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Abstract: 11 

Warmer Sea Surface Temperature (SST) in the Bay of Bengal (BoB) is crucial for driving deep 12 

atmospheric convection, facilitating low-level south-westerly winds, and enhancing moisture 13 

transport, thereby intensifying South Asian Summer Monsoon (SASM) rainfall over South 14 

Asia. However, the specific impact of BoB SST on SASM rainfall during the Glacial-15 

Interglacial periods remains poorly understood. In this study, we reconstructed SST and 16 

evaporation versus rainfall variability over the past 31 kiloyears by simultaneously analyzing 17 

the carbonate clumped isotopes and stable oxygen isotopic composition of surface-dwelling 18 

planktic foraminifera Globigerinoides ruber from the Central West BoB (CWBoB), a key 19 

moisture source region. Additionally, cloud cover index was inferred from the abundance ratio 20 

of planktic foraminifera Globigerina bulloides to Neogloboquadrina dutertrei. Our SST 21 

reconstruction reveals an 8°C variability over the past 31 kyr, coinciding with shifts in the G. 22 

bulloides to N. dutertrei ratio during the Last Glacial period and deglaciation, suggesting SST 23 

regulation by variable cloud cover. The increase in SST from the Early Holocene is attributed 24 
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to CO2 radiative forcing. The stable oxygen isotope of seawater δ18Osw strongly aligns with a 25 

proxy record of SASM wind intensity, indicating that changes in wind patterns drive the 26 

variable evaporation versus rainfall dynamics over CWBoB. Furthermore, we examined the 27 

temporal variation in SASM continental runoff and rainfall to the Northern BoB (NBoB) by 28 

assessing changes in δ18Osw (∆18Osw), a proxy for Sea Surface Salinity (ΔSSS), between the 29 

NBoB and CWBoB. Our analysis revealed a significant relationship between SASM rainfall 30 

and SST in the CWBoB, indicating a sensitivity of 0.9±0.1 psu drop in ΔSSS across the NBoB 31 

per 1°C rise in SST. These findings enhance our understanding of the relationship between 32 

CWBoB SST and SASM rainfall, highlighting the intricate dynamics of monsoon variability 33 

and paving the way for improved predictability of SASM rainfall patterns. 34 

1. Introduction: 35 

Bay of Bengal (BoB) contributes 45-75% of total moisture to South Asian Summer Monsoon 36 

(SASM) rainfall (Dar and Ghosh, 2016; Yoon and Chen, 2005), which accounts for 78% of 37 

annual rainfall in the region (Parthasarathy et al., 1994). Variability in SASM rainfall 38 

significantly affects economic growth for populations hosted in South Asian countries (Gadgil 39 

and Gadgil, 2006). This highlights the significance of SASM rainfall variability as a crucial yet 40 

uncertain factor in regional climatology. The thermodynamic conditions of seas surrounding 41 

the continent have an important role in the future variability of SASM rainfall (Sein et al., 42 

2024; Sharma et al., 2023; Dinezio et al., 2020). The optimal sea surface temperatures (SST) 43 

in the BoB, exceeding the range of 26-28°C, act as a threshold for initiating and sustaining the 44 

process of deep atmospheric convection (Shenoi, 2002). This contributes to increased upper-45 

tropospheric temperatures, driving low-level winds from the south-west direction. These winds 46 

integrate regional moisture, leading to the intensification of SASM rainfall (Goswami, 1987; 47 

Hurley and Boos, 2015; Shenoi, 2002; Samanta et al., 2018). Any decrease in SST over the 48 

BoB during summer is associated with the failure of the SASM (Vecchi and Harrison, 2002). 49 
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Even the inaccurate simulation of BoB SST in forecast climate models introduces bias in 50 

SASM rainfall predictions (Samanta et al., 2018). However, despite this thermodynamic 51 

understanding, the relationship between BoB SST and SASM rainfall is disrupted in the 52 

instrumental age record due to the interplay of short-term climate phenomena such as El Niño-53 

Southern Oscillation, the Indian Ocean Dipole, and the North Atlantic cooling (Goswami et al., 54 

2022; Saxena and Pandey, 2021). These phenomena influence global oceanic and atmospheric 55 

processes, including the moisture transport process over the Bay of Bengal (Chakraborty and 56 

Singhai, 2021; Borah et al., 2020). The long-time-integrated record reduces interference from 57 

transient climatic phenomena described above (Wang et al., 2017), offering invaluable insight 58 

into the sensitivity of climatological BoB SST to SASM rainfall variability. 59 

The Last Glacial and Holocene periods offer a valuable time window for estimating the role of 60 

BoB SST on regional moisture transport. This time frame appropriately represents a significant 61 

change in atmospheric CO2 concentrations, ranging between 180 and 280 ppm (Bereiter et al., 62 

2015). Additionally, there is a difference in summer solar insolation values between 30°N and 63 

the equator, varying between 84 W/m2 and 102 W/m2 (Berger, 1992). These variations 64 

contribute to land-sea thermal and pressure contrasts, which in turn affect SASM wind strength 65 

and rainfall distribution (Goswami et al., 1999; Webster, 1994; Rajeev et al., 2012; Evans et 66 

al., 2015). Also, a geographic configuration similar to modern-day one serves as a template for 67 

validating climate model predictions with variable SST conditions globally and over the BoB 68 

region (Tierney et al., 2020; DiNezio et al., 2018). The role of BoB SST in influencing SASM 69 

intensity has been addressed in a limited number of studies. These studies utilize proxies, such 70 

as the stable hydrogen isotopic composition of leaf wax (δD) and the Ba/Ca ratio in planktic 71 

foraminifera G. ruber from sediment cores in the Northern BoB (NBoB), to qualitatively 72 

understand SASM rainfall variability (Wang et al., 2022; Weldeab et al., 2022). Here, the 73 

authors compromised with the susceptibility of the isotopic signature preserved in δD of leaf 74 
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wax to deduce rainfall amount due to the interplay of factors such as the isotopic signature of 75 

a moisture source, moisture recycling, and isotopic fractionation associated with shifts in 76 

vegetational type (Sachse et al., 2012). The parameter Ba/Ca in G. ruber is interpreted as a 77 

proxy for Sea Surface Salinity (SSS), assuming that riverine input is the primary driver for SSS 78 

