
Referee #2 

 

We would like to thank the anonymous referee for his/her comprehensive review and valuable 

suggestions. We have made revisions based on the referee's suggestions and have responded to all 

comments point by point. The page and line numbers of all revisions are referenced to the revised 

manuscript. References related to the responses are listed in the end of this document. 

 

Summary: 

In this work, the authors conduct atmospheric CO2 inversions to estimate global NEEs using OCO-

2 and OCO-3 XCO2 retrievals and the Global Carbon Assimilation System, version 2(GCASv2). 

Three sets of experiments have been designed by the authors to evaluate the impact of using different 

OCO XCO2 observations to constrain the posterior carbon fluxes: using OCO-3 XCO_2 only; using 

OCO-2 XCO2 only; and using OCO-2 & OCO-3 XCO2 combined. The overall results suggest using 

combined OCO-2&OCO-3 XCO2 retrievals can yield better consistency when compared with in-

situ observations while using OCO-3 XCO2 retrievals alone presents largest biases. The results and 

discussion reveal some interesting patterns in global and regional NEEs across different 

experimental setups and provided some insights on the choice of satellite observations to constrain 

global NEEs, but lack in-depth discussion of the resulted behavior of using OCO-3 XCO2 only, 

OCO-2 XCO2 only, and OCO-2&OCO-3 XCO2 combined. Please see below sections for detailed 

comments and I would expect the manuscript to be published once comments and questions have 

been resolved. 

 

Main comments/questions: 

More information needed for the GCASv2. I understand the GCASv2 is an established model and 

described in at least two other published journal articles, but detailed information on the model setup, 

inversion methods, and error covariance metrics can be very helpful for readers of this manuscript 

to better understand the inversion system and results. Also see related comments in the Technical 

notes section. 

Response: Thank you for this suggestion. We have added more information about GCASv2 in 

section 2.1 and the inversion settings in this study in section 3 in the revised manuscript. 

In Section 2.1, the following paragraphs or sentences have been added (Pages 4-7, lines 107-166): 

“……to implement the inversion of surface fluxes. MOZART-4 is an offline global chemical 

transport model developed in the National Center for Atmospheric Research (NCAR). It can be 

driven by essentially any meteorological data set and with any emissions inventory, so there is not 

a unique standard simulation (Emmons et al., 2010). We turned off all gas-phase, heterogeneous 

chemical reactions, aerosol and deposition processes in the MOZART4 model and added a 

corresponding number of CO2 tracers according to the ensemble number in GCASv2, in order to 

allow the model to run more quickly. EnSRF assimilates observations in a sequential way, and 

obviates the need to perturb the observations. It shows good performance as long as the observation 

errors are uncorrelated (Houtekamer and Mitchell, 2001). GCASv2 is an upgrade from the GCAS 

(Zhang et al., 2015) that was established in 2015. The main upgrades include: 1) the addition of an 

assimilation module for satellite observations; 2) a change in the assimilation algorithm (i.e., 

EnSRF); 3) a change in the operational flow of the assimilation system; 4) the addition of a ‘super-

observation ’  scheme; 5) inversion of fluxes at the grid scale; and 6) an improvement in the 



localization scheme. 

GCASv2 runs cyclically, with a two-step optimization strategy in each assimilation window 

(1 week). In the first step, the prior fluxes (𝑿𝟎
𝒃) in each grid are independently perturbed with a 

random number (δ𝑖) drawn from a Gaussian distribution with mean of 0 and standard deviation of 

1, and a scaling factor (λ) that represents the uncertainty of each prior flux (Eq. 1). 

𝑿𝒊
𝒃 = 𝑿𝟎

𝒃 + λ × δ𝑖 × 𝑿𝟎
𝒃 , i = 1, 2, ... , N      (1) 

Then, the perturbed fluxes are put into the MOZART-4 model to simulate ensembles of CO2 

concentrations. The CO2 profiles are sampled according to the locations and times of XCO2 

observations and converted to the simulated ensembles of XCO2 (𝑋𝐶𝑂2,𝑖
𝑚 ) according to prior XCO2 

(𝑋𝐶𝑂2
𝑎), prior XCO2 profiles (𝑦𝑎,𝑗), pressure weighting function (ℎ𝑗), and averaging kernel (𝑎𝑗) of 

the XCO2 retrievals (Eq. 2).  

