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Abstract. Sea ice thickness is essential for climate studies and numerical weather prediction. Radar altimetry has provided sea

ice thickness measurement since the launch of ERS-1 and currently through CryoSat-2, Sentinel-3 and Altika but uncertainty

in the scattering horizon used to retrieve sea ice thickness arises from interactions between the emitted signal and snow cover

on the ice surface. Therefore, modelling the scattering of the electromagnetic waves with the snowpack and ice is necessary to

retrieve the sea ice thickness accurately. The Snow Microwave Radiative Transfer (SMRT) model was used to simulate the low5

resolution altimeter waveform echo from the snow-covered sea ice, using in-situ measurements as input. Measurement from

four field campaigns were used: Cambridge Bay, Eureka Sound and near Alert, Nunavut, Canada in April 2022 in the cold

and later winter condition when snow and ice thickness are neat their seasonal maxima prior to melt. In-situ measurements in-

cluded snow temperature, salinity, density, specific surface area, microstructure from X-ray tomography and surface roughness

measurements using structure from motion photogrammetry. Evaluation of SMRT in altimeter mode was performed against10

CryoSat-2 waveform data in pseudo-low-resolution mode. Simulated and observed waveforms showed good agreement, al-

though it was necessary to adjust sea ice roughness. The retrieved roughness (root-mean-square height) in Cambridge Bay was

2.1 mm and 1.6 mm in Eureka, which was close to the observed value of 1.4 mm for flat sea ice. In addition, simulations of

backscatter in preparation for the European Space Agency’s CRISTAL mission demonstrated the dominance of scattering from

the snow surface at Ku and Ka-band. However, these findings depend on the parameterisation of the roughness. The scattering15

from the snow surface dominates when roughness is high, but the interface return dominates if the roughness is low ( < 2.5

mm). This is the first study to consider scattering within the snow and demonstrate the origin of CryoSat-2 signals. This work

paved the way to a new physical retracker using SMRT to retrieve snow depth and sea ice thickness for radar altimeter missions.
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1 Introduction

Sea ice and snow in polar environments are key components in Earth surface energy balance for climate prediction. The strong20

albedo from snow on sea ice reflects most of the solar energy and keeps the ocean from warming. The reduction of sea ice due

to a warmer climate (Derksen et al., 2019; Richter-Menge et al., 2017) modifies the surface energy balance and creates positive

feedback on surface temperature (Goosse et al., 2018; Serreze and Barry, 2011). Monitoring of cryospheric parameters such as

sea ice and snow thickness on large scale is therefore key in a changing climate. Sea ice thickness data can also be assimilated

in meteorological models to perform seasonal forecasts of sea ice extent (Blockley and Peterson, 2018; Allard et al., 2018).25

Radar altimetry is a useful tool to monitor sea ice thickness over polar environments by measuring the ice freeboard. However,

snow properties such as thickness and density are necessary to infer total sea ice thickness for this measurement, through the

buoyancy principle and assuming hydrostatic equilibrium (Ricker et al., 2014). Moreover, surface properties like roughness,

salinity, density, temperature and microstructure of the snow and sea ice affect the accuracy of the retrieval by modifying the

measured waveform of the radar (Nandan et al., 2020; Landy et al., 2020).30

Radar altimeters measure surface elevations using the two-way travel time of the emitted waves, and reflected from the

surface. A waveform (measurement of returned power over time) is used to analyse the reflected signal from the surface that

comes from multiple facets within the sensor footprint. The range to the surface is represented by the mean return of the facets at

nadir as the tracking point (Quartly et al., 2019). The tracking point is defined on the leading edge portion (rise in power) of the

waveform based on different thresholds, usually from 50 to 95% depending on the surface properties. Multiple corrections need35

to be applied from atmospheric, tidal and sensor effects (Ricker et al., 2016) in order to correctly estimate the range with the

tracking point. This process is referred to waveform "retracking" with either an empirical or physical bases. Empirical retrackers

are more computationally efficient and are solely based on getting a robust estimate of the range compared to methods that are

based on mathematical models of the physical interaction between the transmitted pulse and the scattering surface (Quartly

et al., 2019). Empirical retrackers are favoured with the first generation of pulse-limited altimeter (low resolution). Products40

from the new generation of Synthetic Aperture Radar (SAR) altimeters like CryoSat-2 utilize physical models (Dinardo et al.,

2018) to model SAR waveform and more complex surfaces including Multi-Year Ice (MYI), First Year Ice (FYI) and leads.

One of the mathematical model of pulse-limited altimeter behaviour is given in Brown (1977). The Brown (1977) model

works well for surface-dominated reflected echos such as on the ocean and land ice (Hayne, 1980; Ferraro and Swift, 1995).

This formulation is not typically used for sea ice because it cannot model adequately specular reflection from leads (Landy45

et al., 2019) or smooth FYI. FYI can have a steeper trailing edge decay and different Pulse Peakiness (PP) which can be used

to discriminate with MYI (Fredensborg Hansen et al., 2021). This is partly due to FYI being newly formed ice and smoother

than older MYI or deformed FYI and therefore has waveform characteristics that correspond to a specular reflection like leads

(open flat ocean) with higher PP and faster decay.

Physical retrackers are based on electromagnetic theory to model the interaction of radar signals with the surface (Wingham50

et al., 2004). Backscattering contribution from the surface (snow and ice) affects the waveform and therefore the retrieval of the

ice thickness. Kwok (2014) simulated a height correction factor as a function of snow depth using a single layer of snow with
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a rough snow-sea ice interface. Nandan et al. (2017) and Nandan et al. (2020) added more complex snow properties and snow

salinity to the correction factor. This was done by using a permittivity model for snow that accounts for dry/wetness, density

and brine concentration. They all found that snow properties affects the detection of the ice surface by shifting the scattering55

horizon of the surface upwards from the snow-sea ice interface. Kurtz et al. (2014) simulated a full waveform of CryoSat-2 in

SAR mode rather than the Brown (1977) pulse-limited altimeter (pseudo Low Resolution Mode - pLRM for CryoSat-2), and

included leads as a separate surface type. Physical retrackers like the CryoSat-2 WaveForm Fitting method (CS2WfF) (Kurtz

et al., 2014) and SAMOSA+ (Dinardo et al., 2018) have added a parameter to model peaky waveforms over specular surfaces.

However, they neglected the effect of snow cover and assumed the reflection coming strictly from the snow-ice interface.60

Fons and Kurtz (2019) improved this model by adding a snow scattering layer for Antarctic sea ice thickness retrieval. Landy

et al. (2019) provided the most complete model of both SAR and pLRM mode for sea ice by incorporating roughness at two

scales (footprint and wavelength) with a multiple facet numerical approach and the Integral Equation Model (IEM) for surface

scattering. They also added volume scattering of snow using the Mie scattering theory for spherical ice particles, neglecting

the dense media effects (Tsang et al., 2007; Picard et al., 2022), and assumed a single grain size and no volume scattering65

from brine. The facet-based model lacks a complete representation of complex snow microstructure (Sandells et al., 2022) and

solution of the radiative transfer equation. Our understanding of the effect of snow on sea ice on altimeter waveforms is still

lacking.

