
We	thank	both	reviewers	for	their	comments.	We	will	reply	to	each	comment	individually	in	the	
document	below,	where	we	have	marked	text	from	the	reviewers	in	blue,	and	alterations	to	the	
manuscript	in	bold.		
	

Review	1:	
	

This	paper	describes	an	analytical	inversion	to	estimate	emissions	from	several	plants	from	the	
TROPOMI.	It	also	briefly	compares	with	the	other	two	algorithms	and	find	agreement	between	the	
inversion	results	and	emissions	by	CSF	method.	The	combination	of	the	WRF	model	and	the	
analytical	inversion	approach	for	deriving	fluxes	incurs	substantial	costs.	The	amount	of	work	
needed	to	derive	fluxes	for	each	industrial	source	if	this	is	employed	is	quite	computationally	
expensive.	I	am	not	sure	this	has	general	applicability.	The	CSF	method	is	typically	utilized.	
Compared	to	the	CSF	method,	the	combination	of	the	WRF	model	and	the	analytical	inversion	
approach	does	not	seem	to	demonstrate	additional	advantages.	The	paper	is	nicely	organized	and	
results	summarized	well.	Some	key	issues:		

	
We	thank	the	reviewer	for	the	assessment.	We	have	modified	the	text	to	emphasize	advantages	of	the	
inversion	approach	over	mass-balance	methods	such	as	the	CSF.	In	addition	we	would	like	to	refer	to	line	
328-331,	which	we	have	expanded	upon.	
	

(Line	150-154)	We	use	an	analytical	inversion	to	estimate	posterior	emissions	as	described	in	
Brasseur	and	Jacob	(2017).	An	advantage	of	the	inversion	framework	over	mass-balance	
approaches	is	that	it	more	precisely	resolves	transport	in	the	emission	estimation.	This	
comes	at	the	cost	of	a	higher	computational	load,	but	improves	the	accuracy	of	the	emission	
estimate,	and	allows	the	inversion	method	to	be	applied	to	low-coverage	situations	which	
would	pose	challenges	to	mass-balance	methods.	In	addition,	the	inclusion	of	more	data	
allows	for	estimation	of	smaller	emissions	over	longer	time	periods.	
	
(Line	328-331)	Seven	of	the	studied	plants;	Arcelor	Dunkerque,	Gent,	Dubrowie,	Port	Talbot	S	
Works,	Thyssen	Schwelgern,	Hüttenwerke	Duisburg,	and	U.S.	Steel	s.r.o.,	have	reported	emission	
rates	above	100	Gg	per	year	and	therefore	merit	the	application	of	the	CSF.	The	other	plants	have	
emission	rates	lower	than	what	Leguijt	et	al.	(2023)	report	as	the	lower	limit	for	the	CSF	to	
be	reliable.	
	

	
(1)	I	would	like	to	know	how	many	plumes	from	each	of	these	21	plants	in	2019	can	be	used	to	
calculate	flux.	
	

We	have	added	a	line	containing	the	number	of	days	contributing	to	the	inversion	emission	estimate	as	
well	as	an	explanation	of	the	inclusion	of	days	without	clear	visible	plumes.	In	addition,	we	have	added	a	
line	with	the	number	of	orbits	on	which	the	CSF	was	applied.	The	CSF	is	also	applied	to	days	without	a	
clearly	observable	plume,	to	avoid	a	sampling	bias	when	calculating	annual	emission	rates,	as	in	(Leguijt,	
G.,	Maasakkers,	J.	D.,	Denier	van	der	Gon,	H.	A.,	Segers,	A.	J.,	Borsdorff,	T.,	and	Aben,	I.:	Quantification	of	
carbon	monoxide	emissions	from	African	cities	using	TROPOMI,	Atmospheric	Chemistry	and	Physics	
Discussions,	pp.	1–27,	2023).	
	

(Line	199-203)	To	further	limit	the	contribution	of	spatial	concentration-mismatches	we	remove	
days	which	have	the	20%	highest	optimized	observational	cost	normalized	by	the	number	of	
pixels.	This	removes	days	on	which,	after	aggregation,	none	of	the	simulated	plumes	
spatially	matched	the	TROPOMI	observed	plume	well.	To	ensure	representative	sampling,	
we	use	the	optimized	observational	cost	instead	of	the	prior	observational	cost	to	avoid	
structural	removal	of	days	without	clear	observed	plume	signals.	
	
