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Abstract. Reducing emissions of non-CO2 greenhouse gases, such as methane and nitrous oxide, complements CO2 mitigation 

in limiting global warming. However, estimating carbon-climate feedback for these gases remains fraught with uncertainties, 

especially under overshoot scenarios. This study investigates the impact of CO2 and non-CO2 gases with nearly equal levels 

of effective radiative forcing on the climate and carbon cycle, using the Earth System Model IPSL-CM6A-LR. We first present 

a method to recalibrate methane and nitrous oxide concentrations to align with published radiative forcings, ensuring accurate 15 

model performance. Next, we carry out a series of idealised ramp-up and ramp-down concentration-driven experiments and 

show that while the impacts of increasing and decreasing CO2 and non-CO2 gases on the surface climate are nearly equivalent 

(when their radiative forcing magnitudes are set to be the same), regional differences emerge. We further explore the carbon 

cycle feedbacks and demonstrate that they differ under CO2 and non-CO2 forcing. CO2 forcing leads to both carbon-climate 

and carbon-concentration feedbacks, whereas non-CO2 gases give rise to the carbon-climate feedback only. We introduce a 20 

framework, building on previous studies that addressed CO2 forcing, to separate the carbon-climate feedback into a temperature 

term and a temperature–CO2 cross term. Our findings reveal that these feedback terms are comparable in magnitude for the 

global ocean. This underscores the importance of considering both terms in carbon cycle feedback framework and climate 

change mitigation strategies. 

 25 

Plain language summary. Mitigating non-CO2 greenhouse gases, like methane and nitrous oxide, complements efforts to 

reduce CO2 emissions in limiting global warming. In our study, we explore how reducing emissions of these gases compares 

to CO2 mitigation using an Earth System Model. Both types of gases contribute to global warming, but their effects on climate 

vary by region. Additionally, we highlight that the carbon cycle responds differently depending on whether climate change is 

driven by CO2 or non-CO2 gases. This highlights the importance of considering both types of gases within carbon cycle analysis 30 

framework and climate change mitigation strategies. 
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1 Introduction 

Increases in the atmospheric concentrations of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O), predominantly 

cause human-induced climate change since the preindustrial period. They contributed nearly 63%, 11% and 6%, respectively, 

to the total effective radiative forcing (ERF) over 1960–2019 period (Canadell et al., 2021). Anthropogenic CO2 emissions are 35 

dominated by the combustion of fossil fuels (FF) and land-use change (LUC), CH4 emissions by FF and the agricultural sector, 

and N2O emissions by the use of nitrogen fertiliser and manure. CH4 and N2O have atmospheric lifetimes of 11.8 ± 1.8 years 

and 109 ± 10 years and 100-year global warming potentials (GWP100) of 27.9 and 273, respectively (Forster et al., 2021; 

Myhre et al., 2013).  

Mitigation of non-CO2 greenhouse gases (GHGs) is an essential strategy to limit global warming in the context of the Paris 40 

Agreement's temperature target (Abernethy et al., 2021; Jones et al., 2018; Rao and Riahi, 2006; de Richter et al., 2017; Tanaka 

et al., 2021). The reduction of CH4 emissions can lead to a rapid decrease in the radiative forcing and may limit the peak 

warming (Mengis and Matthews, 2020; Montzka et al., 2011). To facilitate the achievement of the Paris Agreement 

temperature target, the Global Methane Pledge was adopted to reduce anthropogenic CH4 emissions by 30% over the 2020–

2030 period (CCAC, 2021). Several existing studies have confirmed the technical and socioeconomic capacities to reduce the 45 

global methane emissions and benefits for reducing atmospheric pollution (Höglund-Isaksson et al., 2020; Jackson et al., 2021; 

Malley et al., 2023; Nisbet et al., 2020). Atmospheric methane removal methods have also been discussed in some studies 

(Boucher and Folberth, 2010; Jackson et al., 2021; Mundra and Lockley, 2023) but they are still in their infancy.  

Numerous studies have investigated the impacts of changes in the emissions / concentrations of CO2 and non-CO2 GHGs on 

the Earth System. The Precipitation Driver and Response Model Intercomparison Project (PDRMIP) focused on the role of 50 

different climate change drivers on the mean and extreme precipitation changes using a set of idealised perturbed experiments 

(Myhre et al., 2017). Richardson et al. (2019) revealed spatial and temporal differences in the surface temperature response to 

different forcings, such as CO2 and CH4, in part due to the physiological CO2 warming over the densely vegetated regions that 

is absent under non-CO2 forcing. This physiological warming occurs because plants close their stomata under elevated CO2, 

reducing transpiration and decreasing latent heat loss which causes a local surface warming. Nordling et al. (2021) further 55 

demonstrated that the change in long-wave clear-sky emissivity is the key driver of the differences in temperature response 

between GHGs forcings. Using intermediate-complexity Earth System Climate Model simulations, Nzotungicimpaye et al. 

(2023) showed that delaying methane mitigation has implications both for meeting the stringent temperature targets and for 

the climate over many centuries. Using Earth System model simulations, Tokarska et al. (2018) showed that non-CO2 forcing 

reduces the remaining carbon budget due to its direct radiative effect on surface temperature, causing additional warming. Fu 60 

et al. (2020) showed that non-CO2 GHGs, which have a shorter atmospheric lifetime than CO2, may have long-term 

consequences on climate through their impacts on the carbon cycle. Namely, warming from non-CO2 GHGs weakens land and 

ocean carbon sinks. 
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The weakening of land and ocean carbon sinks due to non-CO2 GHGs underscores the importance of understanding the 

differences in carbon cycle feedbacks between CO2 and non-CO2 GHGs. Only the changes in CO2 concentrations give rise to 65 

the carbon-concentration feedback, that is the response of the land and ocean carbon uptake to the changes in CO2 

concentration, mainly via the stimulation of photosynthesis by the CO2 fertilisation effect on land and the solubility pump in 

the ocean. The changes in both CO2 and non-CO2 concentrations lead to the carbon-climate feedback (γ), that is the response 

of the land and ocean carbon uptake to climate change, mainly via the increased plant and soil respiration over land and 

reduction of the CO2 solubility in the ocean with warming (Arora et al., 2013; Schwinger et al., 2014; Zickfeld et al., 2011). 70 

