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Abstract. We use satellite observa0ons of carbon monoxide (CO) to es0mate CO	emissions from European integrated iron & 

steel plants, the con0nent’s highest emiRng CO	point sources. We perform analy0cal inversions to es0mate emissions from 

21 individual plants using observa0ons from the Tropospheric Monitoring Instrument (TROPOMI) for 2019. As prior emissions, 

we use values reported by the facili0es to the European Pollutant Release and Transfer Register (E-PRTR). These reported 

emissions vary in es0ma0on methodology, including both measurements and calcula0ons. With the Weather Research and 

Forecas0ng (WRF) model, we perform an ensemble of simula0ons with different transport seRngs to best replicate the 

observed emission plumes for each day and site. Comparing the inversion-based emission es0mates to the E-PRTR reports, 

nine of the plants agree within uncertain0es. For the remaining plants, we generally find lower emission rates than reported. 

Our posterior emission es0mates are well-constrained by the satellite observa0ons (90% of the plants have averaging kernel 

sensi0vi0es above 0.7) except for a few low-emiRng or coastal sites. We find agreement between our inversion results and 

emissions we es0mate using the Cross-Sec0onal Flux (CSF) method for the seven strongest-emiRng plants, building further 

confidence in the inversion es0mates. Finally, for four plants with large year-to-year variability in reported emission rates or 

large differences between the reported emission rate and our posterior es0mate, we extend our analysis to 2020. We find no 

evidence in either the observed carbon monoxide concentra0ons or our inversion results for strong changes in emission rates. 

This demonstrates how satellites can be used to iden0fy poten0al uncertain0es in reported emissions. 

1 Introduc0on 

Integrated iron & steel plants are the highest-emiRng point sources of carbon monoxide (CO) in Europe. CO	is of par0cular 

interest as it is both an important air pollutant and relevant for the greenhouse gas (GHG) balance of the atmosphere as an 

indirect GHG (Daniel and Solomon, 1998). It is a precursor of ozone and reacts with the cleaning agent OH, thereby increasing 

the atmospheric life0me of methane (Jacob, 1999; Wuebbles and Hayhoe, 2002). As a product of incomplete combus0on, 

the majority of CO	in our atmosphere is emieed by anthropogenic sources (like road transport and industry) and fires (Zhong 

et al., 2017). As these combus0on processes also emit CO2, beeer knowledge of CO	can support our understanding of CO2	



emissions (Park et al., 2021; Wu et al., 2022). The importance of air pollu0on, both for health effects and for beeer 

understanding of our atmosphere, is reflected in regula0ons by the European Union requiring the repor0ng of emissions of 

both GHG emissions and a large number of air pollutants, including CO, at the facility-level (EUR-Lex, 2006). As these reports 

are an important factor in policy-making, there is a need for verifica0on of these reported emission rates using addi0onal 

measurements like satellite data. In this study we will use data from the TROPOMI satellite instrument to es0mate the 

emission rate of the 21 highest-CO-emiRng European iron & steel plants. 

The iron & steel industry has been marked as an important target for de-carboniza0on, and there has been a push towards 

near-zero carbon-emission produc0on of steel (Skoczkowski et al., 2020; Shahabuddin et al., 2023). However, the largest part 

of planned capacity (increase) s0ll relies on carbon-intensive produc0on and most of the near-zero produc0on projects are 

currently in tes0ng stages (Higuera and Van Woensel, 2021; Liu et al., 2022). Combined with the con0nuously increasing global 

demand in steel, carbon emissions from steel produc0on have roughly doubled from 2000 to 2020 (Bashmakov et al., 2022). 

Together, the 21 plants considered emit as much CO	as Italy, Europe’s fourth highest CO-emieer (E-PRTR, 2023; Denier van 

der Gon and CoCO2 WP2, 2022). 

The large amount of released carbon is a result of using coal as a reductor in steel produc0on (Zang et al., 2023). Integrated 

iron & steel plants cover all processes from iron-dust to the produc0on of cast steel. The iron-dust contains a lot of oxides, 

which have to be separated from the iron. However, as the iron-dust is too fine to be processed in the blast furnaces, it is first 

agglomerated during sintering: using hot air and coke, the par0cle size increases. Due to the low combus0on efficiency of fine 

par0cles under these condi0ons (Mohammad et al., 2023), a lot of CO	is produced, which is vented into the air with other 

byproducts (Ho et al., 2013). Subsequently, the combina0on of sinter and coke is fed into the blast furnace where the oxygen 

splits from the iron and combines with the carbon molecules of the coke. The liquidized iron is then collected at the boeom 

of the furnace. Although the reduc0on of the iron results in a lot of CO, the gas is caught at the top of the furnace and used 

as fuel (Rackley, 2017). The frac0on of carbon in the liquid iron is too high to make steel. Therefore, in the Basic Oxygen 

Furnace (BOF), oxygen is led through the iron which binds with the carbon to lower the carbon content to levels appropriate 

for steel produc0on. Like the blast furnace, the BOF produces a lot of CO	that is captured for use as fuel (Rackley, 2017). 

Annual emission rates for the combina0on of all processes in the plants can be reported using con0nuous stack-monitoring, 

extrapola0on of discon0nuous measurements, or through calcula0ons using emission factors in combina0on with ac0vity and 

produc0on numbers (E-PRTR, 2023). 

Independently of directly measuring emission rates and/or ac0vity-based calcula0on, emission rates can also be 

determined based on the resul0ng CO	enhancements in the atmosphere. Previous work on regional emission quan0fica0on 

and analysis using satellite-based concentra0on measurements included the use of MOPITT, Sciamachy, and TROPOMI (e.g. 

Gloudemans et al. (2006); Khlystova et al. (2009); Worden et al. (2010); Girach and Nair (2014); van der Velde et al. (2021)). 

Addi0onally, the resolu0on of TROPOMI, down to 7 x 5.5 km2 (across x along track), has been shown to be sufficiently high to 

study individual ci0es and CO	point sources (Tian et al., 2022; Plant et al., 2022; Leguijt et al., 2023; Goudar et al., 2023; 

Schneising et al., 2024). The coverage of polar-orbi0ng satellites like TROPOMI allows for consistent inves0ga0on of regions 



all over the world rather than being confined to places with good repor0ng infrastructure. Even in Europe, this con0nuous 

data availability is important as there are some gaps in the data gathered by the European repor0ng framework. As an 

example: Slovakia has not reported emissions beyond the year 2017 following a change in repor0ng format (E-PRTR, 2023). 

For loca0ons with a con0nuous record of emissions, we will demonstrate that the satellite data can be used as an independent 

verifica0on of the reported emissions. We use CO	observa0ons by TROPOMI for 2019 to perform analy0cal inversions over 

the largest 21 European point sources of CO	 to es0mate their emission rates and evaluate consistency with reported 

emissions. In addi0on, we perform mul0-year analyses for sites with large year-to-year differences in reported emission rates 

and compare our analy0cal inversions with other satellite-based emission quan0fica0on methods. 