Snow depth and density are key for ice thickness retrieval because they are used to calculate the ice thickness. Therefore it

is important to retrieve snow depth as well as ice freeboard from satellite observations. Snow depth retrieval may be possible70

from the range difference at Ku and Ka-band (Guerreiro et al., 2016; Lawrence et al., 2018) under the assumption that the

scattering horizons are located directly at the snow-ice interface in Ku band and at the air-snow in Ka band. However, as snow

properties affect the Ku-band (Nandan et al., 2020; Landy et al., 2019) and Ka-band signal (Guerreiro et al., 2016; Larue

et al., 2021), the assumption of scattering purely at these interfaces must be challenged. Investigating the scattering of Ku and

Ka-band altimeter signals with a radiative transfer model that accounts for multiple layers, complex snow microstructure, wet75

snow, salinity, sea ice properties and rough interfaces is needed. The Snow Microwave Radiative Transfer (SMRT) model is

a state-of-the-art radiative transfer model of multi-layered snow and ice at microwave frequencies (Picard et al., 2018) that

allows such an investigation.

The Altimetric Ku-Band Radar Observations Simulated with SMRT (AKROSS) project was designed to provide the first

evaluation of the SMRT model in altimeter mode for snow on sea ice. This model was extended to include a time-dependent80

radiative transfer solver for altimetry by Larue et al. (2021) and evaluated at S-, Ku- and Ka-band for ENVISAT, AltiKa and

Sentinel-3A over the Antarctic Ice-Sheet. SMRT has been mostly evaluated over land (Vargel et al., 2020; Sandells et al.,

2022), ice-sheets (Larue et al., 2021; Picard et al., 2022) and lake ice (Murfitt et al., 2022, 2023). Sea ice layers were added to

SMRT in 2018 but evaluation of SMRT over sea ice has only been performed recently for passive microwave sensors Soriot

et al. (2022). These authors used SMRT to classify snow on sea ice with passive and active microwave signatures and recently85

SMRT was evaluated with passive microwave observations over sea ice at L-band (Fan et al., 2023). Here, we present the first
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study that provides SMRT forward model evaluation against satellite observations of snow on sea ice for altimetry using in-situ

snow microstructure measurements as input.

The purpose of this paper is to evaluate SMRT for altimeter over sea ice by 1) Evaluating the overall fit of the waveform with

observation of CryoSat-2, 2) Investigating the sensitivity of the Ku and Ka bands to snow and sea ice parameters in preparation90

for the launch of European Space Agency’s future Copernicus Polar Ice and Snow Topography Altimeter (CRISTAL) mission.

(Kern et al., 2020).

2 Methods

2.1 Study Site

Four different datasets were used for evaluation of SMRT in altimeter mode of snow on sea ice. The field sites are located95

in the Arctic Ocean and in the Canadian Arctic Archipelago, as shown in Figure 1. Ground campaigns in 2016 and 2017

were associated with CryoVex and Operation IceBridge airborne campaigns. Ground campaigns in 2022 (AKROSS) were

associated with the AKROSS project and Environment and Climate Change Canada’s evaluation of NASA’s Ice, Cloud and

land Elevation Satellite (ICESat-2) products in the Canadian Arctic. The sites observed in 2017, referred to as Alert-17 in this

paper, are located in the Arctic Ocean north of Alert, Nunavut, Canada and are over MYI. Measurements made in 2016 and100

2022 were located in Eureka Sound, and Cambridge Bay in the Canadian Arctic Archipelago, referred to Eureka-16, Eureka-

22 and CB-22 in this paper. Eureka-16 was characterised by FYI conditons with some localized MYI floes (Figure 1). The

Eureka-22 and CB-22 were only FYI conditions. Sentinel-1 images in Figure 1 highlight the varying backscatter from local

ice conditions. Pulse limited footprint centre points of CryoSat-2 observations from the temporally closest overpass dates to

the in situ measurements are also shown in Figure 1 by hollow red circles (1.6 km in diameter), with the location of in-situ105

observations either located within the CryoSat-2 footprint (CB-22), or located within 40 kilometers on similar sea ice types

illustrated by blue (FYI) or purple (MYI) solid circles.

2.2 Data

The most recent campaigns, CB-22 and Eureka-22, produced a complete suite of in-situ field measurements, including rough-

ness, salinity, temperature and micro-CT measurements of snow (micro-CT only in CB-22), allowing for a full evaluation of110

SMRT over sea ice. Table 1 1 provides a complete list of measured variables available for each campaign. The Alert-17 and

Eureka-16 datasets are limited to the snow microstructural information from the SMP and do not have roughness. All sites

have salinity and temperature measurements, which influence microwave scattering within snow (Nandan et al., 2017; Kwok,

2014).

For CB-22 and Eureka-22, measurements of snow density, temperature, salinity, specific surface area (SSA) and stratigraphy115

were made in vertical profiles in a snow pit for each site. For density and SSA, two vertical profiles of measurements were

made in each snow pit, , following the protocols discussed and illustrated in (Tsang et al., 2022), Figure A1b. Snow samples
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Figure 1. Location of Alert, Eureka, and Cambridge Bay (CB) evaluation field sites. Inset shows Sentinel-1 images in HH pol (CB: 2022-04-

24, Alert: 2017-04-30, Eureka: 2016-04-15 and 2022-04-21) to show ice conditions at each site, bright regions correspond to MYI conditions.

Locations of in-situ sites (FYI and MYI) and CryoSat-2 observations are shown.

from within the same vertical profile layer as the density and SSA measurements were bagged and labeled in the snowpit, and

then brough back to the research facilities where they were melted and subsequently measured for salinity using the EcoSense

EC300A conductivity meter. Salinity was measured in melted samples of snow extracted from the same vertical positions in the120

profile as density measurements. In total, 809 SMP profiles were recorded on Arctic sea ice for all four field campaigns (Total

snowpit coincident SMP sites: 20 in Eureka-16, 6 in Alert-17, 19 in Eureka-22, 4 in CB-22). In-addition to collecting SMP

profiles at snowpit locations, transects around each snowpit with varying horizontal spacings were established to characterize

variations in density, SSA and stratigraphy at spatial scales of up to 100 m following similar protocols as described in Tsang et

al., 2022 Appendix A, and illustrated in Figure A1b. An average of 69 SMP profiles were collected at each snow survey site in125

Eureka-16, 11 SMP profiles in Alert-17, 31 SMP profiles in CB-22 and 9 SMP profiles in Eureka-22. The Eureka-22 campaign
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Measurement Eureka-16 Alert-17 Eureka-22 CB-22

Snow pit stratigraphy - - x x

Magnaprobe depth x x x x

Snow cutter density profiles x x x x

Snow MicroPenetrometer (SMP) x x x x

Snow Integrating Sphere (SSA) - - x x

Micro-CT Microstructure - - - x

Snow temperature x x x x

Boundary roughness - - x x

Ice thickness (in-situ) x x x x

Ice / snow salinity x x x x

CryoSat-2 overpass x x x x
Table 1. Overview of available data for SMRT evaluation. x: data available, -: not observed. 2016 data reported in King et al. (2020), 2017

data reported in Haas et al. (2017).

did not follow the same SMP spatial sampling protocols as the other campaigns, and instead surveyed spatial variability in

narrower transects along 10’s of kilometers of ICESat-2 satellite ground tracks, measuring 5 SMP profiles coincident to 56 ice

thickness measurements, spaced out every 500 to 2000 m apart.