Under changing CO2 concentrations, land and ocean carbon storages respond to both carbon-concentration and carbon-climate 

feedbacks. However, the interaction between these feedbacks can introduce a non-linearity into the system, whereby the 

combined effect is not simply the sum of the individual feedbacks (Schwinger et al., 2014; Zickfeld et al., 2011). Thus, 

temperature-mediated feedback can differ under changing versus constant CO2 levels, an important distinction when 

comparing CO2 and non-CO2 GHG feedback mechanisms. Here, it is also important to recognize that other factors, such as 75 

time lags and potential irreversibilities in the climate system, may also contribute to these differences (Boucher et al., 2012; 

Chimuka et al., 2023; Schwinger et al., 2014). 

Previous studies investigated the nonlinearities in the carbon cycle feedback, showing that the cross term—arising from 

interactions between changing atmospheric CO2 and temperatures—can be comparable in size with γ (Schwinger et al., 2014; 

Zickfeld et al., 2011). They attributed the nonlinearity to the different responses of the land biosphere to the temperature 80 

changes, depending on the presence or absence of the CO2 fertilisation effect, as well as the weakening of ocean circulation 

and mixing between water masses of different temperatures. However, these studies did not consider non-CO2 GHGs. 

Previous studies have also examined the impact of declining atmospheric CO2 concentration on the climate and carbon cycle 

(Boucher et al., 2012; Chimuka et al., 2023; Jones et al., 2016; Koven et al., 2023; Melnikova et al., 2021; Schwinger and 

Tjiputra, 2018). During the period of decreasing atmospheric CO2 concentration and temperature (ramp-down), the β and γ 85 

feedbacks arise from both the reduction in CO2 levels and temperature and the inertia of the carbon cycle—specifically, the 

altered land and ocean carbon pools resulting from prior increases in the CO2 concentration and temperature (Chimuka et al., 

2023; Zickfeld et al., 2016). Melnikova et al. (2021) showed that this leads to an amplification of the ꞵ and γ feedbacks under 

decreasing CO2 concentration and temperature. The effectiveness of non-CO2 mitigation has been explored and is an integral 

part of the integrated assessment models (Ou et al., 2021; Rao and Riahi, 2006; Tanaka et al., 2021). However, few studies 90 

investigated the effects of declining non-CO2 GHG concentrations on the climate and carbon cycle using Earth System Models 

(ESMs). Abernethy et al. (2021) used an ESM to demonstrate the effectiveness of methane removal in reducing global mean 

surface temperature, complementing negative CO2 emissions. Thus, the purpose of this study is twofold:  

− to clarify whether the climate and carbon cycle responses to declining CO2 and non-CO2 GHGs differ globally and 

regionally 95 

− to investigate the nonlinearities of carbon cycle feedbacks under CO2 and non-CO2 GHG decrease, and the implications 

for climate change mitigation.  
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Here, we conduct a series of idealised CO2 and non-CO2 (CH4 and N2O) concentration-driven ramp-up and ramp-down 

experiments using the IPSL-CM6A-LR ESM. We then compare the global and spatial impacts of CO2 and non-CO2 

concentration changes on climate and the carbon cycle under overshoot pathways.  100 

2 Data and Methods 

2.1 Recalibration of model’s CH4 and N2O concentrations 

We use Version 6 of the Institut Pierre-Simon Laplace (IPSL) low-resolution ESM, IPSL-CM6A-LR (Boucher et al., 2020), 

developed in the runup to the sixth phase of the Coupled Model Intercomparison Project (CMIP). It comprises the LMDZ 

atmospheric model Version 6A and the ORCHIDEE land surface model Version 2.0 with a 144×143 spatial resolution, and 105 

the NEMO oceanic model Version 3 with a resolution of 1°. 

Previous studies showed that IPSL-CM6A-LR can adequately estimate the ERF of CO2 (Lurton et al., 2020). However, it 

underestimates the CH4 radiative forcing for the historical period due to known limitations in the parameterization of gaseous 

optical properties in the Rapid Radiative Transfer Model (see Fig. 8 in Hogan and Matricardi (2020)). CH4 also absorbs in the 

shortwave spectrum, an effect that is not accounted for in the radiative transfer code used in IPSL-CM6A-LR and many other 110 

climate models. The Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6) (Forster et al., 2021) 

estimated the CH4 ERF to be 0.54 [0.43 to 0.65] W m-2 for the 1750–2019 period. However, the estimated ERF of CH4 at the 

top of the atmosphere (TOA) in IPSL-CM6A-LR is only 0.27 Wm-2 for the 1850–2014 period. Note that in the above estimates, 

the ERF is defined as the difference in the net TOA flux between a model experiment with perturbed GHG concentration but 

fixed sea surface and ice temperatures and a control simulation with pre-industrial GHG concentrations. Thus, the estimates 115 

include (minimal) effects on the ERF from changes in land surface temperature because, unlike sea surface temperature, the 

land surface temperature is not prescribed (see Thornhill et al., (2021)). Likewise, the ERF of N2O may not be accurate in the 

model. This problem may not be specific to IPSL-CM6A-LR: other climate models (e.g., CNRM-CM6) share the same 

radiative transfer code and most radiative transfer models used in some climate models have some degree of inaccuracy 

because they are designed to be computationally efficient (Collins et al., 2006; Fyfe et al., 2021; Pincus et al., 2016). Thus, 120 

there is a need to represent the ERF of CH4 and N2O more accurately in order to better understand the effects of non-CO2 

GHGs mitigation on the Earth system. As developing better parameterizations of the gaseous optical properties is beyond the 

scope of this study, we have developed an approach that adjusts CH4 and N2O concentrations to ‘effective’ concentrations that 

generate CH4 and N2O ERFs consistent with the reference estimates of IPCC AR6 (see Appendix A). The effective 

concentrations of CH4 and N2O are used as input to the radiative transfer scheme of the climate model throughout the rest of 125 

this study. In the text and figures, these are presented as the actual (equivalent) concentrations. 
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2.2 Experiment design 

