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Abstract 22 

The Energy Exascale Earth System Model (E3SM) Land Model (ELM) is a state-of-the-art land 23 

surface model that simulates the intricate interactions between the terrestrial land surface and other 24 

components of the Earth system. Originating from the Community Land Model (CLM) version 4.5, ELM 25 

has been under active development, with added new features and functionality, including plant hydraulics, 26 

radiation-topography interaction, subsurface multiphase flow, and more explicit land use and management 27 

practices. This study integrates ELM v2.1 with the Weather Research and Forecasting (WRF) Model 28 

through a modified Lightweight Infrastructure for Land Atmosphere Coupling (LILAC) framework, 29 

enabling affordable high-resolution regional modeling by leveraging ELM’s innovative features alongside 30 

WRF’s diverse atmospheric parameterization options. This framework includes a top-level driver for 31 

variable communication between WRF and ELM and Earth System Modeling Framework (ESMF) caps for 32 

WRF atmospheric component and ELM workflow control, encompassing initialization, execution, and 33 

finalization. Importantly, this LILAC-ESMF framework demonstrates a more modular approach compared 34 

to previous coupling efforts between WRF and land surface models. It maintains the integrity of the ELM’s 35 

source code structure and facilitates the transfer of future developments in ELM to WRF-ELM. 36 

To test the ability of the coupled model in capturing land-atmosphere interactions over regions with 37 

a variety of land uses and land covers, we conducted high-resolution (4 km) WRF-ELM ensemble 38 

simulations over the Great Lakes Region (GLR) in the summer of 2018 and systematically compared the 39 

results against observations, reanalysis data, and WRF-CTSM (WRF-coupled with the Community 40 

Terrestrial Systems Model). In general, the coupled WRF-ELM model has reasonably captured the spatial 41 

distribution of surface state variables and fluxes across the GLR, particularly over the natural vegetation 42 

areas. The evaluation results provide a baseline reference for further improvements of ELM in the regional 43 

application of high-resolution weather and climate predictions. Our work serves as an example to the model 44 

development community for expanding an advanced land surface model’s capability to represent fully-45 

coupled land-atmosphere interactions at fine spatial scales. The development and release of WRF-ELM 46 

marks a significant advancement for the ELM user community, providing opportunities for fine-scale 47 
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regional representation, parameter calibration in coupled mode, and examination of new schemes with 48 

atmospheric feedback.  49 
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1. Introduction 50 

Land surface models (LSMs) solve the exchange of water, energy, and carbon fluxes between the 51 

land surface and atmosphere (Fisher and Koven, 2020), and are frequently used to simulate response of the 52 

Earth’s surface to both anthropogenic and natural forcings (Best et al., 2015). These models describe 53 

biogeophysical properties like surface roughness, albedo, and evapotranspiration efficiency, characteristics 54 

crucial for modeling the land's influence on meteorological processes (Xue et al., 1991; Dai et al., 2003; 55 

Dickinson, 1984; Sellers et al., 1986). Originally developed to support weather and climate modeling, LSMs 56 

were designed to provide essential lower boundary conditions such as radiation, energy, and water fluxes 57 

to the atmosphere.  58 

Over time, LSMs have evolved significantly, with representations of increasingly complex 59 

processes that impact land surface dynamics and belowground processes, with their feedback to the 60 

atmosphere being incrementally added in newer-generation LSMs. As a consequence of all these 61 

advancements, the applicability and scope of LSMs has broadened substantially from their initial versions, 62 

introducing sophisticated representations of plant hydraulics (Fang et al., 2022; Xu et al., 2023), wildfire 63 

(Thonicke et al., 2010; Li et al., 2012; Huang et al., 2020a; Huang et al., 2021), soil biogeochemistry and 64 

nutrient cycling (Li et al., 1992; Parton et al., 1988; Jenkinson, 1990), dynamic vegetation distributions 65 

(Martín Belda et al., 2022; Weng et al., 2015; Fisher et al., 2015; Liu et al., 2019), radiation-topography 66 

interaction (Hao et al., 2021), urban-scale processes (Oleson and Feddema, 2020; Krayenhoff et al., 2020), 67 

subsurface multiphase flow (Bisht et al., 2017; Qiu et al., 2024), and land use and management (Huang et 68 

al., 2020b; Binsted et al., 2022; Calvin et al., 2019). These improvements not only advance the capability 69 

of LSMs to model complex environmental interactions but also facilitate a mechanistic understanding of 70 

changes in land-atmosphere interactions under varying environmental conditions. Particularly, they can be 71 

used to predict the disturbance of the land surface, for example, Earth’s ecosystem and surface hydrology, 72 

in response to climate change and to quantify the respective biogeophysical and biogeochemical feedbacks 73 

to the climate system (Ban-Weiss et al., 2011; Fisher and Koven, 2020). 74 
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Recent advancements in LSMs have broad applications in land-only simulations and within global 75 

climate models (GCMs) to capture the complex interactions surrounding global climate change (Lawrence 76 

et al., 2019; Martín Belda et al., 2022; Wiltshire et al., 2020). However, the application within GCMs does 77 

not allow for the representation of land processes at kilometer scales and extreme events occurring at daily 78 

to weekly scales (such as extreme precipitation and flash drought), which are more relevant to human 79 

society. While regional refinement may appear to be a feasible solution, the associated computational costs 80 

restrict their wide adoption within the weather and climate modeling community. Alternatively, combining 81 

advanced LSMs with Regional Climate Models (RCMs) could facilitate more in-depth examinations of the 82 

climate change impacts on land surfaces and the resulting feedback at scales that have greater relevance to 83 

human society. 84 

The U.S. Department of Energy’s Energy Exascale Earth System Model (E3SM) Land Model 85 