All campaigns measured snow microstructure with a combination of x-ray tomography (micro-CT) only for CB-22 and SMP130

snow SSA for all sites. The vertical resolution of the SMP derived density and SSA depends on the window size used in the

derivation of SMP coefficients, which was 5 mm in this case. The snow density (ρ) and SSA of the SMP were then calculated

as:

ρsmp = a1 + a2 ln
(
F̃
)

+ a3 ln
(
F̃
)

L + a4L (1)

SSAsmp = exp(b1 + b2 ln(L) + b3 ln
(
F̃
)
) (2)135

where F̃ is the median of the penetration resistance force and L is the mean distance between structural elements in 3D

space (Löwe and van Herwijnen, 2012). Coefficients are a1 = 312.54, a2 = 50.27, a3 = -50.26 and a4 = -88.15, from King et al.

(2020) and b1=2.37, b2 =-0.7 and b3 =-0.06 from Montpetit et al. (2024). Density coefficients from King et al. (2020) were used

to derive the density profile. For SSA, as no independent SSA observations were made for Alert-17 or Eureka-16, Arctic SSA

coefficients were derived from the Montpetit et al. (2024) dataset over terrestrial snow in Trail Valley Creek, Inuvik, Canada140

following the methodology of King et al. (2020). Similarity between SMP density coefficients of the terrestrial and sea ice

snow suggested that the transferability of SSA coefficients is a reasonable assumption.

6

https://doi.org/10.5194/egusphere-2024-1583
Preprint. Discussion started: 4 June 2024
c© Author(s) 2024. CC BY 4.0 License.



From the SMP profiles, a rolling median over 3 cm was applied to produce layers of 3 cm for SMRT. For sensitivity tests, 1

cm and 5 cm rolling medians were also used in section 3.3. Layers in SMRT should not be much smaller than the wavelength

of the signal (Picard et al., 2018), which is ≈ 2.2 cm for Ku-band and ≈ 0.8 cm for Ka-band assuming speed of light in air.145

Under these assumptions, main layers are captured, but high resolution features such as thin ice crusts may be missed. SMP

measurements do not always capture the full profile as the penetration depth is manually set to sample less than the total snow

depth to protect the sensitive tip from damage at the sea ice interface. Simulations capture the full depth of the profile by

matching depth measured and the SMP depth with any additional depth attributed to and assumed to have the same density as

the bottom snow layer. Figure 2 illustrates the range of density and SSA measured at the four sites. Snow was deepest at the150

Alert-17 MYI site and also had the lowest median SSA. Eureka-22 and CB-22 were the shallowest and most dense snow, with

comparable SSA to Eureka-16.

During the CB-22 campaign, snow samples were drilled in the field following procedures from MOSAiC (Nicolaus et al.,

2022) and transported from Cambridge Bay to Davos within 4 days in strict isothermal conditions at -21°C, to be scanned

at the WSL Institute for Snow and Avalanche Research SLF. For the present work, only uncasted samples were used. Non-155

intact portions of the samples were identified after micro-CT scanning and discarded from the analysis. A CB-22 snowpack

typically consists of 2 samples (height ≈ 10 cm) that was scanned and analyzed in moving window mode following standard

means (Sandells et al., 2022). Density and microstructure model parameters for SMRT (Picard et al., 2018) were derived as

profiles with vertical resolution of ≈ 0.8 cm that were used for the simulations presented in section 3.3. In total, four snow

profiles (referred to as AK1-4 henceforth, representing the blue spots from North to South in Figure 1) were analyzed in160

this way. Figure 3 illustrates the varying ice volume fraction derived from three different snow measurement techniques with

varying levels of vertical resolution: pit density cutter (3 cm), SMP rolling median window (5 cm and 1 cm) , and micro-CT

observations (0.8 cm). Density cutter measurements showed the least variability in ice volume fraction(ϕ = 0.4 ± 0.03), and

micro-CT the greatest (ϕ = 0.37± 0.06). It is known that the volume fraction (snow density) measured by a CT is more accurate

representation than other measurement method.165

Measured small-scale roughness parameters were determined from in-situ photogrammetry recorded during the CB-22 and

Eureka-22 campaigns, using the Structure from Motion (SfM) technique as described in Meloche et al. (2021). Once 3D

point clouds were created for both snow and ice surface, roughness parameters could be calculated but the method deviated

from Meloche et al. (2021) because the sites measured varied in area 2-4 m2, compared to 0.5 m2 for Meloche et al. (2021).

Following a similar procedure from Landy et al. (2015a), the full area was detrended from curvature or large height deviation170

by sub sampling (n = 20) smaller areas of 0.2 m2 (circle with r = 0.25) and applying the same measurement procedure of fitting

a plane to this subset. Each subset will fit a different local plane. The height standard deviation was calculated with respect to

the local plane of each subset. The correlation length was estimated using the autocorrelation function of heights. The mean

for all subsets was used to estimate both roughness parameters. Two point clouds were created from in-situ photogrammetry at

every sites for the snow surface and the sea ice surface. In total, 8 surfaces were used to derive roughness parameters for snow175

and 8 for sea ice surfaces.
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Figure 2. Box plot of SMP parameters derived from profile for Alert-17, Eureka (16 FYI only and 22) and CB-22. Density and SSA are

derived from coefficients from King et al. (2020) and Montpetit et al. (2024).

Figure 3. Comparison of volume fraction between snowpit measurements (density cutter), SMP and micro-CT measurements for CB-22.

8

https://doi.org/10.5194/egusphere-2024-1583
Preprint. Discussion started: 4 June 2024
c© Author(s) 2024. CC BY 4.0 License.



2.3 Simulation Framework

2.3.1 Snow Microwave Radiative Transfer (SMRT) model

The SMRT model was adapted for altimeter applications by Larue et al. (2021). SMRT is a multilayer model, with each snow

layer represented by temperature, density, thickness and microstructure parameters. The layers are separated by interfaces,180

which are flat (i.e. reflectivity is calculated with Fresnel equations) by default but rough interfaces may also be specified.

