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Abstract.

Nitrogen oxides (NOx = NO + NO2) are air pollutants which are co-emitted with CO2 during high-temperature combustion

processes. Monitoring NOx emissions is crucial for assessing air quality and for providing proxy estimates of CO2 emissions.

Satellite observations, such as those from the TROPOspheric Monitoring Instrument (TROPOMI) on board the Sentinel-5P

satellite, provide global coverage at high temporal resolution. However, satellites measure only NO2, necessitating a conver-5

sion to NOx. Previous studies applied a constant NO2-to-NOx conversion factor. In this paper, we develop a more realistic

model for NO2 to NOx conversion and apply it to TROPOMI data of 2020 and 2021. To achieve this, we analysed plume-

resolving simulations from the MicroHH Large Eddy Simulation model with chemistry for the power plants Bełchatów (PL),

Jänschwalde (DE), Matimba and Medupi (ZA), as well as a metallurgical plant in Lipetsk (RU). We used the cross-sectional

flux method to calculate NO, NO2 and NOx line densities from simulated NO and NO2 columns and derived NO2-to-NOx10

conversion factors as a function of the time since emission. Since the method of converting NO2 to NOx presented in this paper

assumes steady state conditions as well as that the conversion factors can be modeled by a negative exponential function, we

validated the conversion factors using the same MicroHH data. Finally, we applied the derived conversion factors to TROPOMI

NO2 observations of the same sources. The validation of the NO2-to-NOx conversion factors shows that they can account for

the NOx chemistry in plumes, in particular for the conversion between NO and NO2 near the source and for the chemical loss15

of NOx further downstream. When applying these time-since-emission-dependent conversion factors, biases in NOx emissions

estimated from TROPOMI NO2 images are greatly reduced from between –50 and –42% to only –9.5 to –0.5% in compari-

son with reported emissions. Single-overpass estimates can be quantified with an uncertainty of 20–27%, while annual NOx

emission estimates have uncertainties in the range of 4–21% but are highly dependent on the number of successful retrievals.

Although more simulations covering a wider range of meteorological and trace gas background conditions will be needed to20

generalize the approach, this study marks an important step towards a global, uniform, high-resolution, and near real-time

estimation of NOx emissions - especially with regard to upcoming NO2 monitoring satellites such as Sentinel-4 and -5 and

CO2M.
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1 Introduction

Nitrogen oxides (NOx = NO + NO2) are reactive trace gases and important air pollutants since they cause oxidative stress25

when respired, are involved in the formation of ground-level ozone (O3) and particulate matter and contribute to acid rain

(Thurston, 2017). As most NOx emissions originate from high-temperature combustion processes, monitoring these sources

is crucial for air quality regulation and can be used to estimate the (co-emitted) CO2 emissions, provided that one knows the

CO2:NOx emission ratio for a given source (e.g., Goldberg et al., 2019a; Kuhlmann et al., 2021; Liu et al., 2020; Reuter et al.,

2019; Hakkarainen et al., 2023). Estimating CO2 emissions from large sources such as power plants and cities will be an30

important component of the CO2 Monitoring and Verification Support (CO2MVS) service that is currently being developed

under the European Copernicus CO2 project (CoCO2) in support of the Paris Agreement (Pinty et al., 2017; Janssens-Maenhout

et al., 2020). For this purpose, emission data should be available in near real time. A convenient method to obtain such high-

resolution, uniform global emission estimates is to use satellite observations (Pinty et al., 2017).

Several case studies have investigated the potential and limitations of quantifying point source CO2 emissions from space35

(e.g., Bovensmann et al., 2010; Goldberg et al., 2019b; Kuhlmann et al., 2021; Nassar et al., 2017; Reuter et al., 2019). One

of the methods to quantify emissions is the cross-sectional flux method, which determines emissions by dividing a plume into

several cross-sections. By integrating the measured vertical column densities along a cross-section, a line density is obtained.

Each line density can be converted into a flux by multiplication with an effective wind speed representing the mean transport

speed of the plume. Under the assumption of steady-state conditions, the flux at each cross-section along the plume can be40

used to estimate the emissions(Varon et al., 2018).

Estimating CO2 emissions from NO2 satellite data is appealing because NO2 can be measured with higher accuracy than

CO2. There are also a number of existing and upcoming satellites that provide NO2 products with high temporal and spatial

coverage in comparison with CO2 satellites. The most prominent existing instrument is the TROPOspheric Monitoring Instru-

ment (TROPOMI) on the Sentinel-5 Precursor satellite, which provides daily observations of NO2 and other trace gases with45

a spatial resolution of 3.5× 5.5 km2 at nadir (van Geffen et al., 2022; Veefkind et al., 2012). Several case studies have shown

that TROPOMI data can be used to estimate NOx emissions from cities and power plants (e.g., Douros et al., 2023; Goldberg

et al., 2019b; Lorente et al., 2019).

Satellite-based radiance data only allow for the retrieval of NO2 but not NO. However, more than 90% of NOx from combus-

tion processes is emitted as NO, which is then partially oxidized to NO2 inside the plume (Pronobis, 2020; Seinfeld and Pandis,50

2016). To retrieve NOx emissions, it is therefore necessary to convert NO2 to NOx. Previous studies often used a constant NO2

to NOx conversion factor of about 1.32 derived assuming steady-state conditions (e.g., Beirle et al., 2011; de Foy et al., 2015;

Kuhlmann et al., 2021; Beirle et al., 2021). Recent studies that used regional chemistry transport model simulations derived

conversion factors in the range of 1.1 to 1.9, but acknowledge that the values near sources are likely larger (e.g., Lorente et al.,

2019; Rey-Pommier et al., 2022; Goldberg et al., 2022; Hakkarainen et al., 2024).55