𝑋𝐶𝑂2,𝑖
𝑚 = 𝑋𝐶𝑂2

𝑎 + ∑ ℎ𝑗𝑎𝑗(𝐴(𝐶𝑂2,𝑖) − 𝑦𝑎,𝑗)𝑗                    (2) 

Subsequently, the perturbed fluxes (𝑿𝒊
𝒃), the simulated XCO2 ensembles and the observed XCO2 (y) 

are used in EnSRF to optimize the carbon fluxes (𝑿𝒂) (Eqs. 3-5). The background error covariance 

matrix (𝑷𝒃) is calculated based on 𝑿𝒊
𝒃 according to Eq. (3), where 𝑿̅𝒃 is the mean of 𝑿𝒊

𝒃. The 

posterior flux (𝑿𝒂) is a correction to the prior flux using the bias between simulated and observed 

XCO2 (𝐲 −𝑯𝑿𝒃) and the Kalman gain matrix (K) (Eq. 4). And K is calculated according to Eq. (5), 

which is a function of model-data mismatch error covariance matrix (R) and the background error 

covariance matrix. 

𝑷𝒃 =
1

𝑛−1
∑ (𝑿𝒊

𝒃 − 𝑿̅𝒃)𝑛
𝑖=1 (𝑿𝒊

𝒃 − 𝑿̅𝒃)𝑇                  (3) 

𝑿𝒂 = 𝑿𝒃 + 𝐊(𝐲 −𝑯𝑿𝒃)                             (4) 

 𝐊 = 𝑷𝒃𝑯𝑇(𝑯𝑷𝒃𝑯𝑇 + 𝑹)−1                          (5) 

In the second step, the optimized carbon fluxes are put into the MOZART-4 model to obtain 

the initial field of the next assimilation window. This scheme allows compensation of inversion 

results between neighboring windows and mass conservation between flux adjustments and 

concentration changes. 

…… In this method, it first calculates the simulated XCO2 corresponding to each observed 

XCO2 based on the observation time and location, and then, it performs a retrieval error-weighted 

average for all the simulated and observed XCO2 falling within the same model grid in the DA 

window, respectively. 

There are inevitably spurious correlations in the EnKF method, to reduce the effect of spurious 

correlations, a two-layer localization scale was adopted in GCASv2, which is used to select which 

observations can be used for the flux analysis for each grid. The localization technique is based on 

the correlation coefficient between the simulated XCO2 ensembles (𝑋𝐶𝑂2,𝑖
𝑚 ) in each observation 

location and the perturbed fluxes (𝑿𝒊
𝒃) in current model grids and their distances. The observations 

will be accepted for assimilation if the distance is less than 500 km and the correlation coefficient 

is greater than 0; and if the distance is greater than or equal to 500 km and less than 3000 km and 

the correlation coefficient should be significant (p<0.05). Otherwise, the observations are not 

accepted. The reason for this scheme is that considering the atmospheric horizontal diffusion, we 

believe that there must be a correlation between the flux of one grid and the concentrations in its 



neighbouring grids, and therefore observations are accepted as long as this correlation coefficient is 

greater than zero. In contrast, at distant locations (>500 km), where the effect of atmospheric 

horizontal diffusion is essentially negligible, the relationship between source and receptor is mainly 

due to atmospheric transport, and in order to minimize spurious correlations we require that such 

correlations must be significant. More details of the system can be found in Jiang et al (2021).” 

 

In Section 3 (see Page 11, lines 245-254), 

“……and the FIRE and FOSSIL emissions are prescribed. According to Eq. (1), the prior NEE 

and OCN fluxes were perturbed using Eq. (6). 