(ELM) is an advanced LSM that simulates the exchanges between terrestrial land surfaces and other Earth 86 

system components, enabling us to understand hydrologic cycles, biogeophysics, and the dynamics of 87 

terrestrial ecosystems (Burrows et al., 2020). The Weather Research and Forecasting (WRF) model serves 88 

as an essential tool widely used for regional weather prediction and climate change analysis (Skamarock 89 

and Klemp, 2008). WRF can be run with various LSMs such as Noah, Noah-MP, SSiB, CLM4. It has also 90 

been coupled with CTSM recently (CTSM Development Team, 2024; Ucar, 2020). However, integrating 91 

ELM with WRF enables comprehensive representation of land processes, following recent advancements 92 

in ELM, for more computationally efficient regional modeling applications. For instance, leaf to canopy 93 

upscaling through a two-big-leaf parameterization in ELM enables simulation of the diffuse radiation 94 

fertilization effect (Chakraborty et al., 2022a), and thus better estimates of surface water and carbon budget, 95 

a feature not present in Noah. As another example, ELM incorporates gridwise surface properties such as 96 

leaf area index (LAI), displacement height, and vegetation top and bottom height. In contrast, Noah and its 97 

variants use lookup tables with these properties prescribed for each land cover class, limiting their ability 98 

to capture spatial heterogeneity in surface properties within individual land cover types. Moreover, ELM 99 

simulations at ~km resolution highlight the significance of considering radiation-topography interaction in 100 



 6 

simulating surface energy balance and water budget, a process not yet considered by current land models 101 

in WRF (Hao et al., 2021; Yuan et al., 2023). 102 

This study integrates ELM v2.1 with WRF (hereafter named WRF-ELM) using a modified coupler 103 

derived from University Corporation for Atmospheric Research (UCAR)'s Lightweight Infrastructure for 104 

Land-Atmosphere Coupling (LILAC) (Ucar, 2020). We evaluate the model performance using a broad 105 

range of site observations and reanalysis data, providing a benchmark for subsequent model enhancements. 106 

This effort expands the capability of a global LSM, which has been previously used within GCM 107 

frameworks, allowing it to simulate higher resolution land-atmosphere interactions at regional scales. The 108 

introduction and release of WRF-ELM also benefit the ELM user community by providing opportunities 109 

for them to test new land schemes with atmospheric feedbacks and calibrate model parameters in coupled 110 

models. 111 

 112 

2. Methods 113 

2.1 Coupler in E3SM 114 
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 115 

Short Name Full Name 
ELM  Energy Exascale Land Model 
EAM Energy Exascale Atmosphere Model 
MOSART Model for Scale Adaptive River Transport 
MPAS-O  Model for Prediction Across Scales – Ocean 
MPAS-CICE Model for Prediction Across Scales – Sea Ice 
MPAS-LI Model for Prediction Across Scales – Land Ice 

Figure 1 Schematic diagram of the E3SM model components. The top-level coupler (CPL7) serves as the 116 

main program for communication between each component. The Model Coupling Toolkit (MCT) cap in 117 

each component provides an interface between CPL7 and the physical core, which is responsible for 118 

memory allocation, preprocessing, post-processing, and input and output (I/O). The inserted table explains 119 

the full names of all abbreviations in the figure. 120 

 121 

E3SM adopts a hub-and-spoke architecture to couple the different model components together, as 122 

shown in Figure 1. In this architecture, communication between the parallel components is realized via the 123 



 8 

Model Coupling Toolkit (MCT; (Larson et al., 2005; Jacob et al., 2005)). The top-level coupler, version 7 124 

coupler (CPL7), calls model component initialization, execution, and finalization methods through 125 

specified interfaces (Craig et al., 2012). The MCT cap within each component provides an interface between 126 

the CPL7 and the physical core, which is responsible for memory allocation, preprocessing, post-processing, 127 

and input and output (I/O). Importantly, the inter-component communication is realized only through the 128 

central hub, instead of direct communication with one another. The E3SM coupling framework imposes 129 

strict requirements on how an atmospheric model can communicate with ELM. One particular challenge is 130 

that many atmosphere models – including WRF – expect to run the land model in the middle of the time 131 

step sequence. Accomplishing this in the E3SM architecture can require significant restructuring of the 132 

atmosphere model. For this reason, ELM has not been coupled to atmospheric models in the regional model 133 

community, limiting its ability to address complex scientific challenges at fine resolutions. 134 