(Line	293-295)	Most	of	the	plants,	67%	(90%),	have	inversion	averaging	kernel	values	above	0.8	
(0.7)	respectively.	This	is	a	result	of	the	large	number	of	TROPOMI	observations,	with	each	
plant	having	TROPOMI	measurements	covering	at	least	part	of	the	simulated	plume	on	150	
to	250	days.	

	



(Line	332-334)	Figure	6	shows	a	comparison	between	the	two	methods	for	the	applicable	plants.	
The	annual	CSF	estimates	show	the	mean	of	the	estimates	on	individual	orbits,	where	the	
number	of	suitable	orbits	ranges	from	120	(Port	Talbot	S	Works)	to	220	(Arcelor	Gent).	

	
(2)		Clarify	the	applicable	scenarios	for	the	inversion	approach,	such	as	beneficial	observation	
conditions.		

	
We	have	expanded	upon	the	applicability	of	the	inversion	approach	and	its	advantages	in	low-coverage	
situations.	We	have	also	changed	line	203-206,	to	emphasize	that	we	are	combining	all	orbits	into	a	single	
inversion.	
	

(Line	150-153)	We	use	an	analytical	inversion	to	estimate	posterior	emissions	as	described	in	
Brasseur	and	Jacob	(2017).	An	advantage	of	the	inversion	framework	over	mass-balance	
approaches	is	the	explicit	inclusion	of	transport	in	the	emission	estimation.	This	comes	at	
the	cost	of	a	higher	computational	load,	but	improves	the	accuracy	of	the	emission	estimate,	
and	allows	the	inversion	method	to	be	applied	to	low-coverage	situations	which	would	pose	
challenges	to	mass-balance	methods.		
	
(Line	203-206)	The	daily	inversions	are	only	used	for	selection	of	the	best	simulation	on	each	day.	
Afterwards,	the	best	daily	simulations	are	combined	into	a	single	Jacobian	and	prior	vector,	and	
then	used	in	an	inversion	spanning	the	full	year	to	determine	an	annual	scaling	factor	for	each	
emission	element	of	the	state	vector	(x).	The	emission	estimates	for	the	iron	&	steel	plants	
can	therefore	be	directly	compared	with	the	annual	emission	rates	reported	to	E-PRTR.	

	
(3)		How	is	the	plume	emission	height	taken	into	account	in	all	the	methods	applied	in	this	paper?	
For	example,	when	using	the	CSF	method,	the	authors	employed	the	10-meter	wind	field	from	
ERA5	to	estimate	emissions,	which	might	be	inaccurate.	The	emission	plumes	from	steel	plants	
could	reach	several	hundred	meters	in	altitude.		

	
Injection	height	is	indeed	important	to	take	into	account	in	both	the	inversion	and	CSF	approach.	We	have	
clarified	our	approach.	
	

(Line	126-128)	Both	the	E-PRTR	and	TNO	emissions	are	put	on	a	three-dimensional	grid	using	the	
sector	specific	vertical	profiles	provided	by	Bieser	et	al.	(2011).	The	vertical	profiles	account	
both	for	the	injection	height	and	include	an	effective	plume	rise	parametrization.	

	
(Line	252-255)	We	perform	the	CSF	as	in	Leguijt	et	al.	(2023)	using	the	effective	wind	
calibration	and	10-meter	altitude	winds	from	ERA5	(Hersbach	et	al.,	2020).	The	effective	wind	
speed	is	a	parametrization	of	the	actual	wind	speed,	which	aims	to	account	for	the	effects	of	
turbulence,	variation	in	the	vertical	wind	profile,	and	plume	rise.	

	
(4)		Line	83:	I	am	not	sure	why	the	authors	are	using	Data	Quality	Value	(QA	Value)	below	0.7?		

	
We	have	rephrased	line	83	to	make	it	clearer	that	we	are	not	using	TROPOMI	observations	with	this	QA	
Value.	
	

(Line	83-84)	We	only	use	observations	with	sensitivity	to	concentrations	at	the	surface	and	
therefore	remove	observations	with	a	TROPOMI	Data	Quality	Value	(QA	Value)	below	0.7.	

	
(5)		Line	255:	Which	specific	area	do	the	simulated	concentrations	above	the	iron	and	steel	plants	
refer	to?	It's	not	clearly	indicated	in	the	figure.	It	would	be	easier	to	identify	if	the	TROPOMI	
observations,	the	prior	and	posterior	simulation	were	all	displayed.		

