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Abstract. Ozone (O3) pollution is posing significant challenges to urban air quality improvement in 

China. The formation of surface O3 is intricately linked to chemical reactions which are influenced by 

both meteorological conditions and local emissions of precursors (i.e., NOx and VOCs). When 

meteorological conditions deteriorate, the atmosphere's capacity to cleanse pollutants decreases, 15 

leading to the accumulation of air pollutants.The atmospheric environment capacity decreases when 

meteorological conditions deteriorate, resulting in the accumulation of air pollutants. Although a series 

of emission reduction measures have been implemented in urban areas, the effectiveness of O₃ 

pollution control proves inadequate. Primarily due to adverse changes in meteorological conditions, the 

effects of emission reduction are masked. In this study, we integrated machine learning model, the 20 

observation-based model and the positive matrix factorization model based on four years of continuous 

observation data from a typical urban site. We found that transport and dispersion impact the 

distribution of O3 concentration. During the warm season, positive contributions of dispersion and 

transport to O3 concentration ranged from 12.9% to 24.0%. After meteorological normalization, the 

sensitivity of O3 formation and the source apportionment of VOCs changed. The sensitivity of O3 25 

formation shifted towardschanged from the NOx-limited regime to the transition regime between VOC- 

and NOx-limited regimes during the O3 pollution event. Vehicle exhaust became the primary source of 

VOC emissions after “removing” the effect of dispersion, contributing 41.8% to VOCs during the 

pollution periods. On the contrary, the contribution of combustion to VOCs decreased from 33.7% to 
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25.1%. Our results provided new recommendations and insights for implementing O3 pollution control 30 

measures and evaluating the effectiveness of emission reduction in urban areas. 

1 Introduction 

Ozone (O3) plays a significant role in atmospheric oxidation and global climate. It is also considered 

one of the major atmospheric pollutants. High concentration of surface O3 is harmful to human health, 

such as causing respiratory diseases and even cancer (Cohen et al., 2017; Monks et al., 2015). In recent 35 

years, China has been in a stage of rapid economic development, accompanied by the emergence of 

various air pollution problems due to industrialization and urbanization. (Zhang et al., 2012). In order 

to deal with the air pollution, the Chinese government has issued some control policies, such as Clean 

Air Action Plan in 2013 (Chinese State Council, 2013) and Blue-Sky Protection Campaign in 2018 

(Chinese State Council, 2018). These policies have resulted in reductions in the concentrations of 40 

particulate matter (PM), nitrogen dioxide (NO2) and sulfur dioxide (SO2) (Zheng et al., 2018). On the 

contrary, O3 pollution has become increasingly serious, especially in the typical urban clusters such as 

the Beijing-Tianjin-Hebei (BTH), the Yangtze River Delta (YRD) and the Fenwei Plain (FWP). In 

2022, the 90th percentile of maximum daily 8 h average (MDA8) O3 were 179 µg/m3 in the BTH, 162 

µg/m3 in the YRD and 167 µg/m3 in the FWP, 4.7%, 7.3% and 1.2% higher than that in 2021, 45 

respectively (Ministry of Ecology and Environment of China, https://www.mee.gov.cn/). Frequent O3 

pollution events have attracted the attention of the public and the government. Surface O3 is mainly 

formed by the photochemical reactions of volatile organic compounds (VOCs) and nitrogen oxides 

(NOx = NO + NO2) (Atkinson, 2000). The emissions of precursors effectively affect the change of O3 

concentration (Tan et al., 2018). The sources of VOCs are complex and widespread, making it 50 

challenging to control emissions. Meteorological conditions can directly or indirectly affect O3 

concentration (Liu and Wang, 2020; Zhang et al., 2015). Wind and boundary layer height influence the 

diffusion of the concentrations of O3 and its precursor. Poor dispersion can result in a decrease in 

atmospheric environmental capacity, making O3 pollution events more likely to occur even with low 

precursor emissions. High ultraviolet radiation and temperature promote photochemical reactions of O3 55 

formation (Yang et al., 2019). In addition, O3 can be transported over long distances due to its the long 

atmospheric lifetime, which can cause regional O3 problems (Han et al., 2019). In short, the O3 
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concentration is nonlinear affected by meteorological conditions, emissions of precursors and chemical 

reactions (Fu et al., 2019; Hu et al., 2021). 

Li et al. (2020) discovered that approximately 1/3 of the growth of O3 concentration in summer in 60 

China was attributed to meteorological conditions. This indicated that the reduction of air pollutants 

concentrations due to the control policies may be offset by the deterioration of meteorological 

conditions. Therefore, decoupling meteorological factors from temporal concentrations series of 

atmospheric pollutants is helpful to assess the impact of clean air action. At present, many 

mathematical statistical methods have been developed to “remove” the influences of meteorological 65 

factors. The technique for predicting air pollutants concentrations under randomly selected 

meteorological parameters was first introduced by Grange et al. (2018). Weng et al. (2022) found that 

the temperature near the surface 2 m, the downward radiation flux of the surface and the relative 

humidity were the most important meteorological factors to affect O3 concentration in China by 

applying two machine learning algorithms (ridge regression and random forest regression). 70 

Mousavinezhad et al. (2021) employed the Kolmogorov-Zurbenko (KZ) filter method and found that 

meteorological factors played the dominant role on O3 formation in four typical urban agglomerations 

in China. Guo et al. (2022) used the random forest method to obtain the characteristics of air pollution 

in 12 megacities in China from 2013 to 2020, and carried out a comprehensive assessment of the actual 

impact of the national clean air action. Compared to traditional statistical methods, machine learning 75 

models perform better in “removing” meteorological effects from concentration data.  

