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Abstract. Consecutive droughts, becoming more likely, produce impacts beyond the sum of individual events by 10 

altering catchment hydrology and influencing farmers' adaptive responses. We use GEB, a coupled agent-based 11 

hydrological model, and expand it with the Subjective Expected Utility Theory (SEUT) to realistically simulate 12 

farmer behavior and subsequent hydrological interactions. We apply GEB to analyze the adaptive responses of 13 

±1.4 million heterogeneous farmers in India's Bhima basin over consecutive droughts and compare scenarios with 14 

and without adaptation. In adaptive scenarios, farmers can either do nothing, switch crops, or dig wells, based on 15 

each action’s expected utility. Our analysis examines how these adaptations affect profits, yields, and groundwater 16 

levels, considering, e.g., farm size, risk aversion and drought perception. Results indicate that farmers’ adaptive 17 

responses can decrease drought vulnerability and impact after one drought (x6 yield loss reduction), but increase 18 

it over consecutive due to switching to water-intensive crops and homogeneous cultivation (+15% income drop). 19 

Moreover, adaptive patterns, vulnerability, and impacts vary spatiotemporally and between individuals. Lastly, 20 

ecological and social shocks can coincide to plummet farmer incomes. We recommend alternative or additional 21 

adaptations to wells to mitigate drought impact and emphasize the importance of coupled socio-hydrological 22 

ABMs for risk analysis or policy testing. 23 

Short summary. Our study explores how farmers in India's Bhima basin respond to consecutive droughts. We 24 

simulated all farmers' individual choices—like changing crops or digging wells—and their effects on profits, 25 

yields, and water resources. Results show these adaptations, while improving incomes, ultimately increase drought 26 

vulnerability and damages. Such insights emphasize the need for alternative adaptations and highlight the value of 27 

socio-hydrology models in shaping policies to lessen drought impacts. 28 

1 Introduction 29 

Anthropogenic climate change and population growth has increased exposure of society to droughts (Smirnov et 30 

al., 2016). Furthermore, the growing demand on water is increasingly stressing fresh-water system, amplifying the 31 

impact of droughts (Best & Darby, 2020; van Loon et al., 2016). Therefore, there is a necessity to strive for drought 32 

risk adaptation both at larger scales by governments (e.g. reservoir management) and at the local scales by farmers 33 

through efficient water use and irrigation (UNDRR, 2015; Wilhite et al., 2014).  34 

Empirical research into what factors drive adaptation is ongoing but mostly focuses on single events and at one 35 

point in time (Blauhut et al., 2016; P. D. Udmale et al., 2015). However, consecutive droughts are becoming more 36 
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likely and can result in impacts that differ from the sum of the individual events’ parts (Anderegg et al., 2020; van 37 

der Wiel et al., 2023; Zscheischler et al., 2020). Consecutive droughts impact farmer communities in a few distinct 38 

(but interrelated-) processes. (1) The first (of consecutive) drought(s) can have a physical hydrological impact on 39 

the second drought. For example, a lowered groundwater table after the first event may not have been replenished 40 

before the second drought starts, which can limit the capacity for irrigation during the second drought (Anderegg 41 

et al., 2020; van der Wiel et al., 2023; Zscheischler et al., 2020). (2) Moreover, socio-economic factors like income 42 

or debts also influence the vulnerability of farmers and their ability to adapt during multiple drought events. For 43 

example, the reduced income of farmers after a first drought (e.g. due to less yield) may lead to less financial 44 

capacity to cope with the second drought. (3) Finally, behavioral factors such as risk aversion and risk perception 45 

also play a role in how farmers adapt to (multiple-) droughts (Habiba et al., 2012; Ward et al., 2014). For example, 46 

farmers can have an increased risk perception after the first event, which may lead to an accelerated 47 

implementation of drought adaptation measures (Aerts et al., 2018; Habiba et al., 2012; Nelson et al., 2013; van 48 

Duinen et al., 2015), thus reducing the impact of the second drought.  49 

A key research challenge is to capture the spatial-temporal dynamic feedbacks between vulnerability, human 50 

behavior and physical hydrological processes over periods with consecutive droughts (Cui et al., 2021; Trogrlić et 51 

al., 2022; van der Wiel et al., 2023). Empirical data from surveys may support analysis about the factors driving 52 

drought adaptation feedbacks. However, only few studies provide empirical data on the spatial-temporal drivers 53 

of drought vulnerability and adaptation under multi-drought conditions (Kreibich et al., 2022). This is why current 54 

drought risk assessment research suggests developing model-based approaches (Cui et al., 2021; Trogrlić et al., 55 

2022).  56 

A special class of simulation models are agent-based models (ABMs). ABMs are specially designed to capture the 57 

behavior of autonomous individuals (i.e. agents) (Blair & Buytaert, 2016; Schrieks et al., 2021; M. Wens et al., 58 

2019). When integrated with a hydrological model, they can also capture bi-directional human-water feedbacks, 59 

with agents reacting to environmental changes (e.g., precipitation deficits) and impacting their surroundings (e.g., 60 

depleting groundwater levels) (De Bruijn et al., 2023). In contrast to other socio-hydrological models, ABMs can 61 

simulate how drought adaptation of individual farmers is influenced by other agents. This is essential, as adaptive 62 

feedbacks by farmers are heterogeneous and depend on the varying physical, socio-economic and behavioral 63 

characteristics among the farmer population (e.g., risk aversion, income, farm size, adaptations, 64 

upstream/downstream, proximity to reservoirs; Di Baldassarre et al., 2018; Habiba et al., 2012; P. Udmale et al., 65 

2014; P. D. Udmale et al., 2015). For example, government-led large-scale adaptation efforts, like reservoir 66 

management, may affect farmers' irrigation usage (di Baldassarre et al., 2018). Additionally, agents can emulate 67 

their neighbors' practices, such as cropping patterns (Baddeley, 2010). However, most ABM based studies that 68 

simulate individual farmers remain at small scales (Zagaria et al., 2021), whereas studies at large basin scales 69 

aggregate agents, data and processes and omit small scale behavior due to computational constraints (Castilla-Rho 70 

et al., 2017; Hyun et al., 2019).  71 

To address these challenges, De Bruijn et al. (2023) developed GEB, an ABM coupled with a hydrological model 72 

(CWatM, Burek et al., 2020), that is able to model the behavior of millions of agents efficiently at one-to-one 73 

scale. With GEB, it is possible to analyze the culminated hydrological and agricultural impacts of many small-74 

scale processes at river basin scale. However, to analyze the complex human decision-making process under 75 

consecutive droughts we require behavior to change dynamically in response to drought events (Groeneveld et al., 76 
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2017; Schrieks et al., 2021). In the current version of GEB this is not possible, as its decision rules for adaptation 77 

are based on simple assumptions of human behavior (De Bruijn et al., 2023; Schrieks et al., 2021).  78 

The main goal of this study is to assess the vulnerability and adaptive responses of farmer agents under consecutive 79 

droughts. Therefore, we integrate the Subjective Expected Utility theory (SEUT, Fishburn, 1981) into the GEB 80 

model. The SEUT is a well-established behavioral economic theory that explains farmer adaptation decisions as 81 

economic maximization under risk, influenced by subjective factors such as risk aversion and perception. By 82 

parametrizing and calibrating the SEUT with local data and letting the risk perception change dynamically in 83 

response to drought events, we attempt to create a more accurate depiction of adaptation under consecutive 84 

droughts. We further refine our characterization of farmers—including their drought experience, adaptation costs, 85 

and loan debts—to better understand changes in their individual vulnerability and risk, such as fluctuations in 86 

income, debt levels, adaptation uptake, and groundwater levels. We apply and calibrate the augmented GEB in the 87 

Bhima basin, which is part of the Krishna basin in India. Our work helps in understanding how consecutive drought 88 

events affect different types of farmer’s vulnerability and impact. The paper is organized as follows: We begin 89 

with a high-level overview of the model setup (2.1) and a description of the study area (2.2). We then detail our 90 

implementation of behavior (2.3), crop cultivation methods (2.4), agent initialization (2.5), and conclude with 91 

model calibration and scenario setup (2.6). Next, in the results section, we analyze the evolution of model 92 

vulnerability and risk parameters over consecutive droughts in an adaptation scenario (3.1), compare it to a no-93 

adaptation scenario (3.2), and review the results of the sensitivity analysis (3.3). This leads into a discussion of our 94 

key findings and challenges to our methods (4). Finally, we summarize our conclusions and suggest directions for 95 

future research (5). 96 

2 Methods 97 

 98 

 2.1 Model setup.  99 

Figure 1 shows the structure of the GEB model. In short, GEB couples a large-scale agent-based model 100 