	
We	have	modified	the	figure,	which	now	indicates	the	region	mentioned.	
	

(Line	278-280)	Although	the	largest	part	of	the	domain	shows	better	agreement	to	the	
observations	than	the	prior	simulation	(mean	bias:	-0.11,	mean	absolute	bias:	0.97,	correlation:	
0.83),	the	simulated	concentrations	above	the	iron	&	steel	plant,	indicated	with	the	black	square,	
show	significant	differences.	



	
(Caption	figure	4)	The	black	squares,	with	dimensions	of	0.15◦x	0.15◦,	are	centered	on	the	
location	of	the	plant.	

	
	

(6)		I	suggest	that	the	authors	include	a	geographical	distribution	map	of	these	steel	plants.		
	
We	have	added	a	map	that	shows	the	locations	of	the	studied	plants	to	Appendix	A.	

	
	

(7)		How	is	the	annual	emission	rate	for	each	steel	plant	determined?		
	
We	have	modified	line	204,	to	clarify	that	we	are	performing	an	annual	inversion	rather	than	multiple	
inversions	on	individual	days.	This	means	that	all	the	observations	throughout	the	year	are	combined	into	
observation	vector	y	in	equation	1.	
	



(Line	203-206)	The	daily	inversions	are	only	used	for	selection	of	the	best	simulation	on	each	day.	
Afterwards,	the	best	daily	simulations	are	combined	into	a	single	Jacobian	and	prior	vector,	and	
then	used	in	an	inversion	spanning	the	full	year	to	determine	an	annual	emission	rate	estimate	
for	each	element	of	the	state	vector	(x).	The	emission	estimates	for	the	iron	&	steel	plants	
can	be	directly	compared	with	the	annual	emission	rates	reported	to	E-PRTR.	

	
(8)		In	Section	3.2,	the	authors	mention,	"Figure	5	shows	the	comparison	of	the	posterior	emission	
estimates	based	on	TROPOMI	with	the	prior	emission	rates	from	E-PRTR.	Nine	out	of	21	posterior	
emission	estimates	are	consistent	with	E-PRTR	within	their	uncertainty	ranges."	However,	I	see	
that	10	estimates	(highlighted	in	the	red	box)	in	Figure	5	are	consistent	with	E-PRTR	within	their	
uncertainty	ranges,	not	nine.		

	

	
We	thank	the	reviewer	for	the	attentiveness.	There	are	indeed	10	plants	for	which	the	estimates	agree	
within	uncertainties.	We	have	corrected	the	text.	
	

(Line	287-288)	Figure	5	shows	the	TROPOMI-based	posterior	emission	estimates	compared	to	the	
prior	emission	rates	from	E-PRTR.	Ten	out	of	twenty-one	posterior	emission	estimates	agree	with	
E-PRTR	within	their	uncertainty	range.	

	
(Line	381-383)	Our	emission	estimates	show	a	high	correlation	of	0.86	to	the	emission	rates	
reported	to	E-PRTR	with	10	out	of	21	plants	agreeing	within	estimated	uncertainties.	

	
(9)	In	Section	3.2,	the	authors	also	mention	that	10	posterior	estimates	are	within	20%	of	the	
reported	values.	This	result	is	not	easily	discernible	from	Figure	5.	I	suggest	marking	these	10	steel	
plants,	as	well	as	the	9	steel	plants	mentioned	in	the	previous	comment,	separately.		

	
With	the	number	of	plants	agreeing	within	uncertainty	being	10,	rather	than	9,	we	have	decided	to	
remove	the	remark	about	the	10	plants	agreeing	within	20%.	Although	the	statement	is	valid,	there	is	a	
lot	of	overlap	between	the	two	sets	of	plants,	and	we	feel	the	two	different	designations	would	cause	
confusion.	

