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Abstract. Observing climate feedbacks to long term
::::::::
long-term

:
global warming,

:::::
which

:::
are crucial climate regulators, is not

::::
isn´t feasible within the observational record. However, linking them to top-of-the-atmosphere flux variations in response to

::::::
natural surface temperature fluctuations (internal variability feedbacks) is a viable approach. Here, we

:::
We explore the use of

this method of relating internal variability to forced climate feedbacks in models and applying the resulting relationship to

observations to constrain forced climate feedbacks. Our findings reveal strong longwave and shortwave feedback relationships5

in models during the 14-year overlap with the CERES observational record. Yet, due to the weaker relationship between

internal variability and forced climate longwave feedbacks, the net feedback relationship remains weak, even over longer

periods extending beyond the CERES record. However, after about half a century, this relationship strengthens primarily

due to a reinforcement of the relationship between
::::::::::::
reinforcements

::
of

:::
the

:
internal variability and forced climate shortwave

feedbacks
:::::::
feedback

::::::::::
relationship. We therefore explore merging the satellite records with reanalysis to establish an extended10

data record. The resulting constraint suggests a stronger negative forced climate net feedback than the model´s distribution

and an equilibrium climate sensitivity of about 2.5 K (2.14 K to 3.07
::::
2.59

::
K

::::
(1.95

::
K
::
to
:::::

3.12 K, 5-95% confidence intervals).

Nevertheless, for example biogeochemical
::::::::::::::::::::
biogeophysical-chemical climate feedbacks, inactive on short time scales , and

also
::::::::
short-time

::::::
scales

:::
and

:
not represented in most models, may lead to climate sensitivity being underestimated

:::::
along

::::
with

:::::::::
differences

::
in

::::::::
historical

:::::::
warming

:::::::
patterns

:::::::
between

::::::
models

:::
and

:::::::::::
observations,

::::
may

:::::
cause

::::::
climate

:::::::::
sensitivity

::
to

::
be

:::::::::::::
misrepresented15

by this method. Also
::::::::::
Additionally, continuous satellite observations until at least the mid-2030s are necessary

:::::::
essential

:
for using

purely observed estimate
:::::::
estimates

:
of the net internal variability feedback in constraining

::
to

:::::::
constrain

::::
the net forced climate

feedback and, consequently, climate sensitivity.

1 Introduction

The increasing levels of atmospheric carbon dioxide have significant implications for the Earth’s climate system. Elevated car-20

bon dioxide concentrations enhance the absorption and emission of infrared radiation in the atmosphere, leading to a radiative

imbalance at the Top of the Atmosphere (TOA) and subsequent warming of the troposphere (NRC, 1979).

The long-term response of global temperatures to this radiative forcing is influenced by a complex interplay of mecha-

nisms, incluiding
:::::
where

:::
the

::::::
initial

:::::::
radiative

::::::
forcing

:::::::
initiates

:::::::
changes

::
in
:::::::::

secondary
::::::::
processes

::::
that,

:::
in

::::
turn,

::::::
impact

:::
the

:::::::
original
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::::::
forcing.

:::::
These

:::::::::::
mechanisms,

::::::
known

::
as

::::::
forced

::::::
climate

:::::::::
feedbacks,

::::::
involve

::::::::
processes

::::
such

:::
as temperature, water vapor, lapse rate,25

surface albedo, clouds, and biogeochemical processes
::::::::::::
biogeophysical,

::::
and

::::::::::
biochemical

:::::::::::::::::
(Forster et al., 2021). These feedback

mechanisms play a crucial role in either amplifying or attenuating the initial warming signal and collectively determine the

Equilibrium Climate Sensitivity (ECS), which quantifies the global temperature response to a doubling of atmospheric carbon

dioxide concentrations relative to pre-industrial levels.

Generally, in estimating forced climate feedbacks, tools such as theory, observations, climate models, and fine-scale sim-30

ulations are commonly utilized (Sherwood et al., 2020). Climate models are particularly important as they are designed to

solve the complex equations governing the Earth’s climate system. However, climate models need to parameterize unresolved

processes by establishing empirical relationships with explicitly resolved variables (Williamson et al., 2021). While climate

models share fundamental equations, the use of different parameterization approaches among them introduces variations in

future projections, including forced climate feedbacks, leading to a range of model-estimated ECS. Assessing how models35

represent forced climate feedbacks is challenging due to the absence of long-term global observations spanning decades or

centuries. Consequently, reducing uncertainty in model-estimated forced climate feedbacks becomes a complex task. How-

ever, if a significant and physically explainable relationship emerges across climate models between observable properties of

the climate system and forced climate change, past climate observations can be employed to constrain these feedbacks.

Several studies have identified relationships between various observables and forced climate feedbacks across different gen-40

erations of models (Forster et al., 2021). For instance, elements of the present mean state have been utilized (e.g., Trenberth

and Fasullo, 2010; Brient et al., 2016), as well as past climate change (e.g., Hargreaves et al., 2012; Jiménez-de-la Cuesta and

Mauritsen, 2019; Renoult et al., 2020) and internal variability (Dessler, 2013; Mauritsen and Stevens, 2015; Dessler et al.,

2018). Focusing specifically on climate feedbacks, Loeb et al. (2018) identified a robust relationship between cloudy-sky flux

on timescales of 2.5 to 3 years and ECS. However, they noted that 100 years of data are necessary for this relationship to45

become statistically robust. Using models from the Coupled Model Intercomparison Project phase 6 (CMIP6), Lutsko et al.

(2021) found significant relationships between 50 years of cloud variability and regional forced climate cloud feedbacks across

most regions, with the exception of a latitudinal band from 60°N to 90°N. Dessler and Forster (2018) used models from the

Precipitation Driver Response Model Intercomparison Project (Myhre et al., 2017) to find a relationship between TOA flux

changes in response to natural variations of surface temperature (referred here as internal variability feedbacks) in simulations50

where pre-industrial carbon dioxide levels are maintained over a century and those resulting from the doubling of carbon

dioxide concentrations. By incorporating observed internal variability feedbacks spanning from 2000 to 2017 alongside this

relationship, they derived an ECS likely range of 2.4–4.6 K (17–83% confidence interval). However, uncertainty persists re-

garding the appropriateness of integrating observations and the modeled relationship from different time periods to constrain

forced climate feedbacks and ECS. Similarly, Uribe et al. (2022) employed CMIP6 models and demonstrated that the strength55

of forced climate feedbacks is associated with internal variability feedbacks from 2001 to 2014. Nevertheless, they found that

this relationship did not hold for net feedback. Additionally, they concluded that uncertainty in simulated and observed internal

variability feedbacks over this short period precludes the establishment of an emergent constraint on forced climate feedbacks
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In this study, our primary objective is to contribute to the reduction of uncertainties in forced climate feedbacks by advancing60

our understanding of the use of observations and the relationships between internal variability feedbacks and forced climate

feedbacks in CMIP6 models. Building upon previous research (Uribe et al., 2022), we specifically investigate the underlying

factors contributing to the absence of a robust relationship between internal variability and forced climate net feedbacks, despite

the evident strong relationships observed for longwave and shortwave feedback components in CMIP6 models. Here, we focus

on the historical simulation period that aligns with the available Clouds and the Earth’s Radiant Energy System (CERES)65

satellite data record. In addition, we investigate whether the challenges observed in establishing a relationship between internal

variability and forced net climate feedback in models persist when longer historical periods are considered. Subsequently, we

explore the suitability of employing distinct timeframes for estimating both model and observed internal variability feedbacks

when utilizing observations to constrain net forced feedbacks in models. This examination aims to ascertain the minimum

required record length. Finally, we merge satellite observations with reanalysis data to obtain an emergent constraint on forced70

climate net feedback.