We perform and analyse a series of idealised global mean CO2 and non-CO2 concentration-driven ensemble experiments as 

summarised in Table 1 and Fig. 1. Including 50-year ramp-up, ramp-down, and stabilisation periods allows for the exploration 

of responses to increasing or decreasing CO2 and non-CO2 (CH4 and N2O) concentrations, as well as the long-term 130 

consequences and reversibility of their impacts on the climate and the carbon cycle. The inclusion of CO2 and non-CO2 

concentration-driven experiments—[CO2] and [nonCO2] (with comparable ERF levels), a combined CO2 and non-CO2 

concentration-driven experiment [CO2 + nonCO2], a biogeochemically coupled (BGC) experiment where CO2 forcing affects 

only the carbon cycle of land and ocean [CO2bgc] (with minor temperature effects from CO₂ physiological forcing), and a 

radiatively coupled (RAD) experiment that includes only CO2 radiative forcing [CO2rad] (where CO2 change does not affect 135 

the carbon cycle), enables exploring the impacts of different forcing components on the climate and carbon cycle as well as 

potential nonlinearities of feedbacks. Additionally, an experiment that combines nonCO2 radiative forcing with CO2 

physiological forcing [CO2bgc + nonCO2] allows for the comparison of nonlinearities arising from combined carbon-

concentration feedback and CO2- and non-CO2-driven carbon-climate feedback. It serves as the nonCO2 counterpart of the 

[CO2] experiment. 140 

 

Table 1. Description of experiments. Note that all experiments are analysed relative to their [piControl] counterparts. 

Experiment name Description Maximum 

ERF* 

Included carbon cycle terms 

from Eq.2 

[CO2] 0.7% CO2 concentration increase per year from piControl for 
50 years followed by 0.7% CO2 decrease for 50 years. After 

CO2 level returns to piControl, 50 years of stable piControl 

CO2 concentrations.  

1.88 W m-2 Δ𝑈𝛽, Δ𝑈𝛾,𝐶𝑂2 , Δ𝑈𝜒,𝐶𝑂2  

[nonCO2]  2% CH4 and 2% N2O concentration increase per year from 

piControl for 50 years followed by 2% CH4 and 2% N2O 

decrease for 50 years. After CH4 and N2O levels return to 
piControl, 50 years of stable piControl CH4 and N2O 

concentrations. 

1.83 W m-2 Δ𝑈𝛾,𝑛𝑜𝑛𝐶𝑂2  

[CO2 + nonCO2]  Combined [CO2] and [nonCO2]. 3.69 W m-2 Δ𝑈𝛽,  

Δ𝑈𝛾,𝐶𝑂2+𝑛𝑜𝑛𝐶𝑂2 , Δ𝑈𝜒,𝐶𝑂2+𝑛𝑜𝑛𝐶𝑂2  

[CO2bgc] Biogeochemically coupled [CO2].  Δ𝑈𝛽 

[CO2rad] Radiatively coupled [CO2].  Δ𝑈𝛾,𝐶𝑂2  

[CO2bgc + nonCO2] [CO2bgc] and [nonCO2] combined.  Δ𝑈𝛽, Δ𝑈𝛾,𝑛𝑜𝑛𝐶𝑂2 , Δ𝑈𝜒,𝑛𝑜𝑛𝐶𝑂2  

Combinations of experiments   

[CO2] – [CO2bgc] Combination for comparison with [CO2rad]   Δ𝑈𝛾,𝐶𝑂2 , Δ𝑈𝜒,𝐶𝑂2  

[CO2bgc + nonCO2] – 
[CO2bgc] Combination for comparison with [nonCO2] 

 Δ𝑈𝛾,𝑛𝑜𝑛𝐶𝑂2  , Δ𝑈𝜒,𝑛𝑜𝑛𝐶𝑂2  

[CO2] + [nonCO2]  Combination for comparison with [CO2 + nonCO2]  Δ𝑈𝛽, Δ𝑈𝛾,𝐶𝑂2 , Δ𝑈𝜒,𝐶𝑂2 , Δ𝑈𝛾,𝑛𝑜𝑛𝐶𝑂2  
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*according to equations by Etminan et al. (2016), warming from the physiological CO2 forcing is assumed to be 

negligible. 

 145 

The experiment design uses a fixed land cover and constant (other than CO2, CH4 and N2O) GHG and aerosol forcings that 

might otherwise interfere with the interpretation of the results. The maximum ERF in our experiments is 3.69 W m -2, as 

estimated from the equations by Etminan et al. (2016) (see also Appendix A), corresponding to (actual) CO2 concentration of 

403 ppm, CH4 concentration of 2175 ppb and N2O concentration of 735 ppb. This ERF level (very much in line with the 

current CO2 concentration level of ca. 420 ppm) makes our experiments and results relevant to mitigation efforts in the near 150 

future. The small differences in ERF between the [CO2] and [nonCO2] experiments are not significant when considering ramp-

up, ramp-down and full periods at p < 0.05. 

 

Figure 1: Time series of input (a-c) CO2, CH4 and N2O concentrations and (d-f) their respective radiative ERFs according to Etminan 

et al. (2016) equations for (a, d) [CO2], (b, e) [nonCO2] and (c, f) [CO2 + nonCO2] experiments. Note the different scales on the y-axes 155 
in panels a-c for CO2 concentrations in ppm (left) and other GHG concentrations in ppb (right). 