In response to severe O3 pollution, a series of emission reduction measures targeting O3 precursors 

have been implemented in urban areas. However, the effectiveness of controlling O3 pollution fell short 

of expectations. According to previous studies, O3 formation in urban areas was more sensitive to 

VOCs (Feng et al., 2019), with anthropogenic emissions of VOCs playing a dominant role (Ahmad et 80 

al., 2017). Understanding the sensitivity of O3 formation and the source characteristics of VOCs are 

helpful to design effective strategies to control O3 pollution. The observation-based model (OBM), 

positive matrix factorization model (PMF), and air quality model are commonly used to analyze the 

causes of O3 pollution and provide theoretical support for reducing O3 precursors. However, the results 

of OBM and PMF, which rely on observed data, may be influenced by fluctuations in meteorological 85 

conditions, potentially introducing bias.The basis for precursor emission reduction policies relies on the 

observation-based model (OBM) or the positive matrix factorization model (PMF), but the model 
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results based on observed data are influenced by fluctuations of meteorological conditions. Wu et al. 

(2023) developed initial concentration dispersion normalized PMF (ICDN-PMF) to reflect changes in 

source emissions of VOCs in Qingdao. The results proved that the contribution of solvent use 90 

overestimated due to air dispersion during O3 pollution. Additionally, the actual effectiveness of 

emission reduction measures can also be obscured by unfavorable meteorological conditions. In this 

study, we applied the Random Forest (RF) method proposed by Grange et al. (2018) to “remove” the 

dispersion and transport effects on O3 concentration, as well as the dispersion effect on precursors in 

Hangzhou from 2019 to 2022. After meteorological normalization, the concentrations of VOCs were 95 

imported into OBM and PMF to obtain the sensitivity of O3 formation and the contributions of 

emission sources, providing more accurate results. The interplay of meteorological and local factors on 

O3 pollution can be evaluated effectively and comprehensively in this method. Our results emphasized 

the importance of decoupling the meteorological effects of transport and dispersion for understanding 

the mechanisms of local O3 formation and devising appropriate emission reduction measures. 100 

2 Methods 

2.1 Observation data 

The online hourly observation data from 2019 to 2022 were measured by the Zhejiang Ecological and 

Environmental Monitoring Center (30.29◦N, 120.13◦E). This station was located in the urban area of 

Hangzhou, Zhejiang Province, surrounded by residential and commercial areas. The data set of air 105 

pollutants included O3, NO2 and 98 different kinds of VOCs detected by gas chromatography system, 

including 29 alkanes, 11 alkenes, 1 alkyne, 16 aromatics, 28 halohydrocarbons, 12 oxygenated VOCs 

(OVOCs), and 1 acetonitrile. The online gas chromatography system was equipped with a mass 

spectrometer and flame ionization detector (GC-MS/FID) (ZF-PKU-VOC1007, Beijing Pengyu 

Changya Environmental Technology Co. Ltd., China), which used a dual gas path separation method. 110 

VOCs compounds with low carbon numbers (C2-C5) were measured by FID, while VOCs compounds 

with high carbon numbers (C5-C10) were detected by MS. NO2 and O3 were measured by a commercial 

instrument (Model 42i/42iTL and Model 49i, Thermo Scientific, USA). The meteorological parameters 

measured included temperature (T), relative humidity (RH), atmospheric pressure (P), wind speed 

(WS), and wind direction (WD), which were measured by the WS500-UMB instrument manufactured 115 
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by LUFFT Corporation.Meteorological parameter contained temperature (T), relative humidity (RH), 

atmospheric pressure (P), wind speed (WS) and wind direction (WD). In addition, we used the 

meteorological data from the ERA5 reanalysis product (Hersbach et al., 2020), such as boundary layer 

height (BLH) and ultraviolet radiation b (UVB). The EAR5 meteorological data is spatial grid data 

with a resolution of 0.25°×0.25° and available at https://cds.climate.copernicus.eu/cdsapp. The back 120 

trajectories were calculated backwards in time for 24 h and started 500 m above ground level by using 

the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model (Stein et al., 2015). The 

meteorological data from the Global Data Assimilation System (GDAS) with a horizontal resolution of 

1° longitude × 1° latitude were adopted in trajectory model. The back trajectories were then clustered 

into five clusters by using the Euclidian distance. Cluster of backward trajectories were widely 125 

employed to represent the main directions of air masses at monitoring sites (Song et al., 2021). 

 

2.2 Meteorological normalization method 

Random Forest is a versatile classifier that comprises multiple decision trees, applicable to 

classification, regression, and dimension reduction problems. When constructing each tree in the RF 130 

model, a dataset of the same size is selected for training, potentially containing duplicates. This 

sampling method, which involves putting instances back into the dataset, is referred to as bootstrap. At 

each node, the optimal segmentation is calculated by randomly selecting a subset of features from the 

entire set. The RF model describe the relationship between the time series of atmospheric pollutants 

concentrations and their corresponding feature. We constructed RF model based on original datasets, 135 

which contained air pollutants variables (O3, NO2, total non-methane hydrocarbon compounds 

(NMHCs) and 98 VOC species), time variables (trend, hour, weekday, month and day of year) and 

meteorological variables (T, RH, P, WS, WD, UVB, BLH and cluster). In the RF model, the air 

pollutants were the response variables, while the explanatory variables included time variables 

representing source emissions and meteorological variables representing physical and chemical 140 

processes. T, RH and UVB can characterize the local production and loss by chemical reactions. WD, 

WS and BLH are crucial for the dispersion of O3 and its precursors on a local scale. While cluster can 

reflect the effect of transport from remote regions. Time variables such as day of year, month, weekday 

and hour are used to indicate the seasonal, weekly, and daily cycles of emission intensity (Dai et al., 

https://cds.climate.copernicus.eu/cdsapp
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2023; Vu et al., 2019). The parameter ‘trend’ can indicate the long-term changes of air pollutants 145 

concentrations resulting from the implementation of policy measures (Vu et al., 2019),. Environmental 

regulations and policies aimed at reducing pollutant emissions were implemented during specific 

periods, and their effects became apparent in the long-term trends. Therefore, the "trend" not only 

reflected changes in emission sources closely related to activity levels but also represented the long-

term variations in air pollutants caused by the enforcement of policies and regulations. The parameter 150 

‘trend’which was calculated as Eq. (1):  

trend=year
i
+

tJD-1

Ni
+

tH

24Ni
                                                              (1) 

Where Ni is the number of days in the yeari (yeari is from 2019 to 2022), tH is hour time (0~23), tJD is 

day of the year (1~365) (Carslaw and Taylor, 2009). 