Beneath the snow, ice layers may be specified with different parameters; type (fresh, first year or multiyear sea ice), temperature,

density, thickness, microstructural parameters and salinity. First year sea ice is represented as brine scatterers within a pure ice

background whereas multiyear ice is represented as air bubble scatterers within a slightly saline ice background. The substrate

beneath the lowest layer can be represented in a variety of ways: by permittivity, reflectivity or empirical soil model. For the185

simulations presented here, the substrate is water with a flat interface.

Input parameters are used with the permittivity model to calculate the electromagnetic properties i.e. scattering and absorp-

tion coefficients and phase functions. These parameters depend on which electromagnetic model is used (e.g. Improved Born

Approximation (IBA) or Dense Media Radiative Transfer model with Quasi-Crystalline approximation (DMRT-QCA)). The

electromagnetic parameters are then used with the interface boundary conditions to solve the radiative transfer equation. SMRT190

was originally developed with a discrete ordinates radiative transfer solver (DORT), which enabled simulation of brightness

temperature for passive mode and backscatter for active mode (Picard et al., 2018). Extension of SMRT for altimeter ap-

plications uses the existing SMRT core infrastructure to construct the medium and calculate its electromagnetic properties.

However, simulation of the waveform is then performed via the new time-dependent radiative transfer solver outlined in Larue

et al. (2021) instead of DORT. Receiving antennae collect radiation over discrete intervals of time known as gates or bins.195

Penetration of the signal into the snowpack is taken into account, as well as the delay implied by the horizontal extend of the

beam, but returns from elsewhere within the beamwidth at a particular time will be from shallower depths, as illustrated by the

blue grid in Figure 1b from Larue et al. (2021). These grids are combined to form a series of thinner layers in SMRT for the

purpose of the calculation. The width of the gate depends on the pulse bandwidth. For CryoSat-2 the pulse bandwidth is 320

MHz, which means the altimeter gate sampling rate ∆t is 3.125 nanoseconds. For LRM waveforms (only waveforms currently200

implemented in SMRT), the returned power is then calculated:

Pr(t) = pdf(t) ∗PFS(t) ∗ [σ0
s δ(t) + Iint(t) + Ivol(t)] ∗PT(t) (3)

as the convolution of the sum of intensities (equation 9,12,13 in Larue et al. (2021)) with the waveform functions; the flat-

surface impulse (PFS), a probability density function of the surface (pdf(t)) and the transmitted signal power (Pt). For full

details of the solution method, see Larue et al. (2021).205

Separation of the different backscatter components (surface, interface and volume) in equation 3 means that it is possible to

calculate their relative contributions. The backscattering coefficient of the surface and interface (σ0
s δ(t) and σ0

intδ(t) - equation

13 in Larue et al. (2021)) are calculated with a surface scattering model given the relevant roughness parameters (depending on

the model used). The models used in this paper are the Integral Equation Model (IEM) and Geometrical Optics (GO) model.
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The roughness (small scale) is defined by the root-mean-square of height (s) and the correlation length (l) for IEM or in the GO210

case by the mean square slope (mss = 2s2/l2 assuming a Gaussian height distribution). The small-scale roughness is defined

in this paper with a subscript of ice or snow (i.e sice or ssnow) depending on the surface they refer to. Both surface scattering

models, IEM and GO, were used depending on the scale domain (for IEM: ks < 3 and GO: ks » 1 where k is the wavenumber).

GO was also used in the Ka-band study for the surface roughness since ks was larger than 3. The three additive components:

(σ0
s δ(t), Iint, Ivol) the surface, interface and volume specific intensities are calculated from components of SMRT such as215

permittivity models for snow and ice, microstructure representation and electromagnetic models to calculate the scattering and

absorption coefficient. They are determined by the snow and ice stratigraphic and physical properties such as temperature,

density, grain size (microstructure), liquid water content and salinity.

For the waveform model, spherical propagation of the wave and pulse shape is assumed based on Brown (1977) classical

radar theory. The power of a flat-surface impulse (PFS) is defined here as equation 4 (or equation 14 in Brown (1977)):220

PFS(τ) =
G2

0λc

4(4π)2h3
· exp

[
− 4

γ
(sin2 θ +

cτ

hη
cos2θ)

]
· I0

(
4
γ

√
cτ

hη
(sin2θ)

)
(4)

with time defined as the reduced time τ = t− t0, where t0 = 2h/c is the nominal time defined as the round trip time over

the distance h from the satellite to the surface. The effect of Earth’s finite curvature is included by adding a factor of η =

(1 +h/R) where R is the Earth’s radius and h is the satellite height (Larue et al., 2021). G0 is = 1, λ is the satellite sensor

wavelength of CryoSat-2 (2.2 cm), c is the speed of light, I0 is the modified Bessel function of the first kind at n = 0 and γ =225

2sin2(θ2dB/2)/ ln2, determined from the 3 dB beamwidth of the sensor. Improving to an asymmetric beamwidth in the along

and across-track and a PT = sinc(τ) could be consider in the future for CryoSat-2. θ is the incidence angle of the beam. In

SMRT, θ is = 0 if no misalignment of the beam (off-nadir) and no local slopes are present. On sea ice, local slope is assumed

to be 0. For the purposes of this paper, perfect nadir is assumed for modelling. This yields PFS being equal to equation 5.

PFS(τ) =
G2

0λc

4(4π)2h3
· exp

[
− 4cτ

γhη

]
(5)230

A rough surface will affect both the amplitude and the decay of the return. The waveform will have a stronger return coming

from the side lobes (off-nadir) leading to a lower amplitude and slower decay. A smooth surface will have a strong return

mostly from the nadir components leading to a stronger amplitude and a faster decay. This is usually taken into account by a

decrease of backscatter as a function of the incidence angle using a parametrization of small-scale roughness in PFS(τ) (Brown,

1977; Kurtz et al., 2014; Landy et al., 2019). However, SMRT altimetry calculates the decrease of backscatter as a function235

of incident angle in a physical way by computing surface and interface backscatter over different off-nadir incidence angles.

In a similar fashion, the small-scale roughness also controls the decay of the waveform. To allow the backscattering efficiency

and computation of multiple incident angles, the theta_inc_sample parameter in SMRT was set to 8 to sample over multiple

incident angles and take into account the decrease of backscatter as a function of incident angle. It can also be set to 16 or 32,

or any divisible number of the total gate, but increases computation time as the sampling increases.240
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Also, the scattering surface roughness at the footprint scale (σsurf) is represented through a probability distribution function:

pdf(τ) =
1√

2π(2σsurf/c)
exp

( −τ2

2(2σsurf/c)2

)
(6)

currently assumed to be Gaussian in SMRT. The σsurf is the large-scale roughness (1 km) of the sea ice in the footprint which

is different than s or l that affect surface scattering. A log-normal probability distribution (Landy et al., 2020) function may be

more representative over snow-covered sea ice but has yet to be implemented in SMRT. Values of σsurf are usally between 10245

and 30 cm (Landy et al., 2020) and the pdf(τ) term becomes negligible under 10 cm. Future improvements of this term would

add a surface backscatter response as a function of the incidence angle (Dinardo et al., 2018) and consider surface type like

leads with high specular returns.