We investigate CO2 and non-CO2 impacts on the climate by looking at the differences between [CO2] and [nonCO2] 

experiments and [CO2rad] and [nonCO2] experiments, hereafter referred to as [CO2] – [nonCO2] and [CO2rad] – [nonCO2], 

respectively. The experiments manipulate CH4 and N2O concentrations simultaneously because our primary focus is to 

compare the effects of CO2 with those of non-CO2 gases (i.e., CH4 and N2O combined) in this study.  160 

For each experiment, three ensemble members are branched from the years 1870, 2020, and 2170 of the CMIP6 piControl 

experiment, hereafter [piControl]. We note that the use of three members is not ideal, but it is a common compromise between 
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computational cost and sampling the uncertainty due to climate variability. We estimate the changes relative to the 

corresponding [piControl] periods in order to avoid the effects of low-frequency internal climate variability from the piControl 

(Fig. S1), as discussed in Bonnet et al. (2021). When reporting carbon sink/source in the following sections, we refer to the 165 

fluxes relative to the [piControl]. For diagnosing Atlantic Meridional Overturning Circulation (AMOC), we utilised the ocean 

overturning mass streamfunction in depth space (msftyz variable in CMIP6). Specifically, we calculated the maximum annual 

mean value of the streamfunction in the Atlantic basin north of 20°N through all model’s depth layers (up to ca. 5800 m). 

2.3 Carbon cycle feedback attribution 

Traditionally, carbon cycle feedback analysis relies on fully coupled [CO2], biogeochemically-coupled [CO2bgc] and 170 

radiatively-coupled [CO2rad] simulations (Arora et al., 2013, 2020; Friedlingstein et al., 2006; Gregory et al., 2009; Schwinger 

et al., 2014; Schwinger and Tjiputra, 2018; Williams et al., 2019; Zickfeld et al., 2011). The carbon uptake (∆U) can then be 

derived using the well-established carbon cycle feedback framework as a sum of carbon-concentration β parameter (GtC ppm-

1) multiplied by the changes in the atmospheric CO2 concentration ∆𝐶𝐶𝑂2 (ppm) and carbon-climate γ feedback parameter (GtC 

K-1) multiplied by the changes in surface temperature ∆T (K), using Eq. (1): 175 

∆𝑈 = β × ∆𝐶𝐶𝑂2 +  γ × ∆T +  ε .          (1) 

Here, term ε refers to a residual term.  

The β parameter can be estimated from the [CO2bgc] - [piControl], using Eq. (2): 

β =
∆𝑈𝐵𝐺𝐶

∆𝐶𝐶𝑂2
,            (2) 

where ∆UBGC is the carbon uptake in the BGC experiment [CO2bgc]. The β feedback reflects the changes in land and ocean 180 

carbon pools driven by the changes in CO2 concentrations.  

The γ parameter can be estimated from the [CO2rad] - [piControl], using Eq. (3: 

γ =
∆𝑈𝑅𝐴𝐷

∆𝑇
,            (3) 

where ∆URAD is the carbon uptake in the RAD experiment [CO2rad]. The γ feedback reflects the changes in the land and ocean 

carbon pools due to the changes in climate.  185 

Many existing studies have estimated γ using the difference between the fully-coupled (COU) and BGC experiments, as a 

proxy for the RAD experiment (Arora et al., 2013, 2020; Asaadi et al., 2024; Friedlingstein et al., 2003, 2006; Melnikova et 

al., 2021). However, Zickfeld et al. (2011) and Schwinger et al. (2014) have shown that this substitution introduces a residual 

term ε, which can be derived from the difference between [CO2] – [CO2bgc] and [CO2rad] - [piControl], using Eq. (4): 

ε = ∆𝑈𝐶𝑂𝑈 − ∆𝑈𝐵𝐺𝐶 − ∆𝑈𝑅𝐴𝐷.          (4) 190 

These studies indicate that the residual ‘nonlinearity’ term depends on both CO2 concentration and climate change, and it can 

be of the same order of magnitude as the γ term. Here, we propose that this residual nonlinearity be attributed to a cross term, 

χ. Although recent studies continue to subsume χ under the γ feedback—partly due to the absence of the [CO2rad] experiment 

in some experimental designs, and also because this approach has been widely established in earlier research (Friedlingstein 
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et al., 2003, 2006)—we show that these metrics become less well defined when examining the effects of both CO2 and non-195 

CO2 GHGs on the carbon cycle. 

In order to investigate the associated carbon-climate feedback nonlinearities, we propose the following theoretical framework. 

The changes in carbon uptake ∆U(∆𝐶𝑐𝑜2, ∆𝑇) (GtC year-1) in the COU simulation can be defined as a function of changes in 

CO2 concentration (∆𝐶𝐶𝑂2) and temperature (∆𝑇). Following Schwinger et al. (2014), the formulation can be expanded to a 

Taylor series up to the second-order terms: 200 

Δ𝑈 = ΔU(𝛥𝐶𝑐𝑜2, Δ𝑇) =
𝜕𝑈

𝜕𝐶𝐶𝑂2
𝛥𝐶𝑐𝑜2 +

𝜕𝑈

𝜕𝑇
Δ𝑇 + 

𝜕2𝑈

𝜕𝐶𝐶𝑂2 𝜕𝑇
Δ𝑇𝛥𝐶𝑐𝑜2 +

1

2

𝜕2𝑈

𝜕𝐶𝐶𝑂2
2 (𝛥𝐶𝑐𝑜2)2 +

1

2

𝜕2𝑈

𝜕𝑇2 (Δ𝑇)2 + 𝑅𝑒𝑠.                   (5) 

 

where 𝛥𝐶𝐶𝑂2 and 𝛥𝑇𝑓𝑜𝑟𝑐. are the respective increments of CO2 concentration and temperature relative to [piControl]. The third 

and higher order terms are defined as a residual (𝑅𝑒𝑠. ). We found them to be negligible in our case. We can disentangle the 

first- and second-order terms of the right-hand side of the Eq. (5) into terms that are purely dependent on CO2 (Δ𝑈𝛽 ), on 205 

temperature (Δ𝑈𝛾) and the cross term (Δ𝑈𝜒), as follows: 

 

Δ𝑈𝛽 =
𝜕𝑈

𝜕𝐶𝐶𝑂2
𝛥𝐶𝐶𝑂2 + 𝑅𝑒𝑠.,           (6) 