 135 

2.2 LILAC-ESMF Coupler 136 

 137 
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Figure 2 Schematic diagram of the coupling framework for WRF-ELM. The top-level coupler (LILAC) is 138 

in charge of communication between WRF ATM and ELM. The ESMF Cap within ELM and WRF ATM is 139 

responsible for memory allocation, preprocessing, post-processing, and input and output (I/O). PFT 140 

represents plant functional types in the figure) 141 

 142 

The traditional way of coupling between LSMs (CLM4, Noah, Noah-MP, and SSiB) and WRF is 143 

through internal subroutines and interfaces within the WRF codebase. This tight coupling means that the 144 

LSM is often compiled and run as an integral part of the WRF model. As the LSMs grow to integrate more 145 

land processes, the tight coupling approach can become less scalable and harder to manage. Additionally, 146 

maintaining the coupled system updated with the latest versions of WRF and LSMs can be challenging due 147 

to the need for synchronized updates and compatibility checks. In contrast, modern approaches such as 148 

LILAC-ESMF offer a more modular and flexible way of coupling, facilitating easier integration and updates 149 

of different model components. 150 

We have developed an ESMF (Hill et al., 2004) Cap which wraps ELM to facilitate seamless 151 

communication with the central hub driver that connects WRF ATM and ELM (Fig. 2). The central hub 152 

driver, LILAC, is developed using ESMF and provides the fundamental functions to support the integration 153 

of an LSM within an RCM, including 1) creating the list of fields passed from WRF ATM to ELM and vice 154 

versa; 2) initializing ESMF Caps for WRF ATM and for ELM); 3) coordinating calls of the ESMF Caps 155 

and ELM and exchanging data between these components; and 4) providing missing atmospheric fields, 156 

specifically for atmospheric aerosols 157 

Within the coupling framework, the ESMF Cap provides the functions of 1) converting the input 158 

data from LILAC to the land model and vice versa; 2) supplying any additional input fields that ELM 159 

requires but are not provided by WRF ATM, for example, gross domestic product, population density, and 160 

lightning that are used to predict fire ignitions in ELM; and 3) setting the domain decomposition and 161 

generating the land mesh. The ESMF cap, which provides the necessary infrastructure to connect LILAC 162 

and ELM physics, serve as an example for similar coupling work between other LSMs and RCMs. 163 
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 164 

2.3 Exchange variables between WRF and ELM 165 

ELM is driven by meteorological forcings including precipitation, downward shortwave radiation, 166 

downward longwave radiation, zonal wind at reference height (zatm), meridional wind at zatm, pressure at 167 

zatm, specific humidity at zatm, and air temperature at zatm. In the coupled version, the meteorological forcings 168 

are provided by WRF ATM with the ELM model timestep set to match the integration timestep in the WRF 169 

ATM. The reference height refers to the height of the lowest atmosphere model level. The radiation scheme 170 

in WRF further splits the shortwave radiation to direct and diffuse components, as well as visible and near-171 

infrared radiation. Precipitation is divided into rainfall and snowfall based on the frozen precipitation ratio, 172 

which are then inputted into the ELM. The ELM output includes skin temperature, 2-m air temperature, 2-173 

m specific humidity at the surface, friction velocity, surface albedo, sensible heat flux, latent heat flux, 174 

ground heat flux, surface emissivity, and roughness length for momentum and heat transfer, which will be 175 

exchanged with the WRF ATM component. 176 

 177 

2.4  Mesh data and surface parameters 178 

In addition, mesh data is used in the WRF ATM to define the latitude and longitude of the grid. The 179 

domain information is necessary for the coupler and the land model during runtime. These data include a 180 

mask that informs the land model where to run and a land fraction that the coupler uses to combine fluxes 181 

from various surface types over a grid cell. The surface data configures the spatially implicit features (e.g., 182 

spatial fraction coverage, leaf and soil albedo, leaf and soil emissivity, etc.) of subgrid elements within grid 183 

cells (topographic unit, land cover, soil columns, and vegetation).  184 

While a regular latitude/longitude grid is widely used for domain and surface data in the land-only 185 

mode, when coupled with WRF ATM, ELM needs to adopt the Lambert Conformal projection used in WRF. 186 

To create a domain file of Lambert Conformal projection, a grid descriptor file based on the WRF Pre-187 

Processing System (WPS) output (e.g., geo_em.d01) needs to be created, which is then used to create the 188 

domain file used in ELM. A similar workflow is needed for surface data, which contains a large number of 189 
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input files that need to be interpolated by the land model. To generate both domain files and surface data, we 190 

employ the ELM preprocessing tools that derive the input data and grid descriptor files for each dataset, 191 

produce mapping files from the input data grid to our target grid, and then use the mapping weight files for 192 

interpolation. 193 

 194 

2.5 Parallelization  195 

 196 

Figure 3 Schematic of parallel domain decomposition scheme in WRF-ELM. The dotted area indicates 197 

‘halo’ arrays in which memory is shared between processors (P0 and P1). WRF ATM and ELM are 198 

calculated under the same processor. 199 

 200 

Instead of adopting ELM’s native round-robin domain decomposition strategy, our parallelization 201 

strategy for WRF-ELM is to use geographic domain decomposition, as in WRF ATM. As shown in Fig. 3, 202 

different grid cells in the model's physical domain are running on separate processors pre-assigned by the 203 

user. On each processor, ELM within WRF employs parallel I/O to read atmospheric forcings, uses the 204 

surface properties and land-use datasets to configure individual land cells, and then conducts massively 205 
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parallel simulations over these grid cells within each subdomain independently. In WRF ATM, the 'halo' 206 

arrays share memory between processors, and message passing between processors is accomplished using 207 

the message passing interface (MPI; (Gropp et al., 1996)).  208 

 209 

3. Model Validation 210 

3.1 WRF-ELM configuration 211 

For our first WRF-ELM application, we study the land-atmosphere interactions over the Great 212 

