
Response to Referee Comments on “Constraining

net long term climate feedback from satellite

observed internal variability possible by mid

2030s”

We appreciate the referees’ constructive feedbacks. Below, we provide our
detailed responses and the modifications made in response to their comments
and suggestions.

• Referee 1.

Using CMIP6 model simulations, the authors derive an emergent constraint
that relates feedback from internal variability (IV) to forced feedback. They
show that there are statistically significant relationships across models between
components of IV feedback and forced feedback: a strong relationship for SW, a
weaker relationship for LW, and an even weaker, but still significant and mean-
ingful relationship for the net feedback. Using this relationship and combining it
with observed internal variability, they show that more observations are needed
in order to use this finding to actually constrain ECS. As an alternative to wait-
ing for more satellite data, the authors extend the satellite record back in time
by applying a correction model to reanalysis radiative fluxes, and thus constrain
ECS to 2.5 K [90 % CI: 2.14 – 3.07 K], which is lower than current estimates
from models, the IPCC, or Sherwood et al. 2020. Future satellite observa-
tions could be integrated into their method to update the estimates, and the
authors quantify the quality of the constraint as a function of the number of
observed years. The paper is well-written, well-presented, clearly states its goal
and provides evidence to support the claims, guiding the reader through the
argumentation. The statistical methods are sound and used in an appropriate
way. While I do have a long list of comments and questions, I want to stress
that I enjoyed reading the paper and consider it a beneficial addition to the
research on feedbacks and climate sensitivity. I have one main point to raise in
criticism of this paper, which I will present in the following.

My main comment can be summarized as “What about the pattern effect?”

From the methods section, I understand that the feedback parameters are
calculated as differential feedback parameters (referring to Rugenstein and Ar-
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mour 2021, https://doi.org/10.1029/2021GL092983, please confirm if this
interpretation is correct). All feedback parameters are estimated as the slope of
N(T). For λab, which time period is used for the regression? The full 150 years?
We know that λab changes considerably over time, both over the 150 years pe-
riod (which is accounted for if the full 150 years are used for the regression),
but also after this (e.g. Rugenstein et al. 2020, https://doi.org/10.1029/
2019GL083898). According to that paper, ECS estimated from the 150-year
span is an underestimate of the true ECS by 17 % in models. Would this affect
the ECS estimate that the paper gives?

Further uncertainties may arise when leaving the model world. The historical
simulations which are used to compute λit, are not capable of reproducing the
observed SST patterns (e.g. Wills et al. 2022, https://doi.org/10.1029/
2022GL100011). It is currently debated if the observed pattern of strongWestern
Pacific warming will continue or switch to stronger warming in the Eastern
Pacific. This uncertainty implies enormous uncertainty for ECS (Alessi and
Rugenstein 2023, https://doi.org/10.1029/2023GL105795). The point that
I’m trying to make with these explanations is that it may very well be that the
connection between λit and λab is very different in the real world and models.
While models produce El-Nino like patterns both in the present and future, the
real world has warmed more La-Nina like until now, and we don’t know how it
will continue. Since these patterns are tightly linked to λab, the model results
may not be applicable to the real world. This would be a major problem for the
emergent constraint that the paper develops, because an implicit assumption
of the emergent constraint approach is that the statistical relationship that is
found in the models is applicable to reality.

I would like to ask the authors to discuss this uncertainty. In particular, do
you think it affects the ECS range that is determined? If yes, how? If no, why
not? If the authors agree that this could add substantial uncertainty, I propose
mentioning this also in the last part of the abstract, which currently suggests
that all uncertainties (except for the biogeochemical feedback) are accounted
for in the 5 – 95 % CI.

Your interpretation regarding the feedback parameters calculated
as differential feedback is accurate, and we derived them using 150
years of simulations.