Δ𝑈𝛾 =
𝜕𝑈

𝜕𝑇
Δ𝑇 + 𝑅𝑒𝑠.,                                     (7) 

Δ𝑈𝜒 =
𝜕2𝑈

𝜕𝐶𝐶𝑂2 𝜕𝑇
Δ𝑇𝛥𝐶𝐶𝑂2 + 𝑅𝑒𝑠..          (8) 210 

For simplicity, the second-order terms of Eqs. (6) and (7) are included in 𝑅𝑒𝑠.. Combining Eqs. (4) and (8), the χ feedback 

parameter may be quantified from: 

χ =
∆𝑈𝐶𝑂𝑈−𝐵𝐺𝐶−∆𝑈𝑅𝐴𝐷

Δ𝑇𝛥𝐶𝐶𝑂2
.            (9) 

 

The carbon-concentration 𝛽 feedback term Δ𝑈𝛽 may be estimated from [CO2bgc] - [piControl], under the assumption that the 215 

physiological CO2 warming and its impacts on the carbon cycle are negligible, consistent with findings of Asaadi et al., (2024). 

The 𝛾 feedback terms for CO2 (Δ𝑈𝛾,𝐶𝑂2 ) and non-CO2 (Δ𝑈𝛾,𝑛𝑜𝑛𝐶𝑂2 ) gases are estimated from [CO2rad] - [piControl], and 

[nonCO2] - [piControl], respectively. The difference between these terms (Δ𝑈𝛾,𝐶𝑂2 − Δ𝑈𝛾,𝑛𝑜𝑛𝐶𝑂2)  yields the difference 

between impacts of CO2 and non-CO2 forcing on the carbon-climate feedback. Finally, the cross term Δ𝑈𝜒, previously referred 

to as nonlinearity term (Arora et al., 2013, 2020; Gregory et al., 2009; Schwinger et al., 2014; Schwinger and Tjiputra, 2018; 220 

Williams et al., 2019; Zickfeld et al., 2011), may be estimated by utilising a combination of experiments. The combination 

[CO2] – [CO2bgc] - [CO2rad] gives Δ𝑈𝜒,𝐶𝑂2 , and the combination [CO2bgc + nonCO2] – [CO2bgc] - [nonCO2] gives 

Δ𝑈𝜒,𝑛𝑜𝑛𝐶𝑂2 ). Analogously, the difference between these cross terms (Δ𝑈𝜒,𝐶𝑂2 − Δ𝑈𝜒,𝑛𝑜𝑛𝐶𝑂2) yields the difference between 

the CO2 and non-CO2 forcings on the χ. 
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3 Results and discussion 225 

3.1 Climate impacts 

The analysis of global climate variables as a function of CO2 concentration and GSAT shown in Fig. 2 follows a previous 

study by Boucher et al. (2012). Consistent with their findings, our results show that GSAT change lags behind GHG forcing 

by up to a decade. The lag increases with the increase in the forcing magnitude, so that the largest lag is in the [CO2 + nonCO2] 

experiment. Even after a ramp-down period and 50 years of constant GHG forcing at [piControl] levels, GSAT does not return 230 

to preindustrial values in all experiments (Fig. 2a). This can be explained by the inertia of the climate system, apparent in the 

changes in the ocean heat uptake (OHU). The OHU increases during the ramp-up and decreases during the ramp-down period, 

being positive, i.e., taking up energy away from the atmosphere, during the ramp-up and first half of the ramp-down period. 

OHU turns negative by the end of the ramp-down and stays negative during the 50 years of the stabilisation period, releasing 

energy back into the atmosphere (Fig. 2c-e). The hysteresis of the climate system is evident from the nearly linear relationship 235 

between maximum GSAT and mean GSAT during the stabilisation period (Fig. S2). The thermosteric (unrelated to ice sheet 

melting) sea level increases in all experiments except for [CO2bgc] and is closely related to the OHU. It does not recover (i.e. 

it is irreversible) within the time-horizon considered here (Fig. 2 i-k). The AMOC decreases with GSAT (with the strongest 

decrease reached for GSAT = 2 ºC under [CO2 + nonCO2]), but fully recovers (Fig. S1b). 
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  240 

Figure 2: Global annual mean changes in model climate variables as a function of (a, c, f, i) time (year), (b, d, g, j) CO2 concentration 

(ppm) / CH4 concentration (ppb, only for [nonCO2]), (c, e, h, k) GSAT (ºC) for (a, b) GSAT (ºC), (c–e) ocean heat uptake (W m-2), 

(f–h) cloud net radiative forcing (W m-2), and (i–k) thermosteric sea level change (m) under selected scenarios. The ramp-up, ramp-

down and stabilisation periods are indicated by different line styles in all panels. Thick lines indicate the ensemble means and thin 

lines correspond to three ensemble members. 245 
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The CO2 physiological warming that can be quantified by comparing [CO2bgc] with [piControl] is small (green line in Fig. 2). 

Spatially, some differences are ubiquitous over land, e.g., CO2 physiological warming persists over Eurasia during the ramp-

up period, and over the high latitudes of both land and ocean during the stabilisation period (Fig. S3a). A larger ensemble size 

of model simulations would be required to investigate these differences more thoroughly. In our following analysis on carbon 

cycle feedbacks, we assume the CO2 physiological warming to be negligible, consistent with previous findings of Asaadi et 250 

al., (2024). 

When comparing CO2- and non-CO2-induced forcing ([CO2] and [nonCO2] experiments) at a global scale, our results are 

consistent with Richardson et al. (2019) who show the higher surface temperature response of CO2 when compared to CH4. 

When comparing CO2- and non-CO2-induced radiative forcing ([CO2rad] and [nonCO2] experiments) at a global scale, the 

non-CO2 forcing still leads to a lower GSAT peak and a slightly lower peak of thermosteric sea level rise compared to the CO2 255 

radiative forcing (brown and black lines of Fig. 2a, significant difference at p < 0.05). This cannot be explained just by a 

slightly higher ERF of the [CO2rad] compared to [nonCO2] experiment (Table 1, Figs. 2a, S4). Our results are consistent with 

Nordling et al. (2021) who show the higher effective temperature response for CO2 forcing compared to non-CO2 forcing, 

attributing it to the changes in clear-sky planetary emissivity. 