The transmitted signal power is approximated with a Gaussian function and σp = 0.513∆t:

PT(τ) =
1√

2πσp
exp

(
−τ2

2σ2
p

)
(7)250

where ∆t is the inverse of the sensor pulse bandwidth.

2.3.2 Simulation Approach

Simulations of mean waveform for each location; Alert-17, Eureka-16/22 and CB-22 were compared with the mean of CryoSat-

2 observed waveforms per location. All simulations use in-situ SMP measurements of snow properties as described in Section

2.3.3. This allowed snow variability from multiple snow surveys to be incorporated in SMRT simulations. We then found the255

normalisation factor for the sensor (CryoSat-2), due to the imprecise calibration of the altimeters, and optimized the small-scale

roughness of sea ice (sice and lice) with the backscattering coefficient per location.

2.3.3 Simulation Parameters

Snow depth, density and SSA profiles were derived from SMP observations and used to simulate a waveform for each profile.

A rolling median was applied to extract density and SSA from the SMP measurements at vertical resolutions suitable for260

SMRT input. For the simulations in this study, an exponential microstructure model was used. The modified Debye equation

was used to calculate the microwave grain size (lmw) using the Porod length lp and polydispersity (K) following the approach

form Picard et al. (2022):

lmw = Klp = K
4(1− ρs/ρi)

ρiSSA
(8)

where ρs is the snow density, ρi is the density of ice. The polydispersity was set using grain type from a SMP predicted grain265

type classifier(rounded, faceted or depth hoar) for snow on sea ice King et al. (2020). K was assumed to be 0.7 for rounded

and faceted and K = 1.3 for depth hoar (Picard et al., 2022). Usually, snow salinity of upper layers is minimal ( < 1 PSU)

and increases to 1-20 PSU for the basal layers next to sea ice (Nandan et al., 2017; Geldsetzer et al., 2009). Measured values

in CB-22 were < 1 PSU for upper layers. Basal layers had an averaged of 9.3 ± 3.5 PSU for CB-22 and 10.6 ± 5.5 PSU
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for Eureka-22. Alert-17 and Eureka-16 had lower salinity with a mean basal layer of 3 PSU for Eureka-16 and 0 PSU for270

Alert-17. FYI has higher salinity due to brine expulsion from the sea ice where MYI snow basal layer is much fresher since the

brine expulsion is flush by melt (Nandan et al., 2017). Snow salinity increases the microwave absorption leading to stronger

attenuation in saline snow than fresh snow. Snow salinity was set to the measured values and the saline snow permittivity model

from Geldsetzer et al. (2009) was used.

Sea ice scattering in SMRT is assumed to be brine scatterers within a pure ice background for first-year ice (FYI) and275

air bubble scatterers within a slightly saline ice background for multiyear ice (MYI). For FYI, the density of the pure ice

background is set to 917 kg/m3, for MYI the density is reduced to 880 kg/m3 by modifying the volume fraction of air/ice (Laxon

et al., 2013). For both cases, scatterers within the sea ice were assumed to be spheres of radius 1 mm. Sea ice temperature of

260 K was set for the simulation. The thickness of FYI was set to 2 m and MYI was 3 m in the simulations, with a water

substrate underneath both. The ice salinity was set using the relation from Cox and Weeks (1974) (salinity = 7.88 - 1.59 x280

thickness) using the ice thickness set for both ice types (FYI: 4.7 PSU, MYI: 3.1 PSU).

The roughness of snow and sea ice (Figure 4) is defined in the modelling of altimeter waveforms at two different scales:

footprint scale (> 5 m) or radar scale (< 5 m) as defined in Landy et al. (2020). Roughness measurements in the CB-22 and

Eureka-22 campaigns focused on roughness parameters at the radar scale (referred to small-scale hereafter). Two parameters (s

and l) define the interaction of electromagnetic waves at the radar scale where snow and ice roughness are comparable to, or less285

than the wavelength (2.2 cm for CryoSat-2). Previous values measured on FYI and MYI by a small-scale LIDAR experiment

sice ranged from 1 to 6 mm depending on the detrending procedure (Landy et al., 2015). The large-scale (or kilometer scale)

roughness is observed from 1 to 100 cm and considers melt hummocks, pressure ridges or other large-scale deformation of the

ice surface. Although not evaluated for this project, some of our field measurements contained such large features that could

potentially overestimate the small-scale roughness. This will be discussed further as these features were found in our field290

experiment for rough sea ice (Figure 4). Large scale roughness σsurf, represents the height standard deviation of the surface

within the altimeter footprint (≈ 1km2) assuming a probability density function for the surface (Landy et al., 2020). SMRT

assumes a Gaussian distribution for the surface and σsurf = 0.14 m for FYI and σsurf = 0.22 m for MYI from Table 2 in Landy

et al. (2020) were used in simulations. These values were obtained from airborne radar surveys of the sea ice surface in Landy

et al. (2019) and were used for the large-scale roughness of all sites in this study.295

Measured roughness parameters shown in Table 2 present mean values for flat ice, rough ice and snow surfaces. Figure 4

shows the bivariate distribution with parameters (s, l) for the three different surfaces and shows two distinct regions for the

sea ice and similar values for snow. We would suggest that the rough ice (Figure 1c) measurements with a roughness 15 times

larger, contributes more to the parameters σsurf at the larger scale.

2.3.4 Normalisation300

SMRT simulations of the altimeter waveform provide the ratio between received and emitted powers, neglecting the atmo-

spheric transmission and assuming an antenna gain G0 = 1. To compare with the satellite observations that lack of precise

calibration, a normalisation is necessary. A similar method of Larue et al. (2021) was applied here, which is a least squares
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(a)

(b) (c) (d)

Figure 4. a) Snow surface (n = 11), b) flat sea ice (n = 9) and c) rough sea ice (n =3). d) 2D Kernel density estimate of roughness parameters

measured (l, s) of the surface in a), b) and c). Black outline indicates a measurement from CB-22 and white outline for Eureka-22.

surface s (mm) l (cm) n nsub (n x 20)

snow 3.9 ± 1 16.3 ± 3.4 11 160

flat sea ice 1.4 ± 0.6 4.7 ± 0.1 9 100

rough sea ice 21.0 ± 1.3 13.0 ± 1.4 3 60
Table 2. Overview of the measured roughness parameters. Rough sea ice had a mean small scale rms (s) of 21.0 mm, snow had 3.9 mm and

flat sea ice had 1.4 mm

regression fit to the observations. The Normalisation factor in watts (Λ) calculated across all sites assuming the satellite cali-

bration is constant between the acquisition. The Λ in Watts is multiplied to the simulation (unitless) to match the observation305

in Watts (power received by the sensor).