Lakes Region (GLR), a hydrodynamically complex and heavily populated region with both natural surface 213 

heterogeneity and significant land management practices. This domain also includes the world’s largest 214 

freshwater system, comprising of Superior, Michigan, Huron, Erie, and Ontario Lakes. This region is the 215 

focus of the U.S. Department of Energy’s (DOE’s) Coastal Observations, Mechanisms, and Predictions 216 

Across Systems and Scales, Great Lakes Modeling (COMPASS-GLM) project, which has an overall goal 217 

of developing a fully coupled (lake-land-atmosphere) regional earth system model centered on the GLR 218 

(Kayastha et al., 2023). Here, we report the initial implementation of the WRF-ELM framework to support 219 

its ability to capture atmospheric, coastal, urban, and rural interactions, providing a baseline reference 220 

solution for further model development. 221 
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 222 

Figure 4 Fractional coverage (%) of major land unit (a) lake, (b) urban, (c) natural vegetation, and (d) crop 223 

used in the WRF-ELM. 224 

 225 

The RCM used in the numerical simulation is based on the WRF model version 4.4.2 with the 226 

Advanced Research WRF dynamic core (Skamarock and Klemp, 2008). Following Wang et al. (2022a), the 227 

model domain is centered at 45.5°N and 85.0°W and has dimensions of 544 × 485 grid points in the west–228 

east and south–north directions. The simulation domain covers the GLR, with a spatial resolution of 4 km 229 

(Fig. 4). Fifty vertical layers from the surface to 50 hPa are adopted with denser layers at lower altitudes to 230 

sufficiently resolve the PBL. We conduct 5 ensemble members in 2018, starting with initial conditions 12 231 

hr apart between 0000 UTC on 12 May and 0000 UTC on 14 May and ending on 0000 UTC 1 September 232 

2018. The resulting simulations are analyzed during June, July, and August (JJA) 2018. 233 

Table 1 Model Configuration in WRF and ELM. 234 
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WRF specific options and schemes 
Meteorological IC/LBCs ERA5 
Microphysics Thompson microphysics 
Radiation RRTMG for longwave and shortwave 
Land surface ELM or CTSM 
Planetary boundary layer YSU scheme 
Lake surface temperature NOAA GLSEA 

ELM/CTSM input data  
Land use and land cover  ELM/CTSM default parameter 
Vegetation  ELM/CTSM default parameter 
Soil color ELM/CTSM default parameter 
topography ELM/CTSM default parameter 
Number of plant functional types (PFT) 16 

 235 

The meteorological initial condition (IC) and lateral boundary conditions (LBCs) have been derived 236 

from the ECMWF Reanalysis v5 (ERA5; (Hersbach et al., 2020)) at 0.25° horizontal resolution and 3-hour 237 

temporal intervals (Table 1). The WRF model incorporates the Thompson microphysics (Thompson et al., 238 

2004; Thompson et al., 2008), the Rapid Radiative Transfer Model for GCMs longwave and shortwave 239 

schemes (Iacono et al., 2008), and the Yonsei University planetary boundary layer scheme (Hong and Lim, 240 

2006). We turn off cumulus parameterization, considering the convection-permitting resolution of the 241 

ensemble simulations. The lake skin temperature is obtained from NOAA Great Lakes Surface 242 

Environmental Analysis (GLSEA) data set (Schwab et al., 1992) derived from Advanced Very High-243 

Resolution Radiometer.  244 

For the land surface model, we adopt ELM with satellite phenology (ELM-SP) mode which utilizes 245 

seasonal varying leaf area index prescribed based on the MODIS data. The default ELM land surface 246 

parameters have been used in the coupled model simulation, including land use and land cover information, 247 

vegetation biogeophysical properties, soil properties, and topography. The surface parameter is also 248 

applicable in CTSM (Table 1). A detailed description of ELM/CTSM default parameter can be found in (Li 249 

et al., 2024). The current version of WRF-ELM does not enable biogeochemistry (ELM-BGC) mode and 250 

thus does not simulate carbon and nitrogen cycles. In addition, we also conduct simulations using the WRF 251 

coupled with Community Terrestrial Systems Model (CTSM ctsm5.1.dev114) (Lawrence et al., 2019) 252 
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(WRF-CTSM hereafter), which can be used to compared with WRF-ELM's performance in capturing the 253 

land-atmosphere exchanges of energy and water fluxes. CTSM is also referred to the community land model 254 

version 5 (CLM5) afterwards. We emphasize that the comparison against WRF-CTSM is not intended to 255 

demonstrate the superior performance of WRF-ELM but to show that the newly developed WRF-ELM 256 

performs comparably well to WRF-CTSM, one of the most advanced and sophisticated land surface models. 257 