2 Materials and Methods

We study the relationship between feedbacks arising from internal variability and external forcing in both
::::::
models

:::::::::::
participating

::
in

::::::
CMIP6,

::::::::::
specifically

::
in

:
coupled ocean-atmosphere

:::::::::
experiments

:
(CMIP)and ,

:::::::::
simulating

::::::::::
interactions

:::::::
between

:::
the

:::::
ocean

::::
and

::::::::::
atmosphere,

:::
and

::
in

:
atmosphere-only

::::::::::
experiments

:
(AMIP)models participating in CMIP6,

::::::::
focusing

:::::::::
exclusively

::
on

:::::::::::
atmospheric75

::::::::
processes

:::::
while

:::::
using

::::::::
prescribed

::::::::
observed

:::
sea

:::::::
surface

::::::::::
temperatures. To accomplish this, we utilize historical simulations and

:::::::
150-year

:
experiments where atmospheric carbon dioxide concentrations are abruptly quadrupled from pre-industrial levels and

subsequently held constant (abrupt4xCO2). To capture a broader range of possible historical climate outcomes and obtain ro-

bust estimates of internal variability feedbacks, we utilize up to 5 realizations of historical ensemble members, incorporating a

more extensive set of models compared to the approach used in Uribe et al. (2022) (Table 1).By incorporating a more extensive80

set of models and ensemble members compared to the approach used in Uribe et al. (2022), we span a broader range of both

structural uncertainty and internal variability.

In order to quantify feedbacks, we use the planetary energy balance at TOA:

R= F +λT (1)85

where R is the net TOA radiative flux anomaly, F is the radiative forcing, λ is the radiative feedback parameter and T is the

surface temperature anomaly (Gregory et al., 2004; Dessler et al., 2018).

We calculate forced climate feedbacks using linear Ordinary Least Squares (OLS) regression coefficients between
::::::
derived

::::
from

:::
150

:::::
years

::
of

:
annual global averages of TOA flux anomalies and T, where the anomalies are calculated as the difference90

between
:
R

::::
and

::
T

:::::
from

:
abrupt4xCO2 and pre-industrial experiments . For the estimation of

::::::::::
simulations.

::
It

::
is

:::::::::
important
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::
to

::::
note

:::
that

::::
this

::::::::
approach

::::::
might

::::
lead

::
to

::
an

::::::::::::::
underestimation

::
of
:::::

ECS
:::::::::
compared

::
to

::::::::
estimates

:::::::
derived

::::
from

:::::::::::::::
millennial-length

::::::::::
simulations,

:::
due

:::
to

:::
the

::::::::
influence

:::
of

:::::::::::::
time-dependent

:::::::::
feedbacks

::::::::::::::::::::
(Rugenstein et al., 2020)

:
.
::::::::::
Conversely,

:::::
ECS

::::::::
estimates

:::::
from

:::::::
150-year

:::::::::::
abrupt4xCO2

:::::::::::
experiments

::::
often

:::::::::::
overestimate

::::
ECS

::::::::
compared

::
to

::::
those

:::::
from

::::::
2xCO2

::::::::::
experiments,

::::::
owing

::
to

::::::::::::
nonlogarithmic

::::::
forcing,

::::::::
feedback

::::
CO2::::::::::

dependence,
::::
and

::::::::
feedback

::::::::::
temperature

:::::::::
dependence

::::::::::::::::::::::::
(Bloch-Johnson et al., 2021).

:::::
Given

::::
that

:::::::::
examining95

::
the

:::::::::
interaction

:::::::
between

:::::
these

::::::
effects

:
is
:::::::
beyond

::
the

:::::
scope

::
of

:::
our

:::::
study,

:::
we

:::::::
adopted

:::
the

:::::::
standard

::::::
method

::
as

::
it

:::::
offers

:
a
:::::::::::::
straightforward

:::::::
approach

::::
and

:::::::
provides

:
a
:::::
basis

:::
for

::::::::::
comparison

:::
and

:::::::
analysis.

:

::::::::
Similarly,

::
to

::::::::
estimate internal variability feedbacks, we utilize detrended

:::
use

::::
OLS

:::::::::
regression

::::::::::
coefficients

:::::
from

:::::::
linearly

::::::::
detrended

::::
(we

::::::
assume

::
a

:::::
linear

::::::
forcing

::::::::
influence

:::
in

:::
the

::::
data

:::::
series,

:::::
given

::::
the

::::::::
relatively

::::
short

:::::::
periods

:::
we

:::
are

:::::::::
analyzing)

:
and

deseasonalized monthly anomalies derived from various historical ensemble members
:::::
global

::::::::
averages

::::::::
anomalies

:::
of

::
R

:::
and

::
T .100

However, it is crucial to account for the presence of autocorrelation in the
:::::
given

:::
that

::::::::
monthly temperature time series within

each individual realization. This autocorrelationhas the potential to impact the
:::
can

::::::
display

::::::::
temporal

:::::::::::::
autocorrelation,

::::::
which

:::
may

::::::
affect

:::
the estimation of regression coefficients and standard errorswhen performing an OLS regression on the combined

data. To address this concern, we employ ,
:::
we

::::
took

:::::::
specific

:::::
steps

::
to

:::::::
address

:::
this

:::::
issue.

::::
For

:::::::::::
observational

::::::::::
temperature

:::::
data,

::
we

:::::::::
calculated

:::
the

:::::::::::::
autocorrelation

:::::::
function

::::
and

:::::::
adjusted

:::
the

:::::::
degrees

::
of

:::::::
freedom

:::
for

:::::::
standard

:::::
error

:::::::::::
computations

:::::::::::
accordingly.105

:::
For

::::::
model

::::
data,

::::
we

::::::::
employed

:::
an

::::::::
extended

:::::
OLS

::::::::
approach

::
(Generalized Least Squares(GLS)instead of OLS. GLS is an

extension of OLS that involves transforming the original data into a new
:
).
:::::::::::
Specifically,

:::
we

::::::::::
transformed

::::
each

:::::::::::
temperature

::::
time

:::::
series

:::
per

:::::
model

:::::::::
realization

::::
into

:
a
:
set of weighted variables. These weights are determined by computing autocorrelation

coefficients through
:::
The

:::::::
weights

::::
were

::::::::::
determined

:::
by fitting autoregression models of order one , which effectively capture

the autocorrelationpresence in the data. Subsequently, the transformed datasets are combined and undergoes a
::
to

:::::::
account

:::
for110

:::::::::::::
autocorrelation.

:::
We

::::
then

::::::::
combined

::
all

::::::::::
transformed

::::::::::
temperature

::::
time

:::::
series

::::::::::
realizations

:::
for

::::
each

:::::
model

::::
and

::::::
applied

:::
the OLS re-

gression to estimate the regression coefficients, thereby yielding one
:::::::
yielding

:
a
:::::
single

:
estimate of internal variability feedback

per model.

Finally, to determine the uncertainty associated with the regression coefficients
:
in

::::
both

:::::::::::
observations

:::
and

::::::
models, we calculate

5-95% confidence intervals using a two-tailed t-test that takes into account the variability in the data and provides confidence115

intervals that encompass both positive and negative deviations from the estimated regression coefficients.