Radiative forcing alone ([CO2rad] experiment) leads to a slightly higher global temperature increase compared to the coupled 260 

[CO2] experiment, which includes the combined effect of CO2 physiology and radiative forcing (Fig. 2a, b). This temperature 

difference is particularly evident in the Arctic region (Fig. S3a). Our findings differ from those of a CMIP5 intercomparison 

study, which reported that CO2 physiological warming amplifies the Arctic warming (Park et al., 2020). The study showed 

that the CO2 physiological effect contributes to high latitude warming by reducing evaporative cooling due to stomatal closure 

under elevated CO2 levels. In contrast, we observe higher evapotranspiration in the [CO2rad] compared to the [CO2] experiment 265 

(Fig. S5), which is probably a consequence of the lower warming in the [CO2] experiment. In our study, the greater warming 

in the [CO2rad] experiment may be driven by increased surface albedo, especially in the Arctic Ocean (Fig. S3b). While the 

underlying causes remain unclear, this pattern appears consistent in other experiments conducted with IPSL-CM6A-LR under 

moderate CO2 levels (not shown). Because the ensemble size in our study is limited and the effects of the model’s internal 

variability should be considerable, future research should validate the robustness of our findings with larger ensemble 270 

simulations. 

3.2 Carbon cycle feedback 

3.3 Carbon-concentration feedback 

The term Δ𝑈𝛽,𝐶𝑂2 corresponds to the flux arising from variations in CO2 concentration ([CO2bgc] experiment). The Δ𝑈𝛽,𝐶𝑂2 

dominates the land and ocean carbon uptake changes through all three considered periods (Fig. 3, Tables 2, S1). Since the 275 

considered maximum surface warming levels are below 2 ºC, land and ocean carbon fluxes are primarily controlled by the 

CO2-induced effects during the ramp-up period, resulting in positive β (Fig. 3 a-d). Nearly two-thirds of land and half of ocean 
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carbon accumulated during the ramp-up period due to the atmospheric CO2 increase is being released during the latter periods, 

consistent with previous studies (Asaadi et al., 2024; Chimuka et al., 2023). In the ocean, β is positive (carbon sink) in all 

regions during the ramp-up period. However, CO2 concentration decrease induces carbon source over all ocean regions, except 280 

for the Atlantic and Southern Oceans (Fig. 4). All regions are carbon sources during the stabilisation period of the [CO2bgc] 

experiment.  

 

Table 2. Cumulative CO2 and climate change-driven changes in the land and ocean carbon fluxes (GtC), shown as three- member 

ensemble mean. The ± indicates one standard deviation among the three members. Note that all experiments are analysed relative 285 
to their [piControl] counterparts. 

Experime
nt 

Max. 

warming 

(K)* 

Terms 
Years 1-50 (ramp-up) 

Years 51-100 (ramp-

down) 

Years 101-150 

(stabilisation) 
Total 

Land Ocean Land Ocean Land Ocean Land Ocean 

[CO2bgc] 0.1±0.0 Δ𝑈𝛽,𝐶𝑂2  
179.3±2.

2 

103.8±0.

7 

-

16.3±6.0 

-

19.7±1.0 

-

106.3±0.4 

-

32.1±0.8 
59.4±1.8 53.4±0.9 

[CO2rad] 1.1±0.1 Δ𝑈𝛾,𝐶𝑂2  
-

18.6±2.4 
-2.4±0.2 4.5±5.7 0.0±1.4 11.4±4.0 0.3±1.9 -2.2±2.0 -2.1±0.6 

[nonCO2] 0.9±0.1 Δ𝑈𝛾,𝑛𝑜𝑛𝐶𝑂2  
-

14.8±3.6 
-2.3±1.0 1.3±6.0 -0.5±1.3 10.2±2.4 1.3±0.5 -2.5±2.9 -1.6±0.2 

[CO2] – 
[CO2bgc] 

1.0±0.0 Δ𝑈𝛾,𝐶𝑂2 +  Δ𝑈𝜒,𝐶𝑂2  
-

14.7±1.0 
-4.5±0.2 3.8±3.0 -1.4±1.0 8.2±1.9 0.6±0.5 -3.8±3.1 -5.5±1.4 

 
 Δ𝑈𝜒,𝐶𝑂2  3.9±2.1 -2.2±0.4 -0.7±7.3 -1.4±0.5 -3.2±5.9 0.2±2.3 -1.6±5.0 -3.4±2.0 

 
 Δ𝑈𝜒,𝑛𝑜𝑛𝐶𝑂2  3.5±1.5 -1.6±1.0 2.8±7.9 0.1±1.1 -1.6±1.5 -1.0±1.3 2.0±4.0 -2.5±1.0 

 
 Δ𝑈𝛾,𝐶𝑂2 −  Δ𝑈𝛾,𝑛𝑜𝑛𝐶𝑂2  -3.8±5.0 -0.1±0.9 3.2±3.6 0.5±0.9 1.2±2.6 -1.0±2.2 0.3±2.7 -0.5±0.7 

 
 Δ𝑈𝜒,𝐶𝑂2 −  Δ𝑈𝜒,𝑛𝑜𝑛𝐶𝑂2  0.4±3.5 -0.6±0.7 -3.5±3.4 -1.6±1.0 -1.6±7.4 1.3±3.3 -3.6±5.5 -1.0±2.8 

* defined as the mean ∆GSAT during years 41-60 in the experiments. 

