSP scenarios and the historical time period. (b,c,) Same as a but for the summer (JJA) and winter (DJF) precipitation

rates in Greenland, respectively. The JJA precipitation rates generally increase faster than the DJF precipitation for all scenarios except for

the historical time period. (d) Regional scaling factors for ensemble mean of annual precipitation rates in Greenland against mean annual

near-surface temperatures for SSP1-2.6. The contour at 0%/K denotes the area where the regional precipitation rates decrease. (e, f, g) Same

as d but for SSP2-4.5, SSP3-7.0 and SSP5-8.5, respectively. In all scenarios, precipitation rates increase most strongly in north-eastern

Greenland, with a north-south and east-west gradient.
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Figure J1. Maps of precipitation sensitivities of ensemble mean precipitation rates for DJF and JJA and all scenarios. (a) Precipitation

sensitivities of ensemble mean winter precipitation rates and ensemble mean GMT for the historical period (1850-2015). The spatially

weighted mean R2-value is denoted
::::
given. (b,c,d,e) Same as a but for SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5 scenario, respectively.

A clear gradient between southwestern and northeastern Greenland is visible, with the sensitivities in the northern part exceeding 15%/K.

(f,g,h,i,j) Same as a,b,c,d,e but for ensemble mean summer (JJA) precipitation rates.
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Figure K1. Histograms of seasonal and annual precipitation sensitivities against GMT for all scenarios and models. (a) Sensitivities

of spatially averaged annual precipitation rates in Greenland and GMT derived from a linear fit of ln(P ) for each model and all scenarios.

The ensemble mean and standard deviation for each scenario is denoted
::
are

:::::
given

:
in
:::
the

:::::
legend. There is a considerable spread in the model

response, especially
:
.
::::::::
Especially for the SSP1-2.6 scenario, the uncertainty is larger than the mean. (b) Same as a but for summer (JJA)

precipitation sensitivities. (c) Same as a but for winter (DJF) precipitation sensitivities in Greenland.
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Figure L1. Maps of annual precipitation sensitivities for each CMIP6 model for the historical period. Maps of the precipitation sensi-

tivities for all models for the historical time period (1850-2015). There is no clear pattern in the precipitation sensitivities across the models.

The spatially weighted mean R2-value of the fit is very small for most models. The white contour denotes the areas which show a negative

precipitation sensitivity, i.e. a decrease of
::
in the precipitation rates. The spatially weighted R2-value is denoted for each model.
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Figure M1. Maps of annual precipitation sensitivities for each CMIP6 model for the SSP1-2.6 scenario. Maps of the precipitation

sensitivities for all models for the SSP1-2.6 scenario (2015-2100). There is no clear pattern in the precipitation sensitivities across the

models. The spatially weighted mean R2-value of the fit is very small for most models. The white contour denotes the areas which show a

negative precipitation sensitivity, i.e. a decrease of
:
in the precipitation rates. The spatially weighted R2-value is denoted for each model.
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Figure N1. Maps of annual precipitation sensitivities for each CMIP6 model for the SSP2-4.5 scenario. Maps of the precipitation

sensitivities for all models for the SSP2-4.5 time period (2015-2100). The majority of models show a positive precipitation sensitivity for

most parts of Greenland. However, some models show negative sensitivities for the southeastern margin of the GrIS, partially extending into

the interior of the ice sheet. However, the spatially weighted mean R2-value of the fit is very small for most models. The white contour

denotes the areas which show a negative precipitation sensitivity, i.e. a decrease of
::
in the precipitation rates. The spatially weighted R2-value

is denoted for each model.
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Figure O1. Maps of annual precipitation sensitivities for each CMIP6 model for the SSP3-7.0 scenario. Maps of the precipitation

sensitivities for all models for the SSP3-7.0 scenario (2015-2100). The majority of models show a positive precipitation sensitivity for most

parts of Greenland. However, some models show negative sensitivities for the southeastern margin of the GrIS. The white contour denotes the

areas which show a negative precipitation sensitivity, i.e. a decrease of
:
in
:
the precipitation rates. The spatially weighted R2-value is denoted

::::
given for each model.
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Figure P1. Maps of annual precipitation sensitivities for each CMIP6 model for the SSP5-8.5 scenario. Maps of the precipitation

sensitivities for all models for the SSP5-8.5 scenario (2015-2100). The majority of models show a positive precipitation sensitivity for most

parts of Greenland. However, some models show negative sensitivities for the southeastern margin of the GrIS. The white contour denotes the

areas which show a negative precipitation sensitivity, i.e. a decrease of
:
in
:
the precipitation rates. The spatially weighted R2-value is denoted

::::
given for each model.
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Figure Q1.
:::::::::
Dependency

::
of

:::::::::::
precipitation

::::::::
sensitivity

:::
and

::::::::::
temperature

::::::
scaling

::
on

::::::
model

::::::::
resolution.

::
(a).

:::::::
Spatially

:::::::
averaged

::::::::::
precipitation

:::::::
sensitivity

::::::
against

:::::
model

::::::::
resolution

::
in

:::::::
arbitrary

::::
units,

:::::
where

::
0
::
is

::
the

::::::
lowest

::::::::
resolution

:::
and

:
1
::
is
:::
the

::::::
highest

::::::::
resolution.

:::
All

::::::
models

::
for

:::
all

:::::::
scenarios

::
are

::::::
plotted.

:::
(b)

::::
Same

::
as
::
a
::
but

:::
for

:::
the

:::::::::
temperature

::::::
scaling.