In their study over Antarctica, Larue et al. (2021) were able to use data over several months (at least 50 observations at

each of seven sites) due to slowly changing snow microstructure. Data were also filtered for ± 1 gate tolerance. Here, data

are much more limited and only obvious outliers were excluded. For the final calculation of the normalisation factor, all

observed waveforms per site were aligned to the same nominal gate as the simulation, then averaged together to yield one310
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mean waveform. This allowed a proper calculation of the normalisation factor between the simulated and observed. The Λ is

part of the optimization of the small-scale roughness.

2.4 Roughness Optimisation

The small scale-roughness of snow and ice impacts the total power measured by the altimeter (equation 3). The reflection at

each rough interface is represented by IEM or GO surface models and the roughness values are key in modelling the backscatter.315

The small scale-roughness was measured only for CB-22 and Eureka-22 and yielded distinct values for flat and rough ice. It

is unclear whether the values measured spatially represent the true roughness. For this reason, the s and l of both the sea ice

and snow (will be optimized per campaign (Eureka-16, Alert-17, Eureka-22 and CB-22) using a least-square fit of the residual

between the observed and simulated waveforms and then compared with measured values from this study and Landy et al.

(2015a). To simplify the optimization, the roughness of the sea ice and snow are equal (ssnow = sice = s and lsnow = lice = l).320

Also, we focused on optimizing the small-scale roughness since it affects the simulated waveform the most.

Since the Λ influences the amplitude of the simulated power, normalisation was estimated in the optimization along the

roughness parameters. The optimized range for s was 1 to 10 mm and 1 to 40 cm for l based on Landy et al. (2019) and our

measured values. The optimization was done in two steps: 1) the Λ and roughness parameters for all sites were found, 2) Λ

is fixed and the roughness for each site were optimized with initial roughness from 1). The optimization of the waveform was325

based on the least square residuals of the log transform simulation and observed data. To evaluate our fit, the norm squared of

the residuals (nres) was used as a metric. Fons and Kurtz (2019) defined a good waveform fit when (nres) < 0.3. The gates 0 to

160 before the nominal return at gate 164 were removed from the fit to reduce the influence of noise. The nominal gate is the

gate at which SMRT will simulate the surface.

3 Results330

3.1 SMRT Evaluation

In this section, the waveforms modeled by SMRT using the measured snow parameters driven from SMP measurements were

evaluated at all sites. The observed waveforms from CryoSat-2 at Eureka-16/22, Alert-17 and CB-22 are shown with dashed

lines in Figure 5. The amplitude of Alert-17 (MYI) was lower than the amplitude of CB-22 and Eureka-22 (FYI). Eureka-16

composed of a mixture of FYI and MYI has a higher amplitude than Alert-17 but lower than CB-22 and Eureka-22. The335

amplitude decay or the slope of the trailing edge (TES, Table 3) on the log scale showed a different decay between CB-

22/Eureka-22 and Alert-17/Eureka-16.

SMRT simulations of CryoSat-2 waveforms are also shown in Figure 5 for each site with the normalisation factor of Λ

= 5.9× 108 W (Table 3). Poor fit using a constant roughness for all sites was obtained (not shown here). Simulations with

optimized roughness are shown in Figure 5 with optimized roughness parameters shown in Table 3.340
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Figure 5. Comparison between simulated and observed CryoSat-2 waveforms for Alert-17, Eureka-16/22 and Cambridge Bay with a normal-

isation factor, 5.9×108 W. Simulated waveforms are shown by a black solid line and observation by dotted lines. The different contributions

of the received power are also shown by colored solid lines. The right-hand side column is a linear scale and the left-hand side is a logarithmic

scale of the power.

The optimized roughness per site (Table 3) yielded lower s values for CB-22 = 2.1 mm and Eureka-22 = 1.6 mm and rougher

sea ice for Eureka-16 = 4.9 mm and Alert-17 = 5.6 mm. The optimized value for FYI in CB-22 and Eureka-22 (2.1 mm and

1.6 mm) was similar to the measured value (1.4 mm, Table 2). The l yielded the maximum value of the optimized range for

all sites. A rougher ice surface was needed for Alert-17 and Eureka-16, which is consistent with the MYI characteristics for

Alert-17 and mixed MYI/FYI characteristics for Eureka-16 (Figure 1). Overall, the nres showed a good fit was obtained when345

the roughness was optimized but the peakiness was underestimated and was particularly prominent in the absolute backscatter

for pure FYI sites.
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Site s (mm) l (cm) nres TES

CB-22 2.1 40 0.33 -0.021

Eureka-22 1.6 40 0.27 -0.021

Eureka-16 4.9 40 0.02 -0.018

Alert-17 5.6 40 0.04 -0.017

Normalisation factor: Λ = 5.9× 108 W
Table 3. Overview of the optimized roughness parameters, waveforms fit parameters and the normalisation factor.

The contribution of the backscatter sources i.e. snow surface, internal interfaces (including snow-ice interface), and snow

volume (σ0
s δ(t), Iint(t) and Ivol(t) in equation 3) to the total backscatter were also shown. A mixture of equal returns from

the surface and the interface was obtained for CB-22 and Eureka-22 (FYI) and returns dominated by the surface for Alert-17350

and Eureka-16. The contribution from the surface reflection affected all sites. This means that for Ku-band, backscatter was

dominated by changes in the permittivity of snow and ice layers, which increased reflectivity between layers, and the roughness

of the surface/interface. Volume scattering is minimal at Ku-Band.

3.2 Sensitivity analysis

After optimization and evaluation of the SMRT simulated waveforms, we investigated the effect of simulation parameters on355

1) the total simulated power and 2) the power contribution simulated by SMRT. First, a sensitivity analysis was carried out on

the total power to identify parameter accuracy constraints. These results were shown in Figure 6 for Ku-band and Figure 7 for

Ka-band, based on measured values from SMP profiles. We selected CB-22 and Alert-17 as they both were representative of

FYI and MYI respectively. The mean simulations using in-situ parameters (same as Figure 5) were shown as the solid line for

CB-22 and Alert-17 profiles. Modification of parameters was shown by dotted and dashed lines (reduction or increase from the360

measured parameters).

In Figure 6, the parameters that were used in the calculation of both snow and sea ice permittivities (snow density, snow

temperature, snow salinity, sea ice salinity and sea ice temperature) all had an effect on the amplitude. This can be noted from

Figure 6 c), d) and e) because the temperature, density and salinity affect the permittivity of snow in SMRT. Snow salinity

only affected CB-22 since saline snow is not present on MYI (Alert-17). In h), volume fractions (driven by brine concentration365

/ salinity for FYI and ice density for MYI) and temperatures of sea ice had a smaller but notable impact on the amplitude.

The snow parameters affecting the most the amplitude was the density and the salinity. Snow depth also affects the amplitude

as it impacts the number of snow layers (Figure 6 a). Snow thickness only impacted CB-22 since most of Alert-17 reflected

power comes from the surface. For the roughness, it can be seen from Figure 6 f) and g) that the roughness greatly affects the

amplitude. The roughness also affects the decay of the waveform. Variation in snow SSA did not effect the total amplitude.370

Averaging to a 1-layer model also affected the amplitude.
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Figure 6. Ku-band sensitivity analysis around the mean measured parameters used to drive SMRT simulations for CB-22 and Alert-17. The

solid line is the mean simulation, the dotted line is the negative change and the dashed is the positive change.