(Weldeab et al., 2022). However, this assumption is often invalidated by processes such as 79 

evaporation or rainfall occurring within a sea or ocean (Hönisch et al., 2011). 80 

Here, we retrieved a 4.3 m gravity core (MGS17/GC02) at the coordinates 15°19’36” N, 81 

84°54’03” E, at a water depth of 2986m, situated within the Central West Bay of Bengal 82 

(CWBoB) region (Fig. 1a). The sedimentary succession consists of dark grey and grey layer 83 

with variable organic content and their primary constituents are hemipelagic clay with 84 

calcareous foraminifera and nannofossils. The calcareous sediments are authigenic, and their 85 

composition represents a derivative carrying the geochemical signature of average climatology. 86 

We obtained modern-day monthly climatology with a particular interest in Sea Surface Salinity  87 

(SSS) (Reagan et al., 2024) and moisture flux (Trenberth and Fasullo, 2022), which are 88 

important estimates described in the present reconstruction. The observation shows high SSS 89 

coupled with positive moisture flux coinciding with the period of SASM (June to September) 90 

(Fig. 1b). This is aligned with independent observation on the increased freshwater discharge 91 

of the Ganges-Brahmaputra river basin feeding BoB (Fig.1c) (Jana et al., 2015). This implies 92 

the importance of CWBoB as a moisture source for continental rainfall in the modern-day 93 

context, largely similar in paleo-perspective due to minimal change in continental 94 

configuration during the Glacial-Interglacial period. This interpretation is substantiated by a 95 

moisture transport study based on a stable oxygen isotope in rainfall collected over BoB and 96 

South Asia during the period of SASM (Dar and Ghosh, 2016). The influence of riverine 97 

freshwater reaching the location of the present study is found to have minimal events in the 98 

regional ocean general circulation model experimental with and without riverine input (Behara 99 
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and Vinayachandran, 2016), making the site a test bed for reconstruction of rainfall over the 100 

oceanic setting.  101 

 102 

Figure 1: Site map and climatology. a) modern-day climatology (1998 – 2019) showing the 103 

distribution of rainfall minus evaporation (mm/day) and wind vectors during the period of 104 

SASM monsoon (June, July, August and September) (Kalnay et al., 1996; Schneider et al., 105 

2013). The study site, MGS17/GC02 (depicted as a filled orange diamond with a black 106 

boundary), along with other locations (represented by light yellow-filled circles with black 107 

boundaries), are utilized in the discussion; b) Plot of monthly Sea Surface Salinity (Reagan et 108 

al., 2024) and moisture flux (Trenberth and Fasullo, 2022) distribution over the study site 109 

(MGS17/GC02) obtained from world ocean atlas climatology resolved at 4°x4° grid space c) 110 

Long-term average monthly river discharge of Ganges and Brahmaputra to BoB (Jana et al., 111 

2015). 112 

 113 

The age-depth model was established utilizing 7 (14C) radiocarbon dates obtained from two 114 

species of planktic Foraminifera (G.ruber and G.sacculifer), revealing sedimentation ages 115 
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ranging from 3.6 (at 0.41 m core depth)  to 32.9 (at 4.30 m core depth) kiloyears before present 116 

(kyr BP) (Fig. S1 & Table S1). Bayesian statistics (Bacon) is used to estimate the median age 117 

with uncertainty for the sedimentary layer (Fig. S1) (Blaauw and Christen, 2011). 118 

Here, we conducted carbonate clumped isotope thermometry and stable isotope (δ18O & δ13C) 119 

investigation on planktic foraminifer G. ruber across the 18 (+1 replicate) sedimentary depth 120 

with an average time window between each depth of 1.7 kyr, covering the time interval 0-31 121 

kyr BP. The planktic foraminifera G. ruber, a surface-dwelling species, thrives at water depths 122 

of 17±20 meters (Lakhani et al., 2022) and is present throughout the year (Maeda et al., 2022; 123 

Guptha et al., 1997), rendering it suitable for reconstruction of surface ocean hydrography 124 

using the geochemical signatures in its carbonate shell. A strong correlation is observed in δ18O 125 

record of G. ruber from surface sediment (top 0-1 cm) with estimated δ18O values of G.ruber 126 

using collated observation on seawater δ18O values (Table S2) and satellite-based 127 

climatological mean SST values (1991-2020) over BoB during the period of SASM (Fig. S2). 128 

The sedimentary pack of top 1cm represents less than 100 years of accumulated sediments 129 

deduced from the average sedimentation rate (Table S1).  We used species-specific oxygen 130 

isotope thermometry to generate the spatial pattern of δ18O in G.ruber carbonate (Mulitza et 131 

al., 2003).  132 

The carbonate clumped isotopes provide a means to reconstruct the equilibrium temperature of 133 

carbonate precipitation independent of the isotopic composition of ambient water (Ghosh et 134 

al., 2006; Tripati et al., 2010; Zaarur et al., 2013; Peral et al., 2018; Daëron and Gray, 2023; 135 

