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Abstract. Consecutive droughts, becoming more likely, produce impacts beyond the sum of individual events by 10 

altering catchment hydrology and influencing farmers' adaptive responses. We use GEB, a coupled agent-based 11 

hydrological model, and expand it with the Subjective Expected Utility Theory (SEUT) to simulate farmer 12 

behavior and subsequent hydrological interactions. We apply GEB to analyze the adaptive responses of ±1.4 13 

million heterogeneous farmers in India's Bhima basin over consecutive droughts and compare scenarios with and 14 

without adaptation. In adaptive scenarios, farmers can either do nothing, switch crops, or dig wells, based on each 15 

action’s expected utility. Our analysis examines how these adaptations affect profits, yields, and groundwater 16 

levels, considering, e.g., farm size, risk aversion and drought perception. Results indicate that farmers’ adaptive 17 

responses can decrease drought vulnerability and impact after one drought (x6 yield loss reduction), but increase 18 

it over consecutive due to switching to water-intensive crops and homogeneous cultivation (+15% income drop). 19 

Moreover, adaptive patterns, vulnerability, and impacts vary spatiotemporally and between individuals. Lastly, 20 

ecological and social shocks can coincide to plummet farmer incomes. We recommend alternative or additional 21 

adaptations to wells to mitigate drought impact and emphasize the importance of coupled socio-hydrological 22 

ABMs for risk analysis or policy testing. 23 

Short summary. Our study explores how farmers in India's Bhima basin respond to consecutive droughts. We 24 

simulated all farmers' individual choices—like changing crops or digging wells—and their effects on profits, 25 

yields, and water resources. Results show these adaptations, while improving incomes, ultimately increase drought 26 

vulnerability and damages. Such insights emphasize the need for alternative adaptations and highlight the value of 27 

socio-hydrology models in shaping policies to lessen drought impacts. 28 

1 Introduction 29 

Anthropogenic climate change and population growth has increased exposure of society to droughts (Smirnov et 30 

al., 2016). Furthermore, the growing demand on water is increasingly stressing fresh-water system, amplifying the 31 

impact of droughts (Best & Darby, 2020; Vanvan Loon et al., 2016). Therefore, there is a necessity to strive for 32 

drought risk adaptation both at larger scales by governments (e.g. reservoir management) and at the local scales 33 

by farmers through efficient water use and irrigation (UNDRR, 2015; Wilhite et al., 2014).  34 

Empirical research into what factors drive adaptation is ongoing but mostly focuses on single events and at one 35 

point in time (Blauhut et al., 2016; Udmale et al., 2015). However, consecutive droughts are becoming more likely 36 
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and can result in impacts that differ from the sum of the individual events’ parts (Anderegg et al., 2020; van der 37 

Wiel et al., 2023; Zscheischler et al., 2020). Consecutive droughts impact farmer communities in a few distinct 38 

(but interrelated-) processes. (1) The first (of consecutive) drought(s) can have a physical hydrological impact on 39 

the second drought. For example, a lowered groundwater table after the first event may not have been replenished 40 

before the second drought starts, which can limit the capacity for irrigation during the second drought (Anderegg 41 

et al., 2020; van der Wiel et al., 2023; Zscheischler et al., 2020). (2) Moreover, socio-economic factors like income 42 

or debts also influence the vulnerability of farmers and their ability to adapt during multiple drought events. For 43 

example, the reduced income of farmers after a first drought (e.g. due to less yield) may lead to less financial 44 

capacity to cope with the second drought. (3) Finally, behavioral factors such as risk aversion and risk perception 45 

also play a role in how farmers adapt to (multiple-) droughts (Habiba et al., 2012; Ward et al., 2014). For example, 46 

farmers can have an increased risk perception after the first event, which may lead to an accelerated 47 

implementation of drought adaptation measures (Aerts et al., 2018; Habiba et al., 2012; Nelson et al., 2013; van 48 

Duinen et al., 2015), thus reducing the impact of the second drought.  49 

A key research challenge is to capture the spatial-temporal dynamic feedbacks between vulnerability, human 50 

behavior and physical hydrological processes over periods with consecutive droughts (Cui et al., 2021; Trogrlić et 51 

al., 2022; van der Wiel et al., 2023). Empirical data from surveys may support analysis about the factors driving 52 

drought adaptation feedbacks. However, only few studies provide empirical data on the spatial-temporal drivers 53 

of drought vulnerability and adaptation under multi-drought conditions (Kreibich et al., 2022). This is why current 54 

drought risk assessment research suggests developing model-based approaches (Cui et al., 2021; Trogrlić et al., 55 

2022).  56 

A special class of simulation models are agent-based models (ABMs). ABMs are specially designed to capture the 57 

behavior of autonomous individuals (i.e. agents) (Blair & Buytaert, 2016; Schrieks et al., 2021; M. Wens et al., 58 

2019). When integrated with a hydrological model, they can also capture bi-directional human-water feedbacks, 59 

with agents reacting to environmental changes (e.g., precipitation deficits) and impacting their surroundings (e.g., 60 

depleting groundwater levels) (De Bruijn et al., 2023; Klassert et al., 2023; Yoon et al., 2021). In contrast to other 61 

socio-hydrological models, ABMs can simulate how drought adaptation of individual farmers is influenced by 62 

other agents. This is essential, as adaptive feedbacks by farmers are heterogeneous and depend on the varying 63 

physical, socio-economic and behavioral characteristics among the farmer population (e.g., risk aversion, income, 64 

farm size, adaptations, upstream/downstream, proximity to reservoirs; (Di Baldassarre et al., 2018; Habiba et al., 65 

2012; Udmale et al., 2014, 2015). For example, government-led large-scale adaptation efforts, like reservoir 66 

management, may affect farmers' irrigation usage (Di Baldassarre et al., 2018). Additionally, agents can emulate 67 

their neighbors' practices, such as cropping patterns (Baddeley, 2010). However, most ABM based studies that 68 

simulate individual farmers remain at small scales (Zagaria et al., 2021), whereas studies at large basin scales 69 

aggregate agents, data and processes and omit small scale behavior due to computational constraints (Castilla-Rho 70 

et al., 2017; Hyun et al., 2019).  71 

To address these challenges, De Bruijn et al. (2023) developed the Geographic Environmental and Behavioural 72 

(GEB) model, an ABM coupled with a hydrological model (CWatM, Burek et al., 2020), that is able to model the 73 

behavior of millions of agents efficiently at “one-to-one” scale, meaning for each farmer in the study area, an 74 

individual farmer agent is modelled. With GEB, it is possible to analyze the culminated hydrological and 75 

agricultural impacts of many small-scale processes at river basin scale. However, to analyze the complex human 76 
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decision-making process under consecutive droughts we require a farmer’s characteristics and behavior to change 77 

dynamically in response to drought events (Groeneveld et al., 2017; Pahuja et al., 2010; Schrieks et al., 2021; 78 

Shah, 2009). Click or tap here to enter text.. In the current version of GEB this is not possible, as its decision rules 79 

for adaptation are based only on imitating neighbors that currently have higher profits, without accounting for 80 

dynamic risk perception, previously incurred debts due to drought loss or adaptation (Solomon & Rao, 2018; 81 

Udmale et al., 2014, 2015), the possibility of future droughts or heterogeneous farmer characteristics such as risk 82 

aversion (De Bruijn et al., 2023; Schrieks et al., 2021).  83 

The main goal of this study is to assess the vulnerability and adaptive responses of farmer agents under consecutive 84 

droughts. Therefore, we integrate the Subjective Expected Utility theory (SEUT, Savage, 1954, Fishburn, 1981) 85 

into the GEB model in combination with imitation (Baddeley, 2010) and elements of prospect theory (Kahneman 86 

& Tversky, 2013; Neto et al., 2023). The SEUT is a well-established behavioral economic theory that explains 87 

farmer adaptation decisions as economic maximization under risk, influenced by subjective estimates of drought 88 

probability and factors such as risk aversion and time discounting preferences. By parametrizing and calibrating 89 

the SEUT with local data and letting the risk perception change dynamically in response to drought events, we 90 

attempt to create a more accurate depiction of adaptation under consecutive droughts. We further refine our 91 

characterization of farmers—including their drought experience, adaptation costs, and loan debts—to better 92 

understand changes in their individual vulnerability and risk, such as fluctuations in income, debt levels, adaptation 93 

uptake, and groundwater levels.  94 

We apply and calibrate the augmented GEB in the Bhima basin, which is part of the Krishna basin in India . Our 95 

work helps in understanding how consecutive drought events affect different types of farmer’s vulnerability and 96 

impact. The paper is organized as follows: We begin with a high-level overview of the model setup (2.1) and a 97 

description of the study area (2.2). We then detail our implementation of behavior (2.3), crop cultivation methods 98 