Temperature was a key factor influencing the rate of chemical reactions, with higher temperatures 155 

typically promoting the photochemical reactions that generate O3. UVB served as the driving force for 

the photochemical reactions, directly impacting O3 formation. Additionally, humidity played an 

important role in the chemical processes involved in O3 formation. Therefore, T, RH, and UVB were 

identified as the key features associated with atmospheric photochemical reactions. WS influences the 

dispersion of atmospheric pollutants. At high wind speeds, air pollutants tended to be dispersed, while 160 

low wind speeds resulted in local pollutant accumulation, leading to increased concentrations. WD 

determined the dispersion path of atmospheric pollutants. BLH was a critical factor affecting the 

vertical dispersion of pollutants. A higher boundary layer allowed pollutants to disperse more 

effectively into the upper atmosphere, reducing surface concentrations, whereas a lower boundary layer 

resulted in pollutant accumulation near the ground. Thus, WS, WD, and BLH were regarded as the 165 

features of atmospheric physical dispersion on a local scale. Cluster can serve as a feature of transport 

from remote regions. 

There are approximately 32,856 valid data with a time resolution of 1 hour. The RF model was trained 

using a forest of 1,000 trees. Training datasets of the RF model was conducted on 80% of the original 

datasets, and the remaining 20% was selected as testing datasets. Correlation coefficients (r²), root-170 

mean-square error (RMSE), FAC2 (fraction of predictions with a factor of 2), mean bias (MB), mean 

gross error (MGE), normalized mean bias (NMB), normalized mean gross error (NMGE), coefficient 

of efficiency (COE), and index of agreement (IOA) were used to evaluate model performance (Table 
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S2). Based on previous related research, these statistical measures indicated that the model performed 

well (Emery et al., 2017; Henneman et al., 2017; Vu et al., 2019). 175 

In the meteorological normalization process of O3 concentration, meteorological variables such as WS, 

WD, BLH, and cluster, which signify dispersion and transport, were randomly sampled. In the case of 

O3 precursors, namely NO2 and NMHCs, resampling was exclusively applied to WS, WD and BLH. 

NO2 and NMHCs have short atmospheric lifetimes, making them less susceptible to the influence of 

regional transport over large scales (Wang et al., 2023). The resampled specific meteorological 180 

variables, along with other initial variables, were fed into the RF model to predict air pollutants 

concentrations. The process of meteorological normalization involved replacing the original 

meteorological variables with those randomly resampled from the observation dataset, and using the 

established RF model to predict atmospheric pollutant concentrations under different meteorological 

conditions. The resampling of meteorological variables was conducted over the two-week period before 185 

and after the selected date, with the resampled hours remaining constant. This approach effectively 

preserved the seasonal and diurnal variations in the response variables (Vu et al., 2019). The 

resampling and prediction process were repeated 1000 times to generate 1000 predicted pollutants 

concentrations. The average values were taken as the final meteorologically normalized concentrations. 

In the meteorologically normalization process of O3 concentration, meteorological variables such as 190 

WS, WD, BLH, and cluster, which signify dispersion and transport, were randomly sampled. In the 

case of O3 precursors, namely NO2 and NMHCs, resampling was exclusively applied to WS, WD and 

BLH. NO2 and NMHCs have short atmospheric lifetimes, making them less susceptible to the influence 

of regional transport over large scales (Wang et al., 2023). To take into consideration that some 

NMHCs have relatively long lifetimes (such as acetylene), the cluster was incorporated as an 195 

explanatory variable in the RF model. For NMHCs with different lifetimes, the feature importance of 

the cluster was relatively low (around 1%). Therefore, it can be approximated that NMHCs were 

primarily influenced by dispersion effects within the uncertainty. Feature importance was used to 

reflect the overall significance of explanatory variables in the RF model. The importance was typically 

represented as an array, where each value corresponded to the importance score of a specific feature. 200 

These scores usually range from 0 to 1. The higher importance score indicated that the feature had a 

stronger predictive capability for the response variable. The RF model was constructed using 

R“deweather” packages developed by Carslaw (https://github.com/davidcarslaw/deweather).  
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2.3 Observation-based model 

An observation-based model is used in this study to simulate the formation of O3. The model is based 205 

on Regional Atmospheric Chemical Mechanisms version 2 (RACM2) updated with detailed isoprene 

oxidation mechanism (Goliff et al., 2013). As a 0-D model, this model incorporates dilution mixing 

within the boundary layer. However, vertical or horizontal transport of the air mass is not considered in 

this model. Detail of the observation-based box model can be found in Tan et al. (2017). The photolysis 

frequencies (J values) were calculated by using the Tropospheric Ultraviolet and Visible (TUV) model 210 

(Wolfe et al., 2016). Model calculations were constrained to measured trace gases, including inorganic 

species (NO2 and O3) and organic species (VOCs). Besides, physical parameters like J values, 

temperature, pressure and relative humidity were also constrained to measured values. The empirical 

kinetic modeling approach (EKMA) serves as a sensitivity test for the OBM. EKMA curve offers a 

means to quantify intricate nonlinear relationships among O3, NOx and VOCs, which can be used as a 215 

theoretical basis for designing O3 pollution reduction strategies (Tan et al., 2018). In this study, a total 

of 30 emission scenarios were established for both NOx and anthropogenic VOCs. Subsequently, O3 

concentrations resulting from changes in these precursor emissions were simulated across 900 

scenarios. The EKMA curve was plotted according to the O3 formation rate under different VOCs and 