We conduct a comparison between model results and observed internal variability feedbacks using TOA fluxes from the

CERES instruments, Energy Balanced and Filled (EBAF) dataset updated to Ed4.1 (Loeb et al., 2018), and gridded tempera-

ture anomalies from HadCRUT version 5 (Morice et al., 2021). The comparison is performed during the overlapping period of120

the CERES-historical simulation (2001-2014). The objective is twofold: to identify models whose internal variability feedback

differs from observations, providing valuable insights into their representativeness of forced climate feedbacks, and to investi-

gate the lack of a robust relationships between net internal variability and net forced climate feedback despite the presence of

strong relationships for the longwave and shortwave components, as reported in previous research (Uribe et al., 2022).

125
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Furthermore, we systematically extend the historical period to assess the persistence of challenges in establishing a relation-

ship between internal variability and forced net climate feedbacks in models over longer historical periods. Having identified a

time period where the relationship emerges in models, we investigate the minimum conditions required to use observations and

the model-based relationship to constrain the forced net climate feedback using ERA5 reanalysis data (Hersbach et al., 2020).

We then use statistical time series modeling to align ERA5 reanalysis TOA fluxes with the combined datasets of CERES and130

the Earth Radiation Budget Experiment (ERBE) satellite records (Allan et al., 2014), in order to match the observational time

length requirement. This methodology contributes to the derivation of an estimated emergent constraint on forced climate net

feedback.

3 Results

3.1 Internal Variability and Forced Climate Feedbacks Relationship During the CERES Period135

In order to be able to use internal variability feedbacks to constrain long-term
:::::
forced

:::::::
climate feedbacks there must exist a

statistical relationship between these quantities. Indeed, during the overlapping years of the CERES satellite observations and

historical CMIP6 simulations, there are high correlations between simulated internal variability and forced climate feedbacks

(Figures 1a and 1b). Importantly, our results demonstrate a stronger correlation between internal variability and forced climate

feedbacks compared to the findings reported by Uribe et al. (2022). We attribute this improvement in correlation strength to the140

combination of two factors: the inclusion of more models, allowing for a broader range of model representations and variations

in internal variability to be captured, and the utilization of additional ensemble members, which enhances the robustness and

representativeness of our internal variability feedbacks.

To assess the statistical significance of observed correlations between internal variability and forced climate feedbacks145

over this relatively short period, we conducted a Monte-Carlo permutation testby randomly permuting the datasets .
::::
The

::::
null

:::::::::
hypothesis

:::::::
assumed

::::
that

::
no

::::
real

::::::::::
relationship

::::::
exists

:::::::
between

:::::::
internal

::::::::
variability

::::
and

::::::
forced

::::::
climate

::::::::::
feedbacks,

:::::::
meaning

::::
any

:::::::
observed

:::::::::
correlation

::::::
would

::
be

::::
due

::
to

:::::::
random

::::::
chance.

:::
To

:::
test

::::
this,

:::
we

::::::::
randomly

::::::::
permuted

:::
the

::::::::
feedback

:::::::
datasets,

::::::::
breaking

:::
the

:::::::::::::
correspondence

:::::::
between

::::::
models

:::
for

:::::::
internal

:::::::::
variability

:::
and

::::::
forced

::::::
climate

:::::::::
feedbacks

::::
(e.g.,

:::
by

::::::
pairing

:::
the

:::::::
internal

:::::::::
variability

:::::::
feedback

:::::
value

:::::
from

:::
one

::::::
model

::::
with

:::
the

::::::
forced

::::::
climate

::::::::
feedback

:::::
value

:::::
from

::::::::
another).

:::
We

::::
then

::::::::::
recalculated

:::
the

::::::::::
correlation150

::::::::
coefficient

:::::
using

::::
this

::::::::
permuted

::::
data.

::::
This

::::::
process

::::
was

:::::::
repeated

:
105 timesto generate ,

:::::::
creating a null distribution of correlation

coefficients , allowing us to estimate the probability of obtaining correlation coefficients equal to or greater than those observed

:::
that

:::::::::
represents

:::
the

:::::
range

:::
of

:::::::::
correlation

::::::
values

:::
we

::::::
would

::::::
expect

::
if

::
no

::::::
actual

::::::::::
relationship

::::::
exists.

:::::::
Finally,

:::
we

:::::::::
compared

:::
the

:::::::
observed

:::::::::
correlation

::
to
::::
this

:::
null

::::::::::
distribution

::
to

:::::::
estimate

::::
how

:::::
often

:
a
:::::::::
correlation

:::
as

::::
large

::
or

:::::
larger

::::
than

:::
the

::::::::
observed

:::
one

::::::
would

::::
occur

:::
by

::::::
chance,

:::::::::
providing

:
a
:::::::
p-value

::
as

:
a
:::::::
measure

::
of

::::::::
statistical

::::::::::
significance. The results (Figure ??) reveal a likelihood of less155

than 5% that the longwave and shortwave correlation coefficients would occur by chance alone and
::::
(0.0%

:::
for

::::
both

:::::::::
longwave

:::
and

::::::::
shortwave

::
in
::::::
CMIP,

:::
and

::::::
0.09%

:::
for

::::::::
longwave,

:::::
0.0%

:::
for

::::::::
shortwave

::
in
:::::::
AMIP)

:::
and indicate a significant relationship between

the strength of longwave and shortwave forced climate feedbacks and their corresponding internal variability feedback. By
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considering these relationships, observations have the potential to constrain and limit the uncertainties associated with forced

climate feedbacks. The comparison of simulated and observed internal variability feedbacks reveals that models exhibiting160

moderate to strong negative longwave internal variability feedbacks, along with models featuring both weak negative and

weak positive shortwave internal variability feedbacks, show more consistency with observed data (Figures 5a, 5b, 5d and 5e).

Hence, even with the 14 year subset of the CERES dataset that overlaps with the climate model simulations we can constrain

the feedback components.

In contrast, when examining the net feedback, we observe a breakdown in the statistical relationship (Figures 1cand ??)165

as indicated by the relatively smaller correlation coefficient between internal variability (λit) and forced climate (λab) net

feedbacks (r(λit,λab)) :::
and

::::::::
relatively

:::::
larger

::::::::::
probability

::
of

::::::::
occurring

::
by

::::::
chance

:::::
alone

:::::::
(0.73%

:::
for

:::::
CMIP

:::
and

::::::
0.28%

:::
for

::::::
AMIP,

::::::::::
respectively). To explore the underlying causes for this relatively weaker relationship, we examine the computation of the

correlation coefficient, which is defined as the covariance between internal variability and forced climate net feedbacks, nor-

malized by the product of their standard deviations
(
r(λit,λab) =

Cov(λit,λab)
σ(λit)σ(λab)

)
. Utilizing the bilinearity of covariance and170

considering that net feedback is the aggregate of longwave (λlw) and shortwave (λsw) components, the correlation coefficient

can be decomposed into its constituent parts as follows:

r(λit,λab) =
Cov(λit_lw,λab_lw)

σ(λit)σ(λab)
+

Cov(λit_lw,λab_sw)

σ(λit)σ(λab)
+

Cov(λit_sw,λab_sw)

σ(λit)σ(λab)
+

Cov(λit_sw,λab_lw)

σ(λit)σ(λab)
. (2)

This decomposition allows for a detailed examination of the contributions of longwave and shortwave feedback components

to the overall correlation coefficient. Considering the observed correlations of individual longwave and shortwave feedbacks175

(Figures 1a and 1b), we expect positive contributions from the first and third terms in the right side of Eq. (2). Furthermore,

alongside these positive correlations, there is a tendency for longwave and shortwave internal variability feedbacks to coun-

teract each other (r(λit_lw,λit_sw) =−0.66 and r(λit_lw,λit_sw) =−0.62 for CMIP and AMIP, respectively). This suggests

potential inverse relationships between internal variability feedbacks and its corresponding counterpart forced climate feed-

back, consequently leading to anticipated negative contributions from the second and last term in Eq. (2). In the CMIP dataset,180

the terms have values of 0.43, -0.83, 1.57 and -0.72, while in the AMIP dataset, they are 0.33, -0.63, 1.46 and -0.63, respectively.

