
Response to Reviewer #1

General comments
The manuscript titled “Insights on ozone pollution control in urban areas by decoupling
meteorological factors based on machine learning” uses a machine learning method to
decouple the meteorological effects on concentrations of O3 and its precursors. This method
provides better understanding of O3 precursor sensitivity and sources of VOCs. The article is
well organized. It can be accepted after considering the following suggestions.

Response:
We would like to express our gratitude to Reviewer #1 for their thorough review of our manuscript and
for their valuable and constructive comments. We have carefully revised the manuscript in accordance
with the reviewer’s suggestions. Below, we provide point-by-point responses to the reviewer’s
comments. The reviewer’s questions are presented in italics, while our responses are in standard font.
The corresponding revisions to the manuscript are highlighted in blue. All changes to the original
submission are tracked in the revised manuscript. Finally, we would like to once again thank the
reviewer for their positive remarks.

Comments
1. Line 15: The term “atmospheric environment capacity” sounds weird.
Response:
We apologize for the unclear wording in our previous statement. What we intended to express was
“atmospheric capacity” or “air quality capacity”, referring to the maximum amount of pollutants that
the atmosphere in a specific area can purify. We've revised the following sentence for a more natural
and widely accepted phrasing:
When meteorological conditions deteriorate, the atmosphere's capacity to cleanse pollutants decreases,
leading to the accumulation of air pollutants.

2. Line 81-83: This statement is not justified. The emission reduction policies do not necessarily rely
on the two methods, and other methods such as air quality model can also provide basis.
Response:
We apologize for the previous overly definitive statement and have revised the paragraph as follows:
The observation-based model (OBM), positive matrix factorization model (PMF), and air quality
model are commonly used to analyze the causes of O3 pollution and provide theoretical support for
reducing O3 precursors. However, the results of OBM and PMF, which rely on observed data, may be
influenced by fluctuations in meteorological conditions, potentially introducing bias.

3. Lines 107-109: How to measure these meteorological factors should be given.
Response:
Thanks to the reviewer's comments, we have added the measurement information of meteorological
factors:
The meteorological parameters measured included temperature (T), relative humidity (RH),
atmospheric pressure (P), wind speed (WS), and wind direction (WD), which were measured by the
WS500-UMB instrument manufactured by LUFFT Corporation.



4. Line 130: the “cluster” should be explained here.
Response:
We appreciate the reviewer’s comments. We have added the following description when we first
mention "cluster" on line 115:
Cluster of backward trajectories were widely employed to represent the main directions of air masses at
monitoring sites (Song et al., 2021).

5. Lines 131-132: From my understanding, the variable “trend” just characterize the date and hour.
Why does it relate to the implementation of policy measures?
Response:
We appreciate the reviewer’s comments. We used the term "trend" to capture the long-term changes in
emission sources, which were closely related to activity levels. Environmental regulations and policies
aimed at reducing pollutant emissions were implemented during specific time periods, and the effects
of these measures required time to manifest. Therefore, the "trend" not only reflected the changes in
emission source intensity but also represented the long-term variation in air pollutants caused by the
enforcement of policies and regulations. (Carslaw and Taylor, 2009; Vu et al., 2019). We have added
the following description in the manuscript:
The parameter ‘trend’ can indicate the long-term changes of air pollutants concentrations resulting from
the implementation of policy measures (Vu et al., 2019). Environmental regulations and policies aimed
at reducing pollutant emissions were implemented during specific periods, and their effects became
apparent in the long-term trends. Therefore, the "trend" not only reflected changes in emission sources
closely related to activity levels but also represented the long-term variations in air pollutants caused by
the enforcement of policies and regulations. The parameter ‘trend’ was calculated as Eq. (1):

6. Line 137-138: It is better to randomly split the data into ten subsets, and randomly use nine of them
for training and the rest one for testing.
Response:
Thanks to the reviewer's comments. In this paper, we used 80% of the data as the training set and 20%
as the testing set. This method has been widely applied in many studies and has proven to be effective
(Grange et al., 2018; Liu et al., 2022a). The 10-fold cross-validation you mentioned could further
enhance the reliability of model evaluation, and we will consider using this approach for data analysis
in future research. Thank you once again for your suggestion.