2 Data & Methods 

We use TROPOMI carbon monoxide (CO) data in site-specific analy0cal inversions to es0mate annual CO	emissions from the 

21 largest iron & steel plants in Europe using their emissions as reported to the European Pollutant Release and Transfer 

Register (E-PRTR) as prior es0mates. We will first describe the TROPOMI data product in Sec0on 2.1. Sec0on 2.2 covers the 

prior emission data and Sec0on 2.3 describes the Weather Research and Forecas0ng (WRF) forward model. In Sec0on 2.4 to 

2.6, we describe the inversion framework and uncertainty es0ma0on. Finally, in Sec0on 2.7, we describe the Cross-Sec0onal 

Flux (CSF) method and the concept of wind rota0on, which are supplemental methods to analyse emission rates from satellite 

data. 

2.1 TROPOMI carbon monoxide data product 

The TROPOMI instrument is a spectrometer on the ESA Sen0nel-5 precursor satellite which flies in a sun-synchronous orbit 

with an equatorial overpass at 13:30 local 0me (Veeqind et al., 2012). Its swath of 2600 km allows for daily global coverage 

at a resolu0on down to 7 x 5.5 km2 (across x along track) for CO. We use the CO	opera0onal product version 2.2.0 (Landgraf 

et al., 2021) which employs the shortwave-infrared CO retrieval (SICOR) algorithm to determine the total column CO	

concentra0on based on the absorp0on of reflected sunlight in the shortwave-infrared band (SWIR, 2305-2385 nm) (Borsdorff 

et al., 2018). The ground-based Total Carbon Column Observing Network (TCCON, (Wunch et al., 2011)) also measures the 

total column CO	concentra0ons at specific sites by measuring the spectrum of direct sunlight, allowing for valida0on of the 

TROPOMI product. TROPOMI shows good agreement with the unscaled TCCON product with a mean difference per sta0on 

of 2.45± 3.38%	(Sha et al., 2021). 

We only use observa0ons with sensi0vity to concentra0ons at the surface and therefore remove observa0ons with a 

TROPOMI Data Quality Value (QA Value) below 0.7 (Landgraf et al., 2021). The remaining data are either cloud-free or contain 

only low al0tude clouds. Due to the low surface albedo of water, cloudless observa0ons over water bodies result in more 

uncertain es0mates of the CO	concentra0on. We therefore remove cloudless pixels (pixels with a QA Value equal to 1) over 

water. For all iron & steel plants we analyse TROPOMI data for 2019. In addi0on, we analyse 2020 data for four plants, Arcelor 
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Gent (Belgium), Gijon (Spain), Ostrava (Czech Republic) and Provozovna Tˇrinec (Czech Republic). Because of the heavy 

computa0onal burden of our analysis, we limit our 2020 analysis to these plants, which show interes0ng results for 2019 that 

warrant further inves0ga0on. 

2.2 Prior emissions: E-PRTR repor0ng framework and TNO emission inventory 

The European Pollutant Release and Transfer Register (E-PRTR) is the official pollutant repor0ng framework of the European 

Union (EU) (E-PRTR, 2023). Industries in EU member states are required to annually report facility-level emissions of air 

pollutants and greenhouse gases to air, water, and soil (EUR-Lex, 2006). For steel produc0on, the repor0ng requirement 

applies to all facili0es with a capacity exceeding 2.5 tonnes of steel per hour (EUR-Lex, 2006). We use the reported emission 

rates for 2019 except for U.S. Steel s.r.o. in Slovakia for which we use the last reported emission rate (2017) instead. 

In addi0on to a reported emission rate, the E-PRTR database contains informa0on on the methods used to determine each 

specific emission rate as shown in Figure 1. All measured and calculated emissions are obtained conform to either na0onally 

or interna0onally approved methods. The label ‘measured’ applies both to con0nuous and short-term discon0nuous 

measurements of the emission rate. ‘Calculated’ emission rates are determined through combined knowledge of ac0vity data 

(fuel use, steel output) and emission factors while ‘es0mated’ emission rates are determined using non-standardized methods 

that are not based on publicly available references (ICF, 2020). While Donawitz GesmbH (Austria) men0ons the use of stack 

monitors, which con0nuously measure the emission rate of gases, and Salzgieer Flachstahl (Germany) reports the use of bi-

annual measurements, the majority of the plants do not provide informa0on on the specific method of measurement or 

calcula0on, which is in line with findings by ICF (2020).  
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Figure 1. Facility-level carbon monoxide emissions as reported to E-PRTR from 2017 (top) to 2021 (boEom). The different methods used to 

determine these emissions are indicated by the colors, measured (green), calculated (orange), and esHmated (blue). The year 2019 (middle), 

which is used for the analysis in this work is shown more opaquely. E-PRTR does not provide uncertainty esHmates. 

As input to our forward model, we represent anthropogenic CO	emissions surrounding the iron & steel plants with the 

European TNO Greenhouse Gas and co-Emieed species (GHGco) inventory version 4 developed for the EU-horizon CoCO2 

project (Kuenen et al., 2022; Denier van der Gon and CoCO2 WP2, 2022). The GHGco inventory focuses specifically on Europe 

and includes emissions for different source sectors grouped following the Gridded Nomenclature For Repor0ng (Kuenen et 

al., 2022). A resolu0on of 0.05◦x0.1◦	is achieved by combining (1) emission data reported by member states to the Centre on 

Emission Inventories and Projec0ons of the European Monitoring and Evalua0on Programme (EMEP/CEIP), (2) spa0al proxies 

like popula0on density and road networks, and (3) addi0onal datasets like emissions based on reported shipping ac0vity and 

remotely sensed agricultural fires. The inventory is supplemented with point sources, like iron & steel plants, power plants, 

and airports, at their exact loca0on. As we use the iron & steel plant emission rate from E-PRTR, we remove the corresponding 

point sources from the TNO GHGco inventory to avoid double coun0ng of emissions. Because of the CO-intense processes 



taking place in the iron & steel plants, the emission rates reported to E-PRTR comprise at least 70% of the total emissions in 

a 0.4◦x0.4◦	box centered on the plant. 

2.3 Forward model: WRF chemical transport model 

We use the Weather Research and Forecas0ng (WRF) chemical transport model version 4.1 (Powers et al., 2017) to simulate 

three-dimensional concentra0on fields around each iron & steel plant for 2019. Table A1 shows the list of the plants we use 

in the simula0ons and their loca0ons. All simula0ons use nested domains centered on the loca0on of the plant with an inner 

domain (147x147 km2) simulated at 3 km resolu0on and an outer domain (441x441 km2) at 9 km resolu0on. Both Thyssen 

Schwelgern and Hüeenwerke Duisburg (Germany) as well as Arcelor Ostrava and Provozovna Tˇrinec (Czech Republic) lie 

within the inner domain of the other, and are combined into one simula0on centered midway between the plants. 

The E-PRTR emissions for the iron & steel plants are supplemented with anthropogenic emissions from the TNO GHGco 

inventory (Sec0on 2.2). Both the E-PRTR and TNO emissions are put on a three-dimensional grid using the sector specific 

ver0cal profiles provided by Bieser et al. (2011). The ver0cal profiles account both for the injec0on height and include an 

effec0ve plume rise parametriza0on. The temporal profiles applied to the emissions per sector are taken from Guevara et al. 

(2021). Background concentra0ons are simulated by using the 0.25◦x0.25◦	resolu0on air pollutant forecast product of the 

Copernicus Atmosphere Monitoring Service (CAMS) as ini0al and 6-hourly boundary condi0ons (Inness et al., 2015). In 

addi0on to the iron & steel plant, we simulate each sector in the TNO GHGco inventory in the inner domain separately, as 

well as the CAMS-based background and enhancements in the inner domain origina0ng from emissions in the four quadrants 

(NE, SE, SW, NW) of the outer domain. 