While we recognize that ECS estimates derived from 150-year ex-
periments may underestimate the true ECS due to time-dependent
feedbacks, as shown by Rugenstein et al. (2020), it’s equally im-
portant to consider that ECS estimates from 4XCO2 experiments
frequently overestimate ECS compared to 2XCO2 experiments due
to nonlogarithmic forcing, feedback CO2 dependence, and feedback
temperature dependence, as demonstrated by Bloch-Johnson et al.
2021. Since the ongoing debate on the interaction of these two effects
lies beyond the scope of our study, we chose the standard method as
it represents the most straightforward approach and serves as a basis
for comparison and analysis. This observation has been incorporated
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into the Materials and Methods section, line 85.
Indeed, an essential assumption in our study is that the relation-

ship between λit and λab observed in models also holds true in the
real world. You rightly highlight that, so far, the observed warm-
ing pattern may differ from model projections, with the real world
displaying more La Niña-like trends while models generally exhibit
El Niño-like patterns. This discrepancy introduces significant uncer-
tainty for our λab and ECS estimates. Given the importance of this
caveat, we have include this potential discrepancy between models
and observations in the abstract, discussion section and final notes of
caution in our manuscript.

In addition, I have other comments:

• l. 12, 21, 335 – 337: What biogeochemical processes does this refer to?
Can you specify? I wonder if they are relevant for ECS, as the carbon-
cycle does not matter for this concept of fixed CO2 concentration, and
vegetation changes are not included in the definition of ECS.

While several definitions of ECS do not include biogeochemical
processes, we align with the IPCC’s definition as detailed in
Forster et al. 2021:

“Feedbacks in the Earth system are numerous, and it can be
helpful to categorize them into three groups: (i) physical feed-
backs; (ii) biogeophysical and biogeochemical feedbacks; and
(iii) long-term feedbacks associated with ice sheets. ... biogeo-
physical/biogeochemical feedbacks (e.g., those associated with
changes in methane, aerosols, ozone, or vegetation; Section 7.4.2.5)
act both on time scales that are used to estimate the equilibrium
climate sensitivity (ECS).”

The implementation of these biogeophysical and biogeochemical
processes varies among models. For instance, some models use
static vegetation, some implement aerosol indirect effects, and
others prescribe ozone and/or methane concentrations. Given
this variability, we consider important to highlight this restric-
tion in our manuscript.

• l. 82 paragraph: As mentioned before, please state which years are used
for the regression of λab;

We used 150 years for the regression of λab. This information
has now been added to our manuscript on lines 73 and 85.

• l. 83 – 84: Is there a particular reason for subtracting the control state? I
wonder, because a constant shouldn’t affect the slope estimate. It wouldn’t
hurt the calculation, but I’m curious.

There is no specific rationale for subtracting the control state, as
a constant should not influence the slope estimate. To address
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this, we have revised the sentence in line 84 to: “We calculate
forced climate feedbacks using linear Ordinary Least Squares
(OLS) regression coefficients derived from 150 years of annual
global averages of R and T from abrupt4xCO2 simulations.”

• l. 125: It is not immediately clear to me what was done here by “ran-
domly permuting”. Were the R and T time series randomly matched
(e.g. R from model 1 realization 1 and T from model 2 realization 1),
and were the feedback parameters subsequently computed from these ran-
domly matched time series? Am I right in assuming that only complete
time series were permuted, not individual values in the time series?

We acknowledge that our initial description of the method lacked
detailed explanation. To clarify, our approach did not involve
randomly pairing the R and T time series to compute feedbacks
from these pairs. Instead, the method estimates the likelihood of
obtaining a correlation as high as, or higher than, the observed
correlation between internal variability and forced climate feed-
backs in climate models. Specifically, we randomly permuted
the feedback datasets, disrupting the correspondence between
models for internal variability and forced climate feedbacks (for
example, by pairing the internal variability feedback from one
model with the forced climate feedback from another). We then
recalculated the correlation coefficient using this shuffled data.
This procedure was repeated 105 times, generating a null distri-
bution of correlation coefficients that reflects the range of values
expected if no real relationship exists. Finally, we compared the
observed correlation to this null distribution to estimate how
often a correlation of equal or greater magnitude could arise by
chance, providing a p-value as a measure of statistical signifi-
cance. We have added more details to this method in line 135
in the manuscript to clarify the procedure.

• Fig. 2: I am not sure that Fig. 2 is really needed. To me as a reader, the
only relevant information is the likelihood of obtaining the correlations
by chance, which is mentioned in the text; the full distribution is not so
interesting, and the differences between the blue, red, and black lines are
anyway hard to grasp. While I take no issue with this figure, I believe
that it could be removed without loss of information; however, I would
like to see the likelihood to obtain the correlations for the net feedback
parameter by chance in the text, I only found this information for LW and
SW.