In the CoCO2 project, plume-resolving large eddy simulations of atmospheric transport with chemistry were conducted using

the MicroHH model (van Heerwaarden et al., 2017). These simulations showed that the NOx:NO2 ratios inside the plume are
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highest near the source and decrease roughly exponentially with increasing time after emission (Krol et al., 2023). Figure 1

schematically depicts the evolution of NO, NO2 and NOx concentrations in a plume. While more than 90% of NOx is emitted

as NO (Pronobis, 2020), it is rapidly oxidised to NO2 in the presence of ozone (O3), titrating the available O3. Only after60

dilution and mixing of the plume with ambient air along the plume, the concentration of O3 starts to increase again, leading to

the oxidation of further NO. As a result, the ratio of NOx to NO2 is largest shortly after the emission and gradually decreases

over time. The rate of this oxidation process depends on several factors such as the amount of NOx emitted, the concentration

of O3 and volatile organic compounds (VOCs), as well as photolysis rates and meteorological conditions. Subsequently, NO2

is mainly removed by reacting with OH radicals with lifetimes ranging from hours to a few days in the lower troposphere65

(Seinfeld and Pandis, 2016). According to figure 1, NOx decays exponentially with a constant e-folding lifetime, but in reality

the lifetime may change along the plume due to changing OH radical concentrations.

Figure 1. (a) Schematic illustration of NO, NO2 and NOx concentrations after the emission of NOx where 90 % of NOx is emitted as NO.

(b) Resulting NOx/NO2 ratio.

Since the NOx:NO2 ratio inside plumes cannot be assumed constant, the aim of this study is to develop a more realistic

model for a conversion factor of NO2 to NOx that accounts for the spatiotemporal variations of NOx chemistry in plumes.

The model is applied in combination with the cross-sectional flux (CSF) method, which were both implemented in the Python70

package for “data-driven emission quantification” (Kuhlmann et al., 2024, ddeq). To develop a more realistic NO2-to-NOx

conversion that varies with time since emission and hence with the distance of the cross-section from the source, we use

MicroHH simulations that were conducted within the CoCO2 project. Simulations were performed for the power plants in

Bełchatów (PL), Jänschwalde (DE) and Matimba & Medupi (ZA) (hereafter referred to as Matimba), as well as a metallurgical

plant in Lipetsk (RU). The derived parameterisation is then applied to TROPOMI observations of these four sources over a75

two-year period.
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2 Data and Methods

2.1 Development of a NO2 to NOx conversion model using MicroHH simulations

2.1.1 Estimating emissions with the cross-sectional flux method

As illustrated in Figure 1, the chemistry of NOx progresses as a function of time. Therefore, it is necessary to convert the80

length of a plume into a time since emission. The CSF method implemented in ddeq is particularly useful for this purpose, as it

divides a plume into several cross-sections perpendicular to the plume direction and establishes a plume-following coordinate

system with along-plume and across-plume coordinates.

Figure 2. Example of the cross-sectional flux method. (a) Satellite image of a NO2 plume divided into sub-polygons. (b) Integrated trace

gas concentration for six sub-polygons. (c) Estimated trace gas fluxes as mass NO2 along the plume and the corresponding fitted function to

estimate the emissions.

Figure 2 shows the application of the CSF method for a TROPOMI NO2 image containing the plume from the Matimba and

Medupi power plants in South Africa. Note that the power plants are only 6 km apart, so that their plumes appear as a single85

plume in the TROPOMI image. ddeq uses a plume detection algorithm to determine the location of the plume (Kuhlmann et al.,

2019). A center line is drawn along the ridge of the plume, which is used to compute along- and across-plume coordinates

(denoted by x and y, respectively), and to outline the plume area (yellow polygon). The polygon is subdivided in sub-polygons
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of 12 km length (Kuhlmann et al., 2020). For each sub-polygon, the mass of the trace gas enhancement over the background

∆Ω [g m−2] is integrated over the width of the plume which yields line densities q [g m−1] at distance x:90

q(x) =

ymax∫

ymin

∆Ω(x,y)dy (1)

The plume width is defined as twice the maximum distance of a detected plume pixel from the center of the curve. As an alter-

native, the line density q can be computed by fitting a Gaussian curve to the enhancements inside the polygon, perpendicular

to the direction of the plume:

g(y) =
q√
2πσ

exp
(
− (y−µ)2

2σ2

)
(2)95

with g being the fitted column using the standard width σ and center position µ to the observations (Kuhlmann et al., 2021).

Figure 2b shows the computation of the line densities for six examples at different distances from the plume. The line densities

computed from NO2 observations need to be converted to NOx line densities using an NO2 to NOx conversion model f that

depends on the time since emission t:

qNOx(t) = f(t) · qNO2(t) (3)100

The time since emission t is computed from an effective wind speed ueff at the source and the arc length of the center line.

Details of the estimation of the function f(t) are presented in Section 2.1.3.

Next, the line densities are converted to fluxes F by multiplying them with ueff . Finally, the emission Q is estimated by

fitting a negative exponential function to the fluxes F (t), the additional fit parameter τ representing the NOx lifetime.

F (t,τ) = Q · exp
(
− t

τ

)
(4)105

2.1.2 Synthetic Satellite Observations

To gain a better understanding of the NOx:NO2 ratios in plumes, simulations from high-resolution atmospheric transport

models incorporating chemistry are needed. For this study, we used the large-eddy simulation (LES) model MicroHH (van

Heerwaarden et al., 2017), which was recently extended with a chemistry module (Krol et al., 2023). The model simulated

reactive trace gases and CO2 as well as meteorological variables such as temperature, pressure, and wind speed. MicroHH110

included a simplified version of the chemistry scheme implemented in the IFS model of the European Centre for Medium

Range Weather Forecast (Huijnen et al., 2016), simulating the species O3, NO, NO2, NO3, N2O5, HNO3, CO, CO2, CH4

(fixed), H2 (fixed), HO2, OH, H2O2, CH2O, RO2, and ROOH, as well as C3H6 as a representative of VOCs. The chemistry

was tuned to match the NOx and HOx chemistry of IFS and to realistically represent the photostationary state between NO,

NO2 and O3.115

The MicroHH model was run on a 128 × 128 × 4 km domain in the longitude, latitude and altitude directions respectively

for Matimba and a 51.2 × 51.2 × 4 km domain for Bełchatów, Jänschwalde, and Lipetsk. The spatial resolution was set to 100
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× 100× 25 m for the Matimba case and 50× 50× 25 m for the others. Each case was simulated for 48 hours, starting at 00:00

UTC, and the output was saved hourly. The model was initialised and driven with hourly meteorological data from the ERA5

reanalysis. For the background concentrations of trace gases, reanalysis data from the Copernicus Atmosphere Monitoring120

Service (CAMS) were used (Krol et al., 2023; van Stratum et al., 2023). To simulate the plumes, typical quantities of NOx

emissions from bottom-up reported values of previous years were released at the respective locations of the power plants and

industrial facilities. The NOx emissions were split into 95% NO and 5% NO2 by mass (Krol and van Stratum, 2021).