	 	



Review	2:	
	
Leguijt	et	al.	present	a	comprehensive	analysis	of	carbon	monoxide	emissions	from	iron	and	steel	
plants	over	Europe.	They	performed	both	analytical	inversions	and	cross-sectoral	flux	estimates	
using	TROPOMI	observations,	which	are	further	compared	against	the	facility-level	reports.	They	
have	shown	reasonably	good	agreement	in	the	flux	estimates	across	different	approaches,	
considering	error	bars.	They	also	investigated	if	TROPOMI	could	detect	changes	in	emissions	
between	years.	
Overall,	the	manuscript	is	well	written	and	most	of	the	results	are	straightforward.	The	authors	did	
a	great	job	of	providing	background	about	the	iron	and	steel	industry	and	the	different	approaches	
used.	I	enjoy	reading	this	paper	and	thereby	recommend	its	publication	after	providing	
clarifications	for	a	few	minor	comments:	

	
We	thank	the	reviewer	for	the	kind	words.	

	
P1L14	–regarding	year-to-year	variability:	what	about	temporal	variability	across	different	months	
or	overpasses?	Can	the	authors	resolve	or	constrain	the	emissions	at	a	finer	temporal	resolution	
beyond	one	year?	Also,	see	below	comments	relating	to	P8L186-188.		

	
Although	we	would	like	to	resolve	emissions	at	higher	temporal	resolution,	the	degrees	of	freedom	for	
some	of	the	plants	(especially	the	ones	with	fewer	usable	observations	or	lower	emission	rates)	are	not	
sufficient	to	allow	shorter	time-periods.	To	treat	all	plants	equally,	we	decided	to	limit	ourselves	to	yearly	
estimates.	We	have	added	this	to	the	manuscript	as	a	clarification.	Moreover,	the	reporting	is	only	
available	by	year,	so	we	would	not	be	able	to	evaluate	against	reported	values,	which	is	one	of	the	main	
objectives.	

	
(Line	298-300)	With	33%	of	the	plants	having	inversion	averaging	kernel	values	below	0.8,	
we	are	limited	to	annual	emission	rate	estimates.	6-monthly	emission	estimates	for	these	
plants	would	result	in	averaging	kernel	values	as	low	as	0.45,	and,	consequently,	emission	
estimates	that	are	strongly	driven	by	the	prior	value.	
	
P3L87-88:	What	prevents	the	authors	from	extending	the	flux	estimates	for	2020	for	all	iron	and	
steel	production?	Lack	of	observed	data	or	reported	data	from	E-PRTR?	Because	only	4	of	the	total	
plants	see	substantial	changes	in	emissions	between	years?		

	
We	are	not	limited	by	data,	but	rather	by	computation	time	and	we	have	therefore	focused	on	interesting	
cases.	We	have	added	a	line	to	reflect	this	limitation.	

	
(Line	86-90)	For	all	iron	&	steel	plants	we	analyse	TROPOMI	data	for	2019.	In	addition,	we	
analyse	2020	data	for	four	plants,	Arcelor	Gent	(Belgium),	Gijon	(Spain),	Ostrava	(Czech	Republic)	
and	Provozovna	Trinec	(Czech	Republic).	Because	of	the	heavy	computational	footprint	of	our	
analysis,	we	limit	our	2020	analysis	to	these	plants,	which	show	interesting	results	for	2019	
that	warrant	further	investigation.	
	
P4L96-100:	I	may	miss	this,	but	does	the	E-PRTR	provide	uncertainty	estimates	to	either	their	
measurement	or	calculation	as	well,	e.g.,	in	Fig.	5?		

	
We	have	added	a	line	about	the	absence	of	reported	uncertainty	estimates.	

	
(Caption	Figure	1)	The	year	2019	(middle),	which	is	used	for	the	analysis	in	this	work	is	shown	
more	opaquely.	E-PRTR	does	not	provide	uncertainty	estimates.	
	
P6:	When	inverting	emissions	using	WRF,	would	there	be	any	nearby	emission	sources	apart	from	
the	individual	iron	and	steel	plants?	How	would	the	authors	deal	with	those	non-iron	and	steel	
emission	sources,	e.g.,	as	in	the	background?	In	other	words,	were	most	of	the	plants	relatively	
isolated?		

	



We	have	added	a	line	about	the	contribution	of	the	iron	&	steel	plants	to	total	local	emissions.	In	addition,	
the	surrounding	emissions	are	part	of	state-vector	elements	with	contributions	throughout	the	domain	
(e.g.	road	transport)	and	are	therefore	constrained	by	observations	in	the	full	domain.	