NOx conditions. 220 

2.4 Positive matrix factorization 

The positive matrix factorization model is based on a large number of data to estimate the compositions 

and contributions of emission sources (Paatero and Tapper, 1994). The PMF model is widely used for 

VOCs source apportionment (Song et al., 2021; Yuan et al., 2010). In the PMF model, it is assumed 

that the pollutants concentrations measured at the receptor point can be represented as a linear sum of 225 

components emitted by different sources. Indeed, the temporal variation of atmospheric pollutants is 

influenced not only by emissions but also by dispersion. Direct PMF analysis based on observed data 

may lead to the loss of real information regarding emission sources. In this study, the observed and 

meteorologically normalized VOCs concentrations were fed into US EPA PMF v5.0 to identify and 

quantify major emission sources of VOCs. In contrast to the PMF results based on observation, 230 

examining the alterations in contributions of emission sources after meteorological normalization can 

reveal the impact of dispersion on VOCs sources. RF model for meteorological normalization was a 
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nonlinear machine learning algorithm. To satisfy the fundamental mathematical requirement of the 

PMF model, which stated that the total concentration was a linear combination of contributions from 

individual sources, the RF model was applied for meteorological normalization of individual VOC 235 

species and total VOCs in this study. This ensured that the sum of the meteorologically normalized 

VOC species remained linearly correlated with total VOCs (Fig. S4), indicating that the nonlinear 

processing did not significantly alter the overall structure of total VOC concentrations. With this 

approach, the results obtained by inputting the meteorologically normalized data into the PMF model 

were reasonable. 240 

3 Results and discussion 

3.1 Temporal variations of O3 and its precursors 

3.1.1 Long-term variations 

The RF model demonstrated effective performance in predicting most of the air pollutants. The R2 

values of O3, NO2 and NMHCs were 0.88, 0.83 and 0.76, respectively. The R2 values of 81% VOC 245 

species were in the range of 0.5 to 0.96, and the R2 values of a few VOC species with low 

concentrations were lower than 0.4. Fig. 1 displayed the time series of air pollutants concentrations 

based on observation and meteorological normalization from 2019 to 2022. After meteorological 

normalization, the concentrations of O3 and its precursors were primarily affected by local factors, 

including precursors emission and chemical reactions. From a long-term perspective, the trends of air 250 

pollutants concentrations after meteorological normalization were consistent with those based on 

observation. After meteorological normalization, MDA8 O3 significantly decreased in 2020, followed 

by a slight increase in 2021 and 2022. The observed annual variation in MDA8 O3 exhibited a similar 

trend. The meteorologically normalized annual mean MDA8 O3 in 2020 decreased by 10% compared 

to 2019, which aligned with the observed change of -8.7%. Based on both meteorologically normalized 255 

and observed results, the concentrations of NO2 and NMHCs showed declining trends, with a 

significant decrease in 2022. Compared to 2019, the meteorologically normalized concentrations of 

NO2 and NMHCs in 2022 decreased by 46.1% and 24%, respectively, while the observed 

concentrations of NO2 and NMHCs decreased by 45.7% and 16%, respectively. This indicated that the 
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variation in O3 concentration in Hangzhou was mainly driven by precursors emissions and chemical 260 

formation in the long term. 

From the diurnal variation of NO2 and NMHCs concentrations.From the diurnal trends of NO2 and 

NMHCs, the observed concentrations were lower during the day and higher at night, which was 

contrary to the daily trends of WS and BLH (Fig. S1). Stable WS and low BLH at night were not 

conducive to the diffusion of air pollutants, resulting in the accumulation of pollutants concentrations, 265 

while the situation was opposite during the day (Song et al., 2018). After the dispersion effect was 

“removed”, the precursors concentrations decreased at night and increased significantly during the day. 

The diurnal variation of the MDA8 O3 concentration showed a typical single-peak structure before and 

after meteorological normalization. Different from the change in the concentrations of precursors, the 

MDA8 O3 concentration increased at night and decreased during the day after meteorological 270 

normalization. At night, the titration reaction of NOx and the horizontal transport reduced the O3 

concentration (Li et al., 2022). The NOx concentration decreased after meteorological normalization, 

and the weakening of titration resulted in the increase of O3 concentration at night. In addition, the 

decrease in horizontal transport at night also resulted in the increase of O3 concentration after 

normalization. During the day, the destruction of the stable boundary layer strengthened the vertical 275 

mixing effect of the atmosphere, so that the O3 in the upper atmosphere mixed with the O3 generated 

near the surface, increasing the O3 concentration (Lei et al., 2023). When the effect of transport was 

“removed”, the daytime MDA8 O3 concentration decreased. It can be seen from the diurnal variations 

that meteorological factors directly affected the concentrations of precursors through dispersion. And 

mMeteorological factors not only directly affected the O3 concentration through horizontal and vertical 280 

transport, but also indirectly change O3 concentration by influencing precursor concentration and 

titration reaction. 
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Figure 1: Long-term trends of daily average concentrations of air pollutants (left) and mean diurnal 

variations of air pollutants concentrations (right) based on observation and meteorological normalization 285 

from 2019 to 2022. 

 

Fig. 2 showed the importance of the different features in the RF model. The time variables can 

represent anthropogenic emissions to some extent. Time variables were closely related to the periodic 

changes in human activities. For example, weekdays versus weekends and peak versus non-peak hours 290 

corresponded to different levels of anthropogenic emissions. Anthropogenic emissions influenced the 

seasonal variations of atmospheric pollutants, as seen in winter heating effects. Previous studies also 

used time variables to represent anthropogenic emissions (Dai et al., 2023; Vu et al., 2019). The 

chemical reaction of O3 formation was affected by meteorological factors such as UVB, T and RH. 