 258 

 259 

Figure 5 Fractional coverage (%) of major plant functional types (a) needleleaf forest (deciduous and 260 

evergreen combined), (b) broadleaf forest (deciduous and evergreen combined), (c) shrub, and (d) grass 261 

used in the WRF-ELM. 262 

 263 

It is noteworthy that there are several distinctions between WRF-ELM and the version of WRF-264 

CTSM we use here. WRF-CTSM aims for a relatively fast calculation speed, thus it has simplified the 265 
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description of land cover and kept the single dominant land unit and single dominant plant functional types 266 

(PFTs). In our simulation region, WRF-CTSM identifies the Great Lakes in the center of the simulation 267 

domain, with the natural vegetation prevailing in the northern and southeastern regions, and crops 268 

dominating the southwestern areas (Fig. 4). On the other hand, WRF-ELM preserves the comprehensive 269 

description of subgrid heterogeneity. As a result, the fluxes calculated from various surface types are 270 

merged using a weighted-average method before transferring to the upper-level WRF ATM. This is 271 

particularly important in regions with mixed vegetation types, such as the southwestern part of our study 272 

domain. Moreover, within the natural vegetation land unit, WRF-ELM simulates the blend of needleleaf 273 

and broadleaf trees (evergreen and deciduous combined) around the Great Lakes and the mixture of crops 274 

and grasses in the southwestern part of the domain (Fig. 5). 275 

 276 

3.2 Data for validation 277 

Table 2 Dataset for validation in the study. 278 

Dataset Variables Spatial 
resolution 

Temporal 
resolution Reference 

ASOS Air temperature at 2-m, 
Dew point point Hourly (Nadolski, 1992) 

 

AmeriFlux Latent heat, 
Sensible heat point Hourly (Law, 2005) 

Daymet 
Maximum air temperature at 2-m, 
Maximum air temperature at 2-m, 
Precipitation 

1 km Monthly (Thornton et al., 2022) 

NLDAS Air temperature at 2-m, 
Precipitation 0.125 ° Monthly (Xia et al., 2012) 

ERA5-Land 
Air temperature at 2-m, , 
Latent heat, 
Sensible heat 

9 km Monthly (Muñoz-Sabater et al., 
2021) 

NCEP Stage IV Precipitation 4 km Monthly (Lin and Mitchell, 
2005) 

 279 
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Observational and reanalysis data from multiple sources have been used to evaluate WRF 280 

simulation results (Table 2). We select 12 paired sites from the Automated Surface Observing System 281 

(ASOS) to acquire 5-minute 2-meter air temperature (Ta) and 2-meter dew point temperature over the urban 282 

and rural area in the GLR (https://www.ncei.noaa.gov; last accessed: November 2023). The 2-meter relative 283 

humidity (RH) is derived from Ta and dew point. We compute hourly averages of Ta and RH from the 5-284 

minute data to match the hourly WRF outputs.  285 

 286 

Table 3 AmeriFlux site information (LCF: land cover type; DBF: deciduous broadleaf tree; MF: mixed 287 

forest; NEON: National Ecological Observatory Network) 288 

Site ID Latitude Longitude LCF PI(s) DOI 

US-xST  45.5089 -89.5864 DBF NEON  https://doi.org/10.17190/AMF/1617737 

US-xTR 45.4937 -89.5857 DBF NEON  https://doi.org/10.17190/AMF/1634886 

US-WCr 45.8059 -90.0799 DBF Ankur Desai https://doi.org/10.17190/AMF/1246111 

US-xUN 46.2339 -89.5373 MF NEON  https://doi.org/10.17190/AMF/1617741 

US-PFa 45.9459 -90.2723 MF Ankur Desai https://doi.org/10.17190/AMF/1246090 

US-Syv 46.242 -89.3477 MF Ankur Desai https://doi.org/10.17190/AMF/1246106 

 289 

In addition, we collect measurements of latent heat (LH) and sensible heat (SH) from six flux tower 290 

sites provided by AmeriFlux (http://ameriflux.lbl.gov; last accessed: November 2023). Initially, 16 291 

AmeriFlux sites have been selected within our study domain for the JJA 2018 period, which included 292 

measurements over grassland, mixed forest, and deciduous broadleaf forest. However, ten sites are filtered 293 

out because their land cover types differ from the dominant ones used in WRF-CTSM. The latitudes and 294 

longitudes of selected sites have been documented in Table 3. The hourly LH and SH data from AmeriFlux 295 

have been reduced to daily averages to validate the model simulation of surface energy fluxes. 296 

We also acquire reanalysis datasets to evaluate the model performance in simulating the climate 297 

variables and energy fluxes. All datasets are resampled using bilinear interpolation to a 4 km resolution to 298 
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align with the WRF grids. We employ the Daymet dataset from https://daymet.ornl.gov (last accessed: 299 

October 2023), which provides daily, gridded (1 km × 1 km) estimates of solar radiation, 2-meter maximum 300 

(Tmax) and minimum (Tmin) temperature, precipitation (PRE), snow water equivalent, and water vapor 301 

across the CONUS (Thornton et al., 2022). It uses local regression algorithms to interpolate and extrapolate 302 

daily meteorological observations from Global Historical Climatology Network (GHCN). Daymet 303 

considers the effects of elevation on climate and generates daily meteorological variables for a particular 304 

grid cell using the weighted linear regression-based approach. We download monthly Tmax, Tmin, and 305 

precipitation from Daymet version 4.5, and average the temperatures to compare against model simulated 306 

daily mean Ta. 307 

Monthly Ta from the North American Land Data Assimilation System version 2 (NLDAS) with 308 