These values show that the relatively weaker covariance between longwave internal variability and longwave forced climate

feedbacks contributes to the overall weak relationship observed in the net feedbacks from both CMIP and AMIP datasets.

3.2 Emergence of the Relationship Between Net Internal Variability and Net Forced Climate Feedbacks

Whereas the relationships between longwave and shortwave internal variability and forced climate feedbacks remain robust185

during the CERES period, a comparable strength of the relationship is notably absent for the net feedback component. To

determine the potential existence of such a relationship between internal variability and forced climate net feedbacks in CMIP6

models, we extend our analysis to longer time periods, surpassing the length of the CERES observational record.

To this end, we calculate the correlation coefficient components between internal variability and forced climate net feedbacks190

(Eq. (2)) across various time-window sizes in CMIP6 simulations (Figure 2a). Additionally, we determine the corresponding

6



correlation coefficient and p-value through a hypothesis test, assuming
:::::
where

:::
the

::::
null

:::::::::
hypothesis

:::::
posits

:
independence and no

correlation between internal variability and forced climate net feedbacks. (Figure 2b). The calculation starts by using a 14-year

historical simulation time window (2001-2014), and then extending the window by one year at a time until reaching the initial

year of 1850 (1850-2014). Here, we use just historical coupled simulations since the time length of historical atmosphere-only195

simulations is shorter (1979-2014). Additionally, note that the historical simulations span 165 years; however, to eliminate

the influence of volcanic eruptions (Krakatoa in 1883-1884, Agung in 1963-1964, El Chichon in 1982-1983, and Pinatubo in

1991-1992) that perturbed the TOA fluxes in ways unrelated to internal variability, we excluded the corresponding years from

the time series. As a result, the length of the record was reduced to 157 years.

200

The results reveal three key points. First, the significance of the relationship for the net feedback depends on the chosen time

span for estimating internal variability net feedback (Figure 2b). Secondly, this dependency eventually weakens, and notably

robust and significant relationships between internal variability and forced climate net feedbacks emerge. Thirdly, while the

weaker covariance between longwave internal variability and longwave forced climate feedbacks primarily contributes to the

weak correlation during the CERES period, the covariance between shortwave internal variability and shortwave forced climate205

feedbacks is responsible for bolstering the relationship between net feedbacks when extending the data record (Figure 2a). Ac-

counting for the years corresponding that are excluded from the analysis due to volcanic eruptions, this period represents an

effective record length of 51 years. Consequently, if observational records were long enough, they could aid in constraining

the forced climate net feedback. However, due to the limited availability of observational data (Figure 2), obtaining a purely

observational estimate of net internal variability feedback to constrain net forced climate feedbacks is not feasible at this point210

in time.

Combining the Earth Radiation Budget Experiment (ERBE) satellite record, which started in 1985, with the existing CERES

data (Allan et al., 2014) extends the available observational period to 37 years. Thus, about 14 years of additional continuous

observational data, undisturbed by volcanoes, would need to be collected to reach a total of 51 years. To assess the likelihood215

of a significant relationship between internal variability and forced climate net feedbacks in CMIP6 coupled models over a

51-year window other than 1958-2014, we calculate the frequency distribution of p-values between them for all 51-year non-

volcano consecutive periods between 1850 and 2014 (Figure 2c). The analysis reveals a high frequency of p-values below one

percent, indicating a strong likelihood that with an additional 14 years of satellite data from the end of 2023, the use of purely

observed internal variability net feedback as a constraint on net forced climate feedback would be feasible and reliable.220

So far we have demonstrated the emergence of relationships between forced climate and internal variability net feedbacks.

The most recent potential relationship, between 1958 and 2014, unfortunately has missing periods of observational data. While

it is conceivable in the future to collect
::::
future

::::::
efforts

:::::
may

::::
yield

:
enough observations to span

:::::
cover the same time length

::::
span as the emergent relationship, the historical simulations end in 2014, raising

:::
and

::
if
::::
they

:::
are

::::
not

::::::
updated

:::::::::
alongside

::::
new225

:::
data

:::::::::
collection,

::::
this

:::::
poses

:
the question of whether an emergent relationship from one period can be applied to observations

7



from another period, as it has been suggested in other studies (e.g. Dessler and Forster (2018)). Alternatively, there is the

consideration of using the emergent relationship from 1958 to 2014 with the available 14 years of CERES observations;

however, a key question remains: are 14 years of internal variability feedback observations significantly representative of a

51-year span? We address these questions in the following section.230

3.3 The Minimal Requirements for A Reliable Emergent Constraint Estimation

We now examine the question concerning the applicability of emergent relationships between forced climate and internal

variability net feedbacks to different periods. Our analysis addresses the practicality of applying the emergent relationship

between 1958 and 2014 to periods without overlapping observations and examines the comparability between 14-year internal

variability feedback observations and those spanning 51 years. Through these investigations, we aim to uncover the essential235

requirements necessary to establish a statistically robust emergent constraint on forced net climate feedback.

To assess the transferability of the emergent relationship during
:::
from

:
the 1958-2014 period to observation periods of

:::
the

equivalent duration but from different years, we employ a comprehensive sensitivity analysis. The method involves calculating

the emergent relationships for all possible
::::
proof

:::
by

::::::::::::
contrapositive

:::::::::
approach.

:::
We

:::::::::::
hypothesize

:::
that

:::::::::::
observations

:::::
from

::::
one240

51-year windows within the time frame 1850-2014 available in the CMIP data, while excluding years of volcanic activity.

Additionally, the 5-95% confidence interval on the mean is obtained by bootstrapping these emergent relationships. Our aim is

to test whether the emergent relationship, initially identified for the specific period 1958-2014, remains robust and statistically

indistinguishable for other periods. The results of this analysis
:::::
period

:::
can

::
be

::::
used

::::
with

:::
the

::::::
model

:::::::::
relationship

::::::::
between

::
λit:::::

from

:
a
:::::::
different

:::::::
51-year

:::::
period

:::
and

::::
λab ::

to
:::::
derive

:::
the

::::::::
emergent

::::::::
constraint.

::
If
::::
this

::::::::
hypothesis

::
is
:::::
valid,

:::::
model

:::::::::::
relationships

::::::
derived

:::::
from245

:::::::
different

::::::
51-year

:::::::
periods

:::
for

::
λit::::::

should
:::
be

:::::::::
statistically

:::::::
similar.