	
(Line	114-117)	As	we	use	the	iron	&	steel	plant	emission	rate	from	E-PRTR,	we	remove	the	
corresponding	point	sources	from	the	TNO	GHGco	inventory	to	avoid	double	counting	of	
emissions.	Because	of	the	CO-intense	processes	taking	place	in	the	iron	&	steel	plants,	the	
emission	rates	reported	to	E-PRTR	comprise	at	least	70%	of	the	total	emissions	in	a	
0.4◦x0.4◦	box	centered	on	the	plant.	
	
P6L123:	How	have	injection	height	and	plume	height	been	considered	in	WRF	simulations?	I	
suppose	those	are	taken	care	of	by	the	“sector-specific	vertical	profiles”?		

	
This	is	indeed	the	case,	and	we	have	added	this	to	the	manuscript	as	a	clarification.	

	
(Line	126-128)	Both	the	E-PRTR	and	TNO	emissions	are	put	on	a	three-dimensional	grid	using	the	
sector	specific	vertical	profiles	provided	by	Bieser	et	al.	(2011).	The	vertical	profiles	account	
both	for	the	injection	height	and	include	an	effective	plume	rise	parametrization.	
	
P7:163-	165:	The	choice	of	uncertainties	seems	a	bit	arbitrary	(e.g.,	20%	for	prior,	50%	for	
transport?	etc),	even	though	the	authors	later	performed	a	set	of	sensitivity	tests	of	the	impact	of	
uncertainties	on	flux	estimates.	I	would	suggest	at	least	providing	a	few	more	references	or	
reasoning	to	those	numbers.		

	
We	have	added	our	reasoning	and	a	reference	for	our	choice	of	uncertainty	for	the	TNO	inventory	and	an	
additional	reference	for	the	CAMS	uncertainty.	

	
(Line	174-179)	To	construct	SA,	we	assume	a	diagonal	shape	and	an	uncertainty	of	20%	for	the	
TNO	GHGco	inventory,	in	accordance	with	the	2-sigma	range	of	38%	given	in	Super	et	al.	
(2020).	We	choose	an	uncertainty	of	10%	for	the	CAMS	background	following	e.g.	Maasakkers	et	
al.	(2022b);	Naus	et	al.	(2023),	and	a	50%	uncertainty	on	the	4	elements	adjusting	for	inflow	from	
the	outer	domain	reflecting	the	high	uncertainties	associated	with	long-range	transport.	As	these	
state	vector	elements	affect	many	observations,	they	tend	to	be	well	constrained	by	the	
observations	and	changing	their	prior	uncertainty	has	limited	effect	on	the	outcome	of	the	
optimization.	
	
P7L174:	It	seems	that	the	spatial	mismatches	between	modeled	and	observed	plumes	can	likely	be	
minimized	by	a	plume-rotation	algorithm,	while	the	authors	rely	on	an	ensemble	of	model	plumes	
(Fig.2	right)	for	“best”	alignment.	What	if	none	of	the	ensembles	match	the	observed	plumes	
perfectly	(e.g.,	a	near-field	bias	in	wind	direction,	esp	when	the	plume	is	curving)?	

	
We	have	expanded	upon	the	early	text	to	make	it	clear	how	we	handle	days	with	a	residual	mismatch	
between	observation	and	simulation.	The	removal	of	“worst	matches”	is	also	part	of	the	uncertainty	
ensemble.	While	plume	rotation	is	an	interesting	suggestion,	and	one	that	is	often	applied	in	mass-
balance	techniques,	it	is	harder	to	implement	in	an	inverse	framework.	One	would	have	to	consistently	
adjust	the	other	modeled	tracers	as	well.	It	could	also	lead	to	an	overestimation	for	small	sources,	as	the	
rotation	may	be	optimized	towards	positive	noise.	We	have	therefore	not	included	this	concept	in	our	
manuscript.	

	
(Line	199-201)	To	further	limit	the	contribution	of	spatial	concentration-mismatches	we	remove	
days	which	have	the	20%	highest	optimized	observational	cost	normalized	by	the	number	of	
pixels.	This	removes	days	on	which,	after	aggregation,	none	of	the	simulated	plumes	
spatially	matched	the	TROPOMI	observed	plume	well.	
	