(2.4), agent initialization (2.5), and conclude with model calibration and scenario setup (2.6). Next, in the results 99 

section, we analyze the evolution of model vulnerability and risk parameters over consecutive droughts in an 100 

adaptation scenario (3.1) and compare it to a no-adaptation scenario (3.2). This leads into a discussion of our key 101 

findings and challenges to our methods (4). Finally, we summarize our conclusions and suggest directions for 102 

future research (5). 103 
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2 Methods 104 

105 

 106 

 107 

 2.1 Model setup.  108 

Figure 1 shows the structure of the GEB model. GEB is developed in Python and couples a large-scale 109 

agent-based model (orange part) that simulates the adaptation behavior of millions of agents (farmers and reservoir 110 

operators) (De Bruijn et al., 2023) to a hydrological model (blue part) simulated with the CWatM (Burek et al., 111 

2020) and MODFLOW models (Langevin et al., 2017). The hydrological processes of CWatM operate at daily 112 

timesteps at 30 arcsec grid size, while GEB’s agent processes are at sub-grid level. The interactions between both, 113 

such as irrigation, occurs daily, while adaptation decisions are made at the end of each growing season for the next 114 

one. The CHELSA-W5E5 v1.0 observational climate input data at 30 arcsec horizontal and daily temporal 115 

resolution was used as climate forcing (Karger et al., 2022). We do not aggregate agents, thus for approximately 116 

each farmer in the river basin we generate one representative agent, what we refer to as  “one-to-one” scale. The 117 

Figure 1 Simplified setup integrating the hydrological model CWatM (blue boxes) with an agent-based model (orange 

boxes). 
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agent’s individual characteristics are derived from socio-economic data (census data on e.g. income), survey data 118 

(on e.g. risk aversion, discount rate), agricultural data (past yields, crop rotations, farm sizes) and data on past 119 

climate and droughts (SPEI) (section 2.3-2.5). These data are used to calculate the Subjective Expected Utility 120 

(SEUT) equation to determine whether a farmer adapts or not, given the hydro-climatic context. For an extensive 121 

model overview, see the ODD+D protocol (S1, Müller et al., 2013)(S1, Müller et al., 2013))..  122 

 2.2 Case study.  123 

The Upper Bhima catchment in Maharashtra, spanning 45,678 km², varies in elevation from 414 m in the east to 124 

1458 m in the Western Ghats mountain range (Figure 2). The catchment is mostly flat, with 95% of its area below 125 

800 m. The area experiences significant rainfall variation due to interaction of the monsoon and the Western Ghats, 126 

ranging from 5000 mm in the mountains to less than 500 mm in the east (Gunnell, 1997). Over 90% of this rain 127 

falls during the monsoon months (June–September), with substantial deficits from October to May. The state's 128 

agricultural cycle includes the monsoon Kharif season (June–September) and the dry Rabi season (October–129 

March), with April and May constituting the hot summer period.  130 

 131 

Figure 2 Overview of the Bhima basin’s location in India and the land use classification used in the model. The forested 132 
area in the west are the Western Ghats mountain range. Map of the Bhima basin land cover produced from land-cover 133 
data from Jun et al. (2014). © OpenStreetMap contributors 2024. Distributed under the Open Data Commons Open 134 
Database License (ODbL) v1.0. 135 
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To manage water supply, reservoirs in the Western Ghats accumulate water during monsoon rains. This water is 136 

released to the river and to farmers in the reservoir command areas through a system of canals during the monsoon 137 

(Kharif) and the dry irrigation season (Rabi & Summer). This results in human-controlled river flows, which are 138 

less dependent on natural climate patterns (Immerzeel et al., 2008). Although reservoirs distribute irrigation water, 139 

agriculture in Maharashtra still mainly relies on monsoon rain, with 19.7% of the state's gross cropped area being 140 

irrigated and 80.2% dependent on rainfed farming (Udmale et al., 2015). During the study period there were 141 

approximately three periods with a prolonged negative 12-month Standardized Precipitation Evapotranspiration 142 

Index (SPEI) score: a severe- (-1.5 to -1.99 SPEI, 2000-2005), mild- (0 to -0.99 SPEI, mid-2009 to 2010), and a 143 

last moderate  (-1.0 to -1.49 SPEI, mid-2012 to 2015) drought (McKee et al., 1993). During the last drought there 144 

was a brief period of positive SPEI, but for ease of referencing we refer to it as one drought. 145 

 146 

  147 

 2.3 Farmer decision rules  148 

Agents base their decisions on the SEUT (Fishburn, 1981; Savage, 1954) in combination with imitation of their 149 

neighbors (Baddeley, 2010; Haer et al., 2016) (Baddeley, 2010; Haer et al., 2016) and elements of prospect theory 150 

(Kahneman & Tversky, 2013; Neto et al., 2023).  (Kahneman & Tversky, 2013; Neto et al., 2023). The SEUT 151 

builds on the EUT (Von Neumann & Morgenstern, 1947),  (Von Neumann & Morgenstern, 1947), by incorporating 152 

the concept of "bounded rationality", where agents remain rational utility maximizers but base their decisions on 153 

subjective estimates of drought probability. Their subjective estimates overestimate probabilities following a 154 

drought and underestimate probabilities after periods of no drought. Such boundedly rational behavior, observed 155 

in reality (Aerts et al., 2018; Kunreuther et al., 1985),  (Aerts et al., 2018; Kunreuther, 1996), aligns more closely 156 

Figure 3  The average 12-month Standardized Precipitation Evaporation Index (SPEI) in the Bhima basin. Derived 

from the CHELSA-W5E5 v1.0 dataset (Karger et al., 2022). 



 

7 

 

with actual adaptation behavior than fully rational models (Haer et al., 2020; M. Wens et al., 2020)(Haer et al., 157 

2020; M. Wens et al., 2020), and has been incorporated in various ABMs to simulate adaptive 158 

behavior(Groeneveld et al., 2017; Haer et al., 2020; Tierolf et al., 2023; M. Wens et al., 2020). Furthermore, the 159 

SEUT also accounts for individual’s subjective characteristics (i.e. risk aversion and discount rate). At each yearly 160 

timestep agents calculate the following (S)EUTs:  161 

 162 

1. SEUT of taking no action (Eq. 1) 163 

2. SEUT of investing in a (tube-) well (Eq. 2) 164 

3. SEUT of their current crop rotation (Eq. 3) 165 

4. EUT of their current crop rotation (Eq. 4) 166 

 167 

Crop switching: To switch crops, farmers imitate their most successful neighbor. This is done for two reasons: 168 

first, literature shows that people tend to emulate their neighbors' practices (Baddeley, 2010; Haer et al., 2016). 169 

Second, there are over 300 unique crop rotations used within the model. The expected utility calculation / GEB is 170 

optimized for handling many agents simultaneously but is not designed for frequent repetition. Thus, it would be 171 

computationally inefficient for each agent to calculate the SEUT for each rotation. Therefore, all agents calculate 172 

only their own crop rotation’s SEUT (Eq. 3) and EUT (Eq. 4, using neutral risk perception, aversion and discount 173 

rate, section 2.5). Then, agents compare their current crop rotation’s SEUT with the EUT of a random selection of 174 

max 5 random neighboring farmers using similar irrigation sources (within a 1 km radius, using reservoir, surface, 175 

groundwater or no irrigation). The EUT is used since using a neighbor’s SEUT would mean using another agent’s 176 

subjective factors. They then adopt the crop rotation of the neighbor who’s EUT is highest, if this exceeds their 177 

own SEUT.  178 

 179 

Well adaptation: To decide whether to invest in a well, agents compare the SEUT of taking no action (eq. 1) with 180 

the SEUT of digging a well (eq. 2). When the SEUT favors adaptation and adapting is within the agent’s budget 181 

constraints, the farmers invest in a well.  182 

 183 

 𝑆𝐸𝑈𝑇𝑛𝑜_𝑎𝑐𝑡𝑖𝑜𝑛 = ∫ 𝛽𝑡,𝑥 ∗ 𝑝𝑖 ∗ 𝑈 (∑
𝐼𝑛𝑐𝑖,𝑥,𝑡

(1+𝑟𝑥)𝑡
𝑇
𝑡=0 )𝑑𝑝

𝑝1
𝑝2

   (1) 184 

 𝑆𝐸𝑈𝑇𝑡𝑢𝑏𝑒_𝑤𝑒𝑙𝑙 = ∫ 𝛽𝑡,𝑥 ∗ 𝑝𝑖 ∗ 𝑈 (∑
𝐼𝑛𝑐𝑖,𝑥,𝑡

𝑤𝑒𝑙𝑙−𝐶𝑡,𝑥,𝑑
𝑤𝑒𝑙𝑙

(1+𝑟𝑥)𝑡
𝑇
𝑡=0 ) 𝑑𝑝

𝑝1

𝑝2
 (2) 185 

 𝑆𝐸𝑈𝑇𝑜𝑤𝑛_𝑐𝑟𝑜𝑝_𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 = ∫ 𝛽𝑡,𝑥 ∗ 𝑝𝑖 ∗ 𝑈 (∑
𝐼𝑛𝑐𝑖,𝑥,𝑡−𝐶𝑡,𝑥,𝑐