::::::::
Therefore,

:::
we

::::::::
compute

:::
the

:::::
slopes

:::
and

:::::::::
intercepts

::
of

::
all

::::::::
potential

::::::
51-year

::::::
model

::::::::::
relationships

:::::
from

::::
1850

:::
to

::::
2014

::::
and

:::::::
compare

:::::
them

::::
with

:::
the

:::::::::
confidence

:::::::
intervals

:::
of

::::
their

::::::
means.

::::
The

:::::::
analysis

:::::
results

:
(Figures 3a and 3b) reveal

::::::
indicate

:
significant discrepancies in both the slope and intercept of the 51-year emergent

relationships when compared to the confidence intervalsof their mean. These discrepancies highlight
:::
their

:::::
mean

::::::::::
confidence

:::::::
intervals.

::::::::
However,

:::::
there

:
is
:::::
some

::::::
degree

::
of

::::::::
similarity,

::::
with

::::::
slopes

:::
and

::::::::
intercepts

::::
from

:::::::
adjacent

::::
time

:::::::
periods

:::::::::
sometimes

:::::::
showing250

::::
close

::::::
values,

:::
yet

:::
this

:::::
trend

::
is

:::
not

::::::::
consistent

:::::
across

:::
the

:::::
entire

::::::::
analyzed

::::::
period.

:::::
Thus,

:::
the

:::::::::
acceptable

:::::
degree

::
of

:::::::::
mismatch

:::::::
between

::::
time

::::::
periods

::::::
needed

::
to

::::::::
calculate

::::::
internal

:::::::::
variability

::::
from

:::::::::::
observations

:::
and

:::::::
models

::
for

::::::::
deriving

:::::::
emergent

::::::::::
constraints

::
on

::::::
forced

::::::
climate

:::::::::
feedbacks

:::::::
depends

:::
on

:::
the

:::::::
specific

::::::
periods

:::::
being

::::::::::
compared.

:::::
These

::::::::::::
discrepancies

:::::::::
underscore

:
the risk of employing

::::
using

:
emergent relationships and observations from periods of 51 years duration originating

:::::::
51-year

::::::
periods

::::
that

::::::::
originate

from different years, as the .
::::
The

:
emergent relationship in a specific

:::
one

:
51-year period may differ from that corresponding255

to the observation period. This discrepancy could mislead our
::
not

:::::
align

:::::::::::
significantly

::::
with

:::
that

:::
of

::::::
another

:::::::
period,

:::::::::
potentially

:::::::::
misleading

:::
the

:
interpretation of forced climate net feedbacks and compromise

:::::::::::
undermining the reliability of emergent con-

straints.

In addressing the second question, regarding the use of observed internal variability feedback from the 14-year period (2001-

2014) with the emergent relationship from the period 1958-2014 to constrain forced climate net feedback, the hypothesis is260

8



that, if valid, there should be no significant differences between any 14-year internal variability net feedback within the 1958-

2014 period and the corresponding net feedback of this period. Using ERA5 reanalysis data, all conceivable 14-year internal

variability net feedbacks were calculated and compared with the 5-95% confidence interval of the internal variability net

feedback of these 51 years (Figure 3c). The results indicate significant differences, negating the hypothesis. Consequently,

using the 14-year CERES observations (2001-2014) in conjunction with the emergent relationship (1958-2014) to constrain265

forced climate feedback could yield erroneous results, as a given 14-year period may have observed internal variability that is

significantly different from another.

Whereas the above analysis highlights that a 14-year period will not yield a statistically significant internal variability net

feedback estimation, we next ask how long an observation period is required to yield a significant estimate. This minimal

period length (n years) should show significant agreement between all conceivable internal variability net feedback within270

the 51-year timeframe and that estimated from the entire period. To investigate the existence of such a period, we calculated

all conceivable internal variability net feedbacks over different n-year periods within the 1958-2014 time frame. We then

determined the percentage of internal variability net feedback that deviated from the confidence intervals of the total period

internal variability net feedback for each n (Figure 3d). The results indicate that for a 40-year period, or longer, the internal

variability net feedback estimate is not significantly different from that of the 1958-2014 period. This suggests that after275

merging the CERES (2001-2014) and ERBE (1985-2000) datasets, only 12 non-volcanic years (1971-1984) would be required

to meet the minimum time requirement. It is worth noting that the time span from 1971 to 2014 is 44 years, but by excluding

volcanic eruption years (El Chichon and Pinatubo), the effective time span is reduced to 40 years. In the following section,

we leverage ERA5 reanalysis and statistical time series modeling to satisfy the above conditions and construct an emergent

constraint on forced net climate feedback.280

3.4 Extending the Observational Record with Reanalysis Data

As we have shown in the previous section, about 40 years of observations within the period where the relationship in models

emerges is the minimum requirement to establish an emergent constraint on the forced net climate feedback. The combined

CERES-ERBE dataset (1985-2014) contains 28 non-volcanic years, leaving 12 non-volcanic years missing to meet the required

time frame. In this section, we turn to ERA5 reanalysis data as a proxy for satellite observations to fill the observational gap285

and extend the accessible time span (1971-2014) for estimating internal variability net feedbacks. Before proceeding, however,

a detailed examination of the ERA5 reanalysis is essential, since in a reanalysis the radiative fluxes are not directly constrained

by observations, but are derived from calculations based on the atmospheric state. While the distribution of temperature and

water vapor is relatively well-constrained in a reanalysis, the representation of clouds is less constrained, resulting in radiative

fluxes that may be less consistent with observations than other variables.290

To assess the extent to which ERA5 captures the patterns and variations present in the observational data, we conduct a

comparison of the global weighted mean TOA fluxes from ERA5 with those obtained from the combined CERES-ERBE

dataset over the overlapping period of 1985-2019 (Figure 4). The high correlation coefficients obtained from the comparison

9



indicate the reanalysis effectively represents the variations affecting the TOA fluxes (Figure 4a). However, a closer examination295

reveals that ERA5 has a distinct error pattern (Figure 4a). Broadly speaking, this pattern indicates a systematic underestimation

of longwave fluxes and an overestimation of shortwave fluxes. Interestingly, these individual errors appear to cancel each other

out, leading to a net flux that is in relatively good agreement with the observed data.

Furthermore, a closer look at these errors reveals several predictable time series characteristics, such as temporal autocorre-

lation, seasonality, and trends (not shown). Notably, these features are more pronounced in the shortwave and net TOA fluxes,300

while they are less apparent in the longwave. Such characteristics highlight a potential of utilizing time-series statistical mod-

eling techniques for predicting errors in the reanalysis that then in turn can be used to fill periods lacking observations. Guided

by the recognized characteristics, we chose a Seasonal Autoregressive Integrated Moving Average (SARIMA) model (Box et

al. , 2008).
::::::::::::::
(Box et al., 2008)

:
.

To build the model, we divided the time series into a training set (January 1987 to December 2019), allowing the model305

to learn patterns and relationships within the data (Figure 4a). We then evaluate the model’s performance using a test over

an independent time period not seen during training (January 1985 to December 1986). This test ensures that the model can

accurately predict TOA fluxes for unseen periods. Note that, given the ability of the SARIMA model to forecast, a reversal

in the time series is essential to address the need for completing errors in the past. The test shows excellent performance in

predicting shortwave and net TOA fluxes, while its accuracy is slightly lower for longwave (Figure 4b). This discrepancy310

may arise from the less pronounced error patterns in longwave. Nevertheless, a majority of the test observations fall within

the confidence intervals of the model results (the model’s 5-95 percent confidence intervals encompass roughly 75 percent of

the longwave, 100 percent of the shortwave, and 87.5 percent of the net test datasets), providing confidence in its predictive

capabilities. Using the validated SARIMA model, we forecast errors from 1971 to 1984, enabling the adjustment of ERA5 TOA

fluxes (Figure 4c). This ensures a seamless 40-year period representative of the required 51 years and allows us to establish a315

constrained emergent relationship in models spanning the period 1958-2014.