𝑿𝒊
𝒃 = 𝜆𝑁𝐸𝐸 × δ𝑖,𝑁𝐸𝐸 × 𝑿𝑵𝑬𝑬

𝒃 + 𝜆𝑜𝑐𝑛 × δ𝑖,𝑜𝑐𝑛 × 𝑿𝑶𝑪𝑵
𝒃 +𝑿𝑭𝒊𝒓𝒆

𝒃 + 𝑿𝑭𝒐𝒔𝒔𝒊𝒍
𝒃 , i = 1, 2, ..., N   (6) 

where 𝑿𝑵𝑬𝑬
𝒃  , 𝑿𝑶𝑪𝑵

𝒃  , 𝑿𝑭𝒊𝒓𝒆
𝒃  , and 𝑿𝑭𝒐𝒔𝒔𝒊𝒍

𝒃   represent the prior fluxes of NEE, OCN, FIRE, and 

FOSSIL, respectively; δ𝑖 is random perturbation samples, which is independent between grids; 

𝜆𝑁𝐸𝐸 and 𝜆𝑜𝑐𝑛 are the scaling factors for prior NEE and OCN fluxes, which were set to be 6 and 

10 in this study, respectively. As described above, the prior fluxes have a spatial resolution of 1° × 

1°, for δ𝑖,𝑁𝐸𝐸 and δ𝑖,𝑜𝑐𝑛, we adopted a spatial resolution of 3° × 3°, and the outputs of the posterior 

fluxes have the same spatial resolution with the prior fluxes, that means in each 3° × 3° grid, the 

prior fluxes were adjusted with a same factor.” 

 

 

How are the posterior fluxes constrained when there’s no observation data in GCASv2? For 

example, in the Exp_OCO3 at high latitudes, I would assume the posterior fluxes are less updated 

and would be similar to prior fluxes since no new information has been presented to the inversion 

system, but Figure 3 and Figure 6 seem to suggest the posterior fluxes changed substantially when 

compared to prior. More information on the EnSRF would be helpful for the readers to understand 

the inversion process. 

Response: Thank you for this suggestion. Since the atmosphere is moving, a change in flux at a 

certain location can cause a change in concentration downwind, i.e., observations downwind can 

sense the flux change at that location, and thus we can use observations downwind to constrain the 

flux in that area. At high latitudes, although there are no observations of the OCO-3, observations 

downwind this region will be absorbed for assimilation by two-layer localization technique. The 

two-layer localization was employed to filter the observations used in the inversion, mainly to 

reduce the effect of spurious correlations. In the revised manuscript, we have added more 

information about the EnSRF and the two-layer localization technique, which has been detailed in 

the content of the previous response. 

 

I’m curious about the authors' insights on why in general using OCO-2 XCO2 alone and OCO-

2&OCO-3 XCO2 combined outperforms the experiment using OCO-3 only? Would there be any 

other reason except the spatial coverage and potential bias in OCO-3 XCO2(line 263)? 

Response: Thanks! We further analyzed the reasons for the poor assimilation of OCO-3 XCO2 alone, 

and found that, in addition to the absence of observations in regions beyond 52° North and South 

latitudes, the varied observations timing and the cyclical variations in the observation data amount 

had an important influence on the inversion results. We first examined weekly changes in the data 

amount of OCO-3 using the re-grided data as described in Section 2.3, and found that there are very 



significant cyclical fluctuations in the data amount from OCO-3 (Figure S4a). For the observation 

time, all observations of OCO-2 were at 1:30 p.m. local time (LST), whereas that of OCO-3 were 

variable, with only about 14% of the observations near 13:30 p.m. LST and about 54% in the 

morning or after 4:00 p.m. LST (Figure S1). In order to quantify these effects, we added 3 additional 

inversion experiments, which were named as Exp_OCO2r, Exp_OCO3tc, and Exp_OCO2ts (Table 

S1). In Exp_OCO2r, only the OCO-2 XCO2 retrievals located between 52°S and 52°N retrievals 

were assimilated, in Exp_OCO3tc, all the observation times of the OCO-3 XCO2 retrievals were 

changed to 1.30 p.m. LST, and in Exp_OCO3ts, only OCO-3 data with observation times between 

12 and 3 p.m. LST were assimilated. We find that the lack of data beyond 52° North and South 

latitudes is the main reason for the poor assimilation of OCO-3, and the observation time as well as 

the cyclical variations in the observation number also have an important effect on the results. In the 

revised manuscript, we have added two long paragraphs to discuss the issue. 