𝑖𝑛𝑝𝑢𝑡

(1+𝑟𝑥)𝑡
𝑇
𝑡=0 )𝑑𝑝

𝑝1

𝑝2
 (3) 186 

 𝐸𝑈𝑇𝑜𝑤𝑛_𝑐𝑟𝑜𝑝_𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 = ∫ 𝑝𝑖 ∗ 𝑈 (∑
𝐼𝑛𝑐𝑖,𝑥,𝑡−𝐶𝑡,𝑥,𝑐

𝑖𝑛𝑝𝑢𝑡

(1+𝑟𝑥)𝑡
𝑇
𝑡=0 )𝑑𝑝

𝑝1

𝑝2
 (4) 187 

 188 

Utility U(x) is a function of expected income Inc and potential adapted income Incwell per event i and adaptation 189 

costs Cwell  for each agent x. In eq. 2, Cwell is dependent on groundwater levels d and Cinput in eq. 4 on current market 190 

prices for the crops c that the agent x is currently cultivating. To calculate the utility of all decisions, we take the 191 

integral of the summed and time (t, years) discounted (r) utility under all possible events i with a probability of pi 192 
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and adjust pi with the subjective risk perception βt  for each agent x. See S1 1.2.2. table B1 for an overview of all 193 

model parameters.  194 

Predicted income: To calculate the expected utility, we need information on farmer income during 195 

droughts of varying return periods with and without an adaptation. Since droughts of similar return periods have 196 

different severities depending on the farmer’s location, and since this relation is also dependent on each farmer’s 197 

crop rotation and irrigation capabilities, no straightforward empirical relationship exists. Therefore, we established 198 

this relationship endogenously for each farmer in the following manner. After each harvest, the 12-month SPEI 199 

(derived from the CHELSA climate data between 1979 and 2016) at the time of harvest and the harvest’s yield 200 

ratio (section 2.4) are determined for each agent. The SPEI is converted to a drought probability and these values 201 

are then averaged per year. In order to get more data points, they are then averaged per farmer group, which are 202 

based on farmers’ elevation (upstream, midstream, downstream), irrigation (well or no well) and crop rotation. 203 

Then, a relation (eq. 5) is fitted between drought probability and yield ratio for each group using the last 20 years 204 

of data (a spin-up period of 20 years is used where no behavior occurs). We refer to this relation as the agent’s 205 

objective drought risk experience. The 12-month SPEI and base 2 logarithm were chosen as they returned the 206 

highest R-squared between drought probability and yield ratio for this region (~ 0.50).  207 

 208 

 𝑆𝑃𝐸𝐼𝑖,𝑡 = 𝑎 ∗ 𝑙𝑜𝑔2(𝑦𝑖𝑒𝑙𝑑𝑖,𝑡) + 𝑏 (5) 209 

 210 

The relation between probability and yield ratio is used to derive yield ratios associated with 1, 2, 5, 10, 25 and 211 

50-year return period drought events i, which are then converted to income per return period event Inci (section 212 

2.4). To determine their potential income after adaptation Incadapt, within groups of similar cropping and elevation, 213 

the non-irrigating groups determine their yield ratio gain from the yield ratios of their well-irrigating counterparts. 214 

Cost of wells: To determine the cost of wells, we adapted the cost equations and parameterization of 215 

Robert et al. (2018) (S1 3.4.1). These are a function of pump horse power, pumping hours, electricity costs, 216 

probability of well failure, maintenance costs and drilling costs. Drilling costs are dynamic and dependent on the 217 

well’s depth, which are put at 20 m below the current groundwater table. Together with the agent’s interest rate r 218 

(section 2.4, S1 2.1.4), this is converted to an annual implementation cost Cadapt for the n-year loan using eq. 6.  219 

 220 

 𝐶𝑡,𝑑
𝑎𝑑𝑎𝑝𝑡 = 𝐶𝑑

𝑓𝑖𝑥𝑒𝑑 𝑐𝑜𝑠𝑡
∗ 

𝑟∗(1+𝑟)𝑛

(1+𝑟)𝑛−1
+ 𝐶𝑡

𝑌𝑒𝑎𝑟𝑙𝑦 𝑐𝑜𝑠𝑡𝑠
 (6) 221 

 222 

Crop cultivation costs: Yearly cultivation input costs Cinput per hectare for each crop type c, which include 223 

expenses such as purchasing seeds, manure, and labor are sourced from the Ministry of Agriculture and Farmers 224 

Welfare in Rupees (Rs) per hectare (https://eands.dacnet. Nic.in/Cost_of_Cultivation.htm, last access: 15 July 225 

2022) (De Bruijn et al., 2023).  226 

Loans and budget constraints: We assume that agents are “saving-down” (Bauer et al., 2012) and taking 227 

loans for agricultural inputs (Hoda & Terway, 2015) and investments using eq. 6. We assume farmers cannot spend 228 

their full income on inputs and investments and implement an expenditure cap (Hudson, 2018), which we use as a 229 

calibration factor (section 2.6). If the proposed annual loan payment for a well exceeds the expenditure cap, agents 230 

are unable to adapt. Chand et al. (2015) put expenditure of inputs such as seeds, fertilizer, plant protection, repair 231 
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and maintenance feed and other inputs at approximately 20-25%. Thus, including the extra well investments cost, 232 

we calibrate the expenditure cap of yearly payments between 20-50% of yearly non-drought income (Pandey et 233 

al., 2024). 234 

Time discounting and risk aversion: For eq. 1-3 the agent’s individual discount rate and risk aversion 235 

(section 2.5) are used. For eq. 4, as the goal is a “neutral” expected utility of farmer’s crops, all farmers use the 236 

average discount rate and risk aversion. For eq. 1-2 a time horizon of 30 years following Robert et al. (2018) is 237 

used, while for eq. 3-4 a time horizon of 3 years is used. The utility U (x) as a function of risk aversion σ is as 238 

follows:  239 

 𝑈 (𝑥) =  
𝑥1−𝜎

1−𝜎
 (7) 240 

 241 

Bounded rationality: Bounded rationality within the SEUT is described by the risk perception factor β. β 242 

rises after agents have experienced a drought, overestimating drought risk (β > 1). After time without a drought, 243 

it lowers again, underestimating risk (β < 1). We follow the setup of Haer et al. (2020) and Tierolf et al. (2023) 244 

and define β as a function of t years after a drought event:  245 

 𝛽𝑡 =  𝑐 ∗ 1.6−𝑑∗𝑡 + 𝑒 (8) 246 

We set d at -2.5, resulting in a slower risk reduction than in Haer et al. (2020) and Tierolf et al. (2023), as farmers 247 

are assumed to retain more awareness of drought risk compared to households of flood risk (van Duinen et al., 248 

2015). We set the minimum underestimation of risk e at 0.01 and calibrate the maximum overestimation of risk c 249 

between 2 and 10 (Botzen & van den Bergh, 2009).  250 

Drought loss threshold: As the onset of droughts are not as obvious as with floods (Van Loon et al., 2016), 251 

we define an agent’s drought event perception (Bubeck et al., 2012) according to a loss in yield ratio against a 252 

moving reference point, similar to prospect theory (Kahneman & Tversky, 2013; Neto et al., 2023). The moving 253 

reference point is the 5-year average difference between the reference potential yield and the actual yield (2.4). 254 