Local dispersion of O3 and its precursors was mainly affected by WS, WD and BLH, and long-distance 295 

transport of O3 was characterized by cluster. The importance of local chemical reactions to O3 was 

83.9%. UVB, influencing photochemical reactions, emerged as the most crucial factor for O3 

concentration, with an importance of 25.9%. This is consistent with the findings by WENG et al. 

(2022) in the same region. Additionally, the importance of RH and T to O3 was also evident, with the 
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importance of 18.2% and 11.3% respectively. Higher relative humidity was usually associated with a 300 

higher cloud cover, and relative humidity was generally negatively correlated with O3 (Liu et al., 2023). 

Relative humidity was related to cloud cover, exerting an indirect influence on aerosol radiation (Gao et 

al., 2021; Ma et al., 2021). Further considering the complex HOx chemical reactions, humidity and O3 

concentration were usually negatively correlated (Han et al., 2020). High humidity can enhance the 

reaction of O(1D) produced by O3 photolysis and H2O: O(1D) + H2O → 2OH (Wang et al., 2013). High 305 

temperatures increased the rate of most chemical reactions in the atmosphere, especially photochemical 

reactions that lead to O3 formation. The influence of temperature on O3 formation stemmed from the 

fact that the chemical kinetic rate increased with rising temperature (Li et al., 2020). Besides, elevated 

temperature enhanced the emission of biogenic VOCs (Lu et al., 2019). Hence, some O3 pollution 

events were associated with high temperature (Dang et al., 2021). Ding et al. (2023) found that 310 

temperature was the dominant factor affecting O3 concentration in Tianjin. Wind and BLH also played 

significant roles in O3 concentration (16.1%), mainly through vertical diffusion, vertical convection and 

horizontal convection (Li et al., 2012). 

Different from O3, BLH exerted a most significant impact on NO2 and NMHCs variation, with the 

importance value of 26.1% and 20%, respectively. Turbulent mixing in the active boundary layer 315 

facilitated the dispersion of air pollutants, whereas the stable boundary layer attenuated vertical 

diffusion, thereby intensifying the accumulation of air pollutants near the ground. (Huang et al., 2020). 

The importance of dispersion to NO2 and NMHCs was 34.2% and 30.7, respectively. Consequently, 

unfavorable meteorological dispersion conditions can result in the accumulation of precursors, causing 

O3 pollution even in scenarios with low emissions. Temporal variables representing emissions, such as 320 

month and day of year, also occupied important positions. The importance of month to NO2 and 

NMHCs exceeded 18%, which represented the significant influences of seasonal anthropogenic 

emissions on the concentrations of precursors. The importance of local emission, production and 

consumption to NO2 and NMHCs were 65.8% and 69.3%, respective (Fig. 2).  

 325 



13 

 

 

Figure 2: The importance of each feature to O3, NO2 and NMHCs in the RF model. 

 

3.1.2 Comparison between pollution and non-pollution periods 

O3 pollution occur frequently between May and September each year. In order to evaluate the 330 

influences of meteorological conditions on the concentrations of O3 and its precursors, the relative 

change of air pollutants concentrations caused by meteorological factors during O3 pollution and non-

pollution periods in warm season (From May to September) from 2019 to 2022 was analyzed. In the 

non-pollution periods, the negative effect of dispersion on the concentrations of NO2 and NMHCs was 

apparent, with average relative changes ranging from -9.3% to -27.98% for NO2 and -10.5% to -22.8% 335 

for NMHCs. Dispersion and transport have less influences on the MDA8 O3 concentrations, with 

average relative change ranging from -0.1% to 8.1%. During the pollution periods, the positive effects 

of dispersion and transport on O3 became evident (from 12.9% to 24.0%). Simultaneously, the negative 

effect of dispersion on the concentrations of precursors decreased and even transformed into positive 

effect. Especially in 2021, dispersion had a significant positive effect on NO2 and NMHCs, with an 340 

average relative change of 7.8% and 11.8%, respectively. O3 concentration was affected by the long-

distance transport as well as the deterioration of diffusion conditions in the pollution periods. 

Therefore, the influences of meteorological factors on O3 was more obvious than that of its precursors 

during pollution periods in the warm season. 

 345 
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Figure 3: Relative change caused by meteorological factors during O3 pollution (P) and non-pollution (Non-

P) periods in the warm season from 2019 to 2022, relative change = the observed concentrations - the 

meteorologically normalized concentrations/the observed concentrations. 

 350 

3.1.3 Variations during short-term pollution events  

In order to explore the effects of meteorological dispersion and transport on O3 concentration in the 

short term, we selected two typical pollution periods from 2019 to 2022. During the Period 1 (August 

31 to September 13 in 2020), the average MDA8 O3 in Hangzhou was 193 µg/m3 in the pollution, 

exceeding the national air quality standard (> 160 µg/m3, GB 3095-2012). At the same time, other cities 355 

in the YRD regions such as Shanghai, Nanjing, Wuxi, Changzhou, Suzhou and Jiaxing also 

experienced O3 pollution (Fig. S2). The Period 1 represented a large-scale regional pollution event. 

During the pre-pollution (August 31 to September 2 in 2020), dispersion and transport had negative 

effects on MDA8 O3. In the pollution periods (September 3 to September 10 in 2020), the 

concentration of locally generated O3 (depicted by the red line) remained below the limit, with an 360 

average concentration of 157 µg/m3, with only slight exceedances recorded on September 6 and 

September 9. Locally generated O3 was produced in the atmosphere through photochemical reactions 

involving VOCs and nitrogen oxides NOx (Song et al., 2021). However, the actual observed O3 
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concentration was much higher than the standard, and the O3 concentration was about 200 μg/m3 from 

September 6 to September 10. The positive contributions of dispersion and transport was significant 365 

(depicted by the red area) in the pollution periods, resulting in an 18.7% increase in the MDA8 O3 

concentration. During the post-pollution period, contributions of dispersion and transport decreased 

significantly.  