P8L186-188:	I	am	a	bit	confused	by	the	aggregation	of	inversion	results	here.	For	example,	how	
many	days	of	TROPOMI	have	been	combined	to	optimize	an	annual	flux	rate?	Were	the	authors	
able	to	resolve	for	a	posteriori	that	is	spatially	resolved	(e.g.,	posterior	flux	rate	per	emission	grid)	
or	just	one	number	per	plant	per	year?	Were	there	any	possible	sampling	biases	across	seasons	
given	cloud	interference?	I	would	suggest	the	authors	provide	more	info	on	the	number	of	



TROPOMI	overpasses	being	examined	and	whether	those	overpasses	are	representative	of	an	
annual	average	(if	they	have	not	done	that).		

	
We	have	optimized	for	each	state	vector	element,	which	means	an	annual	scaling	per	sector	and	daily	
scaling	of	the	background.	We	have	added	this	to	the	manuscript.	Additionally,	we	have	added	
information	about	the	number	of	observation	days	going	into	the	inversion	and	their	temporal	
distribution.	

	
(Line	158-160)	The	elements	of	x	correspond	to	annual	emissions	from	the	iron	&	steel	plant,	
the	domain-wide	emissions	from	individual	sectors	in	the	TNO	GHGco	inventory,	and	
emissions	from	the	four	quadrants	of	the	outer	domain	as	well	as	the	CAMS-based	
background	concentrations.	
	
(Line	203-206)	Afterwards,	the	best	daily	simulations	are	combined	into	a	single	Jacobian	and	
prior	vector,	and	then	used	in	an	inversion	spanning	the	full	year	to	determine	an	annual	
emission	rate	estimate	for	each	element	of	the	state	vector	(x).	The	emission	estimates	for	the	
iron	&	steel	plants	can	be	directly	compared	with	the	annual	emission	rates	reported	to	E-
PRTR.	
	
(Line	293-295)	Most	of	the	plants,	67%	(90%),	have	inversion	averaging	kernel	values	above	0.8	
(0.7)	respectively.	This	is	a	result	of	the	large	number	of	TROPOMI	observations,	with	each	
plant	having	TROPOMI	measurements	covering	at	least	part	of	the	simulated	plume	on	150	
to	250	days.	
	
(Line	280-285)	This	shows	the	inversion	framework	is	sensitive	to	emissions	from	the	iron	&	steel	
plant	specifically.	The	corresponding	values	for	the	other	plants	are	shown	in	Appendix	D.	To	test	
whether	there	is	a	temporal	sampling	bias	in	our	method,	we	investigate	the	distribution	of	
TROPOMI	observations	throughout	the	year	per	plant.	The	number	of	observations	shows	
limited	variation	over	the	four	quarters	of	the	year,	ranging	from	19.2%	of	the	annual	
number	of	valid	observations	(4th	quarter,	Arcelor	Bremen)	to	29.6%	(3rd	quarter,	
Scunthorpe	IS	Works).	
	
These	lines	also	relate	to	the	other	comment	–	could	the	authors	try	to	resolve	the	emissions	from	
individual	plants	at	a	finer	resolution	beyond	just	one	year?		

	
We	have	added	lines	to	the	manuscript	which	mention	that	we	are	limited	to	annual	scaling.	

	
(Line	203-206)	The	daily	inversions	are	only	used	for	selection	of	the	best	simulation	on	each	day.	
Afterwards,	the	best	daily	simulations	are	combined	into	a	single	Jacobian	and	prior	vector,	and	
then	used	in	an	inversion	spanning	the	full	year	to	determine	an	annual	emission	rate	estimate	
for	each	element	of	the	state	vector	(x).	The	emission	estimates	for	the	iron	&	steel	plants	
can	be	directly	compared	with	the	annual	emission	rates	reported	to	E-PRTR.	
	
(Line	298-300)	With	33%	of	the	plants	having	inversion	averaging	kernel	values	below	0.8,	
we	are	limited	to	annual	emission	rate	estimates.	6-monthly	emission	estimates	for	these	
plants	would	result	in	averaging	kernel	values	as	low	as	0.45,	and,	consequently,	emission	
estimates	that	are	strongly	driven	by	the	prior	value.	

	
P9L196-197:	Interesting	-	I	was	especially	intrigued	by	the	co-assimilation	of	background	values	
with	the	fluxes!	Could	the	authors	provide	more	info	or	reference	on	such	inversion	construction?	
For	example,	any	error	correlation	between	the	background	(mean	+	gradient)	and	the	fluxes?	
How	much	adjustment	was	made	to	background	vs.	plume	signals	using	TROPOMI	observations?	
Relating	to	the	10%	error	in	background	assumed	on	L163	–	what	would	be	prior	errors	for	
background	mean	and	background	gradients?	Providing	some	supplementary	details	on	the	prior	
error	and	the	Jacobian,	particularly	for	the	background	optimization	would	be	very	helpful	for	
readers.		