We calibrate the drought loss threshold between 5% and 25%. This means that if the current harvest’s difference 255 

between potential and actual yield falls 5-25% below the historical average, the years since last drought event t 256 

(Eq. 8) is reset and β rises.   257 

Microcredit: If the yield falls below the drought loss threshold, agents will also take out a loan equal to the 258 

missed income (Udmale et al., 2015). The loan duration is set at 2 years (Rosenberg et al., 2013).  259 

 2.4 Farmer crop cultivation  260 

Yield & Income: Farmers grow pearl millet, groundnut, sorghum, paddy rice, sugar cane, wheat, cotton, 261 

chickpea, maize, green gram, finger millet, sunflower and red gram. Each crop undergoes four growth stages (d1 262 

to d4). The crop coefficient (Kc) for a particular day is then calculated as follows (Fischer et al., 2021): 263 

 264 

 

Kc𝑡 =

{
 
 

 
 
Kc1, 𝑡 < 𝑑1

Kc1 + (𝑡 − 𝑑1) ×
Kc2−Kc1

𝑑2
, 𝑑1 ≤ 𝑡 < 𝑑2

Kc2, 𝑑2 ≤ 𝑡 < 𝑑3

Kc2 + (𝑡 − (𝑑1 + 𝑑2 + 𝑑3)) ×
Kc3−Kc2

𝑑4
,  otherwise;  

 (9) 265 
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 266 

where t represents the number of days since planting, and d1 to d4 are the crop specific durations of each growth 267 

stage. Kc is multiplied daily with the reference potential evapotranspiration to determine the crop-specific potential 268 

evapotranspiration (PETt). At the harvest stage, the actual yield (Ya) is determined based on a maximum reference 269 

yield (Yr; Siebert & Döll, 2010), the water-stress reduction factor (KyT), and the ratio of actual evapotranspiration 270 

(AET, calculated based on the soil water availability by CWatM) to potential evapotranspiration (PET) throughout 271 

the growth period (Fischer et al., 2021): 272 

 273 

 𝑌a = 𝑌r × (1 − KyT × (1 −
∑  𝑡=ℎ
𝑡=0  AET𝑡

∑  𝑡=ℎ
𝑡=0  PET𝑡

)) (10) 274 

 275 

We refer to the latter part of Eq. 10 as the “yield ratio”, i.e., the fraction of maximum yield for a specific crop. 276 

Actual yield is then converted into income based on the state-wide market price for that particular month. Historical 277 

monthly market prices are sourced from Agmarknet (https://agmarknet.gov.in, last accessed on 27 July 2022) (De 278 

Bruijn et al., 2023) in Rupees (Rs) per kg.  279 

Irrigation: The irrigation demand for farmers is calculated based on the difference between the field 280 

capacity and the soil moisture, and it is restricted by the soil’s infiltration capacity (De Bruijn et al., 2023). If 281 

agents have access to all irrigation sources, they first meet their demand using surface water, followed by 282 

reservoirs, and finally groundwater. When a farmer opts to irrigate, the necessary water is drawn from the 283 

appropriate sources in CwatM and subsequently dispersed across the farmer’s land.  284 

2.5 Agent initialization  285 

Agent initialization: To generate heterogeneous farmer plots and agents with characteristics statistically 286 

similar to those observed within the Bhima basin, factors from the India Human Development Survey (IHDS, 287 

Desai et al., 2008), such as agricultural net income, farm size, irrigation type or household size, were combined 288 

with Agricultural census data (Department of Agriculture & Farmers Welfare India, 2001). For this, we use the 289 

iterative proportional fitting algorithm, which reweights IHDS survey data such that it fits the distribution of crop 290 

types, farm sizes and irrigation status at sub-district level reported in the Agricultural Census (De Bruijn et al., 291 

2023). The farmer agents and their plots were randomly distributed over their respective sub-districts on land 292 

designated as agricultural land (Jun et al., 2014) at 1.5 resolution (50 meter at the equator), shown in Figure 2. 293 

There were a total of 1432923 agents that remained constant over the simulation period. We avoid aggregating 294 

agents as we do not know what a representative agent for our study area is (Page, 2012) and by pre-emptively 295 

aggregating agents, we may lose interactions that we were not aware existed in the first place (Page, 2012). 296 

Furthermore, the idea of “representative individuals” is in itself disputed and aggregating agents, even if they are 297 

all rational utility maximizers, can lead to wrong conclusions  (Axtell & Farmer, 2022; Kirman, 1992). Lastly, the 298 

vectorized design of the model enables the efficient simulation of large populations (De Bruijn et al., 2023). 299 

Risk aversion & discount rate: To set risk aversion and discount rate, we first normalized the distribution 300 

of agricultural net income. Then, as risk aversion and discount rate correlate with household income (Bauer et al., 301 

2012; Just & Lybbert, 2009; Maertens et al., 2014), we rescaled the normalized income distribution with the mean 302 

and standard deviation of the (marginal) risk aversion 𝜎 (0.02, 0.82; Just & Lybbert, 2009) and discount rate r 303 

https://agmarknet.gov.in/
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(0.159, 0.193; Bauer et al.2012) of Indian farmers. Noise was added to both to prevent that each present-biased 304 

agent is also risk taking by definition. 305 

Interest rates: To account for the variation in access to credit and interest rates among farmers, we 306 

assigned each agent an interest rate based on their total landholding size, with smaller farmers receiving higher 307 

and larger farmers lower rates (S1. 2.1.4, Maertens et al., 2014; P. Udmale et al., 2015). This assignment is based 308 

on the interest rates observed among Indian farmers (Hoda & Terway, 2015; Udmale et al., 2015). 309 

 2.6 Calibration, validation, sensitivity analysis and runs  310 

Calibration: We calibrated the model from 2001 to 2010 using observed daily discharge data and yield 311 

data. The full data range of available observed data was used to calibrate the model, following the 312 

recommendations of Shen et al. (2022), which found that calibrating fully to historical data without conducting 313 

model validation was the most robust approach for hydrological models. The daily discharge data was obtained 314 

from 5 discharge stations at various locations in the Bhima Basin. The yield data was obtained by dividing the 315 

total production by the total cropped area from ICRISAT (2015) to determine yield in tons per hectare. This figure 316 

was then divided by the reference maximum yield in tons per hectare to calculate the percentage of maximum 317 

yield, aligning with the latter part of Eq. 10. Calibration is done for several standard hydrological parameters, 318 

including the maximum daily water release from a reservoir for irrigation, typical reservoir outflow, and the 319 

irrigation return fraction (Burek et al., 2020). Furthermore, it was done for the expenditure cap, base yield ratio, 320 

drought loss threshold and the maximum risk perception. The process utilizes the NSGA-II genetic algorithm (Deb 321 

et al., 2002) as implemented in DEAP (Fortin et al., 2012), to optimize the calibration based on a modified version 322 

of the Kling-Gupta efficiency score (KGE; Eq. 11; Kling et al., 2012), similar to (Burek et al., 2020, De Bruijn et 323 

al., 2023). 324 

 325 

 KGE′ = 1 − √(𝑟 − 1)2 + (𝛽 − 1)2 + (𝛾 − 1)2 (11) 326 

 327 

Where r is the correlation coefficient between monthly and daily simulated and observed yield ratio and discharge, 328 

respectively. 𝛽 =  
𝜇𝑠

𝜇0
 represents the bias ratio, and 𝛾 =  

𝐶𝑉𝑠

𝐶𝑉0
 = 

𝜎𝑠𝜇𝑠

𝜎0𝜇0
 is the variability rate. The optimal values for r, 329 

β and γ are 1. The final KGE scores were ± 0.63 for the discharge and ± 0.60 for the yield.  330 

 Sensitivity analysis: A Delta Moment-Independent Analysis with 300 distinct samples was done using 331 

the SALib Delta Module (Iwanaga et al., 2022). Risk aversion, discount rate, interest rate, well cost, and the 332 

drought loss threshold were varied to assess their impact on well uptake, crop income, yield, risk perception, 333 

groundwater depth, reservoir storage, and discharge upstream and downstream. For detailed parameter settings, 334 

refer to Appendix B.  335 

 Model runs & scenarios: A full model run consists of a "spin-up” from 1980 to 2001, and a “run” from 336 

2001 to 2015. The spin-up period serves to set-up accurate hydrological stocks in the rivers, reservoirs, 337 

groundwater etc., and to establish enough data points for the drought probability – yield relation. At the end of the 338 

spin-up, the model state is saved and used as starting point of the run. The start of the run in 2001 was chosen as 339 

both the IHDS (Desai et al., 2008) and the agricultural census (Department of Agriculture & Farmers Welfare 340 