(orange part) that simulates the adaptation behavior of millions of agents (farmers and reservoir operators) (De 101 

Bruijn et al., 2023) to a hydrological model (blue part) simulated with the CWatM (Burek et al., 2020) and 102 

Figure 1 Simplified model setup integrating the hydrological model CWatM (blue boxes) with an agent-based model 

(orange boxes). 
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MODFLOW models (Langevin et al., 2017). The hydrological processes of CWatM operate at daily timesteps at 103 

30 arcsec grid size, while GEB’s agent processes are at sub-grid level. The interaction between both, such as 104 

irrigation, occurs daily, while adaptation decisions are made at the end of each growing season for the next one. 105 

The CHELSA-W5E5 v1.0 observational climate input data at 30 arcsec horizontal and daily temporal resolution 106 

was used as climate forcing (Karger et al., 2022). The agent’s individual characteristics are derived from socio-107 

economic data (census data on e.g. income), survey data (on e.g. risk aversion, discount rate), agricultural data 108 

(past yields, crop rotations, farm sizes) and data on past climate and droughts (SPEI) (section 2.3-2.5 and B.1 to 109 

B.4). These data are used to calculate the Subjective Expected Utility (SEUT) equation to determine whether a 110 

farmer adapts or not, given the hydro-climatic context. 111 

 2.2 Case study.  112 

The Upper Bhima catchment in Maharashtra, spanning 45,678 km², varies in elevation from 414 m in the east to 113 

1458 m in the Western Ghats mountain range (Figure 2). The catchment is mostly flat, with 95 % of its area below 114 

800 m. The area experiences significant rainfall variation due to interaction of the monsoon and the Western Ghats, 115 

ranging from 5000 mm in the mountains to less than 500 mm in the east (Gunnell, 1997). Over 90 % of this rain 116 

falls during the monsoon months (June–September), with substantial deficits from October to May. The state's 117 

agricultural cycle includes the monsoon Kharif season (June–September) and the dry Rabi season (October–118 

March), with April and May constituting the hot summer period.  119 

 120 
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Figure 2 Overview of the Bhima basin’s location in India and the land use classification used in the model. The forested 121 
area in the west are the Western Ghats mountain range. Map of the Bhima basin land cover produced from land-cover 122 
data from Jun et al. (2014). © OpenStreetMap contributors 2024. Distributed under the Open Data Commons Open 123 
Database License (ODbL) v1.0. 124 

To manage water supply, reservoirs in the Western Ghats accumulate water during monsoon rains. This water is 125 

released to the river and to farmers in the reservoir command areas through a system of canals during the monsoon 126 

(Kharif) and the dry irrigation season (Rabi & Summer). This results in human-controlled river flows, which are 127 

less dependent on natural climate patterns (Immerzeel et al., 2008). Although reservoirs distribute irrigation water, 128 

agriculture in Maharashtra still mainly relies on monsoon rain, with 19.7% of the state's gross cropped area being 129 

irrigated and 80.2 % dependent on rainfed farming (Udmale et al., 2015). During the study period there were 130 

approximately three periods with a prolonged negative 12-month Standardized Precipitation Evapotranspiration 131 

Index (SPEI) score: a severe- (2000-2005), mild- (mid-2009 to 2010), and a last moderate-mild (mid-2012 to 2015) 132 

drought (McKee et al., 1993). The middle of the last drought experienced a brief period of positive SPEI, but for 133 

ease of referencing we refer to it as one drought. 134 

 135 

  136 

 2.3 Farmer decision rules  137 

Agents make decisions based on the SEUT (Fishburn, 1981), which has been widely used in various ABMs to 138 

simulate adaptive behavior. (Groeneveld et al., 2017; Haer et al., 2020; Tierolf et al., 2023; M. Wens et al., 2020). 139 

A major advantage of the SEUT is that it facilitates economic maximization while accounting for an individual’s 140 

subjective characteristics (i.e. risk aversion and discount rate) and dynamic risk perception that adjusts in response 141 

to drought events. At each yearly timestep agents calculate the following (S)EUTs:  142 

Figure 3  The average 12-month Standardized Precipitation Evaporation Index (SPEI) in the Bhima basin. Derived 

from the CHELSA-W5E5 v1.0 dataset (Karger et al., 2022). 
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 143 

1. SEUT of taking no action (Eq. 1) 144 

2. SEUT of investing in a (tube-) well (Eq. 2) 145 

3. SEUT of their current crop rotation (Eq. 3) 146 

4. EUT of their current crop rotation (Eq. 4) 147 

 148 

To decide whether to invest in a well, agents compare the SEUT of taking no action with the SEUT of digging a 149 

well. When the SEUT favors adaptation and adapting is within the agent’s budget constraints, the farmers invest 150 

in a well. With respect to crop rotation, there are over 300 unique crop rotations used within the model. It would 151 

be computationally unfeasible for each agent to calculate the SEUT for each rotation. Furthermore, literature shows 152 

that people tend to emulate their neighbors' practices (Baddeley, 2010; Haer et al., 2016). Therefore, all agents 153 

calculate only their own crop rotation’s SEUT (Eq. 3) and EUT (Eq. 4, using neutral risk perception, aversion and 154 

discount rate, section 2.5). Then, agents compare their current crop rotation’s SEUT with the EUT of all 155 

neighboring farmers using similar irrigation sources (within a 5 km radius, using reservoir, surface, groundwater 156 

or no irrigation). The EUT is used since using a neighbor’s SEUT would mean using another agent’s subjective 157 

factors. They then adopt the crop rotation of the neighbor who’s EUT is highest, if this exceeds their own SEUT.  158 

 𝑆𝐸𝑈𝑇𝑛𝑜_𝑎𝑐𝑡𝑖𝑜𝑛 = ∫ 𝛽𝑡 ∗ 𝑝𝑖 ∗ 𝑈 (∑
𝐼𝑛𝑐𝑖,𝑥,𝑡

(1+𝑟)𝑡
𝑇
𝑡=0 ) 𝑑𝑝

𝑝1
𝑝2

   (1) 159 

 𝑆𝐸𝑈𝑇𝑡𝑢𝑏𝑒_𝑤𝑒𝑙𝑙 = ∫ 𝛽𝑡 ∗ 𝑝𝑖 ∗ 𝑈 (∑
𝐼𝑛𝑐𝑖,𝑥,𝑡

𝑎𝑑𝑎𝑝𝑡
−𝐶𝑡,𝑑

𝑎𝑑𝑎𝑝𝑡

(1+𝑟)𝑡
𝑇
𝑡=0 )𝑑𝑝

𝑝1
𝑝2

 (2) 160 

 𝑆𝐸𝑈𝑇𝑜𝑤𝑛_𝑐𝑟𝑜𝑝_𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 = ∫ 𝛽𝑡 ∗ 𝑝𝑖 ∗ 𝑈 (∑
𝐼𝑛𝑐𝑖,𝑥,𝑡−𝐶𝑡,𝑚

𝑖𝑛𝑝𝑢𝑡

(1+𝑟)𝑡
𝑇
𝑡=0 )𝑑𝑝

𝑝1
𝑝2

 (3) 161 

 𝐸𝑈𝑇𝑜𝑤𝑛_𝑐𝑟𝑜𝑝_𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 = ∫ 𝑝𝑖 ∗ 𝑈 (∑
𝐼𝑛𝑐𝑖,𝑥,𝑡−𝐶𝑡,𝑚

𝑖𝑛𝑝𝑢𝑡

(1+𝑟)𝑡
𝑇
𝑡=0 )𝑑𝑝

𝑝1
𝑝2

 (4) 162 

 163 

Utility U(x) is a function of expected income Inc and potential adapted income Incadapt per event i and adaptation 164 

costs Cadapt. In eq. 2, Cadapt is dependent on groundwater levels and in eq. 4 on current market prices. To calculate 165 

the utility of all decisions, we take the integral of the summed and time (t, years) discounted (r) utility under all 166 

possible events i with a probability of pi and adjust pi with the subjective risk perception βt. See table B1 for an 167 

overview of all model parameters.  168 

Predicted income: To calculate the expected utility, we need information on farmer income during 169 

droughts of varying return periods with and without an adaptation. Since droughts of similar return periods have 170 

different severities depending on the farmer’s location, and since this relation is also dependent on each farmer’s 171 

crop rotation and irrigation capabilities, no straightforward empirical relationship exists. Therefore, we established 172 

this relationship endogenously for each farmer in the following manner. After each harvest, the 12-month SPEI 173 