Meinicke et al., 2020). The clumped isotope of G.ruber-based SST and δ18O record in G.ruber 136 

provide means to reconstruct the equilibrium surface seawater δ18Osw (details in methods). The 137 

regional hydrological cycle was reconstructed using estimated δ18Osw. 138 
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For the first time, we propose a proxy for reconstructing qualitative cloud cover intensity using 139 

the planktic foraminiferal abundance ratio of Globigerina bulloides to Neogloboquadrina 140 

dutertrei, which thrives in different water depths with significant variability in Chlorophyll a 141 

concentration, making it sensitive to the presence of clouds. To quantify cumulative temporal 142 

variations in continental runoff and rainfall over the NBoB, we estimated changes in SSS 143 

(ΔSSS) at two different sites with varying distances from the coast. We treated the present site 144 

as open marine with minimal continental runoff compared to the site in proximity to the GBM 145 

river mouth (126-KL) (Fig.1a). Clumped isotope thermometry was used for SST reconstruction 146 

at the present site, while SST at site KL-126 was based on the alkenone unsaturation index 147 

(Kudrass et al., 2001). The temporally distinct SSS for each site was estimated from δ18Osw, 148 

assuming a steady-state Rayleigh oxygen isotope fractionation model with freshwater (rainfall 149 

& continental runoff) and evaporation as input and output fluxes to the BoB surface water 150 

reservoir (details in the methods section). 151 

2. Materials and Methods: 152 

2.1 Site location and processing of sediment samples: 153 

The present sampling effort was part of an Exclusive Economic Zone expedition conducted by 154 

the National Centre for Polar and Ocean Research, Ministry of Earth Sciences, India, aboard 155 

RV MGS Sagar (MGS-17) during June-July 2017. The gravity core was retrieved from CW 156 

BoB (15°19’36” N, 84°54’03” E) at the water depth of 2986m (Fig. 1). Our sampling effort 157 

yielded a 4.3m sediment core, which was sub-sampled onboard at 1cm resolution for our 158 

investigation. Each sample was processed onboard, including drying at 50°C in a hot-air oven 159 

for moisture removal and storage in ziplock containers. The samples were transported to the 160 

lab and further processed to remove organics using H2O2 and sieved to obtain appropriate size 161 

fractions. These fractions were subsequently used for age determination and clumped and 162 

stable isotope analysis. 163 
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2.2 Age - Depth model:  164 

The age-depth model is proposed based on analysis of mixed species of planktic Foraminifera 165 

(Globigerinoides ruber  & Globigerinoides sacculifer) separated from samples placed at 7 166 

depth intervals (Fig. S1& Table S1). The radiocarbon age determination is conducted at the 167 

Physical Research Laboratory, India, using a 1MV Accelerator Mass Spectrometer. The ¹⁴C- 168 

AMS dates were corrected for the reservoir age offset based on available observations from the 169 

Bay of Bengal (Dutta et al., 2001). This was further adjusted to the calibrated age (before the 170 

present of 1950AD; BP) using calibration software Calib 8.20 (Reimer et al., 2013; Stuiver and 171 

Reimer, 1993). The calibrated dates range from 3580 year BP (41 cm depth) to 32880 year BP 172 

(430 cm depth). In order to establish the sedimentation rate, we assumed the first 1cm core-top 173 

sample as a representation of modern-day (1950 AD). Detailed methodology for sample 174 

analysis and standard reproducibility is provided in the published literature (Bhushan et al., 175 

2019b, a). We assigned age with uncertainty to each stratum using the Bayesian statistical 176 

(Bacon) method (Fig. S1) (Blaauw and Christen, 2011). Our observation showed variability of 177 

sedimentation rate from 3.86 cm/kyr to 40.35 cm/kyr. A higher sedimentation rate was observed 178 

during the last glacial and late hemispheres, while it was attained at a minimum during 179 

deglaciation and early hemispheres (Table S1). A strong coherence of  δ18O variability in G. 180 

ruber was observed in multiple sites adjacent to our core location (Rashid et al., 2011; Govil 181 

and Divakar Naidu, 2011; Clemens et al., 2021) confirming the proposed age-depth model 182 

(Fig.S3). 183 

2.3 Stable and clumped isotope analysis in G.ruber: 184 

The present study is based on sediment column samples ranging in age from 0 to 31 kyr BP 185 

with a total of 19 samples (18 samples + 1 replicate). The planktic Foraminifera used here is 186 

Globigerinoides ruber, which is most abundant and ubiquitous in the entire succession. The 187 
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sediment size fraction of 250–355 μm yielded 8-10 mg of G. ruber specimens required for our 188 

analysis. These specimens were initially crushed and treated with 1% H2O2 and Sodium 189 

Hydroxide buffer to remove any organic matter, further ultrasonicated with methanol to 190 

dislodge clays bound within the foraminiferal skeleton, and finally removed by flotation (Peral 191 

et al., 2018). These samples were dried at 50°C inside a hot air oven to remove moisture prior 192 

to analysis. 193 

The break-seal method is followed for the preparation of CO2 by reacting carbonate powder 8-194 

10mg with 105% H3PO4 in an isolated chamber at a constant temperature of 25°C for 18 hours 195 

inside a water bath. The product CO2 is cryogenically extracted and purified for any 196 

contamination using a porapaq-Q GC column held at 25°C (Fosu et al., 2018). The clean CO2 197 

is transferred in an ampule and introduced in a dual inlet peripheral coupled with MAT 253 198 