We agree that the figure is not essential and have decided to
remove it. We have added the likelihood of obtaining the corre-
lations for the feedback parameters by chance in lines 144 and
155.
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• l. 150: Given that the first term is 0.43 and the last one is -0.72, does
that mean that the internal SW feedback outperforms the internal LW
feedback as a predictor for the forced LW feedback (by having a strong
anticorrelation)? I find that interesting.

That is an interesting observation. However, it is important to
clarify that the referred terms are not correlations, but rather
the covariance divided by the product of standard deviations of
the internal variability and forced climate net feedbacks. The
actual correlation between internal variability and forced cli-
mate longwave feedbacks is 0.68, and the anticorrelation between
shortwave internal variability and longwave forced climate feed-
back is -0.64. These values indicate that the internal variability
shortwave feedback does not outperform the internal variabil-
ity longwave feedback as a predictor of forced climate longwave
feedback.

• l. 174 – 175: So if the SW is the strongest contributor, that means that
it comes down to clouds (unsurprisingly). Do you think the poor model
representation of clouds is a problem for that?

Indeed, extending the period for estimating internal variability
feedbacks improves the relationship between internal variabil-
ity and forced climate shortwave feedbacks. Given that short-
wave feedbacks are closely linked to clouds, this improvement
indicates that clouds respond to natural variations in surface
temperature similarly to how they respond to external radiative
forcing in models. This consistent misrepresentation of clouds
actually benefits our methodology as it allows us to use inter-
nal variability observations to constrain uncertainties in forced
climate feedbacks. However, if models had more accurate cloud
representations, the uncertainties in forced climate feedbacks
might be reduced, potentially diminishing the applicability and
need for this emergent constraint methodology.

• l. 182: Models have no measurement uncertainty, but EBAF does. Is the
uncertainty that arises from the satellite measurements (and also from the
temperature data, but I assume that will be less important) taken into
account? Would it affect the estimate of ECS or is it too small to make a
difference? When combining the measurements from CERES and ERBE,
is it problematic that the satellite changes, e.g., are there inconsistencies
or steps?

We acknowledge that our current methodology does not ex-
plicitly incorporate satellite measurement uncertainties. In our
analysis of internal variability feedbacks, the noise in the TOA
fluxes time series arises from both natural variability and mea-
surement errors. Consequently, when we regress TOA fluxes
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against surface temperature, the confidence intervals (CIs) in-
herently account for the total variability in the data, encompass-
ing both natural fluctuations and measurement noise. Explicitly
adding measurement uncertainties to the CI calculations could
result in double-counting, thereby inflating the confidence in-
tervals unnecessarily. This inflated observed internal variability
feedback would, in turn, broaden the estimate of forced climate
feedback after applying the emergent constraint. Consequently,
using this broader estimate of forced climate feedback would
lead to a wider range of ECS uncertainties.

Regarding the combination of satellite datasets, there are chal-
lenges involved, such as spatial biases in radiative fluxes, changes
in the observing system used in the data assimilation process,
and unrealistic variability in radiative fluxes due to the absence
of volcanic aerosol effects. While these issues are indeed signifi-
cant, they fall outside the scope of our study. Instead, we relied
on the methodology implemented by Allan et al. (2014), who
addressed these challenges and provided the merged dataset we
used in our analysis.

• l. 187: The values are almost all well below 1 %. Doesn’t that mean
that less years might also be enough, if we think that, e.g., 5 % would be
sufficient?

Indeed, fewer years might suffice; however, this is not the case
for the most recent potential relationship, as illustrated in now
Figures 2a and 2b. It would be interesting to verify whether
the relationship holds for periods shorter than 51 years when
including more years beyond 2014 if the historical simulations
were extended. Nevertheless, we prefer not to include this ob-
servation to avoid speculation.

• Fig. 3 caption: Unclear what is meant by “n – 2014”, what is n here?
Should I read it as “n to 2014” or “n minus 2014”?

We clarify this now in the manuscript. The term “n – 2014”
should be read as “starting year to 2014”.