Now equipped with an emergent relationship in models (1958-2014) and a 40-year adjusted observation set (1971-2014)

from ERA5-CERES-ERBE, we can establish an emergent constraint on forced climate feedbacks (Figures 1d, 1e and 1f).

This estimation process involves a simple two-step approach. First, we generate synthetic samples from a probability density

function derived from
::
To

::::
that

:::
end

:::
we

::::::
utilize

:
a
::::::
Monte

:::::
Carlo

:::::::::
simulation

:::::::::
approach.

:::
We

::::
start

::
by

:::::::::
generating

::
a
::::::::
predictor

:::::::
variable320

::::::
dataset

:::::::
sampled

::::
from

:
a
::::::::
truncated

::::::
normal

::::::::::
distribution,

:::::
based

::
on

:
the 40-year

:::::::
adjusted ERA5-CERES-ERBE combined observation

set. We then compute the constrained
::::::::::
observations

::::
and

::::
their

::::::::
associated

::::::::::
confidence

:::::::
intervals.

::::
For

::::
each

:::::::
sampled

:::::::
predictor

::::::
value,

::
we

::::::::
compute

:::
the

::::::::::::
corresponding

::::::::::
confidence

:::::::
interval

:::
for

:::
the

::::::::
predicted

:
forced climate feedbacks using these sampled values

while relying on the linear
:
a
::::::
linear

:::::
model

:::::::::::::::
(λab =mλit + b)

:::
that

::::::::
captures

:::
the

::::::::
emergent

::::::::::
relationship

:::::::
between

::::::
forced

:::::::
climate

:::
and

:::::::
internal

::::::::
variability

:::::::::
feedbacks.

::::::
While

::::
OLS

:::::::::
regression

:::
can

::::::
derive

:::
this

::::::
linear

::::::
model,

:
it
::::
may

::::::::::::
underestimate

:::
the

:::::
slope

::::
due

::
to325

::::::::
regression

:::::::
dilution

::::::
caused

::
by

:::::::::::
uncertainties

::
in

:::
the

:::::::::
predictors.

::
To

:::::::
account

:::
for

::::
these

:::::::::::
uncertainties

::
in

:::
the

::::::::
predictor,

:::
we

:::
also

:::::::
employ

:::::::::
Orthogonal

::::::::
Distance

:::::::::
Regression

:::::::
(ODR).

::::
The

::::::::::
comparison

::
of

::::
the

:::::
results

:::::
from

::::
both

:::::::::
regression

::::::::
methods

::::
(see

:::::
Table

::
2)

::::::
shows

:::::::
minimal

::::::
impact

::
of

:::::::::
regression

:::::::
dilution

::
on

:::
the

:::::::::
estimated

:::::
slope

:::::
when

:::::
using

::::
OLS,

:::::::
leading

::
us

:::
to

::::::
choose

::::
OLS

:::
for

:::
its

:::::::::
simplicity.

:::::::::::
Subsequently,

:::
we

::::::
sample

:::::
from

:
a
::::::::
truncated

::::::
normal

::::::::::
distribution

:::::
based

:::
on

:::
the

::::::
derived

::::::::
predicted

::::::::::
confidence

:::::::
intervals

::
to

:::::::
address
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::::::::
prediction

:::::::::::
uncertainties,

::::::::
resulting

::
in

::
a

:::
new

:::::::
dataset

::
of

::::::::
predicted

::::::
forced

::::::
climate

::::::::
feedback

::::::
values.

::::
The emergent relationship in330

the models. The emergent constraint on forced climate feedbacks is then characterized by the probability density function of

the simulated forced climate feedbacks
:::
this

:::
new

::::::
dataset

:
(insets in Figures 1d, 1e, and 1f).

Having explained the procedure for the emergent constraint, we now focus on the discernible results it provides. A com-

parison of the probability distribution medians shows that, for longwave, the emergent constraint (-1.73
:::::
-1.74 Wm−2 K−1)

closely matches the model median (-1.77
::::
-1.79 Wm−2 K−1) (Figure 1d). For shortwave, however, the emergent constraint335

suggests a less positive forced climate feedback (0.04
::::
0.05 Wm−2 K−1) compared to the model median (0.59 Wm−2 K−1),

indicating a reduced shortwave TOA response to global warming (Figure 1e). As a result, the emergent constraint indicates

a more negative forced net climate feedback (-1.56
::::
-1.52

:
Wm−2 K−1) compared to the model median (-1.12 Wm−2 K−1),

reflecting the diminished positive shortwave feedback (Figure 1e). Consequently, based on a radiative forcing for a doubling

of carbon dioxide of 3.93 Wm−2 (± 0.47 Wm−2 with 5-95% confidence intervals) (Forster et al., 2021), our emergent con-340

straint on forced net climate feedback suggests an ECS with a median of 2.5 K, with
:::
2.59

:::
K,

:::
and 5–95% confidence intervals

spanning from 2.06
::::
1.95 K to 3.12 K, which is somewhat lower than the model mean of 3.5 K. This ECS estimate

:::::
median

:::
of

::::
3.09

::
K.

:::
As

:::
an

:::::::::
alternative

::
to

:::::
using

:::
the

:::::
IPCC

::::
AR6

::::::::
radiative

::::::
forcing

::::::::
estimate,

:::
the

::::::::
radiative

::::::
forcing

::::
can

::
be

::::::::
retrieved

:::::
from

:::
the

:::::
model

:::
set

::
by

::::::
taking

:::
the

:::::::::
y-intercept

::
of

:::
the

:::::::::
regression

:::::::
between

:::::
TOA

:::::
fluxes

:::::::::
anomalies

:::
and

::::::
surface

:::::::::::
temperature

:::::::::
anomalies,

::::
then

:::::::
dividing

::
by

:::
2.1

:::::::::::::::::::::::::::::::::::::::
(Gregory et al., 2004; Meinshausen et al., 2020)

:
.
:::::
Here,

:::
the

::::::::
anomalies

:::
are

:::::::::
computed

::
as

:::
the

:::::::::
difference

:::::::
between345

::
the

:::::::::::::
abrupt4XCO2

:::
and

:::::::::
piControl

:::
150

:::::
year

:::::::::::
experiments.

::::
This

::::::::
approach

:::::
yields

:::
an

:::::
ECS

::::
with

::
a

::::::
median

:::::
value

:::
of

::::
2.31

::
K

::::
and

::::::
5–95%

:::::::::
confidence

:::::::
intervals

:::::::
ranging

::::
from

::::
1.74

::
K

::
to

::::
2.75

:::
K.

:::::
These

::::
ECS

::::::::
estimates, although consistent with previous research,

lies
::
lie

:
towards the lower end of the reported ranges (Dessler and Forster, 2018; Ceppi and Nowack, 2021; Sherwood et al.,

2020; Forster et al., 2021). Lastly, the emergent constraint outlined above, along with a comparison between simulated and

adjusted ERA5-CERES-ERBE observational internal variability feedback, indicates that models exhibiting moderate negative350

longwave, weakly positive shortwave and strongly negative net feedbacks are in better agreement with observations (Figures

5g, 5h and 5i).