(derived from the CHELSA climate data between 1979 and 2016) at the time of harvest and the harvest’s yield 174 

ratio (section 2.4) are determined for each agent. The SPEI is converted to a drought probability and these values 175 

are then averaged per year. In order to get more data points, they are then averaged per farmer group, which are 176 

based on farmers’ elevation (upstream, midstream, downstream), irrigation (well or no well) and crop rotation. 177 

Then, a relation (eq. 5) is fitted between drought probability and yield ratio for each group using the last 20 years 178 
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of data (a spin-up period of 20 years is used where no behavior occurs). We refer to this relation as the agent’s 179 

objective drought risk experience. The 12-month SPEI and base 2 logarithm were chosen as they returned the 180 

highest R-squared between drought probability and yield ratio for this region (~ 0.50).  181 

 182 

 𝑆𝑃𝐸𝐼𝑖,𝑡 = 𝑎 ∗ 𝑙𝑜𝑔2(𝑦𝑖𝑒𝑙𝑑𝑖,𝑡) + 𝑏 (5) 183 

 184 

The relation between probability and yield ratio is used to derive yield ratios associated with 1, 2, 5, 10, 25 and 185 

50-year return period drought events i, which are then converted to income per return period event Inci (section 186 

2.4). To determine their potential income after adaptation Incadapt, within groups of similar cropping and elevation, 187 

the non-irrigating groups determine their yield ratio gain from the yield ratios of their well-irrigating counterparts. 188 

Cost of wells: To determine the cost of wells, we adapted the cost equations and parameterization of 189 

Robert et al. (2018) (Appendix B.1). These are a function of pump horse power, pumping hours, electricity costs, 190 

probability of well failure, maintenance costs and drilling costs. Drilling costs are dynamic and dependent on the 191 

well’s depth, which are put at 20 m below the current groundwater table. Together with the agent’s interest rate r 192 

(section 2.4, B.2), this is converted to an annual implementation cost Cadapt for the n-year loan using eq. 6.  193 

 194 

 𝐶𝑡,𝑑
𝑎𝑑𝑎𝑝𝑡

= 𝐶𝑑
𝑓𝑖𝑥𝑒𝑑 𝑐𝑜𝑠𝑡

∗  
𝑟∗(1+𝑟)𝑛

(1+𝑟)𝑛−1
+ 𝐶𝑡

𝑌𝑒𝑎𝑟𝑙𝑦 𝑐𝑜𝑠𝑡𝑠
 (6) 195 

 196 

Crop costs: Yearly cultivation input costs Cinput per hectare for each crop type, which include expenses 197 

such as purchasing seeds, manure, and labor are sourced from the Ministry of Agriculture and Farmers Welfare. 198 

(https://eands.dacnet. Nic.in/Cost_of_Cultivation.htm, last access: 15 July 2022) (De Bruijn et al., 2023).  199 

Loans and budget constraints: We assume that agents are “saving-down” (Bauer et al., 2012) and taking 200 

loans for agricultural inputs (Hoda & Terway, 2015) and investments using eq. 6. We assume farmers cannot spend 201 

their full income on inputs and investments and implement an expenditure cap (Hudson, 2018), which we use as a 202 

calibration factor (section 2.6). If the proposed annual loan payment for a well exceeds the expenditure cap, agents 203 

are unable to adapt. Chand et al. (2015) put expenditure of inputs such as seeds, fertilizer, plant protection, repair 204 

and maintenance feed and other inputs at approximately 20-25%. Thus, including the extra well investments cost, 205 

we calibrate the expenditure cap of yearly payments between 20-50% of yearly non-drought income (Pandey et 206 

al., 2024). 207 

Time discounting and risk aversion: For eq. 1-3 the agent’s individual discount rate and risk aversion 208 

(section 2.5) are used. For eq. 4, as the goal is a “neutral” expected utility of farmer’s crops, all farmers use the 209 

average discount rate and risk aversion. For eq. 1-2 a time horizon of 30 years following Robert et al. (2018) is 210 

used, while for eq. 3-4 a time horizon of 3 years is used. The utility U (x) as a function of risk aversion σ is as 211 

follows:  212 

 𝑈 (𝑥) =  
𝑥1−𝜎

1−𝜎
 (7) 213 

 214 

Bounded rationality: Bounded rationality is described by the risk perception factor β. β rises after agents 215 

have experienced a drought, overestimating drought risk (β > 1). After time without a drought, it lowers again, 216 
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underestimating risk (β < 1). We follow the setup of Haer et al. (2020 and Tierolf et al. (2023) and define β as a 217 

function of t years after a drought event:  218 

 𝛽𝑡 =  𝑐 ∗ 1.6
−𝑑∗𝑡 + 𝑒 (8) 219 

We set d at -2.5, resulting in a slower risk reduction than in Haer et al. (2020) and Tierolf et al. (2023), as farmers 220 

are assumed to retain more awareness of drought risk compared to households of flood risk (van Duinen et al., 221 

2015). We set the minimum underestimation of risk e at 0.01 and calibrate the maximum overestimation of risk c 222 

between 2 and 10 (Botzen & van den Bergh, 2009).  223 

Drought loss threshold: As the onset of droughts are not as obvious as with floods (van Loon et al., 2016), 224 

we define an agent’s drought event perception (Bubeck et al., 2012) according to a loss in yield ratio against a 225 

moving reference point, similar to prospect theory (Kahneman & Tversky, 2013; Neto et al., 2023). The moving 226 

reference point is the 5-year average difference between the reference potential yield and the actual yield (2.4). 227 

We calibrate the drought loss threshold between 5% and 25%. This means that if the current harvest’s difference 228 

between potential and actual yield falls 5-25% below the historical average, the years since last drought event t 229 

(Eq. 8) is reset and β rises.   230 

Microcredit: If the yield falls below the drought loss threshold, agents will also take out a loan equal to the 231 

missed income (P. D. Udmale et al., 2015). The loan duration is set at 2 years (Rosenberg et al., 2013).  232 

 2.4 Farmer crop cultivation  233 

Yield & Income: Farmers grow pearl millet, groundnut, sorghum, paddy rice, sugar cane, wheat, cotton, 234 

chickpea, maize, green gram, finger millet, sunflower and red gram. Each crop undergoes four growth stages (d1 235 

to d4). The crop coefficient (Kc) is then calculated as follows (Fischer et al., 2021): 236 

 237 

 

Kc𝑡 =

{
 
 

 
 
Kc1, 𝑡 < 𝑑1

Kc1 + (𝑡 − 𝑑1) ×
Kc2−Kc1

𝑑2
, 𝑑1 ≤ 𝑡 < 𝑑2

Kc2, 𝑑2 ≤ 𝑡 < 𝑑3

Kc2 + (𝑡 − (𝑑1 + 𝑑2 + 𝑑3)) ×
Kc3−Kc2

𝑑4
,  otherwise;  

 (9) 238 

 239 

where t represents the number of days since planting, and d1 to d4 are the durations of each growth stage. At the 240 

harvest stage, the actual yield (Ya) is determined based on a maximum reference yield (Yr; Siebert & Döll, 2010), 241 

the water-stress reduction factor (KyT), and the ratio of actual evapotranspiration (AET) to potential 242 

evapotranspiration (PET) throughout the growth period (Fischer et al., 2021): 243 

 244 

 𝑌a = 𝑌r × (1 − KyT × (1 −
∑  𝑡=ℎ
𝑡=0  AET𝑡

∑  𝑡=ℎ
𝑡=0  PET𝑡

)) (10) 245 

 246 

We refer to the latter part of Eq. 10 as the “yield ratio”, i.e., the fraction of maximum yield for a specific crop. 247 

Actual yield is then converted into income based on the state-wide market price for that particular month. Historical 248 
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monthly market prices are sourced from Agmarknet (https://agmarknet.gov.in, last accessed on 27 July 2022) (De 249 

Bruijn et al., 2023).  250 

Irrigation: The irrigation demand for farmers is calculated based on the difference between the field 251 

capacity and the soil moisture, and it is restricted by the soil’s infiltration capacity (De Bruijn et al., 2023). If 252 

agents have access to all irrigation sources, they first meet their demand using surface water, followed by 253 

reservoirs, and finally groundwater. When a farmer opts to irrigate, the necessary water is drawn from the 254 

appropriate sources in CwatM and subsequently dispersed across the farmer’s land.  255 