• l. 194 – 195: The suggested approach here is to wait for new satellite
observations, but by then we will also have longer historical simulations.
Can’t we just run your analysis on the historical simulations again in 14
years, circumventing the whole problem of using the emergent relationship
from one period with observations from another? It’s still an interesting
question to ask, but I don’t see the practical necessity to use the “old”
emergent relationship 14 years from now.

Yes, if we gather enough observations and extend the historical
simulations to cover a 51-year period that includes the obser-
vational data, we could potentially apply the method without
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relying on the “old” emergent relationship. We have now incor-
porated this consideration into line 212.

• l. 206 - 216: This seems to be in disagreement with the results of Fig. 4 (d).
In Fig. 4 (d) you show that when taking at least 40 years, it doesn’t matter
which period one picks, λit will always be the same. So λit does not depend
on the chosen period if the period is long enough. λab obviously doesn’t
depend on the chosen period either. So how can the relationship between
λit and λab depend on the chosen period (that’s what I read from Fig. 4 a
and b)? I have a hard time reconciling this. In addition, Gregory and An-
drews 2016 (https://doi.org/10.1002/2016GL068406) show that historical
feedback has varied quite a bit, although they use shorter than 40-year
periods for their regression.

We appreciate your observations and recognize that Figure 4
(Now Figure 3) may cause some confusion. In now Figure 3, we
address two distinct questions with our analysis.

First, we test the hypothesis: “It is possible to use observations
from one 51-year period with the model relationship between λit,
from a different 51-year period, and λab to produce the emergent
constraint.” To validate this hypothesis, we used a proof by con-
trapositive approach, examining whether all model relationships
using 51-year periods to estimate λit would be statistically sim-
ilar if the hypothesis were true.

In Figures 3a and 3b, we present the slopes and intercepts of all
potential 51-year model relationships between 1850 to 2014 and
compare them with the confidence intervals of their means. The
results indicate that the 51-year relationships are indeed sta-
tistically different, providing evidence to reject the hypothesis.
As the reviewer correctly notes, while λab remains unchanged,
λit varies for each 51-year period, indicating that those λit from
models are statistically different.

Second, we test the hypothesis: “It is possible to use the avail-
able 14 years of observations (2001-2014) with the model rela-
tionship between λit (1958-2014) and λab to produce the emer-
gent constraint.” We again used a proof by contrapositive ap-
proach. If the hypothesis were true, then all possible 14-year λit

values within the period 1958-2014 would be statistically similar
to the λit of the full period 1958-2014. Using ERA5 reanaly-
sis, we calculated all possible 14-year λit values within the range
1958-2014 and compared them to that of the full period 1958-
2014 (Figure 3c). The results provide evidence to reject the
hypothesis. Additionally, we estimated the length of an obser-
vation period that would lead to a λit statistically similar to
that of the period 1958-2014, finding that 40 years are required
(Figure 3c).
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In summary, the information presented in now Figure 3 ad-
dresses different questions and should be read with care. Figures
3a and 3b compare all modeled slopes and intercepts from the
linear regressions between λab and 51-year λit within the period
1850 and 2014 with their mean, while Figure 3c determines the
observation window size needed to estimate a λit statistically
similar to that from the period 1958-2014 using data within the
same period.

We would like to clarify that, upon reviewing the referee’s com-
ment, we realized our initial statement may have seemed cate-
gorical, implying that all 51-year modeled λit periods are statis-
tically different. In reality, there is some degree of similarity, as
slopes and intercepts from adjacent time periods can be quite
similar in certain cases. However, this pattern does not consis-
tently apply across the entire analyzed period. Consequently,
the extent of allowable discrepancy between the time periods
used to calculate internal variability from observations and from
models for generating an emergent constraint on forced climate
feedbacks varies depending on the specific periods compared.
We have updated the manuscript to reflect this clarification for
improved understanding.

• Fig. 4 (a) and (b). How can the starting year be 1980 and higher for
51-year periods?

As noted by the reviewer, having a starting year of 1980 or later
for 51-year periods is indeed inconsistent. We have identified and
corrected an error in the computing code that led to this issue.
The figures have been updated to reflect the correct starting
year.

• Does it surprise you that the relationship between λit and λab varies
strongly in time?

The substantial variation in the relationship between λit and
λab can be attributed to the previously mentioned error. Even
after correcting for this, some variation persists, likely related to
the specific internal variability present in each 51-year period.
We chose not to include this in the manuscript as it remains
speculative and requires further investigation beyond the scope
of our study.