 

We have added the following paragraphs in Section 4.5 in the revised manuscript (see Lines 463-

506, Pages 21-23):  

“Since OCO-3 has similar observation uncertainties of XCO2 with OCO-2 (Taylor et al., 2023), the 

poor performance of assimilating OCO-3 XCO2 retrievals (Exp_OCO3) may be related to that 1) 

OCO-3 lacks observations beyond 52° North and South latitudes (Figure 1a); 2) the observation 

time different from OCO-2; and 3) its spatial coverage between 52°S and 52°N. We first examined 

weekly changes in the data amount of OCO-3 using the re-grided data as described in Section 2.3, 

and found that there are very significant cyclical fluctuations in the data amount from OCO-3 

(Figure S4a). Every 8 weeks or so, there is a trough in the data amount. There is a difference of 

about 5 times between the weeks with the highest and the lowest data amount, and in the weeks with 

least data amount, there were essentially no observations in the northern hemisphere (Figure S4b). 

This implies that the surface carbon fluxes are largely unconstrained in the Northern Hemisphere, 

especially at mid- to high-latitudes, during the weeks with low observational data, resulting in 

poorer assimilation performance than for OCO-2. For the observation time, all observations of 

OCO-2 were at 1:30 p.m. local time (LST), whereas that of OCO-3 were variable, with only about 

14% of the observations near 13:30 p.m. LST and about 54% in the morning or after 4:00 p.m. LST 

(Figure S1). For reasons such as coarser model resolution, the global atmospheric chemical transport 

models generally simulate atmospheric concentrations better only in the afternoon, when boundary 

layer heights are at their highest and atmospheric mixing is at its best, so assimilating these 

observations in the morning and after 4 p.m. LST may result in poorer inversions due to the greater 

simulation bias of the atmospheric transport models at these times of day.  

In order to quantify these effects, we added another 3 additional inversion experiments, which 

were named as Exp_OCO2r, Exp_OCO3tc, and Exp_OCO2ts (Table S1). In Exp_OCO2r, only the 

OCO-2 XCO2 retrievals located between 52°S and 52°N retrievals were assimilated, in 

Exp_OCO3tc, all the observation times of the OCO-3 XCO2 retrievals were changed to 1.30 p.m. 

LST, and in Exp_OCO3ts, only OCO-3 data with observation times between 12 and 3 p.m. LST 

were assimilated. When the OCO-2 data beyond 52° North and South latitudes were also removed 

(Exp_OCO2r), the NEE estimates, both globally and for individual regions, are close to those of the 

Exp_OCO3 experiment, especially in the high latitude region of Europe and boreal North America, 

the inverted NEEs are almost identical to those of the Exp_OCO3 experiment (Table S2 and S3), 

and the bias of a posteriori concentrations from observations at high latitudes is close to that of the 



OCO-3 experiment (Figure S3). However, globally, compared to the OCO-3 experiment, the 

Exp_OCO2r experiment still has smaller the deviation between the global net flux and the observed 

annual growth rate (Table S2), and smaller the global mean bias of the posterior concentrations 

(Table S4). This suggests that the lack of observations of OCO-3 beyond 52° North and South 

latitudes does have a significant impact on the inversion results. In addition, it can also be noted that 

at mid-latitudes, the bias of Exp_OCO2r is also smaller than the OCO-3 experiment, which may be 

caused by the significant fluctuations in the data amount of OCO-3 (Figure S4). When we changed 

all the observation times of the OCO-3 XCO2 retrievals to 1.30 p.m. LST (Exp_OCO3tc), although 

we are not actually able to do so, the inversion does show a significant improvement compared to 

Exp_OCO3. However, if we only select the data with observation time between 12:00 and 3:00 p.m. 