2.5 Agent initialization  256 

Agent initialization: To generate heterogeneous farmer plots and agents with characteristics statistically 257 

similar to those observed within the Bhima basin, factors from the IHDS (Desai et al., 2008), such as agricultural 258 

net income, farm size, irrigation type or household size, were combined with Agricultural census data (Department 259 

of Agriculture & Farmers Welfare India, n.d.). For this, we use the iterative proportional fitting algorithm, which 260 

reweights IHDS survey data such that it fits the distribution of crop types, farm sizes and irrigation status at sub-261 

district level reported in the Agricultural Census (De Bruijn et al., 2023). The farmer agents and their plots were 262 

randomly distributed over their respective sub-districts on land designated as agricultural land (Figure 3; Jun et 263 

al., 2014) at 1.5 resolution (50 meter at the equator).  264 

Risk aversion & discount rate: To set risk aversion and discount rate, we first normalized the distribution 265 

of agricultural net income. Then, as risk aversion and discount rate correlate with household income (Bauer et al., 266 

2012; Just & Lybbert, 2009; Maertens et al., 2014), we rescaled the normalized income distribution with the mean 267 

and standard deviation of the (marginal) risk aversion 𝜎 (0.02, 0.82; Just & Lybbert, 2009) and discount rate r 268 

(0.159, 0.193; Bauer et al.2012) of Indian farmers. Noise was added to both to prevent that each present-biased 269 

agent is also risk taking by definition. 270 

Interest rates: To account for the variation in access to credit and interest rates among farmers, we 271 

assigned each agent an interest rate based on their total landholding size, with smaller farmers receiving higher 272 

and larger farmers lower rates (Appendix B.2, Maertens et al., 2014; P. D. Udmale et al., 2015). This assignment 273 

is based on the interest rates observed among Indian farmers (Hoda & Terway, 2015; P. D. Udmale et al., 2015). 274 

 2.6 Calibration, validation, sensitivity analysis and runs  275 

Calibration: We calibrated the model from 2001 to 2010 using observed daily discharge data and yield 276 

data. The full data range of available observed data was used to calibrate the model, following the 277 

recommendations of Shen et al. (2022), which found that  278 

calibrating fully to historical data without conducting model validation is the most robust approach for hydrological 279 

models. The daily discharge data was obtained from 5 discharge stations at various locations in the Bhima Basin. 280 

The yield data was obtained by dividing the total production by the total cropped area from ICRISAT (2015) to 281 

determine yield in tons per hectare. This figure was then divided by the reference maximum yield in tons per 282 

hectare to calculate the percentage of maximum yield, aligning with the latter part of Eq. 10. Calibration is done 283 

for several standard hydrological parameters, including the maximum daily water release from a reservoir for 284 

irrigation, typical reservoir outflow, and the irrigation return fraction (Burek et al., 2020). Furthermore, it was done 285 

for the expenditure cap, base yield ratio, drought loss threshold and the maximum risk perception (Appendix B.3). 286 
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The process utilizes the NSGA-II genetic algorithm (Deb et al., 2002) as implemented in DEAP (Fortin et al., 287 

2012), to optimize the calibration based on a modified version of the Kling-Gupta efficiency score (KGE; Eq. 11; 288 

Kling et al., 2012), similar to (Burek et al., 2020, De Bruijn et al., 2023). 289 

 290 

 KGE′ = 1 − √(𝑟 − 1)2 + (𝛽 − 1)2 + (𝛾 − 1)2 (11) 291 

 292 

Where r is the correlation coefficient between monthly and daily simulated and observed yield ratio and discharge, 293 

respectively. 𝛽 =  
𝜇𝑠

𝜇0
 represents the bias ratio, and 𝛾 =  

𝐶𝑉𝑠

𝐶𝑉0
 = 

𝜎𝑠𝜇𝑠

𝜎0𝜇0
 is the variability rate. The optimal values for r, 294 

β and γ are 1. The final KGE scores were ± 0.63 for the discharge and ± 0.60 for the yield.  295 

 Sensitivity analysis: A Delta Moment-Independent Analysis with 300 distinct samples was done using 296 

the SALib Delta Module (Iwanaga et al., 2022). Risk aversion, discount rate, interest rate, well cost, and the 297 

drought loss threshold were varied to assess their impact on well uptake, crop income, yield, risk perception, 298 

groundwater depth, reservoir storage, and discharge upstream and downstream. For detailed parameter settings, 299 

refer to Appendix B.4.  300 

 Model runs & scenarios: The model had a spin-up period from 1980 to 2001, and ran from 2001 to 2015. 301 

The periods with a prolonged negative 12-month SPEI during this period were: a severe- (2000-2005), mild- (mid-302 

2009 to 2010), and a moderate-mild (mid-2012 to 2015) drought (McKee et al., 1993). Two scenarios were run: 303 

one without adaptation, where agents maintained the same crop rotation and irrigation status as at the start of the 304 

model, and another where agents could change their crops or dig wells according to the decision rules outlined in 305 

section 2.3. To account for stochasticity, both scenarios were run 60 times, after which the average results and the 306 

standard error of the mean were calculated. 307 
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3 Results 308 

 3.1 Crop switching and well uptake in the Adaptation scenario   309 

 310 

 311 

Figure 4 shows how agent characteristics change over time for three different field sizes: large scale (67-100 312 

percentile of size, >1.8 ha; yellow), medium scale (33-67 percentile of size, 0.82-1.9 ha; blue), and small scale (0-313 

33 percentile of size, <0.82 ha; purple) farmers. Panel 4a shows that for large scale farmers adaptation first slowly 314 

rises and speeds up after the first drought (2001-2004), alongside an increase in risk perception from the first 315 

drought. For medium farmers, well uptake initially decreases but then increases alongside a similarly heightened 316 

risk perception. For smallholder farmers, the number of well owners declines and then only slightly recovers after 317 

the first drought, even though they have a higher risk perception compared to medium and large field farmers. This 318 

difference between well owners mirrors the differences in interest rates, where smallholder farmers have the 319 

highest interest rates on loans, and large farmers the lowest rates (Appendix A.1). This highlights that loan interest 320 

Figure 4 Evolution of Wells, Risk Perception and Crops in the Bhima basin. (a-b) Farmers are categorized by 

field size into small (0-33rd percentile), medium (33-67th percentile), and large (67-100th percentile) groups; (a) 

the fraction of the total group with a well; (b) the mean Risk Perception of each group. (c-d)  Evolution of the 

dominant crops in the wet Kharif (c) and dry Rabi (d) season. Values are 60 run means (a-d), error bars indicate 

standard error  (a-b), light grey areas indicate years where the average 1 month Standardized Precipitation 

Evaporation Index (SPEI) was below 0.  
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is an important factor in whether agents adapt. During the last drought (2011-2015), despite high-risk perception, 321 

the proportion of farmers owning wells declines across all farm sizes (figure 4a-b). The adaptation by large farmers 322 

declines the steepest, although they do remain the most adapted group (Section 3.2).  323 

 324 

In the Kharif wet season, all crop types except paddy-irrigated rice and groundnut decrease in prevalence (Figure 325 

4c). Both groundnut and paddy cultivation have steeply risen in profitability during the study period (7g), however, 326 

paddy cultivation is substantially more water intensive than groundnut. In the dry Rabi season we see a large 327 

decrease of farmers who leave their field fallow (i.e. no crops), which is mainly replaced by cultivating groundnut, 328 

although there is a greater heterogeneity of cultivated crops in the Rabi season as compared to the wet Kharif 329 

season (Figure 4d). Furthermore, the increase and decrease of Jowar cultivation, which is less water-intensive 330 

compared to Groundnut and Paddy irrigation and performs well during droughts (Singh et al., 2011), aligns very 331 

well with drought and non-drought periods. Lastly, we see almost no Paddy cultivation in the dry season.  332 

 333 

 334 

Figure 5a shows a large difference in yield ratio between farmers with- or without a well, likely stemming from 335 

the increased water reliability due to irrigation wells. Consequently, farmers with wells saw a yield ratio increase 336 

instead of decrease during the first drought. Yearly crop income is approximately 30 % higher for farmers with 337 

wells (5b), though incomes for both groups have increased due to switching to higher-priced crops. Importantly, 338 

this data does not only show the effects of wells, but also which farmers are able to initially afford wells, stemming 339 