Noah LSM is used as an additional source of reanalysis data to evaluate WRF-ELM. These data are 309 

available beginning in 1979 at a 0.125° resolution (Xia et al., 2012). NLDAS constructed a forcing dataset 310 

from a daily gauge-based precipitation analysis, bias-corrected shortwave radiation, and surface 311 

meteorology reanalyses from North American Regional Reanalysis (NARR) to drive four different LSMs 312 

to derive surface fluxes and state variables. We acquire the product derived using the Noah model 313 

(https://disc.gsfc.nasa.gov; last accessed: October 2023) because it is one of the most commonly used LSMs 314 

and has been frequently coupled with climate and atmospheric models. 315 

The ERA5-Land reanalysis provides surface variables at the 0.1o x 0.1o resolution (Muñoz-Sabater, 316 

2019). The data are produced under the offline mode forced by meteorological fields from ERA5 (Muñoz-317 

Sabater et al., 2021), without coupling to the atmospheric module of the ECMWF's Integrated Forecasting 318 

System. ERA5-Land datasets have also been widely used for a variety of land condition assessments (Pelosi 319 

et al., 2020; Stefanidis et al., 2021; Wang et al., 2022b). We acquire monthly Ta, SH, and LH in ERA5-320 

Land from Google Earth Engine (collection ECMWF/ERA5_LAND/MONTHLY_AGGR; last accessed: 321 

October 2023).  322 

Lastly, we acquire precipitation data from the National Centers for Environmental Prediction 323 

(NCEP) Stage IV dataset (Lin and Mitchell, 2005), a gridded product with 4 km spatial and hourly temporal 324 
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resolution that covers the period from 2002 to the present. NCEP compiles the Stage IV product using data 325 

from 140 radars and approximately 5,500 gauges across the CONUS. Stage IV provides highly accurate 326 

precipitation estimates, particularly for medium to heavy precipitation, and has therefore been widely used 327 

as a reference for precipitation evaluation (Nelson et al., 2016). 328 

 329 

3.3 Results 330 

3.3.1 Temperature 331 

 332 

Figure 6 June-July-August mean 2-m air temperature (K) in (a) WRF-ELM, (b) WRF-CTSM, (c) Daymet, 333 

(d) NLDAS, and (e) ERA-Land. The numbers on the top right of (c)-(f) indicate the spatial correlation 334 

coefficient between each reanalysis product and the two simulation results. 335 

 336 
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Table 4 Evaluation metrics of June-July-August 2-m air temperature between each model result and the 337 

reanalysis product. CORR: spatial correlation coefficient; RMSE: Root mean square error. 338 

  Daymet NLDAS ERA-Land 

WRF-ELM 
Bias 1.70 0.34 1.20 

CORR 0.94 0.94 0.86 
RMSE 2.18 1.43 2.30 

WRF-CTSM 
Bias 1.79 0.43 1.29 

CORR 0.94 0.93 0.86 
RMSE 2.30 1.57 2.40 

 339 

 340 

Figure 7 June-July-August mean skin temperature (K) in (a) WRF-ELM, (b) WRF-CTSM, zoomed-in view 341 

focuses on the area surrounding Lake Michigan 342 

 343 

The spatial distribution of Ta from the WRF-ELM and WRF-CTSM models, along with reanalysis 344 

data such as Daymet, NLDAS, and ERA5-Land, is illustrated in Figure 6. Both WRF-ELM and WRF-345 

CTSM have reasonably captured the spatial pattern observed in the reanalysis datasets, demonstrating a 346 

spatial correlation coefficient (CORR) ranging from 0.86 to 0.95 (Table 4). The highest CORR is observed 347 

with Daymet, while the lowest one is with ERA5-Land. Both models exhibit a warm bias compared to 348 
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reanalysis products. However, WRF-ELM shows a slightly lower bias and RMSE compared with WRF-349 

CTSM (Table 4). Additionally, WRF-ELM displays a smoother gradient in comparison to WRF-CTSM, 350 

particularly over the GLR where needleleaf trees, broadleaf trees, grasses, and croplands coexist (Fig. 7). 351 

 352 

Figure 8 Boxplots of June-July-August 2-m air temperature (K) over (a) lake, (b) urban, (c) crop, and (d) 353 

natural vegetation in simulations and reanalysis products.  354 

 355 

Table 5 June-July-August 2-m air temperature over each land unit in simulations and reanalyses. 356 

  WRF-ELM WRF-CTSM Daymet NLDAS ERA5-Land 

Lake 295.5 295.4 292.1 292.3 290.6 
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Urban 298.5 299.0 296.2 296.7 296.0 

Crop 298.4 298.6 295.8 297.4 296.5 

Natural Vegetation 292.6 292.6 291.7 292.9 292.4 

  357 

 Despite the overall good performance of model simulation of Ta, it is slightly different among 358 

different land units (Fig. 8). The largest warm bias is found over the lake surface, in which both models 359 

have overestimated Ta by 3-5 K (Table 5, Fig. 8). For urban and crop areas, the WRF-ELM and WRF-360 