7. Line 125: For the performance of the random forest model, which variables are response variable
and which are predictors should be clarified.
Response:
We appreciate the reviewer’s comments. We have specified which variables are response variables and
which are predictor variables:
In the RF model, the air pollutants were the response variables, while the explanatory variables
included time variables representing source emissions and meteorological variables representing
physical and chemical processes.

8. Line 141: Different VOCs species has different lifetime. Some VOCs with low reactivity have longer



lifetime, which can go through regional transport. The difference among different VOCs species should
be considered.
Response:
Thanks to the reviewer's comments The point you raised about the varying lifetimes of different VOCs
is indeed important. We included the cluster representing long-range transport as an explanatory
variable in the RF model for NMHCs and several VOCs with different lifetimes. The results showed
that the feature importance of the cluster was the lowest, ranging from 0.5% to 1.2%. The importance
of cluster for acetylene, a long-lived compound, was 1.2%, while for ethylene, a short-lived compound,
it was 0.5%. For NMHCs, the cluster importance was 1%. Compared to O3, the impact of the cluster on
VOCs was insignificant. The uncertainty of the cluster's impact on VOCs was approximately 1%.
Within this margin of error, we approximated that VOCs were primarily influenced by dispersion
effects. We have added the following clarification to the manuscript:
To take into consideration that some NMHCs have relatively long lifetimes (such as acetylene), the
cluster was incorporated as an explanatory variable in the RF model. For NMHCs with different
lifetimes, the feature importance of the cluster was relatively low (around 1%). Therefore, it can be
approximated that NMHCs were primarily influenced by dispersion effects within the uncertainty.

9. Lines 144-145: Which time periods are selected for the resampling? The whole four years or the
month to which the investigated day belongs to? This should be clarified.
Response:
We appreciate the reviewer’s suggestion. We have clarified the resampling period, and the revised
sentence is as follows:
The resampling of meteorological variables was conducted over the two-week period before and after
the selected date, with the resampled hours remaining constant. This approach effectively preserved the
seasonal and diurnal variations in the response variables (Vu et al., 2019).

10. Line 187: I suggest to give some quantitative description of the consistency.
Response:
We appreciate the reviewer’s suggestion. We have given some quantitative description of the
consistency, and the revised sentence is as follows:
After meteorological normalization, MDA8 O3 significantly decreased in 2020, followed by a slight
increase in 2021 and 2022. The observed annual variation in MDA8 O3 exhibited a similar trend. The
meteorologically normalized annual mean MDA8 O3 in 2020 decreased by 10% compared to 2019,
which aligned with the observed change of -8.7%. Based on both meteorologically normalized and
observed results, the concentrations of NO2 and NMHCs showed declining trends, with a significant
decrease in 2022. Compared to 2019, the meteorologically normalized concentrations of NO2 and
NMHCs in 2022 decreased by 46.1% and 24%, respectively, while the observed concentrations of NO2

and NMHCs decreased by 45.7% and 16%, respectively.

11. Line 190: “From the diurnal trends of NO2 and NMHCs,” sounds weird.
Response:
We appreciate the reviewer’s comments. We have revised the sentence to the following:
From the diurnal variation of NO2 and NMHCs concentrations.



12. Line 207: “And” is redundant.
Response:
We appreciate the reviewer’s comments. We have deleted it.

13. Lines 205-210: O3 concentrations can affect the nighttime NO2 and VOCs by titration and
ozonolysis reactions of alkenes. How do you evaluate it?
Response:
We appreciate the reviewer’s comments. O3 can react with NO to produce NO2, which leads to an
increase in nighttime NO2 concentrations. From the diurnal variation of observed O3 and NO2, it can be
seen that the nighttime O3 concentration decreased, the corresponding NO2 concentration increased.
High concentrations of alkenes can produce Criegee intermediates (CIs) through ozonolysis, which can
rapidly decompose into a large number of radicals, facilitating the oxidation of VOCs and participating
in radical cycling reactions, ultimately promoting O3 formation. However, this reaction is more
importance in areas with high alkene emissions, such as petrochemical regions (Yang et al., 2024). In
this study, the concentration of alkenes is below 10 ppb, so the impact of this reaction is minimal.