India, 2001) collected data in 2001. As the climate data was available from 1979-2016, the 12-month SPEI was 341 

available from 1980. Thus, the spin-up period from 1980 to 2001 was selected to maximize the timeframe, ensuring 342 
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that the drought probability-yield relationship (the "objective drought risk experience") encompassed as many 343 

drought events as possible. Adaptation only occurs during the run. During the run there were three prolonged 344 

negative 12-month SPEI periods: a severe- (2000-2005), mild- (mid-2009 to 2010), and a moderate-mild (mid-345 

2012 to 2015) drought (McKee et al., 1993). Two scenarios were run: one without adaptation, where agents 346 

maintained the same crop rotation and irrigation status as at the start of the model, and another where agents could 347 

change their crops or dig wells according to the decision rules outlined in section 2.3. Both scenarios use the same 348 

spin-up data. To account for stochasticity, both scenarios were run 60 times, after which the average results and 349 

the standard error of the mean were calculated.  350 

 351 

3 Results 352 

 3.1 Crop switching and well uptake in the Adaptation scenario   353 

 354 

 355 
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 356 

Figure 4 shows how agent characteristics change over time for three different field sizes: large scale (67-100 357 

percentile of size, >1.8 ha; green), medium scale (33-67 percentile of size, 0.82-1.9 ha; blue), and small scale (0-358 

33 percentile of size, <0.82 ha; orange) farmers. Panel 4a shows the percentage of agents with wet wells. Uptake 359 

for large scale farmers adaptation first slowly rises and subsequently speeds up after the first drought (2001-2004), 360 

alongside an increase in risk perception from the first drought. For medium farmers, the fraction of wet wells 361 

initially decreases but then increases alongside a similarly heightened risk perception. For smallholder farmers, 362 

the number of well owners with groundwater access declines and only slightly recovers after the first drought, 363 

even though they have a higher risk perception compared to medium and large field farmers. This difference among 364 

well owners can be attributed to the varying interest rates available to them; smallholder farmers face the highest 365 

loan interest rates, while large farmers benefit from the lowest rates (Appendix A.1). Additionally, the initial 366 

investment costs per square meter are lower for farmers with more land and higher incomes. During the last drought 367 

(2011-2015), despite high-risk perception, the proportion of farmers with wet wells accessing groundwater 368 

declines across all farm sizes (figure 4a-b). Wet well use among large farmers declines most in absolute terms, 369 

while smaller farmers experience the largest percentage drop, reducing by more than half. The reduction in wells 370 

results both from wells exceeding their 30-year lifespan (S1 3.4.2) and drying up. However, the abrupt drop is 371 

likely due to wells drying up, as it occurs quicklier than the lifespan would suggest and aligns with a drop in 372 

groundwater levels (figure 6d).  373 

 374 

In the Kharif wet season, mainly groundnut increases in prevalence (Figure 4c). Groundnut has steeply risen in 375 

profitability compared to other crops during the study period (Appendix A.2). Given that the decision theory 376 

primarily focuses on economic maximization, this could account for the sharp rise in groundnut cultivation, 377 

although such a steep rise is seemingly unrealistic. In the dry Rabi season we see a large decrease of farmers who 378 

leave their field fallow (i.e. no crops), which is mainly replaced by cultivating groundnut, although there is a much 379 

greater heterogeneity of cultivated crops in the Rabi season as compared to the wet Kharif season (Figure 4d). 380 

Furthermore, the increase and decrease of Jowar cultivation, which is less water-intensive compared to Groundnut 381 

and performs well during droughts (A. Singh et al., 2011), aligns very well with drought and non-drought periods. 382 

Figure 4 Evolution of Wells, Risk Perception and Crops in the Bhima basin. (a-b) Farmers are categorized by 

field size into small (0-33rd percentile, <0.82 ha), medium (33-67th percentile, 0.82-1.9 ha), and large (67-100th 

percentile, >1.8 ha) groups; (a) the fraction of the total group with a wet well; (b) the mean Risk Perception of 

each group. (c-d)  Evolution of the dominant crops in the wet Kharif (c) and dry Rabi (d) season. Values are 60 

run means (a-d), error bars indicate standard error  (a-b), light grey areas indicate years where the average 1 

month Standardized Precipitation Evaporation Index (SPEI) was below 0.  
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 383 

 384 

Figure 5a shows a large difference in yield ratio between farmers with- or without a well, likely stemming from 385 

the increased water reliability due to irrigation wells. Consequently, farmers with wells saw a yield ratio increase 386 

instead of decrease during the first drought. Yearly crop income is approximately 30% higher for farmers with 387 

wells (5b), though incomes for both groups have increased due to switching to higher-priced crops. Importantly, 388 

this data does not only show the effects of wells, but also which farmers are able to initially afford wells, stemming 389 

from prior higher yield, income and lower groundwater levels. Groundwater levels are unexpectedly higher for 390 

farmers with wells (5c), despite wells being the primary cause of groundwater depletion for most farmers (6d, 7c). 391 

However, note that in the figure, farmers whose well dried up count as Not Adapted. Thus, when farmers with 392 

wells are in locations where groundwater recharge cannot keep up with extraction, their wells dry and they are 393 

switched to the Not Adapted group. Subsequently, only farmers with wells where groundwater is not rapidly 394 

depleted, or those who have recently installed wells, remain in the Adapted group, resulting in high average 395 

Figure 5 Evolution of Yield ratio (a), Inflation adjusted early Income in Rupees (Rs) m-2 after harvesting and selling 

crops (b), Groundwater Depth in m below surface (c) and the two main crops in the Dry Rabi Season in the Bhima basin 

(d). Farmers are categorized by whether they have wells in each year into a Not Adapted and Adapted group. Light 

grey areas indicate years where the average 1 month Standardized Precipitation Evaporation Index (SPEI) was below 

0. 
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groundwater levels for this group. The extraction and hydroclimatic conditions at the farmers’ locations where 396 

depletion matches the Adapted group’s average thus provide an estimate of the necessary circumstances to 397 

sustainably maintain wells. As long as these conditions are present, the increased yield ratios and income (5a-b) 398 

can be maintained.  399 

 400 

Figure 5d depicts the development of Fallow, Jowar, and Groundnut cultivation during the dry Rabi season. We 401 

show these crops as they are most widely cultivated and dynamic (Figure 4). In the Kharif season, crop patterns 402 

are similar for both groups and follow the pattern of figure 4a. During the Rabi season, both agents with and 403 

without wells switch to Jowar during the first drought (2001-2004, 5d). However, after the initial drought, the 404 

percentage of agents with wells cultivating Jowar massively reduces, while the fraction without wells cultivating 405 

Jowar remains stable. Furthermore, during the dry Rabi, more adapted agents cultivate Groundnut, while fewer 406 

leave their land fallow. This contrast in cultivation patterns among well-irrigating and non-irrigating groups 407 

highlights the critical role of water availability in agent’s crop selection. If rainfall is ample, such as during the 408 

wet season, the patterns between farmers with and without wells are similar. However, in drier conditions, these 409 

patterns diverge because farmers with wells have greater water availability. This aligns with the patterns seen in 410 

Figure 4.  411 
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3.2 Crop switching and well uptake in the Adaptation vs. the No Adaptation scenario 412 

 413 

 414 

Figure 6 shows that during the first and most severe droughts from 2001 to 2004, the drop in yield ratio of the no-415 

adaptation scenario was six times worse (5% versus 30% drop, 6c). These initial yield gains were likely due to a 416 

shift towards less water-intensive crops (Jowar), as for medium field size farmers yields also increased, while their 417 

well uptake declined (Figure 4a, 6c). Subsequent yield increases align better with well uptake, with larger farmers 418 

achieving higher yields than smaller ones. Furthermore, after the initial drought period, larger farmers switched to 419 

higher grossing but more water intensive crops (4d), as the yield ratios between small and large farmers were 420 

Figure 6 Evolution of Income, Loan Payments, Groundwater Depth and Yield Ratio in the Bhima basin for a scenario 

where agents adapt (filled line) and where they stick to their initial adaptations and crops (dotted lines). (a-d) Farmers 

are categorized by field size into small (0-33rd percentile, <0.82 ha), medium (33-67th percentile, 0.82-1.9 ha), and large 