Table 1. Details of the four MicroHH simulations used in this study (Krol et al., 2023)

Facility Country Simulation period

Power plant Jänschwalde Germany 22 - 23 May 2018

Power plant Bełchatów Poland 6 - 7 June 2018

Steel plant Lipetsk Russia 12 - 13 June 2019

Power plant Matimba and Medupi South Africa 24 - 25 July 2020

The model output consisted of 3D data of the reactive trace gases as well as meteorological variables such as temperature,

pressure, and wind speed. The output was post-processed into 2D datasets resembling synthetic satellite observations but125

without including any measurement noise. The resolution was degraded to the expected resolution of the CO2M satellites of

2 × 2 km. For the wind speeds, a 2D weighted average of the 3D wind fields was calculated based on the vertical emission

profile. These wind speeds are used to estimate the simulated emissions. The specific model settings and boundary conditions

used for the MicroHH model runs are described in Krol and van Stratum (2021) and Krol et al. (2023) while the post-processing

is documented in Koene and Brunner (2023).130

2.1.3 Conversion of NO2 to NOx line densities in MicroHH

To derive a more realistic conversion model of NO2 to NOx line densities f(t), the vertically integrated MicroHH simulations

were analysed for the sources Bełchatów, Jänschwalde, Lipetsk, and Matimba by applying the CSF method as outlined above.

We analysed the time steps 8 to 14 UTC for both simulated days instead of only the ones at TROPOMI overpass time to

derive more robust NO2-to-NOx conversion factors that better represent varying atmospheric and site conditions. For each135

polygon of the detected plumes, the line densities of NO and NO2 were calculated. The along-plume distance of each plume

was divided by the profile-weighted wind speed at the source to convert them to a time since emission. Such a conversion allows

us to account for the effects of varying wind speeds on the concentration of trace gases. For each source, we fitted a negative

exponential function to the median NOx:NO2 ratio, using the standard deviations of the analysed time steps as uncertainties.

f(t) = m · exp(−r · t) + f0 (5)140

The fitting parameter m represents a scaling factor, r the rate at which the NOx:NO2 ratio decreases and f0 the offset to which

the ratio will converge to with time. The resulting conversion factor f(t) can be multiplied with the corresponding qNO2(t)
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line densities to obtain qNOx(t). The uncertainty σf of f is calculated from the fitted uncertainties of the three parameters by

propagation of uncertainty

σf (t) =

√(
∂f(t)
∂m

)2

σ2
m +

(
∂f(t)
∂r

)2

σ2
τ +

(
∂f(t)
∂f0

)2

σ2
f0

(6)145

and used to update the uncertainty σl of the NOx line densities q:

σq =
√

f2σ2
q + σ2

fq2 (7)

The method of converting NO2 to NOx presented in this paper relies on the assumption of steady state conditions as well

as an exponential decay of the conversion factor (Eq. 5). Therefore, it is important to check if NOx emission estimates derived

from the time-dependent algorithm are consistent with the emitted quantities. For this purpose, we estimated the NOx emissions150

of the same daytime time steps of MicroHH three times: once using the modelled NOx fields, once using the NO2 fields and

applying the constant NO2-to-NOx conversion factor of 1.32 (referred to as the algorithm with constant factor), and once using

the negative exponential function fitted above as conversion factors (referred to as the time-dependent algorithm).

2.2 Application to TROPOMI NO2 satellite observations

2.2.1 TROPOMI Satellite Observations155

We applied the method of converting NO2 to NOx line densities developed in the current study to the latest processing version

(v2.4.0) of the tropospheric NO2 observations from TROPOMI for the years 2020 and 2021. In accordance with van Geffen

et al. (2019), only data with quality assurance values higher than 0.75 were utilised. In addition, we downloaded the auxiliary

data comprising 3D NO2 fields from the 3D chemistry-transport model TM5-MP to recompute the air mass factors (AMFs)

(see Section 2.2.2) (Eskes and van Geffen, 2021)). We set the precision of the retrieved tropospheric NO2 vertical column160

densities (VCDs) to 7.6 · 10−7 kg m−2, which corresponds to 1 · 10−15 molecules cm−2. This is an average uncertainty

over polluted regions and corresponds to approximately 20% of the measured NO2 VCDs (van Geffen et al., 2019). Using a

constant precision is needed because the precision of tropospheric VCDs in the TROPOMI product is correlated with the total

NO2 VCDs which causes problems when calculating line densities.

Emissions were estimated by applying the constant and time-dependent algorithms to the AMF-corrected images. For each165

source, the respective fitting parameters m, r and f0 from the MicroHH simulations were used to convert NO2 into NOx.

Estimates were then aggregated by month and annual emissions were estimated as the median of the monthly statistics. This

was done to avoid a potential bias due to an unbalanced number of data points per month. For estimating the uncertainty of

the annual emissions, a seasonal cycle was fitted to all emission estimates using a cubic Hermite spline with periodic boundary

conditions (Kuhlmann et al., 2021). The corresponding uncertainty σe accounts for the uncertainties of the single-overpass170

estimates through error propagation. To further account for uncertainties in the diurnal (σd) and seasonal (σs) cycles, the total

uncertainty σtot was calculated as follows:

σtot =

√
σ2

e +
σ2

d

n
+

σ2
s

n
(8)
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Here, both σd and σs were set to 30% according to Hill and Nassar (2019). As the estimated NOx emissions with the

time-dependent algorithm depend on the NO2-to-NOx conversion factor, a sensitivity analysis was performed by applying the175

NO2-to-NOx conversion factors calculated for Jänschwalde and Matimba to all four sources.