However, it is critical to consider two key factors

::::::::
However,

::::
three

::::::
critical

::::::
factors

::::
must

::
be

::::::::::
considered. First,

:::
the

::::::
method

::::
used

::::
here

:::::::
assumes

:::
that

:::
the

::::::::::
relationship

:::::::
between

:::::::
internal

::::::::
variability

::::
and

::::::
forced

::::::
climate

:::::::::
feedbacks

::::::::
identified

::
in

:::::::
models

::::
also

::::::
applies

::
to
::::

the
:::
real

::::::
world.

::::
Yet,

:::::
those

::::::
models

:::::
often

:::
fail

:::
to355

::::::::
accurately

:::::::
replicate

::::::::
observed

:::
sea

::::::
surface

::::::::::
temperature

:::::
trend

::::::
patterns

::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Armour et al., 2024; Wills et al., 2022; Seager et al., 2022)

:
,
:::::
which

:::
can

::::::::
influence

::::::
forced

::::::
climate

:::::::::
feedbacks.

::::
This

:::::::::
mismatch

::::
may

:::::
result

::
in

::::::::
deviations

::::::::
between

::::::::::
model-based

::::
and

:::::::::
real-world

::::::::::
relationships

::::::::
between

:::::::
internal

:::::::::
variability

:::
and

::::::
forced

:::::::
climate

::::::::::
feedbacks.

:::::::
Second,

:
uncertainties in the model emergent re-

lationship within the adjusted ERA5-CERES-ERBE period(Figure 1f
:
,
::::::::::
particularly

:::::::
because

:::::
most

::::::
models

::::::::
simulate

:::::::
internal

::::::::
variability

:::
net

::::::::
feedback

::::::
values

::::::::::
significantly

:::::::
outside

:::
the

::::::::
observed

:::::
range

::::::
(Figure

:::
1f) reduces confidence in the emergent con-360

straint. Second
::::::
Finally, the emergent constraint is derived from a 40-year adjusted ERA5-CERES-ERBE period, which implies

reduced confidence compared to a purely observational 51-year dataset. Given these limitations, it is important to interpret the

presented emergent constraint not as strong evidence, but rather as a prediction of the potential insights that could be gained

with little more than a decade of additional observations.
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4 Conclusions365

A study of the relationships between internal variability and forced climate feedbacks in models of the sixth generation of

the Coupled Model Intercomparison Project is presented. Consistent with previous research (Uribe et al., 2022) we find ev-

idence indicating that the strength of longwave and shortwave forced climate feedback is related to their internal variability

feedback during the period of overlap between CERES data and historical simulations. Moreover, our results indicate that the

inclusion of additional ensemble members in the estimation of internal variability feedbacks improves their robustness and370

representativeness, thereby strengthening the relationship between internal variability and forced climate feedbacks.

Nevertheless, when the longwave and shortwave feedback components are combined to estimate the net feedback, the rela-

tionship breaks down. We showed that the relatively weaker relationship between longwave internal variability and longwave

forced climate feedbacks played a significant role in the reduced relationship between internal variability and forced climate

net feedbacks during the CERES period.375

To determine the relationship between internal variability and forced net climate feedback in CMIP6 coupled simulations,

we extend the analysis to encompass time periods beyond the constraints of CERES observations. The results indicate robust

and statistically significant relationships within the model set, with increased statistical stability for a period of at least half

a century, excluding years with volcanic eruptions (1958-2014). The improvement observed in the relationship stems from a

strengthening of the correlation between shortwave internal variability and shortwave forced climate feedbacks when extending380

the period. This increase compensates for the relatively weaker correlation between longwave internal variability and longwave

forced climate feedback. Given that the CERES record begins in 2000, our analysis suggests that it would be necessary to

wait until approximately 2051 to accumulate the necessary satellite observations for the use of purely observational data in

constraining forced climate feedbacks. However, a possible solution to reduce this waiting time is to combine the CERES

record with the ERBE satellite record, which could potentially reduce the time horizon to the mid-2030s.385

We then find that a timeframe of about 40 years, within the period wherein the model internal variability net feedback

demonstrates a relatively robust relationship with the model forced net climate feedback, represents the essential criteria for

employing observations to establish an emergent constraint on forced net climate feedback. Leveraging the 1985-2014 CERES-

ERBE dataset, which includes 28 non-volcanic years, we employ time series modeling to adjust ERA5 reanalysis data. This

adjusted reanalysis data record serves as a surrogate for satellite observations, with the goal of filling the observational gap and390

extending the available time frame for estimating observed internal variability net feedback (1971-2014).

Using this extended observation set (1971-2014) in conjunction with the emergent statistical relationship in models (1958-

2014), we derive an estimated emergent constraint on forced climate feedbacks. This constraint manifests as a reduction in

the uncertainty associated with forced climate feedbacks, revealing a reduced forced climate shortwave feedback, a more

pronounced negative forced climate net feedback, and consequently, a lower Equilibrium Climate Sensitivity (ECS) relative to395

the CMIP6 model distribution. In particular, it is highlighted that models with moderate negative longwave, weakly positive

shortwave, and strongly negative net feedbacks are more consistent with observations.
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However, a few final notes of caution are warranted. First, at the time scales we are examining, for example some
::::::::::::
biogeophysical

:::
and

:
biogeochemical feedbacks may not be active ,

::::
(e.g.,

:::::::
changes

::
in

::::::::
methane,

:::::::
aerosols,

::::::
ozone,

:::
or

::::::::::
vegetation), and several of

the models used also do not incorporate them. Consequently, this absence may lead to an underestimation of ECS to some400

extent. Second, the
:
it

:::::::
remains

::::::::
uncertain

:::::::
whether

:::
the

:::::::::
identified

::::::
model

::::::::::
relationship

:::::::
between

:::::::
internal

:::::::::
variability

::::
and

::::::
forced

::::::
climate

:::::::::
feedbacks

::::::
reflects

:::::::::
real-world

:::::::::
conditions.

::::::
Third, uncertainties in the model emergent relationship within the adjusted

ERA5-CERES-ERBE data limit confidence in the emergent constraint results. Furthermore, it is important to recognize that

these emergent constraints are derived from a 40-year adjusted ERA5-CERES-ERBE period, indicating a reduced level of

confidence compared to a purely observational 51-year dataset, highlighting the need for long term continuous monitoring of405

Earth’s radiation budget. Given these limitations, it is advisable to interpret the emergent constraint results carefully, under-

standing that they serve as indicative illustrations rather than strictly observational evidence.
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Table 1. CMIP6 models used to calculate forced climate feedbacks and internal variability feedbacks. The availability of model realizations

for estimating internal variability feedbacks is indicated by "X".

r1i1p1f1 r2i1p1f1 r3i1p1f1 r4i1p1f1 r5i1p1f1

CMIP AMIP CMIP AMIP CMIP AMIP CMIP AMIP CMIP AMIP

ACCESS-CM2 X X X X X X X X X

ACCESS-ESM1-5 X X X X X X X X X X

AWI-CM-1-1-MR X X X X X

BCC-CSM2-MR X X X X

BCC-ESM1 X X X X X X

CAMS-CSM1-0 X X X X X

CanESM5 X X X X X X X

CESM2 X X X X X X X X X X

CESM2-FV2 X X X X X X

CESM2-WACCM X X X X X X

CESM2-WACCM-FV2 X X X X X X

CMCC-CM2-SR5 X X

FGOALS-g3 X X X X X X X X X

GISS-E2-1-G X X X X X X X X X

GISS-E2-1-H X X X X X

ICON-ESM-LR X X X X X X

IITM-ESM X X

MIROC6 X X X X X X X X X X

MPI-ESM-1-2-HAM X X X X X X

MPI-ESM1-2-HR X X X X X X X X

MPI-ESM1-2-LR X X X X X X X X

MRI-ESM2-0 X X X X X X X X

NESM3 X X X X X X X X X X

NorESM2-MM X X X

SAM0-UNICON X X
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Table 2.
:::::
Forced

::::::
climate

:::
and

::::::
internal

::::::::
variability

::::::::
feedbacks

:::::::
regression

:::::::::
coefficients

::::::::
depending

::
on

:::
the

:::::
choice

::
of

::::::::
regression

::::::
method.