LST (Exp_OCO3ts), the deviation between the global net flux and the observed annual growth rate, 

and the mean biases of the posterior concentrations at most latitudes are larger than those of 

Exp_OCO3 (Table S2 and Figure S3), indicating a poorer performance than Exp_OCO3. The 

probably reason is that the data number of observations is substantially reduced at this time (Figure 

S2), which leads to a substantial weakening of the observational constraints on surface carbon fluxes 

(Figure S5). ” 

 

General comments: 

 

Line 113: How does GCASv2 handle parameters of the aggregated ‘super-observation’? For 

example, if multiple OCO soundings has been aggregated into one ‘super-observation’, how does 

GCASv2 incorporate information such as pressure weighting function and averaging kernels from 

each individual soundings? 

Response: Thank you for this suggestion. The ‘super-observations’ are generated by averaging all 

observations within an assimilation window for the same model grid. In this method, it first 

calculates the simulated XCO2 corresponding to each observed XCO2 based on the observation time 

and location, and then, it performs a retrieval error-weighted average for all the simulated and 

observed XCO2 falling within the same model grid in the DA window, respectively. In the revised 

manuscript, we have added the following sentence (Lines 148-151, Page 6) to make it clear.  

“……a single high-precision “super-observation”. In this method, it first calculates the 

simulated XCO2 corresponding to each observed XCO2 based on the observation time and location, 

and then, it performs a retrieval error-weighted average for all the simulated and observed XCO2 

falling within the same model grid in the DA window, respectively.” 

 

 

Line 131: Can you justify the use of ocean glint? Ocean glint data is in general avoided in inversions 

due to potential high bias. 

Response: Thank you for this suggestion. Indeed, in most of the previous studies that used OCO-2 

XCO2 to invert surface carbon fluxes, the OG data were not used. The reason is that the OG XCO2 

may have larger uncertainties, inversions assimilating OCO-2 OG retrievals produced unrealistic 

results of annual global ocean sinks (Peiro et al., 2022). In addition to its large uncertainties, we 

believe that another reason for the poor assimilation performance of OG is the relatively 

homogeneous distribution of XCO2 on ocean, causing a large correlation of the model-data biases 

among different XCO2 observations within a same region, which leads to observations at the same 



region having the same direction of adjustment for surface fluxes, and thus leads to a significant 

overestimated or underestimated ocean carbon sink. Because of this, some assimilation algorithms 

(e.g., EnSRF) can only achieve better assimilation results when the model-data biases between 

observations have relatively small correlation or are uncorrelated. Therefore, in this study, we set 

the OG data with larger uncertainties than the LNLG data, and re-grided it at a coarser spatial 

resolution of 5°×5°. The results show that under this scheme, the inverted ocean sink is reasonable, 

with value of -2.6 PgC yr-1 (Table 1). According to the reviewer 1’s suggestion, we have added three 

additional inversion experiments in the revised manuscript, in which we use only land nadir and 

land glint (LN+LG) OCO-2 and OCO-3 retrievals for the inversion (Named as Exp_OCO3L, 

Exp_OCO2L and Exp_OCO3&2L, respectively). We compared the estimates of NEE and the 

evaluations against in-situ observations between the experiments with and without OG data, and 

found that assimilating OG data with our method can improve the inversions somewhat compared 

to removing OG. 