	
We	have	added	a	reference	to	a	previous	paper	which	uses	daily	background	optimization.	In	addition,	we	
mention	explicitly	that	both	state-vector	elements	inherit	the	CAMS-assigned	uncertainty.	When	setting	a	



higher	uncertainty	(30%)	on	the	‘background	gradients’,	the	resulting	change	in	the	estimated	annual	
plant	emission	rates	is	less	than	1%,	as	the	background	tracers	are	constrained	by	every	observation	in	
the	domain.	Adjustments	to	the	background	are	small	(0-3%	for	the	mean	background,	typical	
adjustments	to	the	gradient	are	also	of	the	order	of	0-3%,	with	outliers	of	up	to	30%	reduction).	We	have	
added	this	to	the	manuscript.	Error	correlations	between	the	daily	mean	background	and	annual	plume	
optimizations	range	from	0.005	to	0.15,	with	the	majority	of	the	days	centered	around	0.05,	error	
correlations	between	the	plume	and	background	gradients	are	an	order	of	magnitude	lower.		

	
(Line	210-212)	To	reduce	the	impact	of	mismatches	between	the	simulated	and	observed	
background,	we	allow	our	inversion	to	optimize	the	background	at	daily	rather	than	yearly	
frequency	to	prevent	biases	from	aliasing	into	the	emissions	estimate	(Naus	et	al.,	2023).		
	
(Line	214-221)	These	two	parts	of	the	background	are	added	individually	to	the	state	vector,	
yielding	two	state	vector	elements	per	overpass	of	TROPOMI	and	giving	additional	flexibility	to	the	
inversion.	Panel	2F-I	and	2N-O	show	this	flexibility	results	in	a	reduced	spatial	gradient	in	the	
posterior	simulations,	better	matching	the	TROPOMI	observation.	Being	derived	from	CAMS,	
both	the	mean	daily	background,	and	the	deviation	from	the	mean	are	given	a	10%	
uncertainty.	Like	the	state	vector	elements	for	transport	from	the	outer	domain,	the	
background	is	well	constrained	by	the	large	number	of	TROPOMI	observations,	resulting	in	
limited	sensitivity	to	the	imposed	prior	uncertainty.	Typical	adjustments	to	both	the	mean	
background	concentration	and	its	gradient	range	from	0-3%.	However,	the	daily	
background	gradient	state	vector	element	gets	reduced	by	up	to	30%	to	better	match	
observations.	
	
P12L263-268:	Glad	that	the	authors	also	reported	the	averaging	kernel	(Eq.5)	of	their	inversion.	
Very	minor	point	-	I	would	probably	differentiate	the	word	choices	since	TROPOMI	also	has	its	own	
“averaging	kernel”	from	the	retrieval.		

	
Throughout	the	manuscript,	we	have	changed	“averaging	kernel”	to	either	“averaging	kernel	of	the	
TROPOMI	retrieval”	or	“averaging	kernel	of	our	inversion	/	inversion	averaging	kernel”	to	avoid	
confusion.	

	
Sect.	3.4	–	the	2020	analysis:	I	am	slightly	confused	by	these	comparisons	and	their	implications.	
What	drives	the	smaller	year-to-year	changes	in	TROPOMI-constraint	emissions	compared	to	E-
PRTR	reports?	Were	the	authors	implying	that	the	wind	directional	biases	may	be	the	driver?	Does	
TROPOMI	sampling	differ	greatly	between	years	as	well?		