14. Fig. 2. How to evaluate the importance of different features should be depicted in the Method.
Response:
We appreciate the reviewer’s suggestion. We have added the following explanation in the Method:
Feature importance was used to reflect the overall significance of explanatory variables in the RF
model. The importance was typically represented as an array, where each value corresponded to the
importance score of a specific feature. These scores usually range from 0 to 1. The higher importance
score indicated that the feature had a stronger predictive capability for the response variable.

15. Line 215: the reason why the time variables can represent anthropogenic emissions should be
clarified.
Response:
We appreciate the reviewer’s comments. We have added the following clarification:
Time variables were closely related to the periodic changes in human activities. For example, weekdays
versus weekends and peak versus non-peak hours corresponded to different levels of anthropogenic
emissions. Anthropogenic emissions influenced the seasonal variations of atmospheric pollutants, as
seen in winter heating effects. Previous studies also used time variables to represent anthropogenic
emissions (Dai et al., 2023; Vu et al., 2019).

16. Line 226-227: This reaction will cause more production of OH, which will increase O3 production.
So this probably cannot explain the negative correlation between RH and O3. Higher RH generally
corresponds to more cloud and precipitation, causing lower O3 concentrations. The reason for the
negative correlation should be double checked.
Response:
We appreciate the reviewer for pointing out this key issue. We have removed the explanation related to
"HOx chemical reactions" and revised it to the following statement:
Higher relative humidity was usually associated with a higher cloud cover, and relative humidity was
generally negatively correlated with O3 (Liu et al., 2023).



17. Line 227-229: In fact, reaction rates does not necessarily increased with temperature increasing.
In fact, many important reactions such as NO2+OH and some VOCs+OH will get slower with higher
temperature.
Temperature not only affects chemical reactions and precursors emissions, but also affects physical
processes. How do you isolate the physical effects?
Response:
We apologize for the unclear expression. We have revised it to the following statement:
High temperatures increased the rate of most chemical reactions in the atmosphere, especially
photochemical reactions that lead to O3 formation.
Additionally, the reviewer’s important point that “Temperature not only affects chemical reactions and
precursor emissions, but also affects physical processes” is very meaningful. In this study, temperature
was primarily used as an indicator of chemical reactions. In our machine learning approach, we used
the parameters that more directly affect physical processes, such as WS, WD, and BLH. Therefore, we
mainly considered the influence of temperature on chemical reactions. The reviewer's question is
something we should further contemplate. Thank you once again for your comments.

18. Line 281: The term “locally generated O3” should be defined or explained here.
Response:
We appreciate the reviewer’s comments. We have included the definition of locally generated O3.
Locally generated O3 was produced in the atmosphere through photochemical reactions involving
VOCs and nitrogen oxides NOx (Song et al., 2021).

19. Line 323: “…more slowly” this description is not clear. Higher value of the turning point indicates
the real NOx concentrations is more likely lower than this value, suggesting a higher possibility to be
in the NOx-limited regime.
Response:
We appreciate the reviewer’s comments. We have revised the sentence as follows:
In other words, a higher NO2 value at the turning point suggested a greater likelihood that the actual
NOx concentration was below that value, indicating a higher probability of being in a NOx-limited
regime.

20. Line 327: The transitional regime is not defined here. Do you mean the turning points is
transitional regime?
Response:
We appreciate the reviewer’s comments. We have added the definition as follows:
The transition regime referred to the region near the turning point, where O3 formation was sensitive to
changes in both VOCs and NOx.