For Ka-band (Figure 7), a similar sensitivity to snow parameters was found. Snow depth did effect the amplitude of both

sites. Again, a strong sensitivity to snow density for both CB-22 and Alert-17 was observed. For Alert-17, sensitivity to SSA

can be observed even if no volume scattering contribution was simulated. This is due to the basal layer of depth hoar in Alert-17
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Figure 7. Ka-band sensitivity analysis around the mean measured parameters used to drive SMRT simulations for CB-22 and Alert-17. The

solid line is the mean simulation, the dotted line is the negative change and the dashed is the positive change.

scattering the reflection from the interface which is likely to reduce the total backscatter. This effect was not present at Ku-band375

due to larger wavelength where the interaction with the snow grain is lesser.
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In Figure 8, the effect of roughness parameters on the backscatter contribution was investigated. It showed that the influence

of both surfaces (snow and ice) on the total power depends on the small-scale roughness. For Ku-band, interface and surface

reflection were similar for low roughness (s < 2 mm) but surface reflection dominated as s increased. For Ka-band using GO,

the surface is dominating but the interface still was >= 20 % for both sites.380

Figure 8. a) Contribution of total power from reflection of the surface, ice interface and volume scattering for CB-22 and Alert-17 for Ku

and Ka-band. The contribution as a function of the s is shown in b) for Ku with IEM, c) for Ka with GO and d) for Ka with IEM.

At Ka-band, it is important to mention that ks > 3 if s > 4 mm and the surface model used was GO compared to IEM for Ku

since s = 5.6 mm for Alert-17. Technically, this is at the limit of the IEM regime. However, the roughness was optimized for

Ku-band waveform so it is risky to apply the same roughness for both bands. Figure 8 d) also showed if IEM was used instead,

the contribution for Alert-17 at Ka-band becomes 100 % volume scattering. This result is relevant for the CRISTAL mission

and highlights the importance of knowing the roughness to derive snow thickness, and of roughness parameterization in SMRT385

for altimeter applications.

Finally, in Figure 9, the effect of the microstructure and salinity was investigated on the contribution. Here, GO was used for

Ka-band. The SSA was varied by ± 50 % from the measured values. The backscatter contribution varied by 40 % for Ka-band

at Alert-17. Again, this is because lowering the SSA of the depth hoar layer increased the divergence of the radar wave reaching

the base of the snowpack which ultimately reduced the contribution of the ice interface. A similar effect is seen for salinity at390

CB-22. The brine in the snow absorbs the radar wave reaching the base of the snowpack which also reduces the contribution

of the ice interface as salinity increases.
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Figure 9. Sensitivity of the SSA and salinity of snow on the power contribution (%) from the surface, ice interface and volume scattering.

3.3 Micro-CT

Finally, we investigated how the high resolution micro-CT measurements of snow used as inputs into SMRT affected the

simulations across the 4 sites in CB-22 (AK1-AK4). Figure 3 a) shows the difference in measurement between the traditional395

pit, SMP at two different resolutions and micro-CT measurements. In terms of simulation, the amplitude was underestimated by

the pit and SMP low resolution (5 cm) measurements compared with the micro-CT and SMP high resolution (1 cm). In Figure

10 b), all pit (AK1-AK4) amplitudes were smaller than micro-CT amplitudes. The SMRT simulations using different sources

of snow measurement inputs, but of the same resolution (1 and 5 cm), produced similar simulation results. The difference

between simulations was driven by the snow density since the snow depth was similar and temperature and salinity were the400

same for pits, SMP and micro-CT simulations. Also, it was shown earlier that SSA or microstructure may not contribute to the

amplitude of the waveform at Ku-band (Figure 6).

4 Discussion

SMRT can successfully simulate waveforms of altimeters on sea ice with the appropriate small-scale roughness parameters,

and a normalisation factor to account for the calibration of the sensor (Λ = 5.9× 109 W). It is clear from Figure 5 that405
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Figure 10. Comparison of SMRT simulation between instruments and processed data resolutions, a) simulations between SMP (1 cm),

micro-CT (1 cm), pit (5 cm) and SMP (5 m). b) differences in simulations between pit and micro-CT at four sites in CB-22.

simulations driven only by snow-measured parameters with constant roughness parameters were insufficient to correctly model

Ku-band altimeter waveforms at different sites. The site specific, optimized roughness is critical to model the amplitude and

the waveform decay of the signal for different sea ice types (FYI and MYI). The roughness was the only parameter affecting

the waveform decay under the assumption of no mispointing which would affect both the peak power and decay. This allows

to estimate the roughness (s and l) from the observed waveform decay which is critical for sea ice thickness retrieval (Landy410

et al., 2020).

Knowledge of sea ice roughness is critical to ascertain whether the radar signal is predominantly from the snow surface, ice

interface, or volume scattering in the snow. When roughness was optimized (Table 3), the Ku-band signal came mostly from the

snow surface and sea ice interface. For Ka-band, the signal was sensitive to the snow surface, interface and volume scattering

depending on the surface model used. This highlights the importance of the roughness parameters in SMRT for altimeters.415

Using the IEM surface scattering domain, optimized roughness values (Table 3) were found to be similar to previously

reported measured values in the literature (Landy et al., 2015b). The measured roughness for flat ice in CB-22 and Eureka-22

(Table 2, s = 1.4 mm) matched closely the optimized values in CB-22 (s = 2.1 mm) and Eureka-22 (sice = 1.6 mm). Values

optimized for Alert-17 (s = 5.6 mm) and Eureka-16 (s = 4.9 mm) matched values measured on FYI (s = 3.1 mm) and MYI

(s = 4.3 mm) from Table 2 in Landy et al. (2015a). For Alert-17 and Eureka-16, a rougher sea ice was optimized as MYI is420

rougher than FYI (King et al., 2020; Fredensborg Hansen et al., 2021). For l, the optimized values for all sites (l = 40 cm)

were much higher than the measured values (lice = 5.2 cm) and reached the maximum of the optimized range. Those higher

values were needed to correctly simulate the faster decay. A larger correlation length should represent a smoother surface,

but our measured values for flat ice were smaller than rough sea ice and snow which might indicate a potential problem in
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the roughness measurement method for l. The areas investigated were potentially not large enough (horizontally) to estimate425

the correct length. Estimated values (s and l) are dependent on the detrending method, and a community consensus on which

method to estimate roughness relevant to microwave radiative transfer is still lacking. Overall, the roughness parametrization

gave an appropriate fit with the Ku-band waveform, but it is still unclear if the roughness values are realistic. The optimization

and measurements of roughness are not trivial and remain the most challenging parameter to quantify in models of sea ice

altimetry.430

SMRT simulations showed that the radar echoes at Ku-band came from the reflection at the snow and sea ice interface and

the change. Waveform amplitudes were also sensitive to snow parameters (density, temperature and salinity) that changed the

effective permittivity of snow layers. This increased reflection and therefore increased the amplitude of the waveform. Sea ice

parameters were also found to influence the reflection to a lesser extent as they modify the permittivity of the last interface. It

can be concluded that the altimeter signal at Ku-band is sensitive to changes in the effective permittivity of the snowpack and435

the ice. Note that snow density also affects the speed of the wave and in turn the estimated surface elevation, which has not been

investigated here. The low sensitivity to snow microstructure is likely due to the strict nadir angle used in the simulations. This

behavior is different for SAR imagery with a higher incidence angle, which leads to a stronger component of volume scattering

at Ku-band (King et al., 2018). This suggests that a model similar to Landy et al. (2019) that simplifies volume scattering from

microstructure, but incorporates complex roughness interactions (at two scales) could be sufficient to model Ku-band altimeter.440