(67-100th percentile, >1.8 ha) groups; (a) Inflation adjusted early Income in Rupees (Rs) m-2 after harvesting and selling 

crops; (b) Inflation Adjusted Yearly Loan Payments in Rs m-2, consisting of payments for cultivation costs, well loans 

and microcredit in case of crop failure; (c) Average yield ratio of agent groups; (d) Groundwater Depth in m below 

surface. Values are 60 run means, light grey areas indicate years where the average 1 month Standardized Precipitation 

Evaporation Index (SPEI) was below 0. 
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similar, while profits were higher. However, ultimately, well uptake dropped (Figure 4a). Consequently, during 421 

the last drought from 2011 to 2015, the relative yield drop for larger farmers was similar across both the adaptation 422 

and no-adaptation scenarios, contrasting with the six times decrease seen during the first drought. Furthermore, 423 

the income fell 10-20% more in the adaptation scenario (6a). 424 

 425 

In Figure 6d, the groundwater levels in the no-adaptation scenario drop 5 meters between 2001-2004 and then 426 

stabilize. Conversely, in the adaptation scenario, groundwater levels continue to decrease by an average of 1 meter 427 

annually, stabilizing briefly during periods of positive SPEI (i.e., no droughts) and declining rapidly during 428 

droughts. The rate of groundwater decline is roughly the same for all farmers, regardless of farm size. The most 429 

recent rapid decline in 2011 corresponds with a decrease in wet wells (Figure 4a), suggesting that this decline is 430 

primarily due to wells drying up. Since larger farmers were the early adopters, their shallower wells were the first 431 

to dry up, which explains their more rapid decline compared to medium and small farmers (Figure 4a). However, 432 

despite declining well uptake, loan payments remain high due to prior loans.   433 
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 434 

 435 

 436 

In Figure 7, farmers are categorized as upstream (67-100th percentile elevation), midstream (33-67th percentile), 437 

and downstream (0-33th percentile). Mid- to downstream farmers initially see a reduction in well use, with 438 

increases only occurring at the end of the first drought (2001-2004, Figure 7a). This aligns with increased incomes 439 

late in the first drought as a result of the drought ending and switching to more profitable crops (A.2). The crop 440 

switching has a dual effect: firstly, it boosts income, enabling agents to invest more in wells; secondly, it enhances 441 

well profitability, as now more water leads to a larger absolute increase in income. Upstream, the initial yield, 442 

income and groundwater levels are higher. Higher groundwater levels reduce the price of wells and higher incomes 443 

increase what agents can spend on wells. This reduces the effective investment costs, meaning the wells cost a 444 

smaller percentage of the agents’ income, and more agents adapt. This causes upstream farmers to immediately 445 

adapt as the model starts, even during the first drought (2001-2004). Similar to the trends in Figure 6d, groundwater 446 

levels quickly drop during droughts and stabilize when the SPEI is positive (7b). This pattern is mirrored in well 447 

uptake, which increases until 2007 but halts in 2008, coinciding with a sharp decline in groundwater during the 448 

middle drought (2007-2009). During the last drought (2011-2015), groundwater levels rapidly fall again and well 449 

uptake substantially declines due to wells drying up. This decline intensifies downstream, resulting in downstream 450 

farmers having fewer wells than they initially had (7a).  451 

 452 

Figure 7 Evolution of Wells, Groundwater Depth, the two most cultivated crops in the Dry Rabi season, Yield and 

inflation adjusted Yearly Crop Income in Rupees (Rs) m-2. Farmers are categorized by farmer elevation into Lower 

Basin (0-33rd percentile elevation), Mid Basin (33-67th percentile), and Upper Basin (67-100th percentile) groups (a-c, 

e-f). Values are 60 run means, light grey areas indicate years where the average 1 month Standardized Precipitation 

Evaporation Index (SPEI) was below 0. 
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Despite fewer wells among downstream farmers, groundwater levels decline similarly to those in the mid and 453 

lower basins (Figure 7b). Comparing this against spatially varying parameters between the lower-, mid- and upper 454 

basin, we mainly see that upstream agent density is lower and precipitation is higher (Appendix A.3). In the upper 455 

basin this means less additional irrigation water is required, resulting in more recharge and less agents abstracting 456 

groundwater per km2. This also correlates with the shown higher yield and income (Figures 7d-e).  457 

 458 

During the wet Kharif season, mid- and downstream farmers grow almost solely groundnut, whereas upstream 459 

paddy cultivation is also common (Figure 7c). This follows the earlier shown pattern of higher water availability 460 

generally leading to more water intensive crops. The yield ratio is highest upstream and lowest downstream, with 461 

downstream also showing a greater difference in yield between the adaptation and no-adaptation scenario (Figure 462 

7d). This may be the effect of higher water demand upstream, which is caused by more water-intensive crops 463 

offsetting more of the supply gains. This is also reflected in a lower yield ratio compared to the no-adaptation 464 

scenario, even though there are more agents with wells.  465 

 466 

For mid- and downstream farmers, yield ratios increased during the first drought compared to the no-adaptation 467 

scenario, even though well uptake declined (Figure 7a, d). Similar to what was discussed at Figures 4-6, this 468 

increase was due to a shift toward a less water-intensive crop (Jowar, 7f). Subsequently, as water availability 469 

increased, the prevalence of Jowar declined, while Groundnut, which requires more water than Jowar but less than 470 

Paddy, continued to rise due to its steep price increase (7f, Appendix A.2). This pattern again followed water 471 

availability, as this was more pronounced for the mid- and upstream farmers. The economic maximalization 472 

through crop switching boosted incomes without requiring additional water from wells (7a, 7e). However, yields 473 

in the adaptation scenario for mid- and downstream farmers continued to rise compared to the no-adaptation 474 

scenario. Furthermore, both yields fell less during the middle drought. This pattern aligns with the initial rise well 475 

usage for these groups (7a). Ultimately, well uptake fell, and during the last droughts (2011-2015) yield ratios fell 476 

by 18-22%, approximately equally as much as in the no-adaptation scenario. However, from 2011 to 2015, crop 477 

income in the adaptation scenario fell by 25-35%, a 10-15% greater decline compared to the no-adaptation 478 

scenario. This is a larger fall than what only the yield ratios would suggest, and can be explained by a simultaneous 479 

drop in prices for the main cultivated crops (Appendix A.3).  480 

4 Discussion and recommendations 481 

In this study, we further developed a large-scale socio-hydrological ABM to assess the adaptive responses of 482 

different farmer agents under consecutive droughts. We show that farmers with more financial resources invest in 483 

irrigation quickly, when a drought occurs, whereas farmers with less resources or no wells switch to less water 484 

intensive crops to increase yields (T. Birkenholtz, 2009; T. L. Birkenholtz, 2015; Fishman et al., 2017). After the 485 

first drought, as risk perception is still high, and income had increased, well uptake also increased among farmers 486 

with less financial resources. In the short term, this increased the area’s income and resilience, reflected in rising 487 

yields and income over consecutive droughts. However, similar to reservoir supply-demand cycles (Di Baldassarre 488 

et al., 2018), the widespread adoption of wells led to an increase in water-intensive crops and growing of crops 489 

during the dry season, which in turn raised water demand. During wet periods the available groundwater could 490 

support this demand, but during dry periods the groundwater rapidly declined. Consequently, despite being less 491 
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severe than the first, the last drought resulted in many wells drying up quickly and yields declining. Furthermore, 492 

homogeneous cultivation as a result of economic maximization made the region more sensitive to market price 493 

shocks. This was seen from 2013 to 2015, where crop market prices of the main cultivated crops dropped, which 494 

led to a much larger drop in farmers' average income compared to the no-adaptation scenario. Thus, although 495 

initially drought vulnerability decreased and incomes rose, ultimately, farmer’s adaptive responses under 496 

consecutive droughts increased drought vulnerability and impact. This underscores the importance of considering 497 

consecutive events, as focusing solely on the first event would overlook the ultimate impact. Suggested policies to 498 

address groundwater decline and well drying while maintaining higher incomes include promoting efficient 499 

irrigation technologies (Narayanamoorthy, 2004), implementing fixed water use ceilings (Suhag, 2016), 500 

encouraging rainwater harvesting (Glendenning et al., 2012) or combinations of all (Wens et al., 2022). 501 

 502 

The maladaptive path of tubewell irrigation expansion, growth of water-intensive crops, the subsequent rapid 503 

depletion of groundwater and resulting economic decline we simulated here has been commonly observed in India 504 