CTSM show a slightly warmer temperature by 2-3 K than all reanalysis data, which makes sense since 361 

reanalysis datasets do not capture urban-scale warming signals (Chen et al., 2024). The Ta over the natural 362 

vegetation is well captured, with the average value in both models within the range of average Ta over all 363 

datasets. 364 

 365 

Figure 9 (a) The location of ASOS sites. (b-c) June-July-August averaged hourly 2-meter air temperature 366 

over (b) urban and (c) crop land units for ASOS, WRF-ELM, and WRF-CTSM. (d-e) The same as (b-c) but 367 

for 2-meter relative humidity. The numbers in (b-e) indicate the diurnal ranges of air temperature and 368 
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relative humidity from ASOS, WRF-ELM, and WRF-CTSM. The dash lines highlight the nighttime Ta and 369 

RH when urban and crop contrasts are significant. 370 

 371 

We use ASOS sites to investigate the representation of urban and lake effects on air temperature 372 

and relative humidity over the metropolitan area, emphasizing the interaction between the urban heat island 373 

(UHI; Rizwan et al., 2008) and lake breeze in WRF-ELM and WRF-CTSM. Six urban sites along the west 374 

coast of Lake Michigan were selected, paired with six adjacent crop sites as reference points (Fig. 9a). 375 

Compared to the rural crop sites, the urban sites exhibit higher minimum Ta during the night, as urban areas 376 

retain more heat during the daytime and gradually release after sunset. During late morning to noon, the 377 

lake breeze tends to cool urban air, resulting in a lower daily maximum Ta than observed in crop areas 378 

(Wang et al., 2023). In the afternoon, urban sites show a more gradual decline in Ta compared to rural sites, 379 

driven by the cumulative heating effect of solar radiation absorption and the heat release by urban materials 380 

throughout the day (Soltani and Sharifi, 2017). This characteristic of urban areas leads to a smaller diurnal 381 

temperature range of 7.0 K, compared to a 9.0 K range over crop sites (Figs. 9b-c). The UDI effect is also 382 

evident in 2m RH observations from ASOS, with urban areas showing lower RH values at night (Figs. 9d-383 

e).  384 

Both WRF-ELM and WRF-CTSM capture the warmer nighttime Ta due to the UHI effect and the 385 

cooler daytime Ta caused by the lake breeze over urban sites, adequately reproducing the smaller diurnal 386 

range. WRF simulations, particularly WRF-ELM, reasonably capture urban RH at night, but both models 387 

underestimate RH over crop areas, so the UDI is not well captured in the simulations. Notably, WRF-ELM 388 

generally exhibits smaller biases in both Ta and RH compared to WRF-CTSM (Fig. 9). However, both 389 

models systematically overestimate T2 and underestimate RH in both urban and crop areas, suggesting a 390 

persistent warm and dry bias need to be further investigated in the ELM and CTSM component. 391 

 392 

3.3.2 Energy fluxes 393 

 394 



 24 

 395 

Figure 10 (a-c) Spatial distribution of latent heat in (a) ERA5-Land (b) WRF-ELM, and (c) WRF-CTSM; 396 

(d-f) Spatial distribution of sensible heat in (d) ERA5-Land (e) WRF-ELM, and (f) WRF-CTSM; (g-h) 397 

Comparison of evaporative ratio between (g) WRF-ELM and ERA5-Land and (h) WRF-CTSM and ERA5-398 

Land over the natural vegetation grids.  399 
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 400 

Figure 11 June-July-August averaged daily LH fluxes from six AmeriFlux sites and the corresponding 401 

model grids. The numbers indicate biases between WRF-ELM (or WRF-CTSM) and AmeriFlux. 402 

 403 

We evaluated the simulated LH and SH fluxes from the WRF model simulations against ERA5-404 

Land reanalysis data. The spatial correlation coefficients (CORR) range from 0.53 to 0.58 (Fig. 10a–f). 405 

Overall, both models capture the LH gradient across the study domain, with higher LH observed in the 406 

southern region and lower LH in the northern region. Similarly, both the reanalysis data and the models 407 

show a higher SH in the northern region and lower SH in the south. A systematic underestimation of LH 408 

(ranging between 22-35 W m-2) and overestimation of SH (averaging 21-31 W m-2) are evident in both 409 

WRF-ELM and WRF-CTSM. The observed evaporative fraction ranges from 0.6 to 0.8 in most vegetated 410 

grids; however, the corresponding simulated evaporative fraction is approximately 0.6. This evaluation 411 

further confirms that our models tend to underestimate LH fluxes while overestimating SH fluxes. These 412 

biases may be largely attributed to the surface parameters uncertainties used in the current simulations, such 413 
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as LAI or roughness length. These parameters have not been thoroughly calibrated in coupled E3SM 414 

simulations focusing on the Great Lakes region. 415 

A further comparison of daily LH values from six AmeriFlux sites over deciduous broadleaf forests 416 

is illustrated in Fig. 11. WRF-ELM exhibits a smaller bias in reproducing the magnitude of LH than WRF-417 