IRMS configured with a 44-49 mass Faraday cup. The analysis is performed at a major ion 199 

beam intensity of 10V. The working reference gas for dual inlet measurement was sourced from 200 

Linde AG, Munich, Germany, with specifications of 99.999% CO2. It was assigned a value of 201 

δ13C of -3.92±0.01 ‰VPDB and a δ18O of 25.58±0.01 ‰ VSMOW, based on repeat analysis 202 

of NBS19 CO2 from carbonate reactions. 203 

Each analytical task consists of a sequence of 5-10 acquisitions, with each acquisition 204 

comprising 10 cycles of sample and working reference CO2 measured alternately. Sample and 205 

working reference CO2  are recovered back following analysis into quartz tube and heated at 206 

1000°C in a muffle furnace for 3 hours to achieve stochastic distribution and defined standard 207 

reference CO2 (heated gas). These heated gases were further processed using the cryogenic 208 

extraction protocol, followed by cleaning using the Porapak-Q column purged with helium.  209 

Multiple heated gases of different bulk compositions are analyzed to correct for non-linearity 210 

and conversion to the heated gas scale (Huntington et al., 2009). Subsequently, these 211 
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measurements were transformed into an Absolute Reference Frame (ARF) through a 212 

combination of carbonate reference materials with assigned ∆47 values, including MARJ1, 213 

OMC, ETH1, and ETH3.  214 

The δ13C and δ18O values of the sample carbonate are assigned with respect to VPDB, analysing 215 

interlaboratory reference MARJ1 calcite. The δ13C and δ18O values of MARJ1 are +1.97‰ 216 

and -2.02‰, respectively, established performing experiment with NBS19 as the primary 217 

standard (Ghosh et al., 2005). Routine analysis of MARJ1 carbonate is carried out during the 218 

sample analysis to monitor the long-term variability and performance of the setup. The long-219 

term reproducibility of δ13C and δ18O values of MARJ1 is 0.01‰ and 0.02‰, respectively. 220 

2.4 Temperature Estimates Based on Clumped Isotope (Δ47) with Uncertainty:  221 

The most updated calibration (Zaarur et al., 2013) proposed at 25°C acid-carbonate digestion 222 

of inorganic and biogenic (Foraminifera) carbonate precipitation at a known temperature range 223 

of 5°C to 65°C is used for estimation of temperature. The analytical protocol used for this 224 

calibration closely matches the present study. The broad temperature range explored in this 225 

calibration exercise facilitated the appropriate reconstruction of surface ocean temperatures 226 

during the Glacial-Interglacial time. The error propagation due to analytical and calibration 227 

uncertainties is estimated using the suggested algorithm (Huntington et al., 2009). 228 

2.5 Estimation of δ18Osw and error propagation: 229 

The simultaneous measurement of temperature using carbonate clumped (∆47) isotopes 230 

together with stable oxygen isotopic composition (δ18O) measured in G.ruber allows the 231 

reconstruction of δ18Osw in seawater. We employed the relationship between the δ18O 232 

fractionation between inorganic calcite and water and carbonate precipitation temperature 233 
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(Kim and O’Neil, 1997) to estimate the equilibrium δ18Osw for our sample. This relationship 234 

has been verified for foraminiferal carbonates (Peral et al., 2018; Daëron and Gray, 2023).  235 

The extent of ice volume locked in continental ice sheets also regulates δ18Osw and is taken into 236 

account for appropriate estimation of δ18Osw. This was accomplished using the equation 237 

(Adkins et al., 2002): 238 

δ18Osw-ivc = δ¹⁸Osw + (SL*0.0083) 239 

Where δ18Osw-ivc is ice volume corrected δ18Osw, and SL is coral-based sea-level estimates 240 

(Lambeck et al., 2014). The error associated with δ18Osw-ivc are estimated by propagating the 241 

errors in SST, and δ¹⁸OG.ruber measurements are given as:  242 

σ
δ

18
Osw-ivc

2 = (
18030

SST2
σSST)

2

+(σδ18O𝐺.𝑟𝑢𝑏𝑒𝑟
)

2
 243 

2.6 Quantifying the change in SSS between NBoB and CWBoB (∆SSS): 244 

The conventional approach to estimating SSS in the Glacial-Interglacial context typically 245 

involves assuming that the modern-day slope and intercept are derived from the correlation 246 

between δ18Osw and SSS (Govil and Divakar Naidu, 2011). The slope and intercept of this linear 247 

regression equation vary due to differential freshwater fluxes, including runoff and oceanic 248 

rainfall (Singh et al., 2014). This variable behavior of freshwater fluxes contributes to the 249 

overall uncertainty in SSS estimation in the palaeo-reference frame (Mehta et al., 2021). In 250 

order to avoid such complications in SSS estimation, here we used a steady-state Rayleigh 251 

oxygen isotope fractionation model. This model integrates freshwater flux (rainfall and river 252 

runoff) and evaporation as input and output fluxes to the surface ocean reservoir of the Bay of 253 

Bengal (for detailed mathematical derivation, refer to (Singh et al., 2014)). The TraCE-21k 254 

climate model simulation outputs of rainfall and evaporation over the Indian Subcontinent and 255 

the Bay of Bengal are used as flux values in the Rayleigh model (Table S4). The TraCE-21k 256 
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climate model simulation reproduced the proxy-based estimates with reasonable satisfaction 257 

(Jalihal et al., 2019, 2020). Assuming an initial composition of the surface ocean reservoir as 258 

0‰ without any freshwater flux, the relationship between SSS and δ18Osw is expressed as 259 

follows: 260 

SSS

S0
= [

δ18Osw × (1 − β)