We model carbon monoxide as an inert gas using the con0guous United States (CONUS) physics suite provided in WRF as 

our baseline setup. Over our small model domain, chemical processes have a small impact on the (long-lived) CO	

enhancements simulated, while the effect of chemistry outside our domain is included in the CAMS boundary condi0ons. As 

will be discussed in Sec0on 2.4, it is important for our simulated and observed plumes to have minimal spa0al mismatch. 

However, at the kilometer-scale of TROPOMI observa0ons, exact plumes can be difficult to model. A way to minimize the 

mismatch is by simula0ng mul0ple plumes per day using various model seRngs (Maasakkers et al., 2022a). Therefore, we 

perform eight simula0ons for each loca0on using four different planetary boundary layer (PBL) schemes and corresponding 

surface layer physics and two different driving meteorological fields. The different planetary boundary layer schemes (Mellor-

Yamada-Janjic (MYJ) TKE, YSU, eddy-diffusivity mass flux quasi normal scale elimina0on (EMF-QNSE), and MYNN 2.5 level TKE 

scheme) allow for differences in ver0cal distribu0on and dispersion speed. As driving meteorological fields, we use the 

Na0onal Centre for Environmental Predic0on (NCEP, 2000) and the fivh genera0on European Centre for Medium-Range 

Weather Forecasts (ECMWF) reanalysis products (ERA5) (Hersbach et al., 2020). 

To be able to directly compare the simula0on to the TROPOMI observa0ons, all simula0on output is sampled at the 

TROPOMI overpass matching footprints of the TROPOMI pixels. The three-dimensional simula0on output is converted to a 

total column by applying the TROPOMI averaging kernel (Landgraf et al., 2021). 



2.4 Inversion framework 

We use an analy0cal inversion to es0mate posterior emissions as described in Brasseur and Jacob (2017). An advantage of 

the inversion framework over mass-balance approaches is that it more precisely resolves transport in the emission es0ma0on. 

This comes at the cost of a higher computa0onal load, but improves the accuracy of the emission es0mate, and allows the 

inversion method to be applied to low-coverage situa0ons which would pose challenges to mass-balance methods. In 

addi0on, the inclusion of more data allows for es0ma0on of smaller emissions over longer 0me periods. 

To es0mate emission rates, we op0mize the cost func0on 𝑱(𝒙)	which is defined as the sum of two parts 

𝑱(𝒙) = (𝒙 − 𝒙𝑨)"𝑺𝑨#𝟏(𝒙 − 𝒙𝑨) + 𝛾(𝒚 − 𝑲𝒙)"𝑺𝑶#𝟏(𝒚 − 𝑲𝒙).	 (1) 

The first part defines a penalty on a departure of the state vector (𝒙) from the prior inventory emission rates (𝒙𝑨), weighted 
by the prior error covariance matrix (𝑺𝑨). The elements of 𝒙 correspond to annual emissions from the iron & steel plant, the 
domain-wide emissions from individual sectors in the TNO GHGco inventory, and emissions from the four quadrants of the 
outer domain as well as the CAMS-based background concentra0ons. The second term in Equa0on 1 defines a penalty on the 
difference between observed (𝛾) and simulated (𝑲𝒙) concentra0ons, weighted by the observa0onal error covariance matrix 
𝑺𝑶. Here 𝑲 is the Jacobian matrix of the simula0on model with respect to changes in emissions. The regulariza0on parameter 
(𝛾) is used to avoid overfiRng to the TROPOMI observa0ons, its determina0on is discussed in Sec0on 2.5. The op0mal 
posterior solu0on  𝒙-	which minimizes the cost func0on is given by 

𝒙- = 𝒙𝑨 + 𝑮(𝒚 − 𝑲𝒙𝑨). 

Here, 𝑮 is the gain matrix defined as 

(2) 

𝑮 = 𝛾𝑺/𝑲"𝑺𝑶#𝟏. 

with 𝑺/	the posterior error covariance matrix 

(3) 

𝑺/ = 0𝛾𝑲
𝑻𝑺𝑶#𝟏𝑲+ 𝑺𝑨#𝟏1

#'
.	 (4) 

With 𝑺/	we can calculate the averaging kernel of our inversion, which gives the sensi0vity of the posterior es0mate to the true 

state 

𝑨 = 𝝏)*
𝝏)
= 𝑰 − 𝑺/𝑺𝑨#𝟏,          	 									(5) 

where 𝑰 represents the iden0ty matrix. 

To construct 𝑺𝑨, we assume a diagonal shape and an uncertainty of 20%	for the TNO GHGco inventory, in accordance with 

the 2-sigma range of 38% given in Super et al. (2020). We choose an uncertainty of 10%	for the CAMS background following 

e.g. Maasakkers et al. (2022b); Naus et al. (2023), and a 50%	uncertainty on the 4 elements adjus0ng for inflow from the 

outer domain reflec0ng the high uncertain0es associated with long-range transport. As these state vector elements affect 

many observa0ons, they tend to be well constrained by the observa0ons and changing their prior uncertainty has limited 

effect on the outcome of the op0miza0on. To allow for enough flexibility in the inversion, we use an uncertainty of 30%	for 
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emissions from the E-PRTR inventory. However, we test the effect of higher and lower uncertain0es in our uncertainty 

calcula0on (Sec0on 2.6). To construct the observa0onal error covariance matrix 𝑺𝑶, we take the standard devia0on of the 

difference between the simulated concentra0ons sampled to the TROPOMI footprints and the observa0ons as in Maasakkers 

et al. (2022a). 

As the term (𝒚 − 𝑲𝒙)	is evaluated for each observa0on, small mismatches in the exact loca0on of the plume between 

TROPOMI and the simula0on will result in underes0mated emissions. This effect can be countered by aggrega0ng the 

observa0on to a coarser resolu0on, in which the simula0on and TROPOMI do agree on the posi0on of the plume (Naus et al., 

2023). We therefore aggregate TROPOMI observa0ons on a 0.1◦	grid in our inverse analysis, trea0ng each observa0on as an 

independent measurement. 

Although aggrega0on reduces the effect of spa0al mismatches between simula0on and observa0on, it is not fully 

eliminated. Following Maasakkers et al. (2022a), the effect of spa0al mismatches can be further mi0gated by crea0ng an 

ensemble of spa0ally different simulated plumes (Sec0on 2.3). For each overpass of TROPOMI, the simulated plume that best 

matches the observed data is selected for the inversion, further lowering the model-driven spa0al mismatch between 

observa0on and simula0on. We determine which simula0on matches the TROPOMI observa0on best by performing daily 

inversions with all 8 simula0on outputs and selec0ng the simula0on with lowest op0mized observa0onal cost (second term 

in Eq. 1). The different plumes are simulated with two different driving wind fields and four PBL schemes (Sec0on 2.3) and 

further expanded by also selec0ng the simulated plumes an hour before and aver the TROPOMI overpass as in Pandey et al. 

(2019). Figure 2 shows the eight spa0ally different simulated plumes at overpass-0me as well as the TROPOMI plume observed 

on the same day. The 16 simulated plumes corresponding to the hour before and aver the TROPOMI overpass are not shown. 