(T. Birkenholtz, 2014; Pahuja et al., 2010; Roy & Shah, 2002; Solomon & Rao, 2018). Previous studies modelling 505 

the economics of wells show the income and groundwater fluctuations from wells and crop changes occurring 506 

gradually (Robert et al., 2018; Sayre & Taraz, 2019). Aside from investment costs, they show profits and 507 

groundwater levels rising and falling gradually over time, with the simulations never experiencing shocks. 508 

However, we observe that this process is not steady but is instead characterized by periods of stabilization during 509 

wet periods and rapid declines in groundwater levels and incomes during dry periods.However, we here observe 510 

that this is not a steady process, but rather one characterized by periods of stabilization and rapid reduction of 511 

groundwater levels and incomes during wet and dry periods.  Additionally, under consecutive droughts, we see 512 

social- (i.e. continued loan payments, crop price drops) (Solomon & Rao, 2018) and ecological shocks (i.e. lower 513 

groundwater levels, drought) coinciding (Folke et al., 2010). Therefore, agricultural decline as described by  may 514 

occur more sudden and rapidly in a socio-hydrological systems approach than what previous studies predict 515 

(Manning & Suter, 2016; Robert et al., 2018; Sayre & Taraz, 2019). Such sudden shocks are harder to adapt to, 516 

potentially leading to more severe impacts or disasters (Rockström, 2003). Thus, for future analyses, we 517 

recommend transitioning to similar coupled agent-based hydrological models, combined with climate data, to 518 

identify areas where drought risk is or will be high. 519 

 520 

We also observed that adaptive patterns are spatiotemporally heterogeneous. For example, the farmers' location 521 

determined the number of wells that could be held before depleting groundwater levels, influenced by factors like 522 

precipitation and agent density. Water availability, resulting from precipitation and irrigation, along with market 523 

dynamics, influenced crop choices., This lledading to varied cropping patterns as prices fluctuated, between wet 524 

and dry periods, seasons, and locations upstream or downstream. Furthermore, at individual scale, we observed 525 

that variations in farm size, access to credit, time preferences, or risk attitudes influenced farmers' adaptation 526 

decisions. Building on our demonstration of the impact of varying hydroclimatic conditions and farmer 527 

characteristics on adaptation behavior, and the substantial effects of this behavior on a river basin's hydrology, we 528 

again highlight the value of large-scale coupled socio-hydrological models. These models can further enhance 529 

understanding of both basin hydrology and farmer behavior. This is needed to design policies such that they, for 530 

example, minimize overall impacts and specifically reduce impacts on smallholder farmers (Wens et al., 2022). 531 

By further exploiting our methods, it is possible to attempt to identify policies that can slow the expansion of wells 532 
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in areas where it is unsustainable, while simultaneously avoiding interference in regions where growth is more 533 

sustainable, which is recommended as sustainable well use can also greatly improve water resilience recommended 534 

by (Blakeslee et al., 2020; Pahuja et al., 2010; Roy & Shah, 2002; Shah, 2009; Solomon & Rao, 2018). 535 

Furthermore, these novel approaches it can help in determining which adaptation alternatives and policies can 536 

decrease drought vulnerability while simultaneously being financially attractive enough to see adaptation beyond 537 

the village scale (Fishman et al., 2017). 538 

 539 

In this study we were able to model emergent patterns as a result of many combined small-scale processes due to 540 

human behavior under consecutive droughts at a river basin scale and quantitatively assess their hydrological and 541 

agricultural impacts. The model almost exactly replicated the commonly observed stages of well expansion, initial 542 

higher resilience, groundwater overextraction due to a shift to high-value water-intensive crops, groundwater table 543 

decline, and subsequent well failure, indebtedness and agricultural economy decline in India, as detailed in Figure 544 

20 ofby (T. Birkenholtz, 2014; Pahuja et al., 2010; Roy & Shah, 2002; Solomon & Rao, 2018). Secondly, it 545 

provides a much better representation of the accelerated groundwater decline during droughts observed in the field 546 

(T. Birkenholtz, 2014; Pahuja et al., 2010; Udmale et al., 2014), which was not captured in previous well modeling 547 

studies (Robert et al., 2018; Sayre & Taraz, 2019).. Thirdly, our results reflect a similar observed pattern of crop 548 

choice, where farmers facing water scarcity during and after droughts switch to drought-tolerant crops (T. 549 

Birkenholtz, 2009; Udmale et al., 2014). (P. Udmale et al., 2014)FurthermoreLastly, the water table decline of 550 

approximately 1 m/year fits with the many reports of groundwater decline of 1-2 m/year by D. K. Singh & Singh 551 

(2002). However, although we anticipated that changes in risk perception would have a stronger impact on well 552 

uptake, our results show that economic considerations were predominantly the driving factor. This aligns with 553 

other studies which mention drought response as a major driver of well uptake (Pahuja et al., 2010; Shah, 2009), 554 

but call social and economic aspirations as the main driver (Solomon & Rao, 2018). HoweverAdditionally, the 555 

2011-2012 agricultural survey reported that only approximately 25% of farmers in our area owned a well 556 

(Department of Agriculture & Farmers Welfare India, 2012), which is lower than what our findings suggest. This 557 

discrepancy likely stems from the timing of our simulations not aligning with the study area’s current stage of the 558 

cycle of well expansion and decline (figure 20, Roy & Shah, 2002). In reality, well expansion occurred before the 559 

first census and simulation period (Central Ground Water Board, 1995), and declined from 2001 to 2011-12 560 

(Department of Agriculture & Farmers Welfare India, 2001, 2012). Consequently, the area’s groundwater levels 561 

should have been lowered and the cost of adaptation increased. However, as there were no spatial (longitudinal) 562 

groundwater level observations available to initialize or calibrate the model with, our simulation had to move 563 

through the first stages of well expansion (Roy & Shah, 2002) before groundwater levels and adaptation costs 564 

matched that of the area’s. Thus, our well uptake is lagging behind. For these reasons, and given that other inputs 565 

like drought loss thresholds are theoretical (Bubeck et al., 2012; Kahneman & Tversky, 2013; Neto et al., 2023) 566 

and not specifically defined for droughts, this paper focuses on patterns, variations among farmers, locations, and 567 

scenario differences rather than on temporally specific absolute values. For future studies where timing is more 568 

important, e.g., those focused on future policy scenarios, initializing groundwater levels, either through lowering 569 

it during calibration or collecting observations, is crucial. In general, we highly recommend the development of 570 

detailed spatial and behavioral data to improve the accuracy of large-scale ABMs. Regarding agents' crop choices, 571 

we observed a trend toward highly homogeneous cultivation of certain crops that experienced significant price 572 

increases. Albeit a progression towards uniform cultivation of crops has been observed under similar 573 
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circumstances (Birkinshaw, 2022) and groundnut is described as being by far the most cultivated crop (Batchelor 574 

et al., 2003; T. Birkenholtz, 2009), the degree seen here is unlikely. We incorporate economic rational decisions 575 

influenced by subjective risk perception as a result of experiencing droughts into our analysis, as this was the 576 

central focus of our study. However, other subjective behaviors exist, such as decisions influenced not by personal 577 

benefit assessments, but by perceptions of others' beliefs, cultural norms, attitudes, or habits (Baddeley, 2010). 578 

Including this type of behavior in future research may reduce homogeneity; however, no behavioral theory 579 

perfectly encompasses all adaptive behavior (Schrieks et al., 2021). Therefore, we recommend keeping the SEUT, 580 

while incorporating a market feedback, that lowers the profitability of commonly cultivated crops due to increased 581 

cultivation costs and reduced market prices, calibrated with observed prices. Alternatively, we suggest adding a 582 

calibrated unobserved cost factor for all crops (Yoon et al., 2024). Both modulate the profitability of crops and 583 

reduce the modelled divergence from historical patterns. Furthermore, subsistence farming, which involves 584 

cultivating crops for household consumption, could reduce homogeneity as well (Bisht et al., 2014; Hailegiorgis 585 

et al., 2018). Subsistence farms cultivate more diverse crops and take up most of smallholder farmer’s cultivated 586 

area (Bisht et al., 2014). A proposed model implementation could mandate that all farmers dedicate one plot to 587 

subsistence crops. This would limit the smallest farmers to their initial crop rotations, while larger farmers would 588 

be free to cultivate commercial crops on their remaining land. Incorporating perceptions of economic conditions 589 

could also make crop choice modeling more realistic by farmers forecasting and adjusting future crop prices based 590 

on their likelihood. For instance, while current high prices for groundnuts might not persist, government-regulated 591 

sugarcane prices provide certainty. Thus, e.g., risk-averse farmers might favor the predictability of sugarcane over 592 

crops with more volatile pricing. Lastly, while GEB efficiently simulates agents at a "one-to-one" scale, exploring 593 

how aggregate phenomena shift with varying degrees of agent aggregation could be valuable, since higher levels 594 

of aggregation might optimize model runtimes. 595 

5 Conclusions 596 

In this study, we assess the adaptive responses of heterogenous farmers under consecutive droughts at river basin 597 

scale in the Bhima basin, India. To do so, we further developed a large-scale socio-hydrological agent-based model 598 