(β × δ18Ofreshwater) − εvap liq⁄ )
] + 1 261 

 262 

Where S0 = 34.8 psu represents the mean salinity state of the deep ocean, defined as the initial 263 

salinity reference state. β denotes the ratio of fluxes of freshwater to the evaporation. We 264 

assumed Last Glacial Maximum (LGM) fluxes for the period post-LGM which lies between 265 

the time interval of 21-31 kyr BP. The average isotopic composition of freshwater (δ18Ofreshwater) 266 

is -6.1‰, estimated here by considering different fluxes and their isotopic values from the 267 

literature and weighing them with proportionate contribution (Table S3).  The oxygen isotopic 268 

fractionation between vapor and liquid phases during evaporation is represented as εvap/liq. 269 

Under equilibrium conditions, the SST governs the isotopic composition of vapor (Horita and 270 

Wesolowski, 1994). However, the actual vapor tends to be 2-5‰ heavier than expected at 271 

equilibrium due to the involvement of kinetic processes (Merlivat and Jouzel, 1979). Therefore, 272 

we adopted εvap/liq to be 5‰ heavier than the equilibrium state. Applying this method, we 273 

estimated the SSS at the study sites in the CWBoB (MGS17/GC02) and NBoB (KL-126), and 274 

reported the change in SSS (∆SSS) between these two regions (Table S5). The δ18Osw for the 275 

KL-126 site was estimated using the same procedure discussed in Section 2.5, employing 276 

alkenone unsaturation index-based SST and the δ18O of G. ruber (Kudrass et al., 2001). The 277 

error propagation associated with ∆SSS estimation is provided in the supplementary text. 278 
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3. Results and Discussion:  279 

Below, we describe the stable (δ18O) and clumped isotopic composition in planktic 280 

foraminiferal carbonates (G.ruber) at 18 (+1 replicate)- different time intervals across the 281 

sedimentary section encompassing a time interval from 0 to 31 kyr BP located at the Central-282 

West BoB  (MGS17/GC02). The δ18O values of G. ruber varied between -2.0‰ and +0.4‰, 283 

with the heaviest values recorded during the Last Glacial period and the early stages of 284 

deglaciation (15.1-30.9 kyr BP; average δ18O value of -0.1±0.2‰; n=11) (Table S4). 285 

Progressively, with younging in the sedimentary strata, the δ18O value decreased from +0.2‰ 286 

to -1.8‰ denoted by the time interval of late deglaciation (15.1 kyr BP) to the Early Holocene 287 

(9.9 kyr BP) (Table S4). The Holocene (0 to 10.9 kyr BP) is characterized by a lighter average 288 

δ18O value of -1.6 ± 0.5‰ (n=8) (Table S4). The robust consistency in δ18O variability in G. 289 

ruber in the present study and the data from the adjacent sites (VM29-19(Rashid et al., 2011), 290 

SK218/1(Govil and Divakar Naidu, 2011), and IODP 353 site U1446 (Clemens et al., 2021)) 291 

suggest similarity of sea surface temperature and salinity variation in the spatial domain (Fig. 292 

S3). While the δ18O value of planktic foraminiferal carbonate represents habitat temperature 293 

and the composition of seawater δ18O, clumped isotope thermometry provides a unique method 294 

to ascertain temperature for carbonate precipitation in equilibrium without reliance on the 295 

ambient water's δ18O composition (Ghosh et al., 2006; Zaarur et al., 2013; Daëron and Gray, 296 

2023; Meinicke et al., 2020; Peral et al., 2018; Tripati et al., 2010). The clumped isotope (∆47) 297 

values range from 0.681 to 0.716‰ (Table S4), with heavier values observed during MIS 3 and 298 

the early part of MIS 2, including the LGM, with an average value of 0.704±0.006‰ (n=7) 299 

representing the time interval from 20.9 to 30.9 kyr BP. The ∆47 value decreased from 0.716‰ 300 

to 0.683‰ during the later part of deglaciation and Early Holocene (8.7-15.1 kyr BP). The 301 

lowest average ∆47 value of 0.684±0.003 (n=6) was observed during the latest part of the 302 

Holocene (0-8.7 kyr BP). The clumped isotope values are converted into temperature using the 303 
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relevant empirical correlation tailored for the foraminiferal carbonates (Zaarur et al., 2013). 304 

Upon estimating the paleo-SST at different time intervals, δ18O records of carbonates are used 305 

for deriving δ18O of seawater (δ18Osw), which was corrected for the ice-volume effect (detail 306 

provided in methods).   307 

 308 

Fig. 2: Proxy-based records of hydroclimate, Sea Surface Temperature, and its physical 309 

drivers over the Bay of Bengal and South Asia for the past 31 kiloyears. a) Summer (June) 310 

time solar insolation at 30°N (Berger, 1992) and global atmospheric CO2 concentration record 311 

from Antarctica ice core (Bereiter et al., 2015). b) Clumped isotope (∆₄₇ of carbonate) of 312 

G.ruber derived SST from site MGS17/GC02 and cloud cover proxy of G.bulloides/N.dutertrei 313 

from site SK218. c) δ18Osw from the site MGS17/GC02 (CWBoB) compared with SASM wind 314 

proxy of eolian detrital flux (Pourmand et al., 2004). d) Estimated ∆SSS between NBoB and 315 

CW BoB suggest cumulative freshwater flux to NBoB and Ba/Ca ratio in G.ruber record from 316 

NBoB suggesting continental runoff (Weldeab et al., 2022). 317 
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3.1 Temporal dynamics of SST during the past 31 kilo years: 318 