Panel I of Figure 2 shows the lowest op0mized (posterior) observa0onal cost, and this configura0on will therefore be used for 

the op0miza0on for this day. To further limit the contribu0on of spa0al concentra0on-mismatches we remove days which 

have the 20%	highest op0mized observa0onal cost normalized by the number of pixels. This removes days on which, aver 

aggrega0on, none of the simulated plumes spa0ally matched the TROPOMI observed plume well. To ensure representa0ve 

sampling, we use the op0mized observa0onal cost instead of the prior observa0onal cost to avoid structural removal of days 

without clear observed plume signals. The daily inversions are only used for selec0on of the best simula0on on each day. 

Averwards, the best daily simula0ons are combined into a single Jacobian and prior vector, and then used in an inversion 

spanning the full year to determine an annual scaling factor for each emission element of the state vector (𝒙). The emission 

es0mates for the iron & steel plants can therefore be directly compared with the annual emission rates reported to E-PRTR. 

Deleted: rate



 

Figure 2. Panel A shows concentraHon as measured by TROPOMI over Arcelor Gent in Belgium (indicated by the x) on February 25th 2019. 

Panel B-E and J-M show different prior simulaHons using NCEP and ERA5 meteorological data respecHvely. The variaHon between the 

different NCEP/ERA5 simulaHons is caused by different planetary boundary layer schemes and surface layer physics (as indicated in the 

Htles). Panel F-I and N-Q show the corresponding posterior concentraHons. Out of these posterior simulaHons, panel I shows the lowest 

observaHonal cost, making it the best simulaHon for this parHcular day. 

Figure 2 shows a strong south-west to north-east gradient in all prior simulated concentra0on fields (panel 2B-E and 2J-M) 

which is not observed in the TROPOMI data. Such strong gradients are not oven observed in the simulated data, but days that 

do have them will nega0vely impact the accuracy of the inversion result as the over- and underes0mates in the simulated 

concentra0ons will be compensated for by respec0vely lowering or increasing the emission rates over affected areas. To 

reduce the impact of mismatches between the simulated and observed background, we allow our inversion to op0mize the 

background at daily rather than yearly frequency to prevent biases from aliasing into the emissions es0mate (Naus et al., 

2023). We further split the background into a mean background (which is uniform for all pixels per day) and a devia0on from 

the mean (which is any remaining spa0al paeern present in the CAMS-based simulated background). These two parts of the 

background are added individually to the state vector, yielding two state vector elements per overpass of TROPOMI and giving 

addi0onal flexibility to the inversion. Panel 2F-I and 2N-O show this flexibility results in a reduced spa0al gradient in the 

posterior simula0ons, beeer matching the TROPOMI observa0on. Being derived from CAMS, both the mean daily background, 

and the devia0on from the mean are given a 10% uncertainty. Like the state vector elements for transport from the outer 

domain, the background is well constrained by the large number of TROPOMI observa0ons, resul0ng in limited sensi0vity to 
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the imposed prior uncertainty. Typical adjustments to both the mean background concentra0on and its gradient range from 

0-3%. However, the daily background gradient state vector element gets reduced by up to 30%	to beeer match observa0ons. 

2.5 Regulariza0on parameter 

Because of the large number of TROPOMI observa0ons and the assump0on of a diagonal observa0onal error covariance 

matrix, there is a risk of overfiRng to the observa0ons. We therefore apply regulariza0on parameter γ	to the observa0onal 

part of the cost func0on (Equa0on 1). To determine an appropriate value for 𝛾, we use the L-curve criterion as described in 

Hansen (1999). As we are mostly interested in correctly quan0fying emissions from the iron & steel plant, we reduce the 

background contribu0on to the cost-func0on by scaling the background by the mean difference between simula0on and 

observa0on over the full year before determining 𝛾. The resul0ng L-curve can be found in Appendix B, from which we 

conclude 𝛾	=0.1	is appropriate. 

2.6 Uncertainty analysis 

To evaluate the uncertainty of our posterior emission es0mates, we perform an ensemble, varying the relevant parameters 

in our inversion framework. We report the full spread of this ensemble for each plant as uncertainty. The range over which 

each parameter was varied can be found in Appendix C. Figure 3 shows the resul0ng spread in emission rates related to each 

varied parameter. Not op0mizing the background daily and different aggrega0on resolu0ons result in large spreads, exceeding 

those resul0ng from the use of different wind products and choices in data filtering. As an alterna0ve to using the 

observa0onal cost func0on for selec0ng the best matching simula0on (Sec0on 2.4), we select the simula0on based on the 

highest posterior scaling. We include this (poten0ally high-biased) approach within the uncertainty ensemble to get a 

conserva0ve uncertainty range. Although the choice of the regulariza0on parameter has a small effect on the emission 

es0mate for most plants, it affects a few individual sites more heavily than any of the other variables because they have 

rela0vely few observa0ons, and the lower γ	values then keep the es0mates close to the prior. The posterior es0mate is 

rela0vely insensi0ve to varia0on of the prior, showing that the emission es0mates are strongly determined by the TROPOMI 

observa0ons. 



 

Figure 3. The uncertainty related to each parameter for all plants. The x-axis shows the relaHve deviaHon from the base posterior esHmates. 

The boxplots show the collecHon of all invesHgated plants with the x-axis showing the resulHng emission rates normalized by their base 

posterior esHmate. Each boxplot consists of the esHmates for each plant for the enHre spread in the variable as classified in Appendix C. 

2.7 Addi0onal quan0fica0on methods 

We compare and supplement our inversion approach with two addi0onal methods; the Cross-Sec0onal Flux (CSF) method, 

and an approach based on oversampling and wind rota0on. Both methods solely rely on the CO-concentra0ons measured by 

TROPOMI and a wind field, without incorpora0ng any prior knowledge on emission rates or using simula0ons of atmospheric 

concentra0ons. 

The CSF method (Varon et al., 2018) is a ‘mass balance’ emission quan0fica0on method that calculates the par0cle flux at 

different distances from a source. First, CO	enhancements are integrated over cross-sec0ons perpendicular to the plume. 

Mul0plied by an effec0ve wind speed, the full integral over each cross-sec0on gives an emission rate es0mate. By repea0ng Deleted: the



this procedure at different distances from the source, an average emission rate corresponding with the observed plume is 

calculated. The simplicity of the method allows for fast applica0on to different loca0ons at the cost of a larger uncertainty 

and higher minimum emission threshold than methods relying on large atmospheric transport models. We perform the CSF 

as in Leguijt et al. (2023) using the effec0ve wind calibra0on and 10-meter al0tude winds from ERA5 (Hersbach et al., 2020). 

The effec0ve wind speed is a parametriza0on of the actual wind speed, which aims to account for the effects of turbulence, 

varia0on in the ver0cal wind profile, and plume rise. As uncertainty we report the full range of the same ensemble members 

as used in Leguijt et al. (2023). 

To inves0gate whether year-to-year varia0on in inversion-based emission rate es0mates are consistent with trends in 

observed CO	concentra0ons, we also perform a method based on an oversampled wind rota0on as in Clarisse et al. (2019). 

Because of varia0on in the wind direc0on, plumes at different days will point in different direc0ons and oversampling 

measured concentra0ons without taking wind-informa0on into account will result in a diffuse enhancement. Valin et al. 