(ABM) by implementing the Subjective Expected Utility Theory (SEUT) alongside heterogeneous farmer 599 

characteristics and dynamic adaptation costs, risk experience and perceptions to realistically simulate many 600 

individual’s behavior. From the emergent patterns of all individual’s behavior under consecutive droughts we were 601 

able to assess river basin scale patterns and come to these three main conclusions.  602 

First, farmer’s adaptive responses under consecutive droughts ultimately led to higher drought 603 

vulnerability and impact. Although farmer’s switching of crops and uptake of wells initially reduced drought 604 

vulnerability and increased incomes, subsequent crop switching to water-intensive crops and intensified cropping 605 

patterns increased water demand. Furthermore, the homogeneous cultivation encouraged by economic 606 

maximization made the region more sensitive to market price shocks. These findings highlight the importance of 607 

looking at consecutive events, as focusing solely on adaptation during first events would overlook the ultimate 608 

impact. 609 

Second, the impacts of droughts on (groundwater irrigating) farmers are higher and can happen more 610 

suddenly in a socio-hydrological system under realistic climate forcings compared to what just gradual numerical 611 

economical models can predict. This is because groundwater depletion happens in periods of stabilization and 612 
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rapid reduction instead of gradually, and because ecological shocks (i.e. droughts) and social shocks (i.e. crop 613 

price drops) can coincide to rapidly decrease farmer incomes. 614 

Third, adaptive patterns, vulnerability, and impacts are spatially and temporally heterogeneous. Factors 615 

such as market prices, received precipitation, farmers’ characteristics and neighbors, and access to irrigation 616 

influence crop choices and adaptation strategies. This variability underscores the benefits of using large-scale 617 

ABMs to analyze specific outcomes for different groups at different times. 618 

 619 

This research presents the first analysis of farmer’s adaptive responses under consecutive droughts using a large-620 

scale coupled agent-based hydrological model with realistic behavior. We emphasize the added value of employing 621 

coupled socio-hydrological models for risk analysis or policy testing. We recommend using these models to, for 622 

example, test policies designed to minimize overall impacts or to minimize them for smallholder farmers. Further 623 

research could also explore alternative adaptations to wells that reduce drought vulnerability and are financially 624 

viable enough to encourage wider adoption. Lastly, we advocate for research aimed at developing detailed regional 625 

data to improve the accuracy of large-scale ABMs, along with acquiring empirical data on behavioral aspects to 626 

refine behavioral estimates. 627 

Appendix A: Additional figures  628 

  629 

Figure A1. Well uptake and income grouped based on agent’s interest rate, risk aversion and discount rate. The 630 

values indicate the means of 60 runs, while the error bars indicate the standard error.   631 
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  632 

Figure A2. Inflation adjusted crop market prices for Groundnut, Jowar, Paddy and the mean of all other crops.  633 
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  634 

Figure A3. Spatial patterns of adaptation (a), precipitation (b) and agent density (c) in the Bhima basin.  635 
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Appendix B: Model Sensitivity analysis  636 

B.1 Sensitivity analysis method description 637 

Sensitivity parameters were changed differently per parameter. The function latin.sample using Latin hypercube 638 

sampling from SAlib (Iwanaga et al., 2022 was used to generate 300 sets of values of each sensitivity parameter 639 

between their min and max. The min and max were used as inputs to change either the absolute values of a 640 

parameter (drought loss threshold), to change the distributions of all agent’s values (risk aversion, discount rate) 641 

or change all agent’s individual parameters with a fixed rate (interest rate).  642 

Risk aversion: See section 2.5 on how the initial risk aversion was determined. To change this, this distribution 643 

was normalized and rescaled using a new standard deviation, which was a latin.sample value between the given 644 

min and max.   645 

Discount rate: Similar to risk aversion, but now instead of the standard deviation, the mean was sampled between 646 

the min and max and used to rescale the distribution.  647 

Interest rate: Each agent’s individual interest rate (section 2.5, S1 2.1.4) was multiplied with a sampled value 648 

between the given min and max.  649 

Well cost: The well cost factor is determined by adjusting the fixed and yearly costs by an absolute factor. This 650 

absolute factor adjusts the price based on a normal distribution of values. The standard deviation is 0.5 (50% 651 

higher/lower price) and the mean is 1 (no price change). Latin.sample then samples quantile values between 0 and 652 

1, and uses the standard deviation and mean to calculate the adjustment factor. Thus, the percentual adjustment 653 

factor follows a normal distribution around the original price (1).  654 

Drought loss threshold: An absolute value was added/subtracted from the drought loss threshold based on the 655 

sampled values between the min and max.   656 

 657 

Variable / Parameter Value / range 

discount_rate Min: 0.059, Max: 0.259 

interest_rate Min:, Max: 

well_cost Min norm: 0.5; Max norm: 1.5, Min: 0; Max: 1 

drought_threshold Min: -5, Max: 5 

 658 

  659 

Formatted: English (United States)



 

27 

 

B.2 Sensitivity analysis results 660 

 661 

Our results show that well uptake is highly sensitive to well cost and not very sensitive to the drought threshold. 662 

Diving deeper in this relation, Figure 8 shows that although well cost substantially affects the adoption of wells 663 

and yield, its impact on income is minimal compared to other factors. This notion is supported by Figures 4 to 7 664 

who reveal that many farmers cannot afford wells regardless of cost changes and that decreasing groundwater 665 

levels result in the loss of wells for more. Thus, although the effect of wells is large for farmers with wells (Figure 666 

4), there remains a large group without wells throughout the basin. In contrast, risk aversion substantially affects 667 

both well adoption and crop selection, and crop selection is relevant for all farmers. Furthermore, crop selection is 668 

especially impactful as the price of groundnut, the primary crop farmers switch to in the main season, doubled 669 

relative to other crops (Figure 7g). This illustrates that farmer’s  adaptive behavior is a mix of climate and market 670 

dynamics.  671 

 672 

However, Figure 8 shows that well cost substantially influences all hydrological parameters except upstream 673 

discharge. Recorded in regions with higher precipitation and fewer agents (Appendix A.3), upstream discharge 674 

shows little sensitivity to well cost, suggesting groundwater extraction makes up a smaller fraction of total river 675 

inflow. Similar to income, yield reacts to risk aversion through crop choice. Risk perception is sensitive to the 676 

drought loss threshold and is the second most influential factor for income.  677 

 678 

Appendix A.1 shows that the interest rate significantly impacts farmers' ability to afford wells and influences their 679 

income more than risk aversion and discount rate. This contrasts Figure 8, which shows that all three input factors 680 

are equally affecting well uptake, and that risk aversion and discount rate are more important for income. This 681 

Figure B1.8 Delta moment Sensitivity Analysis. Values indicate how sensitive an output factor (y-axis) is to 

the influence of a specific input factor (x-axis), in relation to the influence of all other input factors. The 

output consists of number of wells, yearly crop income, yield, risk perception, groundwater depth, reservoir 

storage and discharge up- and downstream. The changed input parameters consist of risk aversion, discount 

rate, interest rate, well cost and drought threshold.  
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likely stems from the sensitivity analysis parameters, where the change in interest rate is based on a factor 682 

multiplied by the agent's initial rate, leading to minimal variation if the initial value is low. Furthermore, agents 683 

with higher initial interest rates are already not adapting (Appendix A.1), thus are only sensitive to (one-way) 684 

decreasing interest changes.  685 

 686 

Code and data availability 687 

The most recent version of the GEB and adapted CWatM model, as well as scripts for data acquisition and model 688 

setup can be found on GitHub (github.com/GEB-model). The model inputs, parametrization and code used for this 689 

manuscript are accessible through Zenodo (Kalthof & De Bruijn, 2024). This page also includes the averages 690 

and standard deviations of the 60 runs of the adaptation and non-adaptation scenario which are featured in all 691 

figures.  692 
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