The SST reconstructed from carbonate clumped isotope (∆₄₇) data of G. ruber over the time 319 

interval of past 31 kyr ranges between 22°C to 30°C (Fig. 2b). Chronologically, the MIS3 and 320 

early phases MIS2, which encompasses a time interval between 27.8-30.9 kyr BP is 321 

characterized by warm average SST (±1 SD) of 26 ± 0.7°C (n=3) (Fig. 2b). This is overline by 322 

sediments denoting mid-phase of MIS2 and LGM (20.9-25.2 kyr BP) recording lowest average 323 

SST (±1 SD) of 24 ± 0.3°C (n=4). The deglaciation time interval (13.4 - 20.9 kyr BP) recorded 324 

a monotonic increment in the SST values by 5°C (Fig. 2b).  The younger sedimentary sequence 325 

above this represents a time interval of Early Holocene (8.7 - 10.9 kyr BP) which is marked 326 

with average warmer SST (±1 SD) of 28 ± 2°C (n = 3) (Fig. 2b). The mid and late Holocene (0 327 

– 7.7 kyr BP) characterized by stable warm SST (±1 SD) of 29 ± 0.8°C (n = 5) (Fig. 2b). 328 

The average SST difference between the Late Holocene and the LGM in the present study is 329 

5°C, contrasting with the 3°C difference recorded by Mg/Ca ratio-based SST reconstruction in 330 

G. ruber from the region of BoB (Clemens et al., 2021; Rashid et al., 2011; Raza et al., 2017; 331 

Govil and Divakar Naidu, 2011). The discrepancy in SST difference can be explained by the 332 

involvement of non-thermal variables, which include salinity and pH, influencing the Mg/Ca 333 

ratio in G.ruber, causing an underestimation of temperature using this approach (Gray and 334 

Evans, 2019).  The organic geochemical proxies-based SST reconstruction, such as the 335 

alkenone unsaturation index (Uk’
37) (Kudrass et al., 2001; Sonzogni et al., 1998), and TEX86 336 

(TetraEther index of tetraethers consisting of 86 carbon atoms) (Clemens et al., 2021), recorded 337 

a 2°C difference. These proxies are unaffected by seawater chemistry. However, Uk´
37 faces a 338 

significant limitation in that it becomes insensitive to temperatures above 29°C (Müller et al., 339 

1998). Additionally, TEX86 may primarily reflect subsurface conditions in certain 340 

oceanographic settings (Rommerskirchen et al., 2011). Moreover, both Uk´
37 and TEX86 exhibit 341 
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seasonal bias when representing SST (Chen et al., 2014; Sonzogni et al., 1998; Wuchter et al., 342 

2006).  343 

The application of the empirical relationship between the abundance of planktic foraminiferal 344 

species with temperature recorded SST shift of 0-2°C over the region of BoB (Cullen, 1981). 345 

The δ18O record in G.ruber-based SST shift with an assumption of constant δ18O composition 346 

of seawater registered 1°C cooling during LGM compared to Late Holocene (Duplessy, 1982). 347 

The clumped isotope (∆47) based SST reconstruction in G. ruber is independent of non-thermal 348 

variables like pH and salinity beside the isotopic composition of environmental seawater, 349 

making this a superior technique for temperature reconstruction (Tripati et al., 2010; Peral et 350 

al., 2018).  351 

We matched the present SST record over the time interval of the past 31 kyr with global ice 352 

core  CO2 concentration and summer (June) solar insolation at 30°N to understand the role of 353 

internal and external earth system forcing. Our observation explains 54% and 8% variability of 354 

SST with changes in the CO2 concentration and solar insolation, respectively (Fig.S4), 355 

confirming the climate sensitivity analysis from climate model output (Araya-Melo et al., 356 

2015).  357 

The variation in the SST values during the past 31 kyr is explained by combining summer solar 358 

insolation and atmospheric CO2 forcing together, modulating the process of upwelling and 359 

cloud cover associated with convective rainfall. The upwelling process promotes the transfer 360 

of cold subsurface water, while cloud cover associated with convective rainfall determines the 361 

extent of solar radiation reaching the surface water. The upwelling process can be understood 362 

through paleo-productivity proxies, such as biogenic silica records from the BoB, which 363 

indicate weak upwelling from the Last Glacial to the Early Holocene and strong upwelling 364 

during the Mid-Holocene (Liu et al., 2021).  365 
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3.2 Effect of cloud cover on SST: 366 

The cloud cover plays a pivotal role in regulating Photosynthetically Active Radiation (PAR) 367 

over the ocean, thereby influencing the depth of maximum Chlorophyll a (Chl a) through 368 

mechanisms such as photoacclimation and chlorophyll re-organization (Jyothibabu et al., 2018; 369 

Masuda et al., 2021). Elevated light intensity induces the contraction and aggregation of 370 

chloroplasts within phytoplankton cells, reducing their efficiency in absorbing light and Chl a 371 

content (Kiefer, 1973). Consequently, this triggers the vertical migration of Chl a, leading to 372 

its accumulation in regions characterized by low PAR (Jyothibabu et al., 2018). 373 

Studies conducted during the SASM monsoon period have demonstrated a notable shift in the 374 

water depth of Chl a maxima between cloudy and sunny days, ranging from surface levels to 375 

40 meters and 40-80 meters water depth over the BoB, respectively (Jyothibabu et al., 2018); 376 

identified using onboard observation in the region of BoB. The abundance of planktic 377 

foraminifera is sensitive to Chl a concentrations (Munir et al., 2022; Kuroyanagi and Kawahata, 378 