:::::
While

::
the

::::::
spread

:
in
:::
the

:::::
model

:::::::
response

:::::
seems

::
to

::::::
decrease

::::::
slightly

::::
with

:::::::
increasing

:::::
model

::::::::
resolution,

:::
no

:::::
strong

:::::::::
relationship

::::::
between

:::
the

:::::::::::::
scaling/sensitivity

:::
and

:::
the

:::::
model

:::::::
resolution

::
is
::::::
visible.
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Figure R1.
::::::::
Difference

::::::
between

:::::
initial

:::::
state

:::
and

:::::::
observed

:::
ice

::::::::
thickness

:::
and

:::::::
velocity.

::
(a)

:::::::
Thickness

:::::::
anomaly

::
of

::::
initial

::::
state

::::::::
compared

::
to

::::::::::
observational

:::
data

::::::::::::::::::::::::::::::::
(Morlighem et al., 2017; Morlighem, 2022)

:
.
:::
The

:::
root

:::::
mean

::::::
squared

::::
error

::
is

:::::
228m

:::
with

::
a
::::::
general

:::::::::::
understimation

::
of

:::
the

:::::::
thickness

::
in

::
the

::::::
interior

::
of

::
the

:::
ice

:::::
sheet.

::
(b)

::::
Same

::
as

:
a
:::
but

::
for

:::
the

::
ice

::::
flow

::::::
velocity

::::::::::::::::::::
(Joughin et al., 2016, 2018)

:
.
:::
The

:::
root

:::::
mean

::::::
squared

::::
error

:
is
:::::::
112m/yr,

::::::
mostly

:::
due

::
to

::
an

:::::::::::
overestimation

::
of

:::::::
velocities

::
in

:::
the

::::::
western

:::
part

::
of

:::
the

::
ice

:::::
sheet.
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Figure S1.
:::::
Maps

::
of

:::::::
absolute

:::::
height

::::::
change

:::
and

:::::::
dynamic

::::::::::
contribution

::
of

:::
the

:::::
height

::::::
change

:::
for

:::
the

:::::::::
short-term

:::::::::
simulations.

:::
(left)

:::
The

::::::
absolute

:::::
height

::::::
change

::::
after

::
85

::::
years

:::
for

::::
each

::::::
scenario

::::::::
compared

::
to

:::
the

::::
initial

::::
state

::
is
::::::
plotted

::
for

::::::::::
experimental

:::::
setups

::
(i)

::::
and

:::
(ii).

::
In

::::
each

::::::
scenario

::::::::::
southwestern

::::::::
Greenland

:::::
shows

:::
the

::::::
biggest

:::::
height

::::::::
difference.

::::::
(right)

::::::
Dynamic

:::::::::
contribution

::
to
:::

the
:::::
height

:::::::
change,

:::
i.e.,

:::
the

:::::
height

::::::
changes

:::
that

:::::
cannot

::
be

::::::::
attributed

::
to

::::::
changes

::
in

::
the

:::::
SMB.
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Figure T1.
::::::::
Sensitivity

:::::::
analysis

::
of

::::::::
long-term

:::::::::
simulations

::
for

:::::::
different

:::::
lapse

::::
rates

:::
and

::::::::::::::::::
height-change-induced

::::::::::
precipitation

::::::::::
sensitivities.

::
(a)

::::
Time

:::::
series

::
of

::
ice

::::
sheet

::::::
volume

::
for

:::::::
different

::::
lapse

:::
rate

:::::
values

::::::::::::
(0,5,6,7,8 K/km)

:::
and

::
a
::::
fixed

::::::::::::::::
height-change-induced

::::::::::
precipitation

::::::::
sensitivity

:
of
:::::
5 %/K

:::
for

::
all

:::::::
emission

:::::::
scenarios.

::::::
Dashed

::::
lines

::::::::
correspond

::
to

::::::::::
experimental

::::
setup

:::
(i),

::::
while

::::
solid

::::
lines

::::::::
correspond

::
to

::::::::::
experimental

::::
setup

:::
(ii).

::
(a)

::::
Same

::
as

:
a
:::
but

::
for

::::
fixed

::::::::
lapse-rate

:::::::
(6 K/km)

:::
and

::::::
varying

::::::::::
height-change

::::::
induced

::::::::::
precipitation

::::::::
sensitivity

::::::::::::::::
(0,1,2,3,4,5,6,7 %/K).

::::::::
Generally,

::
the

::::::::
lapse-rate

:::
has

:
a
::::::
stronger

::::::::
influence

::
on

:::
the

:::::::
long-term

::::::::
behaviour

::::
than

::
the

:::::::::::
height-change

::::::
induced

::::::::::
precipitation

::::::::
sensitivity.

:::
(c)

:::::
Scatter

::::
plot

:
of
:::::

mean
:::::::
sea-level

:::
rise

::::
after

::::::::
90-100 kyr

::
for

:::
all

::::::::::
combinations

::
of

::::::::
lapse-rates

:::
and

:::::::::::
height-change

::::::
induced

::::::::::
precipitation

:::::::::
sensitivities

::
for

:::::::
spatially

:::::
varying

::::::::
anomalies

::::
and

::::::::
sensitivites

::::
(ii).

:::
The

::::
size

::
of

:::
the

:::::
marker

::::::::::
corresponds

::
to

:::
the

::::::::
lapse-rate

:::::
value,

::::
while

:::
the

:::::
colour

::::::::::
corresponds

::
to

:::
the

::::::
emission

:::::::
scenario.

:::
(d)

::::
Same

::
as

:
c
:::
but

::
for

:::::::
uniform

:::::::
anomalies

::::
and

:::::::::
sensitivities.

::
In

::::
both

:::::
cases,

:
a
::::
clear

:::::::::
dependency

::
of

:::
the

:::::::
sea-level

:::
rise

::
on

:::
the

:::::::
lapse-rate

:::
and

:::
the

::::::::::
height-change

::::::
induced

::::::::::
precipitation

::::::::
sensitivity

:
is
::::::

visible.
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