Figure 5 Evolution of Yield ratio, Income, Risk perception, Groundwater Depth and the two main crops in the Wet 

Kharif and Dry Rabi Season in the Bhima basin. (a-d) Farmers are categorized by whether they have wells in each year 

into a Not Adapted and Adapted group. Light grey areas indicate years where the average 1 month Standardized 

Precipitation Evaporation Index (SPEI)was below 0. 
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from prior higher yield, income and lower groundwater levels. Groundwater levels are unexpectedly higher for 340 

farmers with wells (5d), despite wells being the primary cause of groundwater depletion for most farmers (6d, 7c). 341 

However, note that in the figure, farmers whose well dried up count as Not Adapted. Thus, when farmers with 342 

wells are in locations where groundwater recharge cannot keep up with extraction, their wells dry and they are 343 

switched to the Not Adapted group. Subsequently, only farmers with wells where groundwater is not rapidly 344 

depleted, or those who have recently installed wells, remain in the Adapted group, resulting in high average 345 

groundwater levels for this group. The extraction and hydroclimatic conditions at the farmers’ locations where 346 

depletion matches the Adapted group’s average thus provide an estimate of the necessary circumstances to 347 

sustainably maintain wells. As long as these conditions are present, the increased yield ratios and income (5a-b) 348 

can be maintained.  349 

 350 

Figures 5e and 5f depict the development of Fallow, Jowar, and Groundnut cultivation during the wet Kharif and 351 

dry Rabi seasons. We show these crops as they are most widely cultivated and dynamic (Figure 4). In the Kharif 352 

season, crop patterns are similar for both groups (5e). During the Rabi season, both agents with and without wells 353 

switch to Jowar during the first drought (2001-2004, 5f). However, after the initial drought, the percentage of 354 

agents with wells cultivating Jowar massively reduces, while the fraction without wells cultivating Jowar remains 355 

stable. Furthermore, during Rabi, more adapted agents cultivate Groundnut, while fewer leave their land fallow. 356 

This contrast in cultivation patterns among well-irrigating and non-irrigating groups highlights the critical role of 357 

water availability in agent’s crop selection. If rainfall is ample, such as during the wet season, the patterns between 358 

farmers with and without wells are similar. However, in drier conditions, these patterns diverge because farmers 359 

with wells have greater water availability. This aligns with the patterns seen in Figure 4.  360 
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3.2 Crop switching and well uptake in the Adaptation vs. the No Adaptation scenario 361 

 362 

 363 

Figure 6 compares a scenario where agents adapt (i.e., switch crops or dig wells) to one where agents stick with 364 

their initial adaptation. Figure 6a shows that despite the increased well uptake for larger farmers, the average 365 

income per square meter varies by no more than 5 % between farm size groups, which contrasts the difference 366 

shown in Figure 5-b. This is illustrated by the yield ratio (6c), where initially, smaller farmers achieve substantially 367 

higher yields than larger farmers due to cultivating crops with lower water demand. Once larger farmers switch 368 

crops and install more wells, yields match or exceed those of smaller farmers.  369 

Figure 6 Evolution of Income, Loan Payments, Groundwater Depth and Yield Ratio in the Bhima basin for a scenario 

where agents adapt (filled line) and where they stick to their initial adaptations and crops (dotted lines). (a-c) Farmers 

are categorized by field size into small (0-33rd percentile), medium (33-67th percentile), and large (67-100th percentile) 

groups; (a) Inflation adjusted early Income in Rs / m2 after harvesting and selling crops; (b) Inflation Adjusted Yearly 

Loan Payments in Rs / m2, consisting of payments for cultivation costs, well loans and microcredit in case of crop 

failure; (c) Average yield ratio of agent groups; (d) Groundwater Depth in m below surface. Values are 60 run means 

(a-d), light grey areas indicate years where the average 1 month Standardized Precipitation Evaporation Index (SPEI) 

was below 0. 

https://doi.org/10.5194/egusphere-2024-1588
Preprint. Discussion started: 5 June 2024
c© Author(s) 2024. CC BY 4.0 License.



15 

 

 370 

During the first and most severe droughts from 2001 to 2004, the drop in yield ratio of the no-adaptation scenario 371 

was six times worse (5 % versus 30 % drop, figure 6c). These initial yield gains were likely due to a shift towards 372 

less water-intensive crops (Jowar), as for medium field size farmers yields also increased, while their well uptake 373 

declined (Figure 4a, 6c). Subsequent yield increases align better with well uptake, with larger farmers achieving 374 

higher yields than smaller ones. Furthermore, after the initial drought period, larger farmers switched to higher 375 

grossing but more water intensive crops (4d), as the yield ratios between small and large farmers were similar, 376 

while profits were higher. However, ultimately, well uptake dropped (Figure 4a). Consequently, during the last 377 

drought from 2011 to 2015, the relative yield drop for larger farmers was similar across both the adaptation and 378 

no-adaptation scenarios, contrasting with the six times decrease seen during the first drought. Furthermore, the 379 

income fell 10-20 % more in the adaptation scenario.  380 

 381 

For larger farmers with access to low interest loans (Appendix A.1), the annual cost to invest in wells is a smaller 382 

percentage of the agents’ income. The influence of this ‘effective investment cost m-2’ (Sayre & Taraz, 2019) is 383 

reflected in the annual loan payments m-2 in Figure 4b, where the payments are equal for the medium and large 384 

farmers, while the large farmers have a higher fraction of adapted agents (Figure 4a). Moreover, even compared 385 

to smaller farmers—who have 80-84% fewer adapted agents—the annual payments m-2 are not substantially 386 

higher. Lastly, the annual payments m-2 are lower than what the expenditure cap (± 29 % of income) would suggest 387 

(Figure 4b). This likely results from using group averages, where not adapted agents with smaller loans lower the 388 

average, and from using non-drought income based on the yield-probability relation instead of the most recent 389 

incomes. The latter adjusts more slowly to increased income, making agents more risk averse. Switching to using 390 

the most recent incomes could change this. 391 

 392 

In Figure 6d, the groundwater levels in the no-adaptation scenario drop 5 meters between 2001-2004 and then 393 

stabilizes. Conversely, in the adaptation scenario, groundwater levels continue to decrease by an average of 1 meter 394 

annually, stabilizing briefly during periods of positive SPEI (i.e., no droughts) and declining rapidly during 395 

droughts. The rate of groundwater decline is roughly the same for all farmers, regardless of farm size. The most 396 

recent rapid decline in 2011 corresponds with a decrease in well uptake (Figure 4a), suggesting that this decline is 397 

primarily due to wells drying up. Since larger farmers were the early adopters, their shallower wells were the first 398 

to dry up, which explains their more rapid decline compared to medium and small farmers (Figure 4a). However, 399 

despite declining well uptake, loan payments remain high due to ongoing loans.  400 
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 401 

 402 

In Figure 7, farmers are categorized as upstream (67-100th percentile elevation), midstream (33-67th percentile), 403 

and downstream (0-33th percentile). Mid- to downstream farmers initially see a reduction in well use, with 404 

increases only occurring at the end of the first drought (2001-2004, Figure 7a). This aligns with increased incomes 405 

late in the first drought as a result of the drought ending and switching to more profitable crops (7g). The crop 406 

switching has a dual effect: firstly, it boosts income, enabling agents to invest more in wells; secondly, it enhances 407 

well profitability, as now the same amount of water leads to a larger absolute increase in income. Upstream, the 408 

initial yield, income and groundwater levels are higher. Higher groundwater levels reduce the price of wells and 409 

higher incomes increase what agents can spend on wells. Similar to what was seen for larger farmers in Figures 4 410 

and 6, this reduces the effective investment costs, meaning the wells cost a smaller percentage of the agents’ 411 

income and more agents adapt. This causes upstream farmers to immediately adapt as the model starts, even during 412 

the first drought (2001-2004). Similar to the trends in Figure 6d, groundwater levels quickly drop during droughts 413 

and stabilizes when SPEI is positive. This pattern is mirrored in well uptake, which increases until 2007 but halts 414 

in 2008, coinciding with a sharp decline in groundwater during the middle drought (2007-2009). During the last 415 

drought (2011-2015), groundwater levels rapidly fall again and well uptake substantially declines due to wells 416 

drying up. This decline intensifies downstream, resulting in downstream farmers having fewer wells than they 417 

initially had.  418 

 419 

Despite fewer wells among downstream farmers, groundwater levels decline similarly to those in the mid and 420 

lower basins (Figure 7c). Comparing this against spatially varying parameters between the lower-, mid- and upper 421 

basin, we mainly see that upstream agent density is lower and precipitation is higher (Appendix A.2). In the upper 422 