21. Figure 5. The relationship between O3 and NO2 and the turning point are acquired from the
normalized O3 and NO2. However, it seems that the average values of NO2 for each year are acquired
from the observed values, rather than the normalized values. The reason for the inconsistency should
be clarified.
Response:
We appreciate the reviewer’s comments. We apologize for any misunderstanding. In lines 312-314, we



described the data sources for Figure 5. All the data in the left panel of Figure 5 were based on
observed data, including the annual average O3 values (blue triangles). While all the data in the right
panel were derived from meteorologically normalized data, with the annual average O3 values also
calculated from the meteorologically normalized data. The small differences observed after annual
averaging may have contributed to the misunderstanding. We have further added the following
description:
The relationship between O3 and NO2 under long-term trends was analyzed based on the observed (left)
and meteorologically normalized (right) data (Fig. 5). The red dotted line showed the turning point of
the relationship between O3 and NO2 concentrations. The blue triangle represented the average value of
the MDA8 O3 during the warm season each year.

22. Figure 5 and Figure 6. In Figure 5 O3 sensitivity shifts from a VOC-limited regime to a
NOx-limited regime, while in Figure 6, this shift is toward inverse direction. The contradiction should
be explained.
Response:
We appreciate the reviewer’s comments. Figure 5 presented a long-term analysis of O3 formation
sensitivity, showing that the annual O3 formation sensitivity located in the VOC-limited regime after
meteorological normalization. The corresponding NO2 concentration is higher when entering the
VOC-limited regime, indicating that under low NOx conditions, it continued to be in the NOx-limited
regime. Figure 6 illustrated the O3 sensitivity analysis during a pollution event, revealing that the O3

formation sensitivity during the event shifted towards the transition regime between VOC- and
NOx-limited regimes after meteorological normalization. This implied that during O3 pollution event,
coordinated control of both VOCs and NOx was necessary. O3 formation sensitivity varied between
long-term and short-term pollution events.

23. Figure 6. How do you judge that O3 sensitivity shifts from NOx-limited regime to transition regime?
It seems that it is in a NOx-limited regime for both cases.
Response:
We appreciate the reviewer’s comments.We have made the following adjustments:
Based on the observation results, the O3 formation in pollution was located in the strict NOx-limited
regime. After meteorological normalization, O3 formation shifted towards the transition regime
between VOC- and NOx-limited regimes. The limitation of O3 formation by NOx concentration was
weakened.



Figure 6: The O3 isopleth diagram versus NOx and anthropogenic VOCs by using EKMA. The circles

represented the average concentrations of NOx and VOC during pre-pollution, pollution and post-pollution

in the Period 2.

24. Line 344: “besides, ….” This sentence is unclear to me.
Response:
We apologize for any lack of clarity in our expression. We intended to convey that after meteorological
normalization, the ozone formation rate P(O3) increased. As shown in Figure 6, the red points are
located in a yellow background, corresponding to higher P(O3) values. We have revised the statement
as follows:
After removing the influence of dispersion and transport on O3 concentrations, the value of P(O3)
increased, indicating that the P(O3) calculated based on observation was likely underestimated.

25. Lines 412-414: It is unclear what the decrease or increase of VOCs is relative to. Is it relative to
non-pollution period, or observed concentrations?
Response:
We apologize for any unclear expression. We have revised the statement as follows:
During the non-pollution periods, the contributions of solvent use, industrial source and combustion
were comparable, accounting for the proportions ranging of 15.6% to 16.2%. Compared to the
non-pollution periods, the influence of combustion on VOCs increased (25.1%), while the proportion
of industrial source and solvent use decreased during the pollution periods (11% and 11.9%).

26. Lines 417-420: Here, you state that the proportion of industrial emission and solvent use
decreased. This does not mean the concentrations of VOCs decrease. So this cannot demonstrate the
shutdown measures are effective. I suggest to additionally show the changes of VOCs concentrations
from different sources in this Figure or in supplementary materials.
Response:
We appreciate the reviewer’s comments. We have shown the variation of VOC concentrations from
different sources in Figure 7, where it can be observed that VOCs from industrial emissions and solvent



usage have decreased. We will add the following explanation:
The proportion of industrial emissions and solvent usage decreased during the pollution periods, and
the VOC concentrations from these two sources also declined (Fig. 7), indicating that the shutdown or
off-peak production measures implemented during pollution warnings were effective in controlling
emissions from these sources.
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