(2013) and Pommier et al. (2013) showed that the spa0ally averaged concentra0ons retain a plume-like shape if the 

enhancements are rotated around the source loca0on such that the wind points in the same direc0on. Using the approach as 

developed in Maasakkers et al. (2022b), we oversample wind rotated concentra0on fields and use these as an indica0on of 

emission trends rather than a determina0on of absolute emission rates. 

3 Results & Discussion 

We first discuss the performance of our inversion in Sec0on 3.1, followed by a comparison of the satellite-based emission 

es0mates with reported emission rates in Sec0on 3.2. To explain any differences between the two, we have extended our 

analysis to 2020 for some of the inves0gated plants for which the results are shown in Sec0on 3.4. Sec0on 3.3 explores 

consistency with the model-independent Cross-Sec0onal Flux (CSF) method. 

3.1 Inversion performance 

In Figure 4A we show the difference between the prior simula0on and observa0ons for 2019 over Arcelor Gent (Belgium), 

gridded at 0.05◦. Throughout the domain, excluding five pixels at the center, the concentra0ons measured by TROPOMI 

exceed the simulated concentra0ons. Figure 4C shows the corresponding difference plot for the posterior simula0on aver 

op0miza0on of the state vector. This figure shows a reduced bias (1.89 to 0.01 ppb) and absolute bias (2.00 to 0.95 ppb), and 

a higher correla0on (0.80 to 0.83) between simula0on and observa0on, as expected from the op0miza0on. In addi0on, no 

spa0al paeerns are visible in the resul0ng difference map. The difference between prior and observa0on can largely be 

explained by differences in simulated background. Figure 4B shows the difference between simula0on and observa0on where 

only the background has been op0mized. Although the largest part of the domain shows beeer agreement to the 

observa0ons than the prior simula0on (mean bias: -0.11, mean absolute bias: 0.97, correla0on: 0.83), the simulated 

concentra0ons above the iron & steel plant, indicated with the black square, show significant differences. This shows the Deleted: plants



inversion framework is sensi0ve to emissions from the iron & steel plant specifically. The corresponding values for the other 

plants are shown in Appendix D. 

To test whether there is a temporal sampling bias in our method, we inves0gate the distribu0on of TROPOMI observa0ons 

throughout the year per plant. The number of observa0ons shows limited varia0on over the four quarters of the year, ranging 

from 19.2% of the annual number of valid observa0ons (4th quarter, Arcelor Bremen) to 29.6% (3rd quarter, Scunthorpe IS 

Works). 

 

Figure 4. Panels A-C show the difference between the prior and posterior simulaHon and TROPOMI observaHons over Arcelor Gent (Belgium) 

for 2019 aggregated at 0.05◦. The black squares, with dimensions of 0.15◦x 0.15◦, are centered on the locaHon of the plant. Panel A shows 

the prior difference, where TROPOMI observaHons are higher than the simulated concentraHons throughout most of the region. Panel B 

shows the impact of opHmizing the background, showing a smaller difference, except around the iron & steel plant. In the posterior 

difference shown in Panel C, there is no clear paEern visible in the difference between the simulaHon and TROPOMI. 

3.2 TROPOMI emission es0mates 

Figure 5 shows the TROPOMI-based posterior emission es0mates compared to the prior emission rates from E-PRTR. Ten out 

of twenty-one posterior emission es0mates agree with E-PRTR within their uncertainty range. The TROPOMI es0mates show 

a correla0on of 0.86 with the E-PRTR dataset and are on average 17%	lower as reflected in Appendix E. 

The hashed bars show the diagonal elements of the averaging kernel of our inversion as given in equa0on 5, which reflect 

the ability to constrain the iron & steel plant emission es0mates based on the satellite observa0ons (Jacob et al., 2016). These 

elements range between 0 and 1, with 1 indica0ng the posterior is fully determined by the observa0ons and values close to 

0 resul0ng in posterior es0mates that are mostly determined by the prior. Most of the plants, 67%	(90%), have inversion 

averaging kernel values above 0.8 (0.7) respec0vely. This is a result of the large number of TROPOMI observa0ons, with each 

plant having TROPOMI measurements covering at least part of the simulated plume on 150 to 250 days. ISD Dunaferr 

(Hungary) forms an excep0on on the high inversion averaging kernel values, with a diagonal element equal to 0.18. This is 

also the plant with the lowest prior and posterior emission es0mate, resul0ng in a low sensi0vity of the observa0ons to the 
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(small) emissions. With 33%	of the plants having inversion averaging kernel values below 0.8, we are limited to annual 

emission rate es0mates. 6-monthly emission es0mates for these plants would result in averaging kernel values as low as 0.45, 

and, consequently, emission es0mates that are strongly driven by the prior value. 

The inversion-based emission es0mates for the German plants (Arcelor Bremen, Eisenhüeenstadt, AG der Dillinger, 

Salzgieer Flachstahl, Thyssen Schwelgern and Hüeenwerke Duisburg) agree within error bars with the emission rates 

determined by Schneising et al. (2024) using TROPOMI data in a mass balance approach. However, for these six plants, our 

emission es0mates lie on the lower edge of their uncertainty es0mates. Arcelor Gent, Gijon, Dunkerque, Ostrava, and ILVA 

Taranto show considerably lower posterior emission es0mates even though their reported emissions are based on 

measurements (as indicated by the green color). The same applies to U.S. Steel s.r.o (Slovakia), although the emission rate 

was reported for the year 2017. This indicates our es0mates may be conserva0ve as a perfect es0mate requires a sufficient 

spa0al match between the modeled and observed plume. Addi0onally, for Arcelor Gent, Gijon and ILVA Taranto reported 

emissions drop by respec0vely 42, 40 and 24% for 2020 compared to 2019 (Figure 1). We inves0gate whether the 

disagreement between our posterior es0mates and E-PRTR is persistent in 2020 in Sec0on 3.4. Port Talbot S Works and 

Hüeenwerke Duisburg show large uncertainty ranges. The low values for Talbot originate from the γ	=1	and yearly-background 

op0miza0on ensemble members. As Port Talbot is coastal, a lower number of observa0ons and discrepancies between land 

and water pixels might create difficul0es for the inversion framework. A regulariza0on parameter equal to 1 has a risk of 

overfiRng the observa0onal data and, specifically for Talbot results in a close to zero emission rate es0mate. Similarly, not 

allowing for daily op0miza0on of the background could result in differences between land and water pixels being wrongly 

interpreted as the effect of the plant. However, the other coastal plants (Arcelor Dunkerque, FOS, Gijon, ILVA Taranto and Tata 

IJmuiden) do not show larger uncertain0es compared to inland loca0ons. 

The high posterior es0mates in the uncertainty range for Hüeenwerke Duisburg come from the ensemble members with γ	

=1	and prior uncertainty equal to 50%. Both would allow the inversion to wrongly aeribute emissions from the neighbouring 

Thyssen Schwelgern plant (±10km difference) to Hüeenwerke Duisburg. However, the corresponding ensemble members for 

Thyssen Schwelgern are only 15-20%	 lower than the base inversion, meaning the summed emission for the two plants is 

considerably higher than the base inversion in these ensemble members. The fact that the posterior es0mate for specifically 

Hüeenwerke Duisburg is very uncertain shows the inversion has limited ability to dis0nguish between two spa0ally close 

point sources. 