Figure 7 Evolution of Wells, Risk Perception, Groundwater Depth, the two most cultivated crops in the Wet Kharif and 

Dry Rabi season, Yield and inflation adjusted Yearly Crop Income and Observed Crop Market Prices in the Bhima 

basin. Farmers are categorized by farmer elevation into Lower Basin (0-33rd percentile), Mid Basin (33-67th 

percentile), and Upper Basin (67-100th percentile) groups (a-c, e-f). Values are 60 run means, light grey areas indicate 

years where the average 1 month Standardized Precipitation Evaporation Index (SPEI) was below 0. 
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basin this means less additional irrigation water is required, resulting in more recharge and less agents abstracting 423 

groundwater per km2. This also correlates with the shown higher yield and income (Figures 7e-f).  424 

 425 

During the wet Kharif season, mid- and downstream farmers grow almost solely groundnut, whereas upstream 426 

paddy cultivation is also common (Figure 7d). This follows the earlier shown pattern of higher water availability 427 

generally leading to more water intensive crops. The yield ratio is highest upstream and lowest downstream, with 428 

downstream also showing a greater difference in yield between the adaptation and no-adaptation scenario (Figure 429 

7e). This may be the effect of higher water demand upstream, which is caused by more water-intensive crops 430 

offsetting more of the supply gains. This is also reflected in a lower yield ratio compared to the no-adaptation 431 

scenario, even though there are more agents with wells.  432 

 433 

For mid- and downstream farmers, yield ratios increased during the first drought compared to the no-adaptation 434 

scenario, even though well uptake declined (Figure 7a, e). Similar to what was discussed at Figures 4-6, this 435 

increase was due to a shift toward a less water-intensive crop (Jowar, 7h). Subsequently, as water availability 436 

increased, the prevalence of Jowar declined, while Groundnut, which requires more water than Jowar but less than 437 

Paddy, continued to rise due to its steep price increase (7g). This pattern again followed water availability, as this 438 

was more pronounced for the mid- and upstream farmers. The economic maximalization through crop switching 439 

boosted incomes without requiring additional water from wells (7a, 7f). However, yields in the adaptation scenario 440 

for mid- and downstream farmers continued to rise compared to the no-adaptation scenario. Furthermore, both 441 

yields fell less during the middle drought. This pattern aligns with the initial rise well usage for these groups (7a). 442 

Ultimately, well uptake fell, and during the last droughts (2011-2015) yield ratios fell by 18-22 %, approximately 443 

equally as much as in the no-adaptation scenario. However, from 2011 to 2015, crop income in the adaptation 444 

scenario fell by 25-35%, a 10-15% greater decline compared to the no-adaptation scenario. This is a larger fall 445 

than what only the yield ratios would suggest, and can be explained by a simultaneous drop in prices for the main 446 

cultivated crops (7g).  447 
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 3.3 Sensitivity Analysis  448 

 449 

Our results show that well uptake is highly sensitive to well cost. Diving deeper in this relation, Figure 8 shows 450 

that although well cost substantially affects the adoption of wells and yield, its impact on income is minimal 451 

compared to other factors. This notion is supported by Figures 4 to 7 who reveal that many farmers cannot afford 452 

wells regardless of cost changes and that decreasing groundwater levels result in the loss of wells for more. Thus, 453 

although the effect of wells is large for farmers with wells (Figure 4), there remains a large group without wells 454 

throughout the basin. In contrast, risk aversion substantially affects both well adoption and crop selection, and 455 

crop selection is relevant for all farmers. Furthermore, crop selection is especially impactful as the price of 456 

groundnut, the primary crop farmers switch to in the main season, doubled relative to other crops (Figure 7g). This 457 

illustrates that farmer’s  adaptive behavior is a mix of climate and market dynamics.  458 

 459 

However, Figure 8 shows that well cost substantially influences all hydrological parameters except upstream 460 

discharge. Recorded in regions with higher precipitation and fewer agents (Appendix A.2), upstream discharge 461 

shows little sensitivity to well cost, suggesting groundwater extraction makes up a smaller fraction of total river 462 

inflow. Similar to income, yield reacts to risk aversion through crop choice. Risk perception is sensitive to the 463 

drought loss threshold and is the second most influential factor for income.  464 

 465 

Appendix A.1 shows that the interest rate significantly impacts farmers' ability to afford wells and influences their 466 

income more than risk aversion and discount rate. This contrasts Figure 8, which shows that all three input factors 467 

Figure 8 Delta moment Sensitivity Analysis. Values indicate how sensitive an output factor (y-axis) is to the influence of 

a specific input factor (x-axis), in relation to the influence of all other input factors. The output consists of number of 

wells, yearly crop income, yield, risk perception, groundwater depth, reservoir storage and discharge up- and 

downstream. The changed input parameters consist of risk aversion, discount rate, interest rate, well cost and drought 

threshold.  
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are equally affecting well uptake, and that risk aversion and discount rate are more important for income. This 468 

likely stems from the sensitivity analysis parameters, where the change in interest rate is based on a factor 469 

multiplied by the agent's initial rate, leading to minimal variation if the initial value is low. Furthermore, agents 470 

with higher initial interest rates are already not adapting (Appendix A.1), thus are only sensitive to (one-way) 471 

decreasing interest changes.  472 

4 Discussion and recommendations 473 

In this study, we further developed a large-scale socio-hydrological ABM to assess the adaptive responses of 474 

different farmer agents under consecutive droughts. We show that farmers with more financial resources invest in 475 

irrigation quickly, when a drought occurs, whereas farmers with less resources switch to less water intensive crops 476 

to increase yields (T. Birkenholtz, 2009; T. L. Birkenholtz, 2015; Fishman et al., 2017). After the first drought, as 477 

risk perception is still high, and income had increased, well uptake also increased among farmers with less financial 478 

resources. In the short term, this increased the area’s income and resilience, reflected in rising yields and income 479 

over consecutive droughts. However, similar to reservoir supply-demand cycles (di Baldassarre et al., 2018), the 480 

widespread adoption of wells led to an increase in water-intensive crops and growing of crops during the dry 481 

season, which in turn raised water demand. During wet periods the available groundwater could support this 482 

demand, but during dry periods the groundwater rapidly declined. Consequently, despite being less severe than 483 

the first, the last drought resulted in many wells drying up quickly and yields declining. Furthermore, homogeneous 484 

cultivation as a result of economic maximization made the region more sensitive to market price shocks. This was 485 

seen from 2013 to 2015, where crop market prices of the main cultivated crops dropped, which led to a much 486 

larger drop in farmers' average income compared to the no-adaptation scenario. Thus, although initially drought 487 

vulnerability decreased and incomes rose, ultimately, farmer’s adaptive responses under consecutive droughts 488 

increased drought vulnerability and impact. This underscores the importance of considering consecutive events, 489 

as focusing solely on the first event would overlook the ultimate impact. Suggested policies to address groundwater 490 

decline and well drying while maintaining higher incomes include promoting efficient irrigation technologies 491 

(Narayanamoorthy, 2004), implementing fixed water use ceilings (Suhag, 2016), encouraging rainwater harvesting 492 

(Glendenning et al., 2012) or combinations of all (Wens et al., 2022). 493 

 494 

The maladaptive path of tubewell irrigation expansion, growth of water-intensive crops, the subsequent rapid 495 

depletion of groundwater and resulting economic decline we simulated here has been commonly observed in India 496 

(Roy & Shah, 2002). Previous studies modelling the economics of wells show the income and groundwater 497 

fluctuations from wells and crop changes occurring gradually (Robert et al., 2018; Sayre & Taraz, 2019). Aside 498 

from investment costs, they show profits and groundwater levels rising and falling gradually over time, with the 499 

simulations never experiencing shocks. However, we here observe that this is not a steady process, but rather one 500 

characterized by periods of stabilization and rapid reduction of groundwater levels and incomes during wet and 501 

dry periods. Additionally, under consecutive droughts, we see social- (i.e. continued loan payments, crop price 502 

drops) and ecological shocks (i.e. lower groundwater levels, drought) coinciding (Folke et al., 2010). Therefore, 503 

agricultural decline as described by Roy & Shah (2002) may occur more sudden and rapidly in a socio-hydrological 504 

systems approach than what previous studies predict (Manning & Suter, 2016; Robert et al., 2018; Sayre & Taraz, 505 