Longwave Shortwave Net

::::
OLS

::::
ODR

::::
OLS

::::
ODR

::::
OLS

::::
ODR

::::
Slope

: ::::
0.57

:::
0.57

::::
0.74

:::
0.74

::::
0.57

:::
0.62

:::::::
Intercept [

::::::::
Wm−2K−1]

::::
-0.77

::::
-0.76

::::
-0.26

::::
-0.26

::::
-0.82

::::
-0.80
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Figure 1. Abruptly quadrupled CO2 increases versus internal variability feedbacks for longwave (left), shortwave (center), and net (right)

over CERES 2001-2014 ((a), (b), (c)) and 1958-2014 ((d), (e), (f)) periods. Legends include the correlation coefficient, r, between abrupt

and internal variability feedbacks for coupled (blue) and atmosphere-only (red) simulations. Grey shading and horizontal lines extend from

5 to 95 percent confidence intervals of the observed/ERA5-CERES-ERBE and individual model internal variability feedback, respectively.

The shaded blue region in figures (d), (e), and (f) represents the 5 to 95% confidence intervals on the regression line, which is displayed as a

dashed line. Additionally, the insets display boxplots for CMIP6 and constrained forced climate feedbacks.
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Figure 2. Estimated probability distribution of correlations coefficients between longwave (
::
a)

:::::
Shows

:::
the

:::
first

:
(blue

::
line), shortwave

:::::
second

(
:::
blue

:::::::
crosses),

::::
third

:
(red

::
line)

:
, and

:::::
fourth

:::
(red

:::::::
crosses)

:::::::::
contributors

::
to

:::
the

::::::::
correlation

:::::::::
coefficient

::::::
between

::::::
internal

::::::::
variability

:::
and

::::::
forced

:::::
climate

:
net

::::::::
feedbacks (

::
Eq

:::
(2)).

:::
(b)

:::::::
Ilustrates

:::
the

::::::::
correlation

::::::::
coefficient

:
(black

:::
line)

:::
and

::::::
p-value

:::::
(green

:::
line)

:::::::
between internal variability and

forced climate
::
net

:
feedbacks

:
,
:::
with

::::::::
horizontal

::::::
dashed

::::
lines

::::::::
indicating

:
a
:::::::::
correlation

::
of

::
0.5

::::
and

:
a
::::::
p-value

::
of

::::
5%.

:::
The

:::::
values

:::
are

::::::::
computed

::::::
between

:::
the

::
net

::::::
internal

::::::::
variability

:::::::
feedback

::::::::
estimated for coupled

::
the

::::::
Starting

::::
year

::
to

::::
2014

:::
time

:::::::
window

:::
and

::
net

::::::
forced

:::::
climate

::::::::
feedback.

:::
The

::::::
vertical

:::
line

::
in

:::::
figures

:
(a) and atmosphere-only (b) models over

:::::
marks the

::::
initial

::::
year

::::
when

:::
the

:::::::::
relationship

:::::::::::
approximately

::::::::
stabilizes,

::::
while

:::
the

:::::
shaded

::::
grey

:::::
regions

:::::::
represent

:::
the CERES period (2001-2014

::::::::::
2000-present)

:
,
:::::
ERBE

::::::::::
(1985-2000),

:::
and

:::::
ERA5

:::::::::::
(1940-present)

:::::
periods.

Vertical lines show
::
(c)

::::::
Depicts

:
the correlation coefficients as

:::::::
frequency

:::::::::
distribution

::
of

::::::
p-values

:
from Figure 1.

::::::::::
de-correlation

::::
tests

:::::::
between

:::::
internal

::::::::
variability

:::
and

:::::
forced

::::::
climate

:::
net

:::::::
feedbacks

::
in
::::::
CMIP6

::::::
coupled

::::::
models

:::
over

:::
all

::::::
51-year

:::::::
windows

::::::
between

::::
1850

:::
and

:::::
2014.

(a) Shows the first (blue line), second (blue crosses), third (red line), and fourth (red crosses) contributors to the correlation coefficient

between internal variability and forced climate net feedbacks (Eq (2)). (b) Ilustrates the correlation coefficient (black line) and p-value

(green line) between internal variability and forced climate net feedbacks, with horizontal dashed lines indicating a correlation of 0.5 and a

p-value of 5%. The values are computed between the net internal variability feedback estimated for the n−2014 time window and net

forced climate feedback. The vertical line in figures (a) and (b) marks the initial year when the relationship approximately stabilizes, while

the shaded grey regions represent the CERES (2000-present), ERBE (1985-2000), and ERA5 (1940-present) periods. (c) Depicts the

frequency distribution of p-values from de-correlation tests between internal variability and forced climate net feedbacks in CMIP6 coupled

models over all 51-year windows between 1850 and 2014.
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Figure 3. Regression slopes (a) and intercepts (b) of the linear relationship between internal variability and forced climate net feedbacks for

all potential 51-year continuous periods spanning from 1850 to 2014 in CMIP6 coupled simulations and the 5-95% confidence intervals on

their mean (blue). (c) ERA5 internal variability net feedbacks for every possible 14-year interval spanning from 1958 to 2014. The shaded

blue intervals represent the 5-95% confidence intervals across the entire time span. (d) Percentage of periods within the confidence intervals

of internal variability net feedbacks for the 1958-2014 period relative to the period length.
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Figure 4. (a) Shows the bias in global mean ERA5 TOA fluxes (ERA5 - CERES-ERBE) from 1985 to 2019, with the black and red lines

indicating the training and testing periods for the SARIMA model, respectively. Legends provide the correlation coefficient between ERA5

and CERES-ERBE. (b) Illustrates the bias in global mean ERA5 TOA fluxes during the testing period (red) and the SARIMA model results

with its 5-95% confidence intervals (blue). (c) Depicts TOA fluxes from CERES-ERBE spanning 1985 to 2019 (red), ERA5 spanning 1971

to 2019 (black), and SARIMA adjusted ERA5 spanning 1985 to 2019 (blue).
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Figure 5. Probability of longwave (left) shortwave (center) and net (right) internal variability feedbacks from models falling within observed

uncertainty ranges. The top and center panels show CMIP and AMIP simulations, respectively, alongside CERES observations for the period

2001-2014, while the bottom panel illustrates CMIP simulations and the combined CERES-ERBE-ERA5 covering the broader timeframe

from 1958 to 2014. The x-axis organizes models in ascending order based on internal variability feedback values, with the corresponding

values enclosed in parentheses.
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