 

Figure 5. Comparison between our posterior emission esHmates (purple) and the emissions reported to E-PRTR for 2019. The colors 

represent the method used to report the emissions to the E-PRTR framework, these are the same as in Figure 1 except for U.S. Steel s.r.o., 

where the gray bar reflects the difference in year between the TROPOMI esHmate and the reported emissions. The error bars on the 

TROPOMI-based esHmates show the full spread of the inversion ensemble. The diagonal elements of the averaging kernel of our inversion 

for each steel plant are shown as hashed bars, these elements are a measure for the extent to which the final emission esHmates are 

constrained by the satellite observaHons. The value of the inversion averaging kernel corresponds to the fracHon of the bar that is shaded. 

3.3 Consistency with Cross-Sec0onal Flux method 

In addi0on to making use of inversions, TROPOMI CO-data can be used to determine emission rates using simpler "mass 

balance" methods like the Cross-Sec0onal Flux (CSF) method. Leguijt et al. (2023) found a 100 Gg per year lower limit for the 

CSF to be trustworthy when applied to TROPOMI data. Seven of the studied plants; Arcelor Dunkerque, Gent, Dubrowie, Port 

Talbot S Works, Thyssen Schwelgern, Hüeenwerke Duisburg, and U.S. Steel s.r.o., have reported emission rates above 100 Gg 

per year and therefore merit the applica0on of the CSF. The other plants have emission rates lower than what Leguijt et al. 

(2023) report as the lower limit for the CSF to be reliable. 



Figure 6 shows a comparison between the two methods for the applicable plants. The annual CSF es0mates show the mean 

of the es0mates on individual orbits, where the number of suitable orbits ranges from 120 (Port Talbot S Works) to 220 

(Arcelor Gent). All es0mates agree within uncertainty. The CSF es0mates of four out of seven plants are higher than the 

inversion es0mates which could support the no0on that the inversion es0mates are conserva0ve. Thyssen Schwelgern and 

Hüeenwerke Duisburg lie only 10 km from one another, meaning the enhancements resul0ng from emissions at these 

loca0ons can overlap. The CSF assumes singular point-like sources and is therefore not fully applicable to this situa0on. This 

can explain the disagreement between both methods at Thyssen Schwelgern. Although the reported emission rates for Port 

Talbot S Works and U.S. Steel s.r.o. are above the 100 Gg per year emission threshold for the CSF, the inversion-based es0mates 

of 58 and 55 Gg per year fall considerably below this value. When applying the CSF to these loca0ons, we find es0mates of 

59 and 34 Gg per year, which lie well below the 100 Gg per year threshold. Therefore, while we have limited confidence in 

the CSF retrieved emission rates, they do support that the emission rates could be lower than reported. 

 

Figure 6. Comparison of inversion-based TROPOMI emission esHmates with esHmates from the mass-balance Cross-SecHonal Flux (CSF) 

method. Emissions reported to E-PRTR are also shown, using the same colors as in Figure 5 to represent the reporHng method. As the lower 



limit for the TROPOMI-based CSF method was esHmated at 100 Gg per year, only the plants with prior or posterior esHmates above this 

value are compared. 

3.4 2020 analysis 

As discussed in Sec0on 3.2, we extend our analysis to 2020 for four of the plants showing considerable differences between 

prior and posterior for 2019: Arcelor Gent, Gijon, Ostrava and Provozovna Tˇrinec. The laeer two show liele varia0on in 

reported emissions from 2019 to 2020 (Figure 7). On the other hand, both Arcelor Gent and Gijon show a sharp drop in 

reported emissions (42 and 40% respec0vely) from 2019 to 2020, with the 2019 Arcelor Gent reported emission exceeding 

the mean of the surrounding four years by 61%. Figure 7 also shows the inversion results for these four plants for 2019 and 

2020. Arcelor Ostrava shows liele difference between the 2019 and 2020 posterior es0mates, as expected from the limited 

varia0on in reported emission rates. The inversion-based emission rate es0mate for Provozovna Tˇrinec increases from 60 

(48-91) to 87 (77-102) Gg/yr, despite having no varia0on in reported emissions. Both Arcelor Gent and Gijon, which have a 

very different prior for the 2019 simula0ons than for the 2020 simula0ons, show much less varia0on in the posterior es0mate 

than in the reported emissions. The prior emission es0mates for 2020 actually agrees beeer with the posterior 2019 es0mates 

for both plants. The 18% reduc0on in the posterior es0mate for Arcelor Gent also lies within the uncertainty range of our 

es0mate, showing no clear indica0on of a reduc0on in emission from 2019 to 2020 contrary to what is suggested by the large 

difference in reported emissions for those years. Arcelor Gijon shows a 22% increase in posterior emission rate as opposed 

to a decline, although this increase lies within the uncertainty range of the 2019 es0mate. Correla0ons between simula0on 

and observa0on are similar between 2020 and 2019; an average posterior (prior) correla0on of 0.79 (0.74) in 2020 compared 

to 0.77 (0.75) in 2019, indica0ng comparable inversion performances.  



 

Figure 7. Extended inversion analysis for four plants using 2020 TROPOMI data. Each plant shows 4 bars, including the reported emission as 

well as the inversion emission esHmate for the years 2019 and 2020. As in Figure 5, the colors of the reported emissions represent how 

they were derived and the hashed bars show the diagonal averaging kernel values of our inversion. 

To verify the lack of varia0on observed in our posterior es0mates, we perform annual wind rota0ons (Sec0on 2.7). Figure 

8 shows the results for the four plants for 2019 and 2020. We es0mate the enhancements related to the plant as the difference 

between 0.1◦	x 0.2◦	(width x length) boxes downwind and upwind of the plant. To quan0fy uncertain0es on year-to-year 

comparisons, we vary the dimensions of up- and downwind boxes simultaneously by up to 30%, and report the full spread. 

Due to its coastal loca0on, the wind rota0ons over Arcelor Gijon do not converge in a clear plume and cannot be used to 

es0mate a varia0on in enhancement. Over Arcelor Gent, we find an enhancement of 2.1 (2.0 - 2.3) ppb for 2019 and 2.0 (1.9 

- 2.1) ppb for 2020. This 5% (4% - 11%) decrease in enhancement is more in line with the 20%	(3%	- 37%) reduc0on in our 

posteriors than with the 42% reduc0on in reported emissions. For Arcelor Ostrava, we find a decrease in enhancement of 

22%	(10% - 27%). This decrease may partly be aeributed to misalignment of the plume and wind-direc0on, which is more 

prominent in 2020. Over Provozovna Tˇrinec, we see a 15%	(0% - 19%) increase in enhancements, which agrees well with the 



reported lack of varia0on between 2019 and 2020. For both Arcelor Ostrava and Provozovna Tˇrinec the percentage changes 

in wind-rotated enhancements are consistent within error bars with the year-to-year varia0ons in our posterior es0mates. 

 

Figure 8. TROPOMI wind-rotated averaged concentraHons over Arcelor Gent, Gijon, Ostrava, and Provozovna Tˇrinec for 2019 and 2020 

oversampled to 0.01 degree. The mean CO	concentraHon across the scene has been subtracted from each image to be able to compare the 

different years. The first panel shows the boxes used to calculate the upwind (white) and downwind (black) concentraHons. 