We have added a paragraph in Section 4.5 in the revised manuscript (see Lines 439-462, Pages 20-

21):  

“In most of the previous studies that used OCO-2 XCO2 to invert surface carbon fluxes, the OG data 

were not used (e.g., Peiro et al., 2022; Byrne et al., 2023), the reason is that the OG XCO2 may have 

larger uncertainties, inversions assimilating OCO-2 OG retrievals produced unrealistic results of 

annual global ocean sinks (Peiro et al., 2022). In addition to its large uncertainties, we believe that 

another reason for the poor assimilation performance of OG is the relatively homogeneous 

distribution of XCO2 on ocean, causing a large correlation of the model-data biases among different 

XCO2 observations within a same region, which leads to observations at the same region having the 

same direction of adjustment for surface fluxes, and thus leads to a significant overestimated or 

underestimated of ocean carbon sink. Because of this, some assimilation algorithms (e.g., EnSRF) 

can only achieve better assimilation results when the model-data biases between observations have 

relatively small correlation or are uncorrelated. Therefore, in this study, we set the OG data with 

larger uncertainties than the LNLG data, and re-grided it at a coarser spatial resolution of 5°×5°. 

The results show that under this scheme, the inverted ocean sink is reasonable, with value of -2.6 

PgC yr-1 (Table 1). In addition, in order to compare the scheme that we have adopted in this study 

with the previous scheme that do not assimilate the OG, we added three additional inversion 

experiments, in which only the LNLG data were assimilated (Table S1). It could be found that all 

the three inversion experiments without OG observations place smaller constraints on the ocean 

fluxes compared to the original experiments, with the posterior ocean fluxes remaining almost 

identical to the prior ocean fluxes. Correspondingly, the inverted global land sink as well as the 

sinks in most regions show a slight decrease (Tables S2 and S3). Evaluations in comparison with 

in-situ observations showed that there are some increases in the a posteriori concentration biases for 

all three experiments after removing OG. For example, for the experiments assimilating OCO-2 

data, the mean bias increased from 0.02 to 0.14 ppm (Table S4). This suggests that assimilating OG 

data with our method can improve the inversions somewhat compared to removing OG.” 

 

 

Line 134: Please explain the regridding process. Does the regridding process refer to the ‘super-

observation’ described in section 2.1? How did the XCO2 values and parameters for each sounding 

been processed? Did you take the mean, or median, or other methods? And can you justify the 



method you used? How did you handle the outliers in the observations with one grid box? Also, 

for the ‘super-observation’, does it mean that for each model grid box, there’s essentially only one 

observation being used by the model to constrain the posterior fluxes? If that’s the case, why does 

the data amount (Figure 1) matter (except for the grids containing 0 OCO soundsing)? 

Response: Thank you for this suggestion. The re-griding process was performed during the pre-

processing of satellite data and does not involve the ‘super-observation’ process. The OCO 

observations are filtered using the parameter of XCO2_quality_flag, which indicates the quality of 

the data. Only data with XCO2_quality_flag equal 0 was selected. Then, the observations of LNLG 

were re-grided into 1°×1° grid cells, and those of OG were re-grided into 5°×5° using the 

arithmetic averaging method. The other variables like the column-averaging kernel and the retrieval 

error, which are provided along with the XCO2 product, are also dealt with using the same method. 

This process is the same as Wang et al. (2019). For the ‘super-observation’, it mean that for each 

atmospheric transport model grid box, there’s indeed only one observation being used by the model 

to constrain the posterior fluxes, but for each grid's flux, it is not only constrained by the 

observations of the grid it is on, because the atmosphere is moving and its downwind observations 

can all be used to constrain the flux of this grid, and in the system we use a two-layer localization 

scheme to select the surrounding and downwind observations that are used to constrain the flux of 

that grid. Therefore, the amount of observed data can have a significant impact on the inversion 

results. In the revised manuscript, we have further explained the ‘super-observation’ scheme (see 

Lines 148-151, Page 6) and also provided a detailed description of the localization technique (see 

Lines 152-166, Pages 6-7). 

 

  

Line 209: Could you list out the annual CO2 growth rates for 2020-2022 that you used to calculate 

the average growth rates? 