SMRT simulations of the radar echoes from the snow surface and volume scattering at Ka-band were more prevalent than

for Ku-band. The altimeter signal at Ka-band is affected by the snow density like Ku-band, but was also sensitive to the

microstructure of snow which has implications for the CRISTAL mission. The signal was mostly sensitive to the snow surface

but Figure 7 b) and 9 c) showed that this contribution is highly sensitive to SSA. The microstructure of snow will have

to be known, approximated, or its effects minimized by retrieval algorithms since it affects the total power. Also, volume445

scattering by SMRT altimeter underestimated scattering at higher frequency (Ka-band) since it is a first order scattering model.

Implementing higher order for multiple scattering within the snowpack and the advanced IEM (AIEM) to account for multiple

scattering of the interface should be considered going forward (Larue et al., 2021).

Questions still arise on which model (IEM or GO) should be used at Ka (Figure 8 but volume scattering could potentially

contribute to 100% of the total power received. The roughness set for Ka-band resulted from an optimization at Ku-band450

and is also on the limit of the IEM model (ks < 3). Further investigations are needed to understand if the return at Ka-band

comes mostly from the snow surface or volume scattering (Figure 8), and in which conditions. This is crucial if we want to

retrieve snow depth with CRISTAL from the difference between tracking points of Ka and Ku-band (Lawrence et al., 2018).

Ground-based Frequency Modulated Continuous Wave (FMCW) radar at Ka-band could help measure the backscatter per layer

leveraging a large bandwidth.455

The domination of the surface signal contribution for both Ku and Ka-band is consistent with the finding from (Willatt et al.,

2023) which found that the highest amplitude peak of a ground-based Radar at the Ku and Ka-band was closer to the surface

than the ice.
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Snow properties have an impact on the tracking point by modifying the amplitude of the radar echoes for both frequencies

as was shown in Figure 6 and 7. An appropriate radiative transfer model of snow will be needed to correctly infer snow depth460

from tracking point differences at Ku- and Ka-band since this study showed how sensitive both frequencies were to snow

parameters. Of all snow parameters, Snow density showed the strongest influence on the amplitude of Ku- and Ka-band. This

sensitivity also opens the opportunity to improve retrieval of snow depth like Fons et al. (2023), or estimate snow density from

the waveform. This has implications for sea ice thickness retrieval because uncertainty in snow density estimates can lead to

bias up to 30 cm in ice thickness estimation (Kern et al., 2015).465

Finally, the high resolution micro-CT snow measurements were evaluated in SMRT simulations and produced consistently

higher amplitudes for all CB-22 sites compared to low resolution pit and SMP. This is likely due to the enhanced vertical infor-

mation in snow density (Figure 3) provided by the micro-CT measurement and SMP at high resolution. Figure 3 showed large

changes in volume fraction from the CT compared to a steady decrease in density from the pit and SMP low resolution. These

substantial changes in density increased reflection. Nonetheless, using a 1-layer model with bulk density might underestimate470

the reflection of the altimeter signal, and the non-uniform structure of the snowpack should be included in a full error budget

analysis for future radar altimeter retrieval algorithms.

Future developments of SMRT for sea ice altimetry could help mitigate issues and improve the simulations, especially

solutions to overcome the need for normalization would help better constrain the roughness and determine the respective

contributions of the interfaces and surface (Larue et al., 2021). Some developments include a waveform model for SAR mode,475

3-phase medium (ice, air and brine) and adding multiple order scattering for Ka-band and big grains.

5 Conclusion

In this paper, we showed the capabilities of SMRT to simulate altimetric waveforms over sea ice for three different regions with

distinct ice types and snow cover over multiple seasons. SMRT showed that snow and sea ice properties had a notable impact on

the reflected signal (amplitude). The most critical parameter in SMRT simulation is the roughness of the sea ice since it dictates480

how much power is reflected at the ice interface and the waveform decay, which could be challenging for physical retrackers.

SMRT can inform the backscatter contribution coming from either the surface, interface or volume scattering and showed for

Ka-band (Figure 8), that the signal comes mostly ( > 70 %) from the snow surface if the ice roughness is large enough (sice

> 2.0 mm), which is encouraging for snow depth retrieval and the CRISTAL mission. However, considering snow properties

with a physical retracker will be necessary since snow properties shift the tracking point for both frequencies (Figure 6 and 7).485

SMRT could improve retrieval of snow depth, snow density and ice thickness using the model as a base for a physical retracker

for the CRISTAL mission. This study improved our understanding of the interaction between the radar altimeter signal with

sea ice by using a radiative transfer approach based on state-of-the-art in-situ snow measurements.
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Code and data availability. Code for this paper are available at https://github.com/JulienMeloche/AKROSS_paper.

SMRT commit version = 1.3.490

Data from CB-22 (AKROSS) is available at DOI: 10.5281/zenodo.11205157.

Data from Eureka-22 is available at (to be added).

Data from Alert-17 and Eureka-16 is available at DOI: 10.5281/zenodo.4068349 and DOI: 10.5281/zenodo.11210316.
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Appendix A: List of Symbols

L mean distance between structural elements in 3D

F̃ median of the penetration resistance force

di SMP specific surface area coefficients

∆t time

Pr(t) Returned power at the Radar

Pt(t) Transmitted power of the Radar

pdf(t) probability density function of the surface

PFS(t) Flat surface impulse

σ0
s backscattering coefficient of the surface

δ(t) dirac delta function

Iint specific intensities from interface reflection

Ivol specific intensities from volume scattering

mss mean square slope

s small scale rms height of the ice or snow surface (sice or ssnow)

l small scale correlation length of the ice or snow surface (lice or lsnow)

σsurf large scale rms height of the surface

G0 peak antenna gain at boresight

h height of satellite

λ wavelength of the sensor

θ incident angle

c speed of light

R radius of the Earth

I0 first component of the Bessel function

lmw microwave microstructural lenght

lp porod length

ρs density of snow

ρi density of ice

κ polydispersity of snow

Λ normalisation factor

Ai Amplitude of the waveform i

495
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