4 Conclusions 

We performed analy0cal inversions with 2019 TROPOMI satellite data to determine annual carbon monoxide emission rates 

for 21 European integrated iron & steel plants. These plants are the highest emiRng CO	 point-sources in Europe. We 

compared our top-down emission rate es0mates to boeom-up emission rates reported to E-PRTR at facility-level. In doing 

this, we evaluated limita0ons of the satellite-based approach, but also iden0fied outliers poin0ng at uncertain0es in the 

reported data. The E-PRTR emission rates are used as prior es0mates in our inversions. Per site, the inversion uses one of 8 

simula0ons with different meteorology for each day to reach op0mal spa0al agreement between observa0on and simula0on. 
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We allow further freedom in the inversion by op0mizing the CAMS-based background on a daily basis, rather than performing 

an annual scaling. 

We find that the posterior es0mates for plants with reported emission rates above 50 Gg per year (the majority of the 

plants), can be constrained with the satellite observa0ons (invserion averaging kernel values above 0.7 for 90%	of the plants). 

Our emission es0mates show a high correla0on of 0.86 to the emission rates reported to E-PRTR with 10 out of 21 plants 

agreeing within es0mated uncertain0es. For the remaining 12 plants, we find lower posterior emission rates than reported 

to E-PRTR, sugges0ng our method gives conserva0ve emission es0mates. For one of our six coastal sites, and for a loca0on 

with a nearby (within 10 km) point source, we find large differences in posterior es0mates for different inversion set-ups, 

highligh0ng that results for these plants and other plants in similar situa0ons should be treated with care. 

For the 7 plants repor0ng emission rates above 100 Gg per year, we perform an addi0onal emission quan0fica0on using 

the CSF method which does not rely on prior emission informa0on. We find that the CSF-based emission es0mates agree with 

the inversion-based es0mates for isolated plants. For two plants in the United Kingdom and Slovakia, the CSF es0mates fall 

below the 100 Gg reported as the lower limit for this method to produce reliable results. However, these low es0mates do 

provide addi0onal confidence in our inversion-based es0mates that are also significantly lower than the reported emissions. 

We expand our analysis to 2020 for four plants that show large 2019 discrepancies. The inversion es0mates for 2019 and 

2020 agree with each other, showing the robustness of the method. For Gent (Belgium) and Gijon (Spain), the reported 

emission rates for 2020 are 40% lower than those reported for 2019 while they agree with the 2019 and 2020 inversion 

es0mates, raising ques0ons on the reported emissions for 2019. Comparison of wind-rotated oversampled TROPOMI data for 

2019 and 2020 for Gent also shows no indica0on for a large difference in emission rate between the years. This example 

shows how these satellite analyses can be used to iden0fy uncertain0es in reported emissions. In general, the good agreement 

between our results and reported emissions indicates that our framework can be used as a measurement-based approach to 

es0mate CO	emissions from large steel plants where site-specific measurements are limited or not available. 

Code and data availability. TROPOMI (hEps://doi.org/10.5270/S5P-bj3nry0, Copernicus SenHnel- 5P, 2021) are publicly available at 

hEps://dataspace.copernicus.eu (last access: 2 April 2024). ERA5 wind data are available via 

hEps://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5 (Hersbach et al., 2022). WRF-Chem code is available at 

hEps://github.com/wrf-model/WRF/releases (Powers et al., 2023); in this work, version 4.1.5 was used. Open fire emissions from GFAS are 

available at hEps://atmosphere.copernicus.eu/global-fire-emissions (Kaiser et al., 2022). Emissions reported to E-PRTR are publicly 

available at hEps://industry.eea.europa.eu/download (last access: 2 April 2024). The TNO-GHGco-v4 inventory with point sources at exact 

locaHon (Kuenen et al., 2022; Denier van der Gon and CoCO2 WP2, 2022) is available upon request from TNO (contact: Hugo Denier van 

der Gon, hugo.deniervandergon@tno.nl). 

Appendix A: Iron & steel plant loca0ons 

Name Country La0tude/longitude Name Country La0tude/longitude 
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Donawitz GesmbH Austria (47.380,15.066) Arcelor Dunkerque France (51.016,2.336) 

Arcelor Gent Belgium (51.582,3.819) Arcelor FOS France (43.466,4.937) 

Arcelor Ostrava Czech republic (49.796,18.306) Port Talbot S Works United Kingdom (51.556,-3.765) 

Provozovna Tˇrinec Czech republic (49.688,18.647) Scunthorpe IS Works United Kingdom (53.581,-0.62) 

AG der Dillinger Germany (49.357,6.754) ISD Dunaferr Hungary (46.943,18.941) 

Arcelor Bremen Germany (53.125,8.687) ILVA Taranto Italy (40.517,17.2) 

Arcelor Eisenhüeenstadt Germany (52.166,14.618) TATA IJmuiden Netherlands (52.477,4.592) 

Hüeenwerke Duisburg Germany (51.368,6.712) Arcelor Dubrowie Poland (50.080,20.092) 

Salzgieer Flachstahl Germany (52.155,10.403) Arcelor Gala0 Romania (45.438,27.972) 

Thyssen Schwelgern Germany (51.507,6.735) U.S. Steel s.r.o. Slovakia (48.618,21.198) 

Arcelor Gijon Spain (43.556,-5.911)    

Table A1. LocaHon of the invesHgated iron & steel plants. 

 

Figure A1. LocaHon of the invesHgated iron & steel plants. The coordinates are given in Table A1 
  



Appendix B: Regulariza0on factor determina0on 

 

Figure B1. DeterminaHon of the regularizaHon parameter using the L-curve criterion from Hansen (1999) as discussed in SecHon 2.4. 

Different values of the regularizaHon parameter are indicated in the graph with the y-axis showing the cost related to deviaHon from the 

prior and the x-axis showing the observaHonal cost. Both costs have been normalized by the number of state-vector elements and the 

number of observaHons respecHvely. For low gamma values, emission esHmates do not deviate from the prior, which results in large 

differences between simulaHon and observaHon. For too high values of gamma, the inversion overfits the observaHons, resulHng in a strong 

increase in the prior cost. Based on the bend in the L-curve, we chose a value of 0.1 for the regularizaHon parameter. 

  



Appendix C: Uncertainty in our inversion es0mates 

To es0mate the uncertainty and sensi0vity of our inversion-based emission es0mates, we perform an ensemble of inversions 

varying different parameters. Table C1 contains the full list of ensemble members, which we describe in detail here: (1) 0.1 

has been established as a suitable value for the regulariza0on parameter γ	 in Appendix B. In the ensemble we include 

inversions with γ	=0.01	and γ	=1. (2) We op0mize a daily background op0miza0on in the base inversion, in the ensemble we 

include inversions that only op0mize a single scaling of the background. (3) The ensemble includes inversions that use only 

NCEP or ERA5 data. We also add ensemble members that only use the simula0ons sampled at the TROPOMI-overpass 0me, 

instead of using the hour before and aver overpass. (4) Whereas the base inversion uses the op0mized observa0onal cost to 

select the daily simula0on, the ensemble includes inversions which use the maximal posterior scaling for simula0on selec0on. 