2019). Such sudden shocks are harder to adapt to, potentially leading to more severe impacts or disasters 506 
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(Rockström, 2003). Thus, for future analyses, we recommend transitioning to similar coupled agent-based 507 

hydrological models, combined with climate data, to identify areas where drought risk is or will be high. 508 

 509 

We also observed that adaptive patterns are spatiotemporally heterogeneous. For example, the farmers' location 510 

determined the number of wells that could be held before depleting groundwater levels, influenced by factors like 511 

precipitation and agent density. Water availability, resulting from precipitation and irrigation, along with market 512 

dynamics, influenced crop choices, leading to varied cropping patterns as prices fluctuated, between wet and dry 513 

periods, seasons, and locations upstream or downstream. Furthermore, at individual scale, we observed that 514 

variations in farm size, access to credit, time preferences, or risk attitudes influenced farmers' adaptation decisions. 515 

Building on our demonstration of the impact of varying hydroclimatic conditions and farmer characteristics on 516 

adaptation behavior, and the substantial effects of this behavior on a river basin's hydrology, we again highlight 517 

the value of large-scale coupled socio-hydrological models. These models can further enhance understanding of 518 

both basin hydrology and farmer behavior. This is needed to design policies such that they, for example, minimize 519 

overall impacts and specifically reduce impacts on smallholder farmers (Wens et al., 2022). By further exploiting 520 

our methods, it is possible to attempt to identify policies that can slow the expansion of wells in areas where it is 521 

unsustainable, while simultaneously avoiding interference in regions where growth is more sustainable, which is 522 

recommended by Roy & Shah (2002). Furthermore, it can help in determining which adaptation alternatives and 523 

policies can decrease drought vulnerability while simultaneously being financially attractive enough to see 524 

adaptation beyond the village scale (Fishman et al., 2017). 525 

 526 

In this study we were able to model emergent patterns as a result of many combined small-scale processes due to 527 

human behavior under consecutive droughts at a river basin scale and quantitatively assess their hydrological and 528 

agricultural impacts. However, there are several challenges related to our methods. First, coupled-ABMs require 529 

many inputs such as calibration and validation data (McCulloch et al., 2022; Schrieks et al., 2021). Some of this 530 

data was readily available, however, others such as spatial explicit longitudinal groundwater levels were not. 531 

Additionally, other inputs such as drought loss thresholds are based off theory (Bubeck et al., 2012; Kahneman & 532 

Tversky, 2013; Neto et al., 2023) and have not been determined for droughts. The precise levels of, e.g., well 533 

uptake or income, depend on the reliability and precision of data inputs and can therefore vary (Robert et al., 2018). 534 

Although the model is thoroughly calibrated, this paper concentrates on patterns, variations among farmers, places, 535 

and scenario differences, rather than on absolute values. We recommend further research to develop detailed 536 

regional data to improve the accuracy of large-scale ABMs, along with acquiring empirical data on behavioral 537 

aspects to refine behavioral estimates. Second, crop switching steered the region to an extremely homogeneous 538 

cultivation of certain crops that had substantially risen in price. Albeit a progression towards uniform cultivation 539 

of crops has been observed under similar circumstances (Birkinshaw, 2022), the degree seen here is unlikely. We 540 

incorporate economic decisions influenced by subjective risk behaviors into our analysis, as they were the central 541 

focus of our study. However, other subjective behaviors exist, such as decisions influenced not by personal benefit 542 

assessments, but by perceptions of others' beliefs, cultural norms, attitudes, or habits (Baddeley, 2010). Including 543 

this type of behavior in future research may reduce homogeneity; however, no behavioral theory perfectly 544 

encompasses all adaptive behavior (Schrieks et al., 2021). Therefore, we recommend keeping the SEUT, while 545 

incorporating a market feedback, that lowers the profitability of commonly cultivated crops due to increased 546 

cultivation costs and reduced market prices, calibrated with observed prices. Alternatively, we suggest adding a 547 
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calibrated unobserved cost factor for all crops (Yoon et al., 2024). Both modulate the profitability of crops and 548 

reduce the modelled divergence from historical patterns. Furthermore, subsistence farming, which involves 549 

cultivating crops for household consumption, could reduce homogeneity as well (Bisht et al., 2014; Hailegiorgis 550 

et al., 2018. Subsistence farms cultivate more diverse crops and take up most of smallholder farmer’s cultivated 551 

area (Bisht et al., 2014. A proposed model implementation could mandate that all farmers dedicate one plot to 552 

subsistence crops. This would limit the smallest farmers to their initial crop rotations, while larger farmers would 553 

be free to cultivate commercial crops on their remaining land.  554 

5 Conclusions 555 

In this study, we assess the adaptive responses of heterogenous farmers under consecutive droughts at river basin 556 

scale in the Bhima basin, India. To do so, we further developed a large-scale socio-hydrological agent-based model 557 

(ABM) by implementing the Subjective Expected Utility Theory (SEUT) alongside heterogeneous farmer 558 

characteristics and dynamic adaptation costs, risk experience and perceptions to realistically simulate many 559 

individual’s behavior. From the emergent patterns of all individual’s behavior under consecutive droughts we were 560 

able to assess river basin scale patterns and come to these three main conclusions.  561 

First, farmer’s adaptive responses under consecutive droughts ultimately led to higher drought 562 

vulnerability and impact. Although farmer’s switching of crops and uptake of wells initially reduced drought 563 

vulnerability and increased incomes, subsequent crop switching to water-intensive crops and intensified cropping 564 

patterns increased water demand. Furthermore, the homogeneous cultivation encouraged by economic 565 

maximization made the region more sensitive to market price shocks. These findings highlight the importance of 566 

looking at consecutive events, as focusing solely on adaptation during first events would overlook the ultimate 567 

impact. 568 

Second, the impacts of droughts on (groundwater irrigating) farmers are higher and can happen more 569 

suddenly in a socio-hydrological system under realistic climate forcings compared to what just gradual numerical 570 

economical models can predict. This is because groundwater depletion happens in periods of stabilization and 571 

rapid reduction instead of gradually, and because ecological shocks (i.e. droughts) and social shocks (i.e. crop 572 

price drops) can coincide to rapidly decrease farmer incomes. 573 

Third, adaptive patterns, vulnerability, and impacts are spatially and temporally heterogeneous. Factors 574 

such as market prices, received precipitation, farmers’ characteristics and neighbors, and access to irrigation 575 

influence crop choices and adaptation strategies. This variability underscores the benefits of using large-scale 576 

ABMs to analyze specific outcomes for different groups at different times. 577 

 578 

This research presents the first analysis of farmer’s adaptive responses under consecutive droughts using a large-579 

scale coupled agent-based hydrological model with realistic behavior. We emphasize the added value of employing 580 

coupled socio-hydrological models for risk analysis or policy testing. We recommend using these models to, for 581 

example, test policies designed to minimize overall impacts or to minimize them for smallholder farmers. Further 582 

research could also explore alternative adaptations to wells that reduce drought vulnerability and are financially 583 

viable enough to encourage wider adoption. Lastly, we advocate for research aimed at developing detailed regional 584 

data to improve the accuracy of large-scale ABMs, along with acquiring empirical data on behavioral aspects to 585 

refine behavioral estimates. 586 
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Appendix A: Additional figures  587 

  588 

Figure A1. Well uptake and income grouped based on agent’s interest rate, risk aversion and discount rate. The 589 

values indicate the means of 60 runs, while the error bars indicate the standard error.   590 
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  591 

Figure A2. Spatial patterns of adaptation (a), precipitation (b) and agent density (c) in the Bhima basin.  592 
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 593 

 594 

Appendix B: Model Settings & Parameters 595 

Table B1. Model settings and parametrization  596 

Variable / Parameter Definition, unit Value / range 

   

Well costs  (Adapted from Robert et al. (2018)  

Cadapt
 Annual irrigation investment cost 

(Rs) 

See B.1  

D Depth of Borewell (m) Current groundwater depth + 20 m 

DI Initial depth of borewell of agents 

with well during spin-up 

42.5 m  

prD Probability of well failure 0.2 

Lifespan = Loan duration (n) = 

Time horizon (Rt) 

Years 30  

CD Cost of drilling well  See B.1 

Cm Maintenance costs (Rs) See B.1 

W Potential amount of water pumped See B.1 

FR Flow rate (cubic meter per hour) See B.1 

PrI Proportion of available water for 

irrigation 

1 

HP Pump horse power (HP) 10 

CHP Pump unit purchase costs (Rs) See B.1 

At Daily power supply (hours per 

day)  

3.5 

L Total planted time (days) Dependent on agent crop rotation, 

total nr of days crop is planted.  