• l. 250 – 252 and Fig. 5 (a): +/- 2 W/m2 seems not negligible compared
to interannual variability of global-mean TOA flux, which I would expect
to vary by less than 10 W/m2. How can it be that the correlation with
CERES-ERBE is still so high (0.99)? It means that 98% of the variance
of the ERA5 feedback parameter is explained by CERES-ERBE, so only
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2 % is left for the error, which seems low given that the error gets up to
+/- 2 W/m2.

We believe the referee is referring to the fact that 98% of the
variance in the ERA5 TOA fluxes (rather than the feedback pa-
rameter) is explained by CERES-ERBE, leaving only 2% for the
error. The correlation coefficient of TOA fluxes between ERA5
and CERES-ERBE measures the strength and direction of their
linear relationship. A systematic offset between the two datasets
does not significantly affect the correlation coefficient because it
does not alter the way the datasets co-vary over time. Therefore,
it’s possible to have a high correlation coefficient (0.99) despite
differences in their absolute values. Additionally, it is important
to emphasize that a high R2 value pertains to the variance in
ERA5 TOA fluxes, not their exact values. Consequently, even
with the absolute differences caused by the error margin, the
relative variability and trends of the datasets remain aligned,
resulting in a high correlation and coefficient of determination.

• l. 277 – 279: I don’t understand the method here. A probability density
function of which quantity? What values are sampled from this distri-
bution? I had expected one value for λit from ERA5, obtained from
regressing over the 40-year period, not a whole distribution. What am I
missing? This seems like a central point of the paper and maybe deserves
another sentence or two to clarify the method.

We recognize that the initial description was difficult to read
and included unnecessary details for deriving the emergent con-
straint. To clarify, we have simplified the explanation in the
manuscript line 300.

In summary, our method uses a Monte Carlo simulation to es-
timate forced climate feedbacks. We begin by generating a pre-
dictor variable dataset from a truncated normal distribution,
based on the 40 years of adjusted ERA5-CERES-ERBE obser-
vations and their confidence intervals. Applying a linear model
(λab = mλit + b), we calculate the confidence intervals for pre-
dicted forced climate feedbacks for each predictor value. To ad-
dress prediction uncertainties, we sample from these confidence
intervals, resulting in a new dataset of predicted forced climate
feedback values. The emergent constraint is then characterized
by the probability density function of this dataset.

• Is there a reason for presenting the results from this analysis as small
insets in Fig. 1? It seems like one of the main outcomes of this paper is
hidden in a small inset. If showing it in Fig. 1, I would prefer the y-axes
of the main plot and the inset to be aligned.

After evaluating several alternatives, we determined that retain-
ing the insets offers the clearest representation of feedback distri-
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butions. To ensure consistency and improve visibility, we aligned
the y-axes of the main plot and the inset.

• l. 296 – 301: The list of limitations seems short. In addition to my ques-
tions about the pattern effect potentially limiting the results of this study,
I think it may be beneficial to discuss further limitations. In particular, the
emergent relationship is obtained from model simulations using models,
hoping that this relationship would translate to the real world. However,
most models that contribute to this relationship simulate λit values way
outside the observed range (see Fig. 1 f). Could this limit the results?

We have now expanded our discussion of limitations to include
both the pattern effect and the assumption that emergent re-
lationships from models apply to the real world. Concerning
the issue of models simulating λit values significantly outside the
observed range, we previously noted that “uncertainties in the
model emergent relationship, as illustrated in Figure 1f, reduce
confidence in the emergent constraint”. We have revised this
statement for clarity to: “Uncertainties in the model emergent
relationship within the adjusted ERA5-CERES-ERBE period,
due to most models simulating λit values significantly outside
the observed range (Figure 1f), reduce confidence in the emer-
gent constraint.”

Minor comments:

• l. 72 – 75: the half-sentence “incorporating a more extensive. . . ” appears
twice

The error has been corrected.

• l. 161: The use of the word “assuming” makes sense here, but made me
stumble, because it sounds like it’s a prerequisite to run the hypothesis,
when it’s actually rather the null hypothesis; “testing for” or something
similar would have been clearer to me.

We changed the word “assuming” to “where the null hypothesis
posits” in line 180.
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