Response: Thank you! When we conducted the inversion work, GCB2023 (i.e., Friedlingstein et al., 

2023) had not yet been released, we used the 2020 and 2021 data (4.99 and 5.23 PgC/yr) from 

GCB2022, as well as the Annual Mean Global Carbon Dioxide Growth Rates (2.2 ppm) in 2022 

reported by NOAA Global Monitoring Laboratory (https://gml.noaa.gov/ccgg/trends/gl_gr.html) by 

multi-by a factor of 2.124. The average atmospheric CO2 growth rate is 4.96 PgC yr-1 for 2020-

2022. We compared the results in GCB2022 and GCB2023 and found there are some differences in 

these values. In GCB2023, the CO2 growth rates from 2020 to 2022 have been updated to 4.97016, 

5.2038, and 4.63032 PgC/yr, with mean of 4.93 PgC/yr. Therefore, in the revised manuscript, we 

have updated this value to 4.93 PgC/yr. 

 

Line 214: Why does the joint assimilation of OCO-2 and OCO-3 XCO2 give the best performance 

on a global scale? One potential reason-spatial coverage of OCO-3 XCO2 has been mentioned 

briefly in several places in the manuscript, but an in-depth discussion would be expected. 

Response: Thank you for this suggestion. The OCO-3 satellite observations have a sufficient 

number of observations in the mid-latitude land region, while the OCO-2 satellite observations have 

a wide spatial coverage, even at high latitudes (Figure 1 in the original manuscript). Therefore, 

Exp_OCO3&2 assimilates sufficient observations in the mid-latitude region and observations in the 

high-latitude region, and has the advantages of OCO-2 and OCO-3 at the same time. At the same 

time, the joint assimilation of OCO-2 and OCO-3 XCO2 also absorbs more observations than 



assimilating the OCO-2 or OCO-3 alone, which will also make the assimilation better. Assimilating 

OCO-3 XCO2 alone has poor performance, the reasons are that, on the one hand, the fact that it is 

only available between 52°S and 52°N, which leads to a lack of observational constraints on the 

carbon sinks at high latitudes, and there are the large fluctuations in the amount of observational 

data, which leads to significant differences in observational constraints at mid-latitudes at different 

times; on the other hand, its varied observation time also affect the inversions, but even choosing 

afternoon observations does not improve the inversions because the amount of observed data drops 

significantly. Therefore, a better option for the future would be to jointly assimilate the OCO-2 

XCO2 data and the OCO-3 XCO2 retrievals observed in the afternoon (12:00 to 16:00 LST). We 

have added a detailed discussion about this issue in Section 4.5 of the revised manuscript (see Lines 

463-506, Pages 22-23).  

 

Line 221 - 224: Is the word ‘sinks’ in line 22 a typo? Otherwise the sentence does not make sense 

– the listed locations seem to have positive NEE values suggesting being CO2 sources. 

Response: Thank you! Yes, it is a typo. We have changed ‘sinks’ to ‘sources’ (see Line 283, Page 

12). 

 

Line 236: I would suggest the authors avoid using ‘peaks’ when describing the negative values to 

clear confusion, or maybe specify the values when doing comparison. For example, the ‘peaks’ for 

ExpOCO2 and Exp_OCO3&2 are higher than the prior when rotation 90 degrees for Figure 3 (f) 

and (i), but the actually corresponding values at the ‘peaks’ are lower because they are CO2 sinks 

and the NEE values are negative. Same for ‘the lowest peak’ in line 237. 

Response: Thank you! We have revised that sentence (see Lines 296-299, Page 13) as follows: “The 

posterior and prior fluxes have a similar distribution trend along the latitude, with a significant peak 

of carbon sink near 60°N, and the strongest sinks of Exp_OCO2 and Exp_OCO3&2 are comparable, 

which are significantly stronger than the a priori, while Exp_OCO3 has the weakest peak of carbon 

sink and that is close to the a priori.” 

 

Line 251: Potential confusion – by the word ‘lower’ do you mean the NEE value is lower 

(strong sinks) or the NEE value is higher (weaker sinks)?  

Response: Many thanks for this suggestion. We mean that in all regions except temperate N. 