 

The transient change of the β feedback over land can be better explained by analysing the gross primary production (GPP) and 

the autotrophic and heterotrophic respiration (Ra and Rh) fluxes. Land GPP, representing photosynthetic uptake, increases 290 

during the ramp-up period under elevated CO2 concentration and decreases almost linearly with decreasing CO2, showing only 

a small hysteresis (Figs. S6-7). In contrast, both Ra and Rh exhibit a larger hysteresis, which leads to an extended period of 

the carbon release to the atmosphere. This suggests that while there may be initial carbon sequestration benefits gained during 

elevated CO2 periods, these benefits are susceptible to being lost as CO2 concentrations decline due to decreased photosynthesis 

and increased respiration, albeit at a reduced rate.  295 

The spatial variation of cumulative net carbon uptake provides further details on the feedback changes (Figs. 4, S8-S10). 

During the CO2 ramp-up phase, CO2 increase triggers a land carbon sink in all regions. However, during the ramp-down phase, 

it induces a net carbon source over subtropical regions while still driving a land carbon sink in northern high-latitudes, so that 

global land becomes a carbon source in the middle of the ramp-down phase. Finally, during the stabilisation period, all land 

regions become net carbon sources. 300 



13 

 

Subtropical and southern land regions exhibit a shorter hysteresis in response to decreasing CO2 concentrations. This disparity 

arises from the larger proportion of carbon accumulated in aboveground vegetation biomass in southern regions, contrasting 

with the greater fraction stored in soils within northern latitudes (Figs. S9-S11). The extended period of high positive β in 

northern mid- to high latitudes can be attributed to the longer carbon turnover time, particularly in soils, compared to tropical 

regions (Fig. S8). 305 

3.4 Carbon-climate feedback 

The term Δ𝑈𝛾  corresponds to the carbon flux arising from variations in radiative forcing (such as in the [nonCO2] and [CO2rad] 

experiments). The Δ𝑈𝛾  for CO2 and non-CO2 (Δ𝑈𝛾,𝐶𝑂2  and Δ𝑈𝛾,𝑛𝑜𝑛𝐶𝑂2 , respectively) are equivalent (within one standard 

deviation uncertainty range) under nearly equivalent levels of ERF (compare panels b and c of Fig. 4, see also Δ𝑈𝛾,𝐶𝑂2 −

 Δ𝑈𝛾,𝑛𝑜𝑛𝐶𝑂2 in Table 2, see also Table S1). The γ is negative on a global scale in the land and ocean, with greater magnitude but 310 

also faster reversibility over land. Spatially, land γ is positive in the mid- to high latitudes and negative in the tropical regions 

(Figs. 4, S9-10, see also Melnikova et al. (2021)). During the ramp-up, climate change drives carbon sink in the northern mid- 

to high- latitudes and carbon source in the subtropical regions and the Southern Hemisphere, with larger magnitude of changes 

in the experiments, in which CO2 concentration change is present (Figs. 4, S9-11).  
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 315 

Figure 3. Global cumulative carbon fluxes (GtC) over (a, b, e, f, i) land and (c, d, g, h, j) ocean as a function of (a, c, e, g, i, j) time 

(year), (b, d) CO2 concentration (ppm) and (f, h) GSAT changes (ºC) under selected scenarios. The ramp-up, ramp-down and 

stabilisation periods are indicated by different line styles. Thick lines indicate the ensemble means and thin lines correspond to other 

ensemble members. Note that vertical axes differ between panels e, g and i, j. 

3.5 Nonlinearity in carbon cycle feedback 320 

The cross term Δ𝑈𝜒  induces non-negligible differences between climate change-induced carbon flux when comparing 

experiments with presence or absence of atmospheric CO2 concentration change. It reaches ca. 20–23% of the land Δ𝑈𝛾  and 

ca. 70–90% of the ocean Δ𝑈𝛾, cumulative over the ramp-up period (Table 2). During the ramp-up phase, the Δ𝑈𝜒 corresponds 

to a decrease in the climate-driven land carbon source and an increase in the climate-driven ocean carbon source (Fig. 3). The 

χ feedback is positive (larger carbon sink) on land and negative (larger carbon source) in the ocean (Table S1). There is no 325 

significant difference between CO2 and non-CO2 χ feedback at similar ERF levels (Fig. 3e-j, Fig. 4 f-g, Tables 2 and S1). In 

the ocean, the cross-term differences for CO2 and non-CO2 forcing arise already during the ramp-up and propagate during the 

ramp-down and stabilisation phases, spatially concentrating in the deep mixing region of the Southern Ocean. 
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On land, the positive χ reflects more biomass at high latitudes available for climate change effects, leading to a larger carbon 

sink (positive γ). During the ramp-down, climate warming through temperature change (lagged after GHG concentrations 330 

change) increases the carbon sink over high latitudes and weakens the carbon source in the tropics. Here the Δ𝑈𝜒 reflects more 

biomass available globally for the climate change effects, leading to a larger carbon source (negative γ). The differences (in 

the presence / absence of the cross term Δ𝑈𝜒) diminish for land but not for the ocean during the ramp-down and stabilisation 

periods.  

In the ocean, the contribution from the nonlinearity of carbon cycle feedbacks leads to a greater reduction in the CO2-driven 335 

carbon sink (Fig. 3). The contribution of the cross term Δ𝑈𝜒  to the total Δ𝑈  increases during the ramp-down phases of 

considered GHG concentration scenarios. Previously, Schwinger and Tjiputra (2018), who considered nonlinearity of carbon 

cycle feedback, warned that RAD experiments may underestimate the carbon-climate feedback (when compared to COU - 

BGC experiments), because “the reduction of sequestration of preformed dissolved inorganic carbon under high atmospheric 

CO2 is not taken into account.” In this study, the nonlinearity effects nearly double climate change-driven carbon loss 340 

(compared to the RAD experiment, in which atmospheric CO2 is constant) relative to the total net 150-year net ocean carbon 

uptake under the [CO2] experiment. Spatially, while the Southern Ocean remains the largest ocean carbon sink in all considered 

experiments involving atmospheric CO2 changes, it, along with the Atlantic Ocean, undergoes the largest climate change-

driven reduction in carbon sink (Fig. 4).  
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Figure 4. Spatial variation of land and ocean carbon fluxes (GtC, negative to the atmosphere) cumulative over 50 years of (first 

column) ramp-up, (second column) ramp-down, (third column) stabilisation phases and (last column) full 150-year period. The data 

for three-member-ensemble mean are used. 