2.2.2 Air mass factor correction

For the retrieval of NO2 VCDs, a priori NO2 profiles from a 3D chemistry transport simulation called TM5-MP are used.

Due to its coarse resolution of 1◦ × 1◦, the model cannot resolve individual plumes but rather represents them as smeared

out NO2 enhancements. Consequently, the TM5-MP pixels have neither the correct concentration profile of the plume nor the180

correct background concentration, but a mixture of both. This tends to lead to an overestimation of AMFs and consequently

an underestimation of VCDs within the observed plumes and, vice versa, outside of the plumes. Such a bias over polluted

regions is known from previous studies (Griffin et al., 2019; Verhoelst et al., 2021; Douros et al., 2023). To address these biases

we constructed a more realistic NO2 profile that is representative for the observed plumes. To this end, we interpolated the

auxiliary data from the TM5-MP model and the ERA5 planetary boundary layer (PBL) height data to the higher resolution185

TROPOMI pixels. We set the NO2 mole fraction within the PBL to 5 · 10−9 mol/mol for all detected plume pixels of the

images for the years 2020 and 2021. This is an average NO2 concentration within the PBL of detected plumes based on the

four MicroHH simulations, independent of the along-plume distance. However, we acknowledge that the profile concentration

should ideally decrease along the plume. With the new NO2 profiles xnew, we recalculated the AMFs according to Eskes et al.

(2022):190

AMFnew(xnew) = AMFold(xold) ·
∑

l Al ·xnew,l∑
l xnew,l

. (9)

Finally, we updated the VCDs inside the detected plumes for all images using the recalculated AMFnew:

VCDnew =
VCDold ·AMFold

AMFnew
(10)

We only recalculated the AMFs and VCDs of detected plume pixels because no other anthropogenic sources other than the

power plant or steel plant in focus were simulated by MicroHH. Thus, the NOx concentrations were too low to obtain repre-195

sentative background concentrations.

2.2.3 ERA5 wind data

The CSF method requires wind data to convert trace gas line densities into fluxes. For this purpose, we weighted the 3D wind

fields of the ERA5 reanalysis ((Hersbach et al., 2018)) with a profile representing the expected vertical distribution of emissions

for power plants in Brunner et al. (2019) and integrated them vertically to obtain 2D wind fields. As in Kuhlmann et al. (2021),200

we assumed a fixed wind speed uncertainty of 1 m/s for the error propagation in the emission estimation.
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2.2.4 Comparison with bottom-up reported NOx emissions at high temporal resolution

Since the year 2000, member states of the European Union have been required to report the emissions of air and water pollutants

from large point sources (European Parliament and the Council of the European Union). These data were made publicly

available in 2006 through the European Pollutant Release and Transfer Register (E-PRTR). The database contains the annual205

emissions of pollutants from nine major sectors such as energy production or metal processing and is available on the European

Industrial Emissions Portal (https://industry.eea.europa.eu/). We use the bottom-up reported emissions to assess the accuracy

of our emission estimates. We obtained data as annual NOx emissions from the Jänschwalde power plant for the years 2020 to

2021. For the Bełchatów power plant, the data are only available up to 2017. Therefore, we used the CO2 and NOx emissions

for 2017 to extrapolate the expected emissions for the years 2020 to 2021 according to Nassar et al. (2022). For the metallurgical210

plant in Lipetsk, no accurate data on emissions were available since there are no bottom-up reported emissions for this specific

site in the annual report of the operating company NLMK. Moreover, from the reports it is not clear if emissions from the

captive power plants at the Lipetsk site are included in the reported emissions. For the Matimba and Medupi power plants,

monthly emissions are provided by the operating company Eskom.

For all three power plants, we interpolated the annual and monthly bottom-up reported CO2 and NOx emissions to hourly215

and daily temporal resolution by weighting them with the power plant’s energy output according to Nassar et al. (2022). For

the European power plants, we used the hourly electricity generation from the transparency platform of the European Network

of Transmission System Operators for Electricity (ENTSO-E) (https://transparency.entsoe.eu/). For the Matimba and Medupi

power plants, we used the daily electricity production provided by the operating company Eskom.

3 Results220

3.1 NOx to NO2 ratios in plumes

An example of the NO2 and NOx vertical column fields simulated with MicroHH for the Matimba case as well as the cor-

responding NOx:NO2 ratios is depicted in Figure 3. The spatiotemporal patterns of NOx:NO2 ratios of all simulations are

displayed in Figure A1.

The evolution of NOx:NO2 ratios in the MicroHH model as a function of time since emission is summarized in Figure 4 for225

all four cases Bełchatów, Jänschwalde, Lipetsk, and Matimba. The figure contains results from all hourly time steps between 8

and 14 UTC from both simulated days.

Panel (a) shows the median and standard deviation of the ratios, while (b) depicts the corresponding fitted negative exponen-

tial functions and the fitted standard deviations. The figure confirms our expectation that the NOx:NO2 ratios are largest close

to the source and decrease with increasing distance downwind. The ratios are generally much larger than the previously used230

conversion factor f0=1.32 (black horizontal line) and only approach this value at distances larger than 50-100 km and only in

some cases. Because most of the NOx is emitted as NO, NO concentrations close to the source are very high, which leads to

complete titration of O3 present in background air and therefore limits the production of NO2 through the oxidation of NO

9
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Figure 3. Simulated NO2 (a) and NOx (b) fields as well as the resulting NOx:NO2 ratios (c) from time step 32 (08:00 UTC) of the MicroHH

simulation of Matimba.