In the Period 2 (August 10 to August 22 in 2022), the average MDA8 O3 concentration in Hangzhou 

was as high as 211 µg/m3 during the pollution, while the concentration of MDA8 O3 in most 370 

surrounding cities was less than 160 µg/m3. Thus the O3 pollution in the Period 2 was influenced by 

both local formation and transport. During the pollution periods (August 13 to August 19 in 2022), 

locally generated O3 basically exceeded the standard, and the MDA8 O3 concentration was greater than 

180 μg/m3 on most days, with an average concentration of 185 µg/m3. On August 16, the 

meteorological negative contribution (-14.4%) appeared, exerting dilution effects on the O3 375 

concentration, but the MDA8 O3 on that day still exceeded 160 µg/m3, indicating intense local O3 

production. The positive contributions of dispersion and transport to O3 were significant during the 

pollution periods, the contributions ranged from 8.5% to 20.4%. For precursors, the concentration of 

NMHCs increased between 17 and 19 August (Fig. S3). The positive contribution of dispersion to NO2 

and NMHCs ranged from 4.4% to 13.7% and from 0.6% to 8.5% in pollution. During the post-380 

pollution (August 20 to August 22 in 2022), the contributions of dispersion and transport turned 

negative, indicating that meteorological diffusion conditions were in favor to the elimination of O3 

pollution.  
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 385 

Figure 4: The MDA8 O3 concentration based on observation and meteorological normalization, and the 

contributions of dispersion and transport to the MDA8 O3 during pre-pollution, pollution and post-pollution 

in the Period 1 and Period 2 (red: positive contribution, blue: negative contribution). 

 

3.2 VOC-NOx-O3 sensitivity 390 

Unfavorable meteorological conditions can cause the accumulation of O3, making it essential to have a 

clear understanding of local O3 formation pathways for effective control of O3 pollution. The 

relationship between O3 and NO2 under long-term trends was analyzed based on the observed (left) and 

meteorologically normalized (right) data (Fig. 5). The red dotted line showed the turning point of the 

relationship between O3 and NO2 concentrations. The blue triangle represented the average value of the 395 

MDA8 O3 during the warm season each year.  On the left side of the red dotted line, O3 concentration 

elevated with the increase of NO2 concentration. At this point, controlling the emission of NO2 was 

conducive to limiting the formation of O3, suggesting that the sensitivity of O3 formation was limited 

by NOx. On the right side of the red dotted line, O3 concentration decreased with the increase of NO2 

concentration. At this point, the inhibition effect of NOx emission reduction on O3 formation was not 400 

significant, and it is necessary to control the emission of VOCs, indicating that the sensitivity of O3 

formation was limited by VOCs (Kong et al., 2024). After meteorological normalization, the NO2 
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concentration in the turning point increased from 9 μg/m3 to 19 μg/m3, suggesting when NO2 

concentration was at a higher level, O3 concentration decreased with the increase of NO2 concentration. 

In other words, a higher NO2 value at the turning point suggested a greater likelihood that the actual 405 

NOx concentration was below that value, indicating a higher probability of being in a NOx-limited 

regime.In other words, the actual O3 production enter the VOC-limited regime more slowly. In 

addition, based on average results in warm season each year, the sensitivity of O3 formation before and 

after meteorological normalization was also shown in Fig. 5. Whether based on observed or 

meteorologically normalized data, the O3 formation from 2019 to 2021 was located in the VOC-limited 410 

regime, while O3 production enter the transition regime between VOC- and NOx-limited regimes. in 

2022. The transition regime referred to the region near the turning point, where O3 formation was 

sensitive to changes in both VOCs and NOx. 

 

 415 

Figure 5: The changes of O3 concentration on NO2 concentration from 2019 to 2022. The light gray circles 

represented the hourly O3 concentration. The orange circles represented the average value of O3 

concentration in each interval (2 μg/m3 ) of NO2. The blue triangle represented the average value of the 

MDA8 O3 during the warm season each year.   

 420 

The OBM was used to analyze the sensitivity of O3 formation. The OBM is zero-dimensional, meaning 

it excludes the processes of atmospheric transport and dispersion. Therefore, it is reasonable to 

“remove” the influences of transport and dispersion when using the OBM. The VOC-NOx-O3 

sensitivity and the net ozone production rate (P(O3)) exhibited significant differences before and after 

meteorological normalization in the short-term pollution events (Fig. 6). The O3 concentration in the 425 

Period 2 was affected by both transport and local formation. The concentration of local precursors 

increased after “removing” the effect of dispersion, resulting in the change of the sensitivity of O3 
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formation. Based on the observation results, the O3 formation in pollution was located in the strict 

NOx-limited regime. After meteorological normalization, O3 formation shifted towards enter the 

transition regime between VOC- and NOx-limited regimes. The limitation of O3 formation by NOx 430 

concentration was weakened. Besides, the meteorological normalized P(O3) was improved after 

removing the effect of transport on O3 concentration. After “removing” the influence of dispersion and 

transport on O3 concentrations, the value of P(O3) increased, indicating that the P(O3) calculated based 

on observation was likely underestimated. Therefore, when OBM was used to analyze the VOC-NOx-

O3 sensitivity, “removing” the influences of dispersion and transport was beneficial to accurately 435 

identify the limited regime of O3 formation. 
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Figure 6: The O3 isopleth diagram versus NOx and anthropogenic VOCs by using EKMA. The circles 440 

represented the average concentrations of NOx and VOC during pre-pollution, pollution and post-pollution 

in the Period 2. 