2004). Specifically, two species, Globigerina bulloides, and Neogloboquadrina dutertrei, 379 

exhibit maximal thriving conditions at water depths of 0-50 meters and 50-100 meters, 380 

respectively (Tapia et al., 2022) (Fig.S5).  381 

Drawing upon the relationship between cloud cover and the depth of Chl a maxima, as well as 382 

the influence of Chl a on planktic foraminiferal abundance, we propose a proxy for cloud cover 383 

utilizing the ratio of planktic foraminiferal abundance of G. bulloides to N. dutertrei. A 384 

significant negative correlation is evident between reanalysis data of outgoing longwave 385 

radiation, serving as an index for cloud cover, and the ratio of G. bulloides to N. dutertrei, as 386 

revealed by sediment trap records from the NBoB (Pearson’s r value = -0.61 , p-value = 0.03, 387 

n = 13) and CBoB (Pearson’s r value = -0.74 , p-value = 0.004, n = 13) (Guptha et al., 1997) 388 

(Fig. S6). The relatively weak relationship and differential slope observed over NBoB 389 

compared to CBoB may be attributed to the influence of riverine suspended sediments, which 390 
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also modulate the relationship between PAR and the depth of Chl a maxima (Jyothibabu et al., 391 

2018). This framework enables the reconstruction of paleo-cloud cover using temporal 392 

variation in the ratio of G. bulloides to N. dutertrei. It is important to mention that the upwelling 393 

process also contributes to the shifting of the depth of Chl a maxima (Garg et al., 2024), thereby 394 

contributing to the populational abundance of G. bulloides (Prell and Curry, 1981). The SASM 395 

monsoon also generates upwelling along the eastern margin of India (Shetye et al., 1991). 396 

However, the observation showed weaker upwelling at the site of the present study with 397 

confinement near the coast because of the strong stratification (Shetye et al., 1991; 398 

Gopalakrishna and Sastry, 1985).  399 

We adapted the planktic foraminiferal abundance data recorded in the sediment core of the 400 

adjacent site SK218 (Verma et al., 2022) to derive information about the role of cloud cover on 401 

regional SST. Given the weak upwelling activity between Early Holocene and Last Glacial 402 

based on biogenic silica mass accumulation rate (Liu et al., 2021), cloud cover emerged as the 403 

primary factor modulating the ratio of G. bulloides to N. dutertrei. The high and low ratio 404 

values of G. bulloides to N. dutertrei during the LGM and the deglaciation to Early Holocene 405 

periods indicate periods of high and low cloud cover, respectively. However, during the middle 406 

Holocene, the high ratio of G. bulloides to N. dutertrei, coupled with high biogenic silica 407 

content (Liu et al., 2021), suggests that both cloud cover and upwelling were dominant factors. 408 

The temporal correlation observed between the ratio of G. bulloides to N. dutertrei and changes 409 

in SST (Fig. 2b), as inferred from our ∆47-based temperature reconstructions, suggests that 410 

cloud cover has significantly influenced SST dynamics during the time interval of 16-31 kyr 411 

BP in the CW BoB. From 16 kyr BP to 0 kyr BP, SST in the CWBoB increased despite a rise 412 

in cloud cover (Fig. 2b). This warming trend can be attributed to radiative forcing associated 413 

with elevated atmospheric CO2 levels (Fig. 2a & 2b). 414 
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3.3 Evaporation versus Rainfall over CW BoB regulated by wind: 415 

SASM is characterised by SW trade wind, which promotes evaporation and release of latent 416 

heat over the region of CW BoB (Samanta et al., 2018) and transports moisture to the region 417 

of NBoB and South Asia (Dar and Ghosh, 2016; Yoon and Chen, 2005). Here, we took 418 

advantage of the estimated δ18Osw at CW BoB to reconstruct the moisture imbalance due to the 419 

process of evaporation and rainfall (Fig. 2c). The strength of SASM wind during this time 420 

interval is derived from eolian detrital flux from the northeastern Arabian Sea (Pourmand et 421 

al., 2004) (Fig. 2c). The eolian input to this region is transported from the Arabian Peninsula 422 

and Persian Gulf during periods of weak SASM winds and strong northwesterly. Conversely, 423 

the eolian input is minimal during periods of strong SASM winds (Pourmand et al., 2004). 424 

The δ18Osw record from CWBoB exhibits a robust temporal correlation with the SASM wind 425 

speed proxy (eolian detrital flux) spanning the past 31 kyr (Fig. 2c). Lighter δ18Osw values 426 

observed during the early phase of MIS 2 (20.9 – 27.6 kyr BP; including LGM), the 427 

deglaciation to Early Holocene transition (9.9 – 13.4 kyr BP), and the mid to late Holocene 428 

transition (3.2 – 6.6 kyr BP) indicate surplus rainfall relative to evaporation over the CW BoB 429 

(Fig. 2c). This phenomenon is linked to weakened SASM wind speeds, reducing the quantum 430 

of moisture transported to the NBoB and South Asia, thereby exacerbating aridity on the 431 

continent (Fig. 2c) (Kudrass et al., 2001; Dutt et al., 2015). 432 

Conversely, heavier δ18Osw compositions during the MIS 3 to MIS 2 transition (27.6 – 30.9 kyr 433 

BP), Heinrich Event 1, and the Early to mid-Holocene transition (6.6 – 9.9 kyr BP) suggest an 434 

excess of evaporation compared to rainfall over the CW BoB (Fig. 2c). This trend is associated 435 

with intensified SASM winds (Fig. 2c) and increased continental rainfall and river runoff, 436 

indicating moisture transport from CWBoB to South Asia (Kudrass et al., 2001; Dutt et al., 437 