Figure 4. Mean NOx : NO2 ratios of the MicroHH time steps 8 – 14 UTC as a function of time since emission. (a) Median and standard

deviation. (b) Fitted negative exponential function and corresponding standard deviation. The time axis is converted to a space axis using the

median wind speed in all analysed plumes.

by O3. With increasing dilution and mixing of the plume with background air downwind of the source, the concentration of

NO decreases while the concentration of O3 increases. This accelerates the oxidation of NO and gradually shifts the photosta-235

tionary equilibrium ratio of NO:NO2 towards NO2 and reduces the NOx:NO2 ratio accordingly (Seinfeld and Pandis, 2016).

Compared to the other three simulations, the NOx:NO2 ratio of the Matimba simulation is higher both at the source and further

10
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downwind. The main reason for this behaviour is the amount of NOx emitted: the more that is emitted, the longer it takes for

the plume to mix in sufficient O3 from the surrounding air masses to reach the background photostationary state for NOx (Krol

et al., 2023). Another reason for the different NOx:NO2 ratios are the meteorological conditions which determine how fast the240

plumes are mixed with surrounding air masses. Furthermore, the solar irradiances and background concentrations of O3 and

VOCs have an strong influence on the NOx:NO2 ratios (Seinfeld and Pandis, 2016). In all four simulations, the ratios level off

half an hour after the emission or 50 km along the plume, assuming a median wind speed of the analysed time steps of about

5.7 m/s. Furthermore, Figure 4 illustrates that the standard deviation close to the source is largest for Bełchatów, which leads to

a higher uncertainty in the fitted function. The corresponding fitting parameters of the NOx:NO2 ratios and their uncertainties245

are listed in Table 2.

Table 2. Fitting parameters of the negative exponential function in Eq. 5 to the mean NOx:NO2 ratios of the four MicroHH simulations for

the steps 8 to 14 UTC.

Source m [−] 1
r

[min] f0 [−]

Bełchatów 3.8 ± 0.7 9.1 ± 0.8 1.66 ± 0.01

Jänschwalde 1.6 ± 0.1 27.3 ± 2.7 1.31 ± 0.01

Lipetsk 4.2 ± 0.3 8.1 ± 0.4 1.36 ± 0.02

Matimba 6.1 ± 1.3 12.4 ± 1.4 1.90 ± 0.02

To convert NO2 line densities into NOx line densities, they are multiplied with f(t) following Eq. (5). The results for

the Matimba plume are shown in Figure 5. As a result of the multiplication, the NOx line densities peak at the source and

approximately follow an exponential decay similar to the schematic in Figure 1. In contrast, the NO2 line densities peak

between 20 to 30 km.250

Applying the NO2-to-NOx conversion factors to the MicroHH data as a validation in Figure 6 shows that the estimated NOx

emissions with the time-dependent algorithm are in good agreement with the estimates from the modelled NOx fields. However,

the spread of the estimates is larger when converting NO2 to NOx, which is due to the assumption that the conversion can be

modelled by a negative exponential function. Furthermore, emissions estimated from the modelled NOx fields should align

with the prescribed emissions. However, the emissions are overestimated for Bełchatów and Jänschwalde and underestimated255

for Matimba, which is due to uncertainties of the CSF method (see Section 4).

Similar to the emission estimates, the estimated NOx decay times using the time-dependent algorithm are more consistent

with those from the modelled NOx fields whereas the estimates using the algorithm with constant factor are more than twice as

high. This overestimation with the algorithm with constant factor is due to the fact that NO2 decreases less rapidly than NOx

due to the gradual shift in the NO:NO2 photostationary equilibrium ratio towards NO2 as mentioned earlier.260

The improved agreement between the estimates from modelled NOx fields and the time-dependent algorithm shows that

this model of converting NO2 to NOx accounts for the NOx chemistry in the plumes simulated by MicroHH quite well.

The larger discrepancies for Bełchatów and Jänschwalde compared to the other cases are probably due to the higher relative
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Figure 5. Example of estimating NOx emissions from Matimba MicroHH simulation using the time-dependent NO2-to-NOx conversion for

the cross-sectional flux method implemented in ddeq.

uncertainties of the fitted NO2:NOx ratios as seen in Figure 4b. Nevertheless, the estimated emissions and lifetimes are a

significant improvement over the approach of converting NO2 to NOx using a constant factor of 1.32.265

3.2 Application of the NO2-to-NOx conversion to TROPOMI observations

For the years 2020 and 2021, a total of 737 TROPOMI images were available for Bełchatów, 807 for Jänschwalde, 862 for

Lipetsk and 454 for Matimba. However, for the first three sources, only about 7% of the images were sufficiently cloud-free.

For Bełchatów and Jänschwalde, the plume detection only worked for half of these cloud-free images due to the proximity

to other coal-fired powerplants. As a result, the plumes often mixed, rendering the estimation of emissions impossible. For270

Matimba, almost half of the total available images were cloud-free, with plume detection working on more than 80% of these

images due to the remote location. An example image of the emission estimation for TROPOMI can be seen in Figure 2.

The AMFs computed for the four cases result in a mean increase of the VCDs inside the plume by a factor of 1.11 – 1.35 (see

Figure A2). The estimated NOx emissions from the AMF-corrected TROPOMI data for the years 2020 and 2021 are presented

in Figure 7 and listed in Table 3. While the emissions estimated with the algorithm with constant factor only amount to 48–69%275

of the bottom-up reported emissions, the emissions derived with the time-dependent algorithm are more in line and reach about

88–109%. For all four sources, these estimates are within one standard deviation of the bottom-up reported emissions.
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Figure 6. (a) Comparison of estimated NOx emissions against the prescribed (bottom-up) emissions and (b) estimated NOx decay times

using the constant and time-dependent algorithms as well as the modelled NOx fields. Only the daytime time steps of the MicroHH simu-

lations were utilised. Boxes in the histograms represent the interquartile range (IQR, 25th to 75th percentile), whiskers the range between

Q1–1.5 · IQR and Q3 + 1.5 · IQR and circles all data points that fall outside of this range.