CTSM; however, neither model captures the temporal variations well. Comparing regional model 418 

simulations with site-level observations remains a consistent difficulty due to the inherent scale mismatch 419 

between point observations and grid-based simulations. Additionally, since we examined a relatively short 420 

period without interannual variability or seasonal cycles, the temporal variations of surface energy are 421 

mostly related to the simulation of cloud and precipitation variations, which are among the most uncertain 422 

parts of regional climate simulations. 423 

 424 

3.3.3 Precipitation 425 

 426 

 427 
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Figure 12 The spatial distribution of June-July-August precipitation (mm d-1) in (a) WRF-ELM, (b) WRF-428 

CTSM, (c) Daymet, and (d) ST4. The numbers on the top right of (c)-(d) indicate the CORR between each 429 

observational product and the two simulation results. 430 

 431 

Figure 12 presents the spatial distribution of precipitation from models and observations. It is 432 

important to note that Stage IV primarily focuses on the CONUS region, while significant areas of our 433 

simulation domain in Canada remain uncovered. Compared with the Daymet (PREDaymet = 3.55 mm d-1), 434 

both WRF-ELM and WRF-CTSM capture the regional mean value (PREWRF-ELM = 3.14 mm d-1 and PREWRF-435 

CTSM= 2.96 mm d-1) and the spatial distribution of precipitation, exhibiting CORR ranging from 0.43 to 0.55. 436 

The precipitation over the southeastern part of our study domain is well captured while that on the western 437 

side of Lake Michigan is slightly underestimated, with WRF-ELM demonstrating a lower bias than WRF-438 

CTSM. This underestimation of precipitation aligns with the underestimation of latent heat and 439 

evapotranspiration, suggesting that suppressed evapotranspiration may reduce moisture availability and 440 

transport, particularly to the western GLR. Conversely, an overestimation of precipitation is evident along 441 

the eastern boundary of our study domain. 442 

 443 

4. Discussion and Conclusions 444 

This study introduces a framework integrating the state-of-the-art land surface model, ELM, with 445 

the widely used regional weather and climate model, WRF, named WRF-ELM. Moving beyond the 446 

traditional way of coupling between LSMs and WRF through internal subroutines within the WRF codebase. 447 

We adopt the LILAC-ESMF framework, a modular approach which maintains the integrity of the ELM’s 448 

source code structure and facilitates the transfer of future developments in ELM to WRF-ELM. After 449 

coupling the two models, simulations using WRF-ELM have been conducted over the Great Lakes Region, 450 

and their performance has been evaluated against observations and reanalysis data from multiple sources 451 

and the WRF-CTSM simulations. These model simulations have been conducted at a resolution of 4 km × 452 

4 km, facilitating direct model validation and verification with various data sources. The use of seasonal 453 
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mean simulation outputs and diurnal cycles showcases the capabilities of WRF-ELM in representing the 454 

temporal and spatial variations of water and energy cycles over the Great Lakes Region. 455 

In general, our findings suggest that the newly coupled WRF-ELM effectively captures the spatial 456 

distribution of surface state variables and fluxes across the GLR. The model displays a smoother gradient 457 

in surface skin temperature than WRF-CTSM, due to the representation of sub-grid features within grid 458 

cells. The model's performance is particularly reasonable over the natural vegetation, while a minor warm 459 

bias is detected over crop and urban grids.  460 

The slight overestimation of air temperature in crop regions could potentially be mitigated by 461 

incorporating a more realistic representation of crops, such as crop rotation and irrigation. Additionally, the 462 

application of spatially varying crop parameters closely captures the observed magnitude and seasonality 463 

of carbon and energy fluxes compared to the observations (Sinha et al., 2023). However, these 464 

improvements have only been tested using the land-only ELM. Our generalized coupling framework 465 

supports future studies of sophisticated crop-atmosphere interactions at finer spatial resolution than those 466 

achieved with coarse GCM simulations. 467 

In addition, the UHI effects in cities surrounding the GLR are generally captured in both WRF-468 

ELM and WRF-CTSM, as indicated by the warmer night temperature in the cities. While there is an 469 

overestimation of UHI compared to ASOS, this could be due to the simplified urban representation in ELM. 470 

For instance, the urban surface emissivity in CLM, and thus ELM due to the shared model structure, is 471 

reported to be noticeably lower than the values derived from satellites, resulting in a surface UHI effect that 472 

is significantly higher than satellite-derived values (Chakraborty et al., 2021). Another potential 473 

contributing factor could be the lack of representation of urban vegetation. The presence of vegetation tends 474 

to mitigate the UHI effect (Paschalis et al., 2021) , and its absence in the urban subgrid would lead to an 475 

overestimation of UHI values, all else remaining equal. 476 

Our research develops the WRF-ELM framework and provides the first assessment of its 477 

capabilities through high-resolution model simulations that fully capture expected patterns of land-478 

atmosphere interactions. Based on the validation and assessment of WRF-ELM results, this study delivers 479 
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a baseline reference, identifies common model biases in high-resolution regional applications, and proposes 480 

pathways for subsequent model development for ELM, as well as the coupled model. The coupled model 481 

provides an opportunity to investigate the impact of more sophisticated land processes, such as plant 482 

hydraulics, dynamic vegetation distributions, and soil biogeochemistry, on weather and climate predictions. 483 
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