(5) As members in the ensemble we include inversions that use different pixel- and orbit-filtering than the base inversion. On 

the pixel-level, we include inversions with a minimum TROPOMI Data Quality Value (QA Value) of 1.0 compared to 0.7 in the 

base inversion. This strict filtering removes up to 87% of data compared to the base inversion. Due to the low number of 

observa0ons, we use a regulariza0on value of 0.5 (as opposed to 0.1) for this specific ensemble member, which was 

determined in the same way as described in Appendix B. In addi0on to filtering based on QA Value, we include inversions 

with a lower maximum allowed scaeering layer height. The base inversion uses a value of 5 km, which corresponds to a QA 

Value of 0.7. We lower this value to 0.5 km, which corresponds to QA Value = 1.0. This inversion differs from inversion using 

the QA Value = 1.0 filtering as the QA Value imposes addi0onal bounds on the aerosol op0cal thickness. By not further 

constraining the op0cal thickness, about 50% of TROPOMI observa0ons with QA Value of 0.7 and higher are retained. (6) 

Orbit-filtering in the base inversion is done by removing the 20% overpasses with the highest op0mized observa0onal error 

per pixel. In the ensemble, we include both cases where we remove 40% of overpasses, as well as cases in which we retain 

all overpasses. (7) Within the ensemble, the resolu0on to which we aggregate the simula0ons and TROPOMI observa0ons is 

increased from 0.1◦	to 0.15◦. We also include inversions in which no aggrega0on is applied. (8) Within our ensemble we change 

the prior by up to 30%. (9) We also vary the prior uncertainty from the 30% uncertainty used in the base inversion. Our 

ensemble members include uncertain0es of 10, 20, 40 and 50%.  



 Variable Default value Range 

 Regulariza0on  

(1) γ 0.1 0.01 - 1.0 

 Background  

(2) Op0misa0on interval daily yearly 

 

(5) Minimum QA Value 0.7 0.7 - 1.0 

 Maximum scaeering layer height 5 km 0.5 km - 5.0 km 

(6) Removing worst matching 
overpasses 

20% 0% - 40% 

Aggrega0on 

 (7) Resolu0on 0.1◦	 no aggrega0on - 0.15◦ 

 Prior es0mate  

(8) Scaling 1.0 0.7 - 1.3 

Prior uncertainty 

 (9) Prior uncertainty  30%  10% - 50% 
Table C1. Full range over which variables were varied in the uncertainty ensemble. 
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Appendix D: Inversion performance 

Name  Prior model Background corrected model Posterior model 

 abs. mean abs. mean  abs. mean 

 error error R2 error error R2 error error R2 

 Donawitz GesmbH 2.42 2.25 0.78 (0.86) 1.36 -0.05 0.78 (0.89) 1.36 -0.05 0.78 (0.89) 

 Arcelor Gent 2.00 1.89 0.80 (0.81) 0.97 -0.11 0.83 (0.82) 0.95 0.01 0.83 (0.85) 

 Arcelor Ostrava 2.57 2.47 0.72 (0.74) 1.08 -0.08 0.71 (0.75) 1.07 -0.02 0.71 (0.77) 

 Provozovna Tˇrinec 2.57 2.47 0.72 (0.77) 1.08 -0.03 0.71 (0.86) 1.07 -0.02 0.71 (0.86) 

 AG der Dillinger 1.67 1.55 0.73 (0.79) 0.97 0.01 0.75 (0.80) 0.97 0.01 0.75 (0.80) 

 Arcelor Bremen 2.35 2.31 0.76 (0.82) 0.92 0.00 0.79 (0.82) 0.92 0.00 0.79 (0.82) 

 Arcelor Eisenhüeenstadt 2.10 2.03 0.78 (0.74) 0.95 0.01 0.81 (0.75) 0.95 0.01 0.81 (0.76) 

 Hüeenwerke Duisburg 1.56 1.31 0.79 (0.66) 1.01 0.02 0.80 (0.80) 1.00 0.00 0.80 (0.82) 

 Salzgieer Flachstahl 1.66 1.51 0.76 (0.75) 0.97 0.01 0.78 (0.77) 0.97 0.00 0.78 (0.78) 

 Thyssen Schwelgern 1.56 1.31 0.79 (0.66) 1.01 -0.09 0.80 (0.80) 1.00 0.00 0.80 (0.81) 

 Arcelor Gijon 2.16 1.87 0.71 (0.65) 1.44 -0.15 0.77 (0.72) 1.42 -0.01 0.76 (0.74) 

 Arcelor Dunkerque 1.62 1.09 0.74 (0.63) 1.33 0.04 0.74 (0.71) 1.32 0.03 0.74 (0.72) 

 Arcelor FOS 2.51 1.93 0.73 (0.68) 1.64 -0.07 0.78 (0.80) 1.63 0.01 0.78 (0.81) 

 Port Talbot S Works 1.98 1.83 0.79 (0.65) 1.00 -0.10 0.82 (0.76) 1.00 0.00 0.82 (0.78) 

 Scunthorpe IS Works 2.16 2.11 0.78 (0.78) 0.97 -0.03 0.80 (0.78) 0.97 0.01 0.80 (0.79) 

 ISD Dunaferr 3.51 3.49 0.77 (0.82) 0.91 0.01 0.84 (0.82) 0.91 0.00 0.84 (0.82) 

 ILVA Taranto 2.86 2.28 0.59 (0.57) 1.37 -0.19 0.71 (0.64) 1.33 -0.01 0.71 (0.68) 

 TATA IJmuiden 1.99 1.84 0.79 (0.86) 1.20 0.01 0.78 (0.86) 1.20 0.01 0.78 (0.86) 

Arcelor Dubrowie         2.82       2.77     0.75 (0.75).    1.06.    -0.07.        0.79 (0.76)           1.05.    -0.02.     0.79 (0.77) 

Arcelor Gala0         3.27      3.26     0.69 (0.62).    0.97.    -0.09.        0.71 (0.65)           0.96.    0.01       0.71 (0.68) 

 U.S. Steel s.r.o. 3.45 3.41 0.77 (0.73) 1.22 -0.20 0.82 (0.78) 1.20 0.01 0.81 (0.77) 
Table D1. Comparison between TROPOMI observaHons and the model for the different locaHons using the prior esHmates (len), only 

correcHng the background (middle), and the posterior esHmates (right). The subcolumns show the mean absolute error, the mean error 

and the correlaHon between simulaHon and TROPOMI observaHon. The values between brackets represent the correlaHons within 0.25◦	of 

the plants to focus on the effect of scaling the plants’ emission rates. All errors are shown in ppb. Arcelor Ostrava and Provozovna Tˇrinec 

share the same simulaHon, as do HüEenwerke Duisburg and Thyssen Schwelgern. 

  



Appendix E: Posterior es0mates 

Figure E1 shows the same data as Figure 5 in a scaeer plot with the same color scheme. The lines show linear regressions 

between posterior and reported emissions for the different repor0ng methods (measured, calculated, and es0mated) and for 

the en0re set of plants. The full comparison shows a high correla0on 0.86 and a slope of 0.83. The slope smaller than 1 reflects 

that the TROPOMI-based emission es0mates are lower than those reported by the facili0es for most plants. Of the different 

subsets, the reported emissions based on es0ma0on show the biggest devia0on from 1 in their slope although the correla0on 

is high due to the very small number of data points. 

 

Figure E1. Different representaHon of the data shown in Figure 5, including the correlaHon between the datasets. The gray line uses the full 

set of invesHgated plants whereas the colored lines correspond to subsets using different E-PRTR reporHng techniques. 
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