Figure 7. (a) Estimated NOx emissions and (b) their relative median bias errors for Bełchatów, Jänschwalde, Lipetsk, and Matimba for

TROPOMI data of the years 2020 and 2021.

Figure 7 also shows that the range of estimated emissions is largest for Matimba with a large number of outliers. The most

likely explanation is that the plumes are the longest for this source, meaning that parts of the plume are several hours old and

have likely been subject to different chemistry and wind speeds (see Fig. A6). This leads to strong violations of the assumed280
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steady-state conditions along the plume and results in outliers in the NOx fluxes along the plume. The relative mean bias error

of a given method is in a similar range for all four sources. While the bias is around –50% relative to the bottom-up reported

emissions with the algorithm with constant factor, it is reduced to only –9.5 to –0.5% with the time-dependent algorithm.

Table 3. Median and standard deviation of estimated NOx emissions in kt NO2/a for the years 2020 and 2021 for Bełchatów, Jänschwalde,

Lipetsk, and Matimba derived from TROPOMI images

Source 1.32 · NO2 f(t) · NO2 Bottom-up

Bełchatów 14.6 ± 4.2 22.0 ± 8.2 25.1

Jänschwalde 8.0 ± 0.7 12.7 ± 1.9 11.6

Lipetsk 18.4 ± 4.1 23.4 ± 6.8 –

Matimba 49.2 ± 16.6 104.2 ± 45.8 103.4

The uncertainties of the single-overpass and annual estimates are listed in Table 4. The first column shows the median

uncertainty of all single-overpass estimates. The second column represents the standard deviation of the difference between285

estimated and bottom-up emissions. The uncertainties of the first column would agree with those in the second if the bottom-up

reported emissions corresponded to the true emissions and all uncertainties were included in the emission estimation. However,

the larger magnitude of the values in the second column indicates uncertainties in bottom-up reported emissions (e.g. due to the

temporal interpolation) and the presence of other uncertainties in the emission estimation which were not considered. These

include the simplified representation of instrument noise, wind speed, and AMF correction. On top of these random errors,290

there are uncertainties due to systematic errors such as the estimation of background concentrations, the application of the

NO2-to-NOx conversion factors to annual data, and methodological uncertainties, which are not represented in the estimated

uncertainties.

The third column in Table 4 shows the uncertainties in annual emissions according to error propagation, while the fourth

column additionally accounts for uncertainties in diurnal and seasonal cycles.295

Table 4. Uncertainties of NOx emission estimates for single-overpass and annual estimates for Bełchatów, Jänschwalde, Lipetsk, and Ma-

timba

Single-overpass estimates [%] Annual estimates [%]

Source Median uncertainty SD of bottom-up - estimated NOx Spline uncertainty Total uncertainty

Bełchatów 23.2 41.7 5.9 9.5

Jänschwalde 24.0 4.6 14.4 20.5

Lipetsk 20.5 – 6.9 10.6

Matimba 25.8 46.3 1.6 3.9
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A simple sensitivity analysis in which the NO2-to-NOx conversion factors of Jänschwalde and Matimba were applied to all

four sources resulted in emission estimates ranging from 10% lower to 50% higher than the estimates shown in Fig. 7. This

illustrates that the parameterisation of the NO2-to-NOx conversion depends on the specific situation such as meteorological

conditions, background concentrations, and emission strength, and not representing this situation appropriately adds a signif-

icant uncertainty to the emission estimates. To get a better understanding of these uncertainties, it would be necessary to run300

more high-resolution chemistry transport simulations covering a wider range of conditions, and to account for these conditions

in an extended parameterisation. Despite its simplicity, the first-order parameterisation proposed here, which builds on a small

set of high-resolution MicroHH simulations for each source, already leads to a substantial reduction of the bias.

4 Discussion

4.1 Strengths and weaknesses of the time-dependent NO2-to-NOx conversion305

The analysis of NOx:NO2 ratios in modelled plumes demonstrated the importance of chemical processes leading to a general

decrease of this ratio with distance from the source but it also revealed considerable variability from case to case, which is likely

the result of different amounts of emitted quantities, photolysis rates, temperatures, wind and turbulent mixing conditions, and

trace gas background concentrations. The aim of the time-dependent algorithm developed in this study is to reproduce the NO2

to NOx conversion of line densities along the plume (Figure 1). If the true chemistry is well approximated, this should lead to310

a good agreement with the prescribed emissions. The remaining discrepancy is therefore due to deviations from our simplified

assumptions (e.g. the assumption of an exponential decay of the ratios along the plume) and due to uncertainties in the CSF

method. One important source of uncertainty in the CSF method is the wind speed used to convert line densities to fluxes,

which is discussed in section 4.3. The errors of the time-dependent algorithm are more in line with those of the modelled

NOx fields but are slightly larger because the implemented conversion of NO2 to NOx does not take into account the specific315

meteorological and background conditions of each time step, but is based on the median conditions. Thus, the bias is likely

to increase when the NO2-to-NOx conversion factors derived in this study are applied to annual data, as the chemical and

meteorological conditions vary considerably during a year. Nevertheless, we argue that applying the four fitted NO2-to-NOx

conversion functions to annual TROPOMI images yields suitable emission estimates because most of the images that can be

used for plume detection were acquired between April and October (see Figure A3). Images taken during the rest of the year320

often cannot be used for NOx estimation due to high cloud cover. Consequently, the prevailing conditions for most of the

emission estimates are comparable to the conditions in the MicroHH model simulations, which represent days in May to July.

As the newly implemented conversion function for NO2 to NOx showed a significant improvement in the estimation of NOx

emissions and lifetimes from MicroHH simulations, we consider them suitable for the application to TROPOMI images.
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4.2 Quantification of NOx emissions using TROPOMI observations325

The application of the time-dependent NO2-to-NOx conversion to the TROPOMI data in Figure 7 has shown that the NOx

emission estimates obtained with the time-dependent algorithm are much closer to the bottom-up reported emissions than the

estimates from the algorithm with a constant NO2-to-NOx conversion factor of 1.32. The relative median bias is reduced from

between –50 and –42% to only between –9.5 to –0.5%. However, the significant variance in estimated emissions for Matimba

indicates the necessity for further refinement of the approach. One improvement would be to investigate very long plumes330

that have been subject to different meteorological conditions than those under which the NO2-to-NOx conversion factors were

derived.