CI Cost of pumping (Rs) See B.1 

E Electric power used for irrigation 

(Rs per kilowatt hour) 

See B.1 

H Number of hours pumping See B.1 

CE Electricity unit costs (Rs per 

kilowatt hour) 

0 

Social parameters See sect. 2.3 & 2.5  

σ Risk aversion See sect. 2.5 Mean: 0.02; STD: 

0.82. (Just & Lybbert, 2009 

r Discount rate See sect. 2.5 Mean: 0.159; STD: 

0.193. (Bauer et al., 2012 
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r Interest rate See B.2 

Risk perception   

β Risk perception See sect. 2.3 for calculation 

c Maximum overestimation of risk, 

calibrated 

Min: 2; Max: 10; Final: 

4.320833061643743 

d Risk reduction factor -2.5 

e Minimum underestimation of risk 0.01 

Hydrological parameters 

(CWATM) 

(Burek et al., 2020; De Bruijn et 

al., 2023 

 

SnowMeltCoef* Snow melt coefficient. *not 

calibrated as no snow in study area 

0.004 

arnoBeta_add  0.14375536957497898 

factor_interflow  0.7613961217818681 

lakeAFactor  3.221318627249794 

lakeEvaFactor  2.44551165779312 

manningsN  1.3993375807912372 

normalStorageLimit  0.645563228322237 

preferentialFlowConstant  1.426435027367161 

recessionCoeff_factor  4.091720268164577 

soildepth_factor  1.7727423771361288 

return_fraction  0.44501083424619015 

Calibrated parameters (ABM)   

base_management_yield_ratio See B.3 Min: 0.4; Max: 1; Final: 

0.9942851661004738 

expenditure_cap See 2.3 Min: 0.2; Max: 0.5; Final: 

0.29686828121956016 

drought_threshold Drought loss threshold. See 2.3 Min: 5; Max: 25; Final: 

15.317595486070905 

risk_perception_max See 2.3 Min: 2; Max: 10; Final: 

4.320833061643743 

Sensitivity settings   

risk_aversion See B.4 Min: 0.5 

Max: 0.9 

discount_rate See B.4 Min: 0.059 

Max: 0.259 

interest_rate See B.4 Min: 

Max: 

well_cost See B.4 Min norm: 0.5; Max norm: 1.5 

Min: 0; Max: 1 

drought_threshold See B.4 Min: -5 
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Max: 5 

 597 

B.1 Well costs  598 

Annual investment cost: The yearly adaptation costs are a function of the well depth, the pump’s horsepower 599 

(HP), its maintenance costs and the cost of groundwater pumping. This is adjusted for the loan duration (n) using 600 

the agent’s yearly interest rate (r).  601 

 𝐶𝑡,𝑑
𝑎𝑑𝑎𝑝𝑡

= (𝐶𝐷 + 𝐶𝐻𝑃) ∗  
𝑟∗(1+𝑟)𝑛

(1+𝑟)𝑛−1
+ 𝐶𝑀 + 𝐶𝐼  602 

Borewell construction cost: The borewell construction cost is dependent on the probability of well failure (prD) 603 

and the groundwater depth for the agent (D). The constants are adjusted yearly based on inflation.  604 

 𝐶𝐷 = (1 + 100 ∗  𝑝𝑟𝐷) ∗ (486.33 ∗ 𝐷 − 0.00824 ∗ 𝐷
2) 605 

 606 

Initial borewell depth: Initial borewell depth (DI) of agents who had wells before the adaptation started was 607 

based on the average groundwater depth in the Bhima basin + 20 m.  608 

Pump Cost: The pump cost is dependent on the horsepower (HP) of the pump. The constant is adjusted yearly 609 

based on inflation. 610 

 𝐶𝐻𝑃 = 3570 ∗ 𝐻𝑃  611 

Irrigation maintenance cost: The irrigation maintenance cost is dependent on the potential amount of water 612 

pumped (W). The constant is adjusted yearly based on inflation.  613 

 𝐶𝑀 = 6598 ∗ 𝑊
0.16 614 

Potential amount of water: The potential amount of water pumped is dependent on the flow rate (FR), the total 615 

planted time (L), the number of hours pumping per day (At) and the proportion of available water for pumping prI.  616 

 𝑊𝑡 = 𝐹𝑅 ∗ 𝐿 ∗  𝐴𝑡 ∗  𝑝𝑟𝐼  617 

Flow rate: The flow rate is dependent on the groundwater table (G).  618 

 FR = 79.93 ∗ 𝐺−0.728  619 

Cost of groundwater pumping: The yearly cost of groundwater irrigation (CI)  is dependent on the total planted 620 

time (L), the number of hours pumping per day (At), the proportion of available water for pumping prI, the electric 621 

power (E) and the electricity unit costs (CE).  622 

 𝐶𝐼 = 𝐿 ∗ 𝐴𝑡 ∗  𝑝𝑟𝐼 ∗ 𝐸 ∗ 𝐶𝐸 623 

Electric power (kilowatt hour): The electric power is dependent on the horsepower  (HP) to watt conversion.  624 

 𝐸 = 745.7 ∗ 𝐻𝑃  625 

 626 

B.2 Interest rates  627 

See section 2.5 for how interest rates were determined. The average for all farmers comes out at approximately 628 

10.6 %, close to the observed 10.7 % of P. D. Udmale et al. (2015. Below is the table relating landholding size to 629 

interest rate:  630 

Table B2. The relation between size class and interest rate to generate interest rates for the farmer population.  631 
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Size class 

(ha) 

< 

0.5 

0.5-

1.0 

1.0-

2.0 

2.0-

3.0 

3.0-

4.0 

4.0-

5.0 

5.0-

7.5 

7.5-

10.0 

10.0-

20.0 
> 20.0 

Interest rate 

(%) 
16 11.5 10 7.75 6.5 6.5 6.5 5 3 3 

 632 

B.3 Calibration 633 

In addition to the parameters explained in section 2.3., there is also a base management yield ratio adjustment. 634 

This is a parameter that shifts each agent’s yield ratio with a flat rate to do a mean adjustment. 635 

B.4 Sensitivity  636 

Sensitivity parameters were changed differently per parameter. The function latin.sample from SAlib (Iwanaga et 637 

al., 2022 was used to generate 300 sets of values between the min and max. The min and max were used as inputs 638 

to change either the absolute values of a parameter (drought loss threshold), to change the distributions of all 639 

agent’s values (risk aversion, discount rate) or change all agent’s individual parameters with a fixed rate (interest 640 

rate).  641 

Risk aversion: See section 2.5 on how the initial risk aversion was determined. To change this, this distribution 642 

was normalized and rescaled using a new standard deviation, which was a latin.sample value between the given 643 

min and max.   644 

Discount rate: Similar to risk aversion, but now instead of the standard deviation, the mean was sampled between 645 

the min and max and used to rescale the distribution.  646 

Interest rate: Each agent’s individual interest rate (section 2.5, B.2) was multiplied with a sampled value between 647 

the given min and max.  648 

Well cost: The well cost factor is determined by adjusting the fixed and yearly costs by an absolute factor. This 649 

absolute factor adjusts the price based on a normal distribution of values. The standard deviation is 0.5 (50 % 650 

higher/lower price) and the mean is 1 (no price change). Latin.sample then samples quantile values between 0 and 651 

1, and uses the standard deviation and mean to calculate the adjustment factor. Thus, the percentual adjustment 652 

factor follows a normal distribution around the original price (1).  653 

Drought loss threshold: An absolute value was added/subtracted from the drought loss threshold based on the 654 

sampled values between the min and max.  655 

Code and data availability 656 

The most recent version of the GEB and adapted CWatM model, as well as scripts for data 657 

acquisition and model setup can be found on GitHub (github.com/GEB-model). The model 658 

inputs, parametrization and code used for this manuscript are accessible through Zenodo 659 

(Kalthof & De Bruijn, 2024). This page also includes the averages and standard deviations of 660 

the 60 runs of the adaptation and non-adaptation scenario which are featured in all figures.  661 
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