	
This	confusion	might	be	partially	explained	by	us	not	being	clear	enough	about	our	intentions,	which	we	
aimed	to	improve	in	our	answer	to	the	next	point	by	the	reviewer.	The	2019	and	2020	inversions	have	
both	different	prior	estimates	(yearly	reports	from	E-PRTR)	and	different	observations	(daily	
observations	from	the	TROPOMI	satellite	from	different	years).	The	posterior	estimates	for	all	inversions	
are	mainly	driven	by	the	observations,	as	reflected	by	the	high	inversion	averaging	kernel	elements.	For	
Gent	and	Gijon,	we	find	that	the	noticeable	drop	in	reported	emissions	is	not	reflected	in	the	posterior	
estimate.	
We	perform	the	wind	rotation	analysis	as	an	alternative	simple	approach	to	verify	that	the	TROPOMI-
measured	concentrations	are	indeed	following	the	trends	of	our	posterior	estimates	(Line	360).	Only	for	
Ostrava	and	Trinec,	we	find	that	the	winds	used	in	the	rotation	may	not	be	as	well	aligned	with	the	plume	
in	both	years,	making	the	rotated	concentration	fields	difficult	to	interpret.	
To	further	check	whether	the	inversions	were	performing	similarly	in	both	years,	we	added	a	line	on	
correlation	between	posterior	and	observation.	
As	for	sampling	differences,	the	2020	simulations	lay	within	the	numbers	quoted	for	number	of	days	with	
observation	(Line	293-295)	and	differences	in	quarterly	coverage	(Line	280-285).	

	
(Line	357-359)	Correlations	between	simulation	and	observation	are	similar	between	2020	
and	2019;	an	average	posterior	(prior)	correlation	of	0.79	(0.74)	in	2020	compared	to	0.77	
(0.75)	in	2019,	indicating	comparable	inversion	performances.	
	
(Line	293-295)	Most	of	the	plants,	67%	(90%),	have	inversion	averaging	kernel	values	above	0.8	
(0.7)	respectively.	This	is	a	result	of	the	large	number	of	TROPOMI	observations,	with	each	



plant	having	TROPOMI	measurements	covering	at	least	part	of	the	simulated	plume	on	150	
to	250	days.	
	
(Line	280-285)	This	shows	the	inversion	framework	is	sensitive	to	emissions	from	the	iron	&	steel	
plant	specifically.	The	corresponding	values	for	the	other	plants	are	shown	in	Appendix	D.	To	test	
whether	there	is	a	temporal	sampling	bias	in	our	method,	we	investigate	the	distribution	of	
TROPOMI	observations	throughout	the	year	per	plant.	The	number	of	observations	shows	
limited	variation	over	the	four	quarters	of	the	year,	ranging	from	19.2%	of	the	annual	
number	of	valid	observations	(4th	quarter,	Arcelor	Bremen)	to	29.6%	(3rd	quarter,	
Scunthorpe	IS	Works).	
	
P18L340:	A	more	general,	clarification	question	–	Do	the	authors	“trust”	more	of	the	report	from	E-
PRTR	or	the	inversion	results	from	TROPOMI	(yet,	E-PRTR	and	TNO	inventory	are	used	as	priors)?	
Were	E-PRTR	reports	in	turn	used	as	a	dataset	to	validate	the	TROPOMI-based	inversion	(e.g.,	
many	figures	in	the	results)?	Or	both	the	reports	and	TROPOMI-based	posteriors	are	not	treated	as	
“truth”?		

	
In	general,	we	expect	the	reporting	program	data	to	be	reliable	and	serving	as	a	way	of	evaluating	our	
inversion	results.	However,	we	do	find	outliers	in	our	analysis,	where	the	satellite	data	identify	potential	
uncertainties	in	the	reported	figures.	To	clarify	our	two-way	goal,	we	have	rewritten	the	first	part	of	our	
conclusion.	

	
(Line	373-379)	We	performed	analytical	inversions	with	2019	TROPOMI	satellite	data	to	
determine	annual	carbon	monoxide	emission	rates	for	21	European	integrated	iron	&	steel	plants.	
These	plants	are	the	highest	emitting	CO	point-sources	in	Europe.	We	compared	our	top-down	
emission	rate	estimates	to	bottom-up	emission	rates	reported	to	E-PRTR	at	facility-level.	In	
doing	this,	we	evaluated	limitations	of	the	satellite-based	approach,	but	also	identified	
outliers	pointing	at	uncertainties	in	the	reported	data.	The	E-PRTR	emission	rates	are	used	
as	prior	estimates	in	our	inversions.	Per	site,	the	inversion	uses	one	of	8	simulations	with	different	
meteorology	for	each	day	to	reach	optimal	spatial	agreement	between	observation	and	simulation.	
We	allow	further	freedom	in	the	inversion	by	optimizing	the	CAMS-based	background	on	a	daily	
basis,	rather	than	performing	an	annual	scaling.	

	
	