As the number of successful emission estimates per year has a strong influence on the uncertainties of the annual emission

estimates, maximising the number of suitable satellite images is crucial. Nevertheless, only a fraction of the TROPOMI images

could be used for Bełchatów, Jänschwalde, and Lipetsk due to cloud cover. Especially between October and February, emissions335

could only be estimated for a few days (see Figure A3). The strong seasonal bias in the number of successful estimates may

lead to an underestimation of annual emissions as emissions in winter are expected to be larger due to the higher demand

of electricity and heating. This gap cannot be filled by the upcoming polar-orbiting Sentinel-5 satellite either but could be

alleviated by existing and upcoming geostationary satellites such as GEMS, TEMPO, and Sentinel-4: The hourly temporal

resolution increases the probability of obtaining a usable image on a cloudy day. Multiple images during a day would also340

allow to resolve the diurnal cycle of NOx emissions, which currently cannot be captured with only one or two overpasses

around noon. However, GEMS, Sentinel-4, and -5 have a coarser resolution compared to Sentinel-5P. The complications

caused by a coarse spatial resolution can be seen in the example of Jänschwalde: As there are two coal-fired power plants in

the vicinity of Jänschwalde (e.g., the Boxberg and Schwarze Pumpe power plants), the plumes often mix, which is why the

emissions cannot be estimated reliably using the CSF method. This applies to a lesser extend to Bełchatów. In contrast, fewer345

sources that could lead to overlapping plumes are located around Lipetsk and Matimba. As shown in Kuhlmann et al. (2021), a

satellite with higher spatial resolution, such as CO2M, can help to better differentiate between plumes, mitigating the challenge

of overlapping plumes.

The comparison of the uncertainties of the NOx emission estimates in this study with those in Kuhlmann et al. (2021)

highlights the importance of the number of successful emission estimates. The uncertainties of the annual emissions of 4 to350

21% in this study are significantly lower than the uncertainties of 16 to 73% and 13 to 52% for two and three of the CO2M

satellites in Kuhlmann et al. (2021). The reasons are the higher temporal resolution of TROPOMI compared to CO2M and the

high source strength of the power plants considered in the current study. The single-overpass estimates due to random error,

in contrast, are only marginally lower in this study than the 29% derived in Kuhlmann et al. (2021). This difference may be

attributed to the consideration of additional uncertainties in their study by including a source strength dependent factor and an355

offset.

The systematic biases due to the application of the NO2-to-NOx conversion factors to annual TROPOMI data were inves-

tigated in the form of a sensitivity analysis. Applying the NO2-to-NOx conversion factors of Jänschwalde and Matimba to all
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four sources resulted in emission estimates ranging from 10% lower to 50% higher, which illustrates that the parameterisation

of the NO2-to-NOx conversion still adds a significant but unknown uncertainty to the emission estimates. This is because it is360

not possible to determine how well the conditions under which these parameterisations were derived match those of a given

TROPOMI image. However, since most of the suitable satellite images are from the season for which the MicroHH simulations

were run, we argue that the calculated NO2-to-NOx conversion factors are likely to be in good agreement with the conditions

of the TROPOMI images.

Overall, the application of the newly developed NO2-to-NOx conversion factors resulted in more accurate emission estimates365

compared to the previous constant conversion factor of 1.32. Nevertheless, extrapolating the conversion factors for different

meteorological and background conditions remains a challenge.

4.3 Effective wind speeds in plumes

Apart from the NOx chemistry, a realistic representation of the effective wind speed at which the plume is transported is a key

issue. This includes the vertical averaging of 3D wind fields and the consideration of time-varying wind fields. To address the370

first challenge, the 3D wind speeds were weighted with the expected emission profiles. An advantage of this method is that

the weighted winds correspond better to the plume when it is not yet well-mixed within the PBL, i.e. close to the source or in

a stably stratified atmosphere. However, with increasing distance from the source, the trace gases become progressively more

well-mixed within the PBL. Depending on meteorological conditions, homogeneous mixing can occur within the first few

kilometres of the plume (Krol et al., 2023). In such cases, it would be more reasonable to use the mean wind speed within the375

PBL. Furthermore, Brunner et al. (2019) have shown that plumes typically rise to a height of 250 m in winter, but up to 360 m

in summer. Winds are strongly influenced by the dynamics of the PBL, which has a distinct diurnal cycle, especially in summer.

These results suggest that a fixed emission profile is likely not sufficient to vertically weigh the 3D wind fields. Instead, the

effective wind should be calculated dynamically and account for parameters such as stack height, flue gas properties, and

meteorological conditions (Brunner et al., 2019). On the bottom line, further studies are needed to assess the suitability of this380

method to vertically average the wind speeds under different conditions.

4.4 Impact of air mass factors

The coarse resolution of the a priori NO2 profiles used for the retrieval of NO2 VCDs leads to an underestimation of VCDs

within the plume and an overestimation outside. As the NO2 background VCDs are subtracted from the plume enhancements,

updating the NO2 profiles both within and outside the plume would further increase NOx emission estimates. This would lead385

to higher emission estimates and possibly an overestimation which would be in line with the slight overestimation of NOx

emissions when using the time-dependent algorithm in Figure 6 for the same reasons as discussed in section 3.1.