 

3.3 VOCs source apportionment 

The PMF method was further used for VOCs source analysis. The optimal solution was selected by 445 

examining the interpretability of factors and the distribution of scale residuals. Based on observed and 

meteorologically normalized concentrations, seven possible emission sources of VOC from May to 

September in 2022 were extracted by using the US EPA PMF v5.0. The possible emission sources of 

VOC included combustion, industrial source, vehicle exhaust, fuel evaporation, secondary and aging 

source, biogenic source and solvent use. The differences in the source profiles resolved from the 450 

observed and normalized concentrations were illustrated in Fig. S4S5.  

Combustion source was characterized by high concentrations of ethane, propane, and acetylene. Low 

carbon alkanes and alkenes were likely to be the products of incomplete combustion (Wang et al., 

2015). Acetylene was a typical tracer of combustion. Toluene and some halohydrocarbons, such as 

chloromethane, were also released from combustion (Liu et al., 2008). Additionally, the proportion of 455 

acetonitrile was also high, which was an important product of biomass combustion (De Gouw et al., 

2003). Biomass combustion emission was relatively intense in the YRD. Industrial source was 

characterized by halohydrocarbons (Sun et al., 2016), and 1,2-dichloroethane accounted for nearly 80% 

of this factor in both PMF results. Vehicle exhaust was featured by high concentrations of ethane, 

propane, isobutane, n-butane, isopentane, ethylene and toluene(Cai et al., 2010; Liu et al., 2008). Fuel 460 

evaporation was characterized by the high concentration and proportion of isopentane, isobutane, n-

butane and n-pentane. While the concentration of acetylene was minimal in this factor. Secondary and 

aging source was characterized by halohydrocarbons and oxygenated VOCs (OVOCs). Methacrolein 

(MACR) and methyl vinyl ketone (MVK) were products of the oxidation of isoprene (Mo et al., 2018). 

OVOC and halohydrocarbons have long lifetimes in the atmosphere and can serve as important tracers 465 

for aging sources (Yang et al., 2021). Biogenic source was featured by highest concentration of 

isoprene, primarily emitted by plants (Gong et al., 2018). Additionally, the oxidation products of 

isoprene (MACR and MVK) also contributed to this factor. Solvent source was characterized by high 
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concentrations of aromatics. Toluene, ethylbenzene, m-xylene and o-xylene, which were commonly 

used as the materials in solvents (Song et al., 2021). 470 

After smoothing outnormalizing the effect of dispersion, the absolute contribution of emission sources 

to VOCs changed. The mean absolute contribution of vehicle exhaust to VOCs increased most 

significantly, from 3.97 ppbv to 6.72 ppbv during the non-pollution periods, and from 6.84 ppbv to 9.76 

ppbv during the pollution periods. The mean absolute contribution of combustion decreased by 1.55 

ppbv and 2.09 ppbv to 2.86 ppbv and 5.85 ppbv during the non-pollution and pollution, respectively. 475 

Dispersion caused overestimation of the contribution of combustion to VOCs, which indicated the 

reduction in VOCs concentration by abatement measures can be offset by the effect of dispersion. 

Therefore, the impact of dispersion should be taken into account when evaluating the effectiveness of 

emission reduction measures on VOCs emission sources. The normalized contributions of solvent use 

and industrial source in the pollution were comparable, with an average absolute contribution of 2.78 480 

ppbv and 2.57 ppbv. In comparison to the result based on observation, the absolute contribution of fuel 

evaporation decreased from 1.94 ppbv to 1.33 ppbv after meteorological normalization during the 

pollution periods. After meteorological normalization, the contributions of biogenic source and 

secondary and aging source to VOCs during the pollution period were relatively low, with absolute 

contributions of 0.54 ppbv. 485 
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Figure 7: The absolute contributions of emission sources to VOCs based on observation and meteorological 

normalization during the non-pollution periods and pollution periods in the warm season in 2022. 

 490 

Fig. 8 showed the proportion of VOCs sources before and after meteorological normalization during 

the non-pollution periods and pollution periods. The pies for normalized source contributions 

illustrated the relative contribution of each source to the total VOC concentration after “removing” the 

effects of dispersion. According to the result of observation, combustion and vehicle exhaust were the 

largest contributors to VOCs, accounting for 27.1% and 24.3% in the non-pollution periods. And the 495 

proportion of combustion and vehicle exhaust increased to 33.7% and 29% in the pollution periods. 

During the pollution periods, the proportion of solvent use and fuel evaporation also increased, 

accounting for 15.9% and 8.2%, respectively. After the normalization of dispersion, vehicle exhaust 

became the predominant emission source of VOCs (37% in the non-pollution periods and 41.8% in the 

pollution periods), much higher than the proportion of other emission sources. According to the motor 500 

vehicle data released by the Zhejiang Public Security Department in 2022, the number of motor 

vehicles reached 23.29 million. During the non-pollution periods, the contributions of solvent use, 
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industrial source and combustion were comparable, accounting for the proportions ranging of 15.6% to 

16.2%. Compared to the non-pollution periods, However, the influence of combustion on VOCs 

increased (25.1%), while the proportion of industrial source and solvent use decreased during the 505 

pollution periods (11% and 11.9%). Straw burning occurred frequently in Zhejiang Province. 

According to the remote sensing monitoring of straw burning announced by the Ecological 

Environment Monitoring Center of Zhejiang Province, a total of 135 straw burning points in the 

province were monitored by satellite remote sensing from January to October 2022. The proportion of 

industrial emission and solvent use decreased during the pollution periods, and the VOC concentrations 510 

from these two sources also declined (Fig. 7), indicating that the implementation of shutdown or off-

peak production measures at the time of pollution warning were effective.  

 

 

Figure 8: Comparison of VOCs sources proportion before and after meteorological normalization during 515 

the non-pollution periods and pollution periods in the warm season in 2022. 