America, northern Africa, temperate Asia, and Australia, Exp_OCO3 shows a weaker carbon sink 

than Exp_OCO2. We have corrected it in the revised manuscript (see Line 309, Page 13). 

 

Line 301: Which experiment are those numbers from? 

Response: Thank you for this suggestion. These numbers are calculated by averaging all the 3 

inversion experiments. We have revised that sentence to make it clear (See line 362, page 17). 

 

Table 2 and Figure 4: Is the information presented in Table 2 and Figure 4 largely duplicated? If 

so, authors may consider removing Figure 4 if additional paragraphs are needed.  

Response: Thank you for this suggestion. Figure 4 in the original manuscript is actually a 

visualization of the data in Table 2, so there is indeed a duplication of content. In the revised 

manuscript, we have removed Figure 4. 

 



Figure 6, Figure 3 and Line 358: For high latitude areas (> 60 degree N), why is the BIAS from 

Exp_OCO3 not consistent with prior fluxes? Given the fact that no OCO-3 observations available 

beyond 52 degree north, I would expect the posterior fluxes are very similar to prior fluxes in high 

latitude areas since no observation can be used to constrain and optimize prior emissions, yet both 

Figure 3 and Figure 6 showed substantial changes when comparing posterior to prior from 

Exp_OCO3. It’s possible that fluxes in high latitude can be updated due to spatial covariance 

assumed in the inversion system, therefore more details on the GCASv2 is needed in Section 2.1.  

Response: Thank you for this suggestion. Since the atmosphere is moving, a change in flux at a 

certain location can cause a change in concentration downwind, i.e., observations downwind can 

sense the flux change at that location, and thus we can use observations downwind to constrain the 

flux in that area. In this study, we use a localization scale of 3000 km, which means that observations 

within a 3000km radius of a grid can be used to constrain the fluxes in that grid as long as they meet 

the localization requirements as described in section 2.1 in the revised manuscript.  

We have added more information about the two-layer localization scheme (see Lines 152-166, Pages 

6-7) as follows: 

“There are inevitably spurious correlations in the EnKF method, to reduce the effect of spurious 

correlations, a two-layers localization scale was adopted in GCASv2, which is used to select which 

observations can be used for the flux analysis for each grid. The localization technique is based on 

the correlation coefficient between the simulated XCO2 ensembles (𝑋𝐶𝑂2,𝑖
𝑚 ) in each observation 

location and the perturbed fluxes (𝑿𝒊
𝒃) in current model grids and their distances. The observations 

will be accepted for assimilation if the distance is less than 500 km and the correlation coefficient 

is greater than 0; if the distance is greater than or equal to 500 km and less than 3000 km and the 

correlation coefficient is significant (p<0.05), the observations will be accepted for assimilation. 

Otherwise, the observations are not accepted. The reason for this scheme is that considering the 

atmospheric horizontal diffusion, we believe that there must be a correlation between the flux of 

one grid and the concentrations in its neighbouring grids, and therefore observations are accepted 

as long as this correlation coefficient is greater than zero. In contrast, at distant locations (>500 km), 

where the effect of atmospheric horizontal diffusion is essentially negligible, the relationship 

between source and receptor is mainly due to atmospheric transport, and in order to minimize 

spurious correlations we require that such correlations must be significant.” 

 

Line 367: Could the bias exist prior? If there’s no OCO-3 observation available in high latitudes, 

how can the OCO-3 observation introduce additional bias?  

Response: Thank you for this suggestion. As the response in the previous comment, although the 

OCO-3 satellite has no observations at high latitudes, the observations downwind that area can be 

used to constrain the flux in that area. However, the assimilation of OCO-3 is much less effective 

compared to the OCO-2 satellite, which has observations in high latitudes, because only distant 

observations can be used in the Exp_OCO3 experiment.  

 

Line 376: period ‘1’?  

Response: Thank you for this suggestion. We mean the period from 1 August 2019 to 31 December 

2022. We have corrected it in the revised manuscript (see Line 509, Page 23). 
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