Ideally, the a priori NO2 profiles of the TM5-MP model should be replaced by profiles from higher resolution models such

as GEM-MACH (Goldberg et al., 2019b) or CAMS-regional (Douros et al., 2023). However, updating the AMFs for all pixels

was beyond the scope of this study. For this reason, the a priori NO2 profiles of plume pixels were replaced by a constant390

NO2 mole fraction of 5 · 10−9 mol/mol within the PBL. This resulted in lower AMFs and consequently higher VCDs by a
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factor of 1.15 to 1.35. Other studies have calculated significantly larger corrections. For example, Beirle et al. (2019) found

that VCDs need to be corrected by a factor of 1.35 for South Africa and 1.98 for Germany. The higher values are attributed

to the assumption made by Beirle et al. (2019) that the entire plume is confined between 60 and 200 m above ground level,

where the height-resolved AMFs are typically smaller than at higher altitudes. In contrast, the correction factors in this study395

were calculated assuming a homogeneous distribution within the PBL, which is more realistic and in line with the MicroHH

simulations. Douros et al. (2023) analysed the impact of replacing the TROPOMI a priori NO2 profiles over Europe with data

from the higher resolution CAMS-regional model at a resolution of 0.1 × 0.1◦. They found that the NO2 VCDs increased by

a factor of 1.05 for less polluted sites and up to 1.3 for more polluted sites which is in good agreement with the increases in

VCDs calculated in this study.400

4.5 Bottom-up reported emissions

In this study, knowledge of bottom-up reported NOx and CO2 emissions is important for two reasons. Firstly, they are used to

evaluate the accuracy of the estimated NOx emissions from satellites. Secondly, reported emissions can be used to convert the

estimated NOx emissions into CO2. For both applications it is crucial to have information on the reliability and accuracy of the

bottom-up reported emissions. However, many of the bottom-up reported CO2 emissions are estimated from fuel consumption,405

making assumptions about combustion efficiency, fuel purity and other factors, introducing many uncertainties which are

difficult to quantify (IPCC, 2006). It is assumed that bottom-up uncertainties for CO2 are in the range of ± 10% (Gurney

et al., 2016) but significantly higher for NOx (e.g., Zhao et al., 2011). Deviations between estimated and bottom-up reported

emissions are therefore not necessarily due to errors in the estimates but could also originate from inaccuracies in the reported

emissions.410

5 Conclusions

In this study, we derived a more realistic model for NO2-to-NOx conversion in plumes of large NOx sources. We derived

parameters for this model using high-resolution chemistry transport model simulations. The conversion model was then applied

to TROPOMI observations from 2020 and 2021.

The results show that annual NOx emissions can be reliably estimated with TROPOMI: the discrepancies between bottom-up415

and top-down estimates were reduced from between –50 and –42% to only between –9.5 to –0.5% with uncertainties ranging

from 4 to 21%. These more accurate NOx emission estimates are important for air quality monitoring and can be used to

convert NOx to CO2 emissions using CO2:NOx emission ratios, allowing the use of NO2 imaging satellites such as GEMS,

TEMPO, Sentinel-4, and -5 to estimate CO2 emission with high temporal resolution. Furthermore, geostationary satellites will

allow to better resolve the diurnal cycle of emissions and could help to reduce a potential seasonal bias by reducing the number420

of failed emission estimates caused by cloud cover.

This study also highlights several shortcomings of the current approach. More comprehensive and systematic studies are

necessary to determine the dependence of the NO2-to-NOx conversion factor on prevailing conditions such as solar radiation,

18

https://doi.org/10.5194/egusphere-2024-159
Preprint. Discussion started: 23 January 2024
c© Author(s) 2024. CC BY 4.0 License.



temperature, and background concentrations of reactive trace gases. An alternative approach for converting NO2 into NOx line

densities would be to use machine learning such as neural networks. Once trained with a high-resolution model with chem-425

istry like MicroHH, the network could predict the NO2-to-NOx conversion factors without the need to run a high-resolution

chemistry transport model for each plume. However, a large number of simulations covering a wide range of conditions would

need to be run for proper training and validation of a machine learning model. Furthermore, we mentioned that more research

is necessary to determine how wind speeds should be vertically averaged in plumes and how systematic uncertainties due to

AMFs can be best accounted for.430

The time-dependent NO2-to-NOx conversion model has been implemented in ddeq and can be adjusted for different sources

and conditions. An example Jupyter notebook using Python provides easy access to the implementations, enabling users to

estimate NOx emissions from NO2 satellite observations of specific sources using their own set of NO2-to-NOx conversion

parameters. These emissions can then be converted to CO2 emissions using CO2:NOx ratios. Therefore, the current study is

an important step towards global, uniform, high-resolution, and near real-time estimation of NOx and CO2 emissions with the435

use of satellites, which is crucial for air quality monitoring and greenhouse gas emission monitoring and verification.

Code and data availability. The ddeq version 1.0 used for this study is available available on Gitlab.com (https://gitlab.com/empa503/

remote-sensing/ddeq). MicroHH data can be downloaded on Zenodo (Koene and Brunner, 2022). An example notebook on how to use

the NO2-to-NOx conversion covered in this paper can be found in the supplement.
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Appendix A: Additional figures440

Figure A1. NOx:NO2 ratios for 48 individual hourly time steps of the MicroHH simulations of Bełchatów, Jänschwalde, Lipetsk, and

Matimba as a function of time since emission, highlighting the spatiotemporal patterns of the NOx chemistry.

Figure A2. Default and updated AMF of TROPOMI images of Bełchatów, Jänschwalde, Lipetsk, and Matimba for the years 2020 and 2021.

For the updated AMFs, the NO2 mole fraction was set to 5 · 10−9 mol/mol within the PBL of the detected plumes
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Figure A3. Number of successful NOx emission estimates per month using TROPOMI for 2020 and 2021
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Figure A4. Time series of NOx emission estimates using TROPOMI and bottom-up reported emissions for the years 2020 and 2021. To each

time series, a cubic Hermite spline with periodic boundary conditions was fitted.
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Figure A5. (a) TM5-MP and MicroHH NO2 profiles of the Sentinel-5P source pixel for Matimba on the 25th of July 2020 at 12:00 UTC.

(b) Histogram of the default and recalculated AMFs of the TROPOMI pixel containing the Matimba power plant based on MicroHH NO2

profiles

Figure A6. Maximum lengths and ages of detected plumes from TROPOMI observations for the years 2020 and 2021. Ages were calculated

by dividing the plume length by the profile weighted wind speed at the source.
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