 

The O3 formation potential (OFP) is used to assess VOC photochemical activity (Carter, 2010), 

and it can be calculated by using Eq. (2): 

OFPi = MIRi × [VOCi]                                                              (2) 520 

Where MIRi represents the maximum incremental reactivity for VOC species i. [VOC]i represents the 

concentration of VOC species i (μg/m3). MIR value for each VOC species were taken from the updated 

Carter research results (http://www.engr.ucr.edu/~carter/reactdat.htm, last access: 24 February 2021). 
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The contributions of emission sources to OFP was further analyzed and shown in Fig. 9. Based on the 

result of the observation, the emission sources that contribute the most to OFP were solvent use (67.79 525 

μg/m3), vehicle exhaust (33.16 μg/m3) and combustion (29.16 μg/m3) during the pollution periods in 

the warm season in 2022. After “removing” the effect of dispersion, the contribution of vehicle exhaust 

to OPF increased to 47.25 μg/m3, while the contribution of solvent use and combustion to OFP 

decreased to 54.77 μg/m3 and 22.58 μg/m3, respectively. The actual contributions of combustion and 

solvent use to O3 formation were larger under dispersion effect. Thus, it was necessary to consider the 530 

cumulative effect of dispersion and enhance emission reduction measures for specific emission sources. 

For the Period 2 mentioned in section 3.1.3, we also found that the contributions of VOCs emission 

sources changed after meteorological normalization (Fig. S5 S6 and Fig .S6S7). After “removing” the 

dispersion effect, the contributions of solvent use and vehicle exhaust to OFP increased during the 

pollution, while the contribution of combustion and secondary and aging source decreased. From 535 

August 17 to August 19, the normalized contribution of solvent source to OFP was significant, with an 

average OFP of 105.81 µg/m3, indicating that the emission of solvent source was enhanced in these 

days. The dispersion effect of meteorological conditions on precursors can conceal the real information 

of emission sources and misjudge the formation process of O3. 

 540 

 
Figure 9: The contributions of emission sources to OFP based on observation and meteorological 

normalization during the pollution periods in the warm season in 2022. 
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4 Conclusion 545 

In this paper, a RF model was established based on the hourly data of four years of continuous 

observation, and some meteorological effects on the concentration time series of air pollutants were 

“removed”. Transport and dispersion effects were “removed” for O3 and dispersion effect was 

“removed” for its precursors. In the process of building the RF model, UVB, RH and T were found to 

be the most important factors affecting O3 concentration, with the importance of 25.9%, 18.2% and 550 

11.3%, respectively. Local influences, including precursor emissions and secondary photochemical 

reactions, occupied 83.9% of the importance to O3 concentration. To understand the mechanisms of 

local O3 formation, the meteorological effects were analyzed in long-term trends, pollution and non-

pollution periods in the warm season, as well as short-term pollution events. After decoupling 

meteorological effects, the concentration trends of O3 was consistent with those observed in the long 555 

term, indicating that O3 concentration was mainly driven by precursor emissions and local chemical 

reactions. During the pollution periods in the warm season from 2019 to 2022, the positive 

contributions of dispersion and transport to the MDA8 O3 ranged from 12.9% to 24.0%. The effects of 

dispersion and transport were further analyzed for different types of O3 pollution events. For 

transmission-type O3 pollution (Period 1), dispersion and transport contributed 18.7% to the MDA8 O3 560 

concentration, increasing the mean MDA8 O3 concentration from 157 μg/m3 to 193 μg/m3. For local 

and transmission-type O3 pollution (Period 2), the average locally generated MDA8 O3 concentration 

was 185 μg/m3. Under the influences of dispersion and transport, the average MDA8 O3 concentration 

increased to 211 μg/m3, and the positive contributions of dispersion and transport ranged from 8.5% to 

20.4%. BLH, as a parameter of dispersion, was of the highest importance for NO2 and NMHCs, 565 

accounting for 34.2% to NO2 and 30.7% to NMHCs. Therefore, precursor concentrations were 

accumulated even in the case of low emissions when the dispersion condition was poor, promoting the 

photochemical production of O3. This also corresponds to the fact that even with the implementation of 

precursor emission reduction policies, O3 concentrations in urban areas remain persistently high. 

By decoupling the influences of meteorological conditions, it was observed that the sensitivity of local 570 

O3 formation and the apportionment of VOCs emission sources have changed. From the EKMA of 

short-term pollution event, the sensitivity of O3 formation in Period 2 shifted towardschanged from the 

NOx-limited regime to the transition regime between VOC- and NOx-limited regimes after 
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meteorological normalization. Based on PMF model, the changes of VOCs emission sources after 

“removing” the removal of dispersion effect during the warm season in 2022 were further analyzed. 575 

After “removing” the effect of dispersion, the absolute contribution of vehicle exhaust to VOCs during 

the pollution was 9.76 ppbv, accounting for 41.8%, and the contribution of vehicle exhaust to OFP was 

47.25 μg/m3. The contribution of vehicle exhaust to VOCs was underestimated due the dispersion 

effect. After meteorological normalization, combustion remained an important source of VOCs, 

contributing 25.1% during the pollution period, which was overestimated by 8.6%. The normalized 580 

contribution of solvent use to VOCs decreased to 11.9%, but it is undeniable that solvent use was still a 

crucial contributor to OFP, contributing 54.77 μg/m3.  Neglecting the influences of meteorology can 

lead to a deviation in emission reduction priorities, and the effectiveness of emission reduction may be 

masked by unfavorable meteorological conditions. The conclusion of this research suggested that 

meteorological fluctuations can interfere with the results of OBM and PMF. Decoupling meteorological 585 

effects before using traditional models was beneficial for deepening the understanding of local O3 

formation and improving the rationality of precursor emission reduction measures. 
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