2015; Weldeab et al., 2022). In summary, the fluctuation in evaporation over rainfall in the CW 438 
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BoB over the past 31 kyr implies a meridional shift in the intensity of convective rainfall clouds 439 

during this period. 440 

3.4 Moisture transport to the continent in response to SST over CW BoB: 441 

The moisture transport to South Asia and NBoB is driven by two primary physical factors, 442 

which include evaporated moisture flux from CW BoB together with wind, which propel the 443 

water vapor parcel to reach the coastal region and continental landmass (Dar and Ghosh, 2016; 444 

Yoon and Chen, 2005; Shenoi, 2002; Samanta et al., 2018). The contribution of moisture flux 445 

varies with changes in SST, while the transport is governed by the pressure difference between 446 

ocean and continental landmass (Samanta et al., 2018; Goswami, 1987). The region of CW 447 

BoB during SASM time based on modern-day observation shows the intensification of the 448 

evaporation process with higher SST (Samanta et al., 2018). The sensitivity of this process 449 

varied during Glacial and Inter-glacial time frames with 8°C change in the SST condition over 450 

CWBoB (Fig. 2b). The proportion of this moisture distribution into the NBoB as rainfall and 451 

continental runoff can be understood with an independent record of reconstructed δ18Osw 452 

variability across Glacial and Interglacial time interval. To quantify the cumulative freshwater 453 

influx into the NBoB, we estimated the difference in δ18Osw (∆18Osw) between the coastal site 454 

KL-126 in the NBoB (Kudrass et al., 2001) and the present study site MGS17/GC02 in the CW 455 

BoB.  The δ18Osw over BoB is related to Sea Surface Salinity (SSS), which is modeled using an 456 

oxygen isotope-based Rayleigh steady-state model with freshwater and evaporation as input 457 

and output to the surface seawater reservoir (Singh et al., 2014). The (∆18Osw) is used for the 458 

estimation of changes in SSS (∆SSS) between NBoB and CW BoB for the Glacial-Interglacial 459 

time interval, which translates into a relative change in rainfall over South Asia and continental 460 

runoff to NBoB (Fig. 2d & Table S4). The temporal pattern of ∆SSS is in accordance with 461 

Ba/Ca ratio of G.ruber-based continental runoff proxy from the region of NBoB, which reflects 462 

SASM rainfall intensity over the continental region (Weldeab et al., 2022) (Fig. 2d).  463 
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The higher average ( ± 1SD ) ∆SSS value of -1.4 ± 0.4 psu (n = 4) is observed during the early 464 

phase of MIS 2 (20.9-28 kyr BP), prohibiting moisture transport to the continental region (Fig. 465 

2d & Table S4). This is consistent with our observation of the high ratio of G. bulloides to N. 466 

dutertrei abundances, denoting the presence of convective cloud cover over the region of CW 467 

BoB (Fig. 2b).  468 

The lower average ( ± 1SD ) ∆SSS value of -11.2 ± 2.9 psu (n = 3) is observed during the Early 469 

to Mid Holocene transition  (6.6 to 8.7 kyr BP), corresponding to a period of excess continental 470 

runoff over NBoB (Fig. 2d). The evidence of rainfall variability in the continental region is 471 

discernible in the vegetation cover, as revealed by the temporal pollen records from lake 472 

sediments. These records indicate the presence of open vegetation during periods of high ∆SSS 473 

and mixed tropical deciduous vegetation during periods of low ∆SSS (Quamar and Bera, 2020).  474 

We observed a strong relationship between SST at CW BoB with ∆SSS denoting freshwater 475 

input into the region of NBoB (Fig. 3). This relationship is based on 18-time intervals (+1 476 

replicate) in continuity in the sedimentary record, denoting average time resolution of 1.7 kyr 477 

which discounts interferences from short term climatic processes such as El Niño-Southern 478 

Oscillation, Indian Ocean Dipole, and North Atlantic Oscillation. The observation shows a 479 

sensitivity of moisture transport as evident from a drop in ∆SSS by 0.9±0.1 psu with an 480 

increment of 1°C in the SST record over CW BoB (Fig. 3). Our observation identified SST as 481 

a crucial factor in determining the moisture transport process and rainfall over NBoB and South 482 

Asia.  483 
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 484 

Fig. 3: Time-integrated record showing the response of ∆SSS (NBoB-CWBoB) with SST over 485 

CW BoB denotes the intensity of SASM over South Asia and NBoB during the past 31kyr BP. 486 

The color grading provides measures for geological time intervals. 487 

 488 

4. Conclusion: 489 

This is the first record of SST variability from BoB covering the time period of the past 31 kyr 490 

BP encompassing interglacial and last glacial time interval using clumped isotope thermometry 491 

on G.ruber planktic foraminiferal carbonate. The variability in SST is predominantly driven by 492 

global atmospheric CO2 levels, accounting for 54% of the overall signal. Notably, internal 493 

feedback processes involving cloud cover emerge as significant factors in SST modulation. 494 

Furthermore, hydrological feedback mechanisms within the CWBoB are elucidated through 495 
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δ18Osw analysis. A strong correlation is observed between δ18Osw and SASM wind strength from 496 

31 kyr BP to the present. The present record showed SST over CW BoB regulated the moisture 497 

transport to NBoB and, in turn, contributed to freshwater discharge by rivers together with 498 

rainfall. This is captured in the SSS difference between the coastal sites at NBoB and open 499 

ocean site at CW BoB.   500 
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