Our findings provide evidence on the effectiveness of non-CO2 GHG mitigation. While it can effectively reduce GSAT peak, 

non-CO2 GHG mitigation may also lead to smaller climate change-driven losses in the ocean carbon sink. In the real world, 350 

the presence / absence of Δ𝑈𝜒 suggests disparities between CO2 mitigation efforts and non-CO2 mitigation efforts. The CO2- 

and non-CO2-driven climate change leads to unequal decrease in carbon uptake, especially apparent for the ocean on a global 

scale (compare red and black lines in Fig. 3, corresponding to [CO2] – [CO2bgc] and [nonCO2] experiments). Reducing CO2 

concentrations for climate mitigation implies alteration of all three terms of the proposed carbon cycle feedback attribution 

framework, namely Δ𝑈𝛽, Δ𝑈𝛾 and Δ𝑈𝜒 . Reducing non-CO2 GHG concentrations, such as CH4 and N2O, implies alteration of 355 

Δ𝑈𝛾 and Δ𝑈𝜒 terms. Reducing both CO2 and non-CO2 concentrations implies alteration of all Δ𝑈𝛽, Δ𝑈𝛾  and Δ𝑈𝜒 terms but 

with larger change in Δ𝑈𝛾  and Δ𝑈𝜒 terms. From this point, combining CO2 and non-CO2 reduction measures may be more 

effective for climate change mitigation, compared to the CO2 reduction measures alone. This finding should be confirmed with 

emission-driven experiments that consider GHGs atmospheric lifetimes.  

3.6 Radiative forcing and carbon cycle feedback additivity 360 

In order to overcome the small signal-to-noise ratio of the considered experiments as well as the regional differences in the 

radiative forcing between [CO2] and [nonCO2] experiments, we compare the (1) [CO2 + nonCO2] experiment that include both 

CO2 and non-CO2 effects with (2) the sum of two [CO2] and [nonCO2], that include CO2 and non-CO2 effects, accordingly 

(Figs. 5 and S12-13). The climate effects, defined via temperature change, differ during the ramp-up and ramp-down periods 

(Fig. S12). These differences imply non-additivity of radiative forcing and can also be attributed to biophysical feedback.  365 

As for the carbon cycle feedback, the [CO2 + nonCO2] experiment that has all feedback is different from the sum of two 

experiments [CO2] + [nonCO2] both on land and in the ocean (Fig. 5). The differences are larger and stay longer in the ocean. 

This implies non-additivity of carbon cycle feedback. From the proposed carbon cycle feedback attribution framework, the 

non-additivity arises from nonequality of ( Δ𝑈𝛾,𝐶𝑂2+𝑛𝑜𝑛𝐶𝑂2  + Δ𝑈𝜒,𝐶𝑂2+𝑛𝑜𝑛𝐶𝑂2 ) and ( Δ𝑈𝛾,𝐶𝑂2  + Δ𝑈𝜒,𝐶𝑂2 +  Δ𝑈𝛾,𝑛𝑜𝑛𝐶𝑂2  + 

Δ𝑈𝜒,𝑛𝑜𝑛𝐶𝑂2). The significant difference (p < 0.1) on land is in the high-latitude region, where “all-effects together” [CO2 + 370 

nonCO2] experiment yields a larger carbon sink during the ramp-up phase. The largest difference in the ocean is in the Southern 

Ocean, followed by the North Atlantic Ocean. The [CO2 + nonCO2] experiment has large carbon sink is in the Southern Ocean 

compared to the sum of two experiments. This might be related to the saturation of the decrease in the mixed layer depth with 

more warming, but a more thorough study is needed to confirm such phenomena.  
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 375 

Figure 5. Spatial variation of three-member-ensemble mean land and ocean carbon fluxes (GtC, negative to the atmosphere) 

cumulative over 50 years of (a, e, i) ramp-up, (b, f, j) ramp-down, (c, g, k) stabilisation phases and (d, h, l) full 150-year period. We 

draw only significantly different grids between (i-l) [CO2 + nonCO2] and [CO2] + [nonCO2] experiments using three ensemble 

members (p < 0.1 based on t-test, N=60). 

4 Limitations and future research directions 380 

To our knowledge, this is the first study of its kind to compare idealised CO2 and non-CO2 ramp-up and ramp-down scenarios 

for their effects on global temperature change and the carbon-cycle feedbacks. Below we draw attention to the caveats and 

limitations that should be addressed in future studies.  

First, since IPSL-CM6A-LR, like all other ESMs participating in CMIP6, does not have interactive modules of the CH4 and 

N2O cycles, the changes in stratospheric water vapour, aerosols, and tropospheric ozone due to atmospheric CH4 changes, as 385 

well as the effects of nitrogen deposition on the carbon cycle are not considered in this study. Future studies could consider 

simulations separately for CH4 and N2O. However for this study, the use of the model is justified because current changes in 

CH4 and N2O concentrations are primarily driven by anthropogenic sources, suggesting that the absence of interactive modules 

of natural sink/source processes does not significantly affect the representation of natural variability trends for the CH4 and 

N2O concentration (Nakazawa, 2020; Palazzo Corner et al., 2023; Zhu et al., 2013). 390 

Second, when interpreting the results, it should be kept in mind that some carbon cycle processes in IPSL-CM6A-LR such as 

permafrost and fire are not considered. Yet, these should have only a limited impact on our results, given the (relatively) small 
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warming levels in the considered experiments. Previous studies have shown that IPSL-CM6A-LR estimates one of the smallest 

soil carbon pools among CMIP6 models, which may lead to an underestimation of the carbon-climate feedback (Arora et al., 

2020; Melnikova et al., 2021). 395 

Third, the results of the present study are limited by the use of a single ESM and a small number of ensemble members. 

Conducting similar experiments with other ESMs and using larger ensemble runs, which are particularly valuable in the low 

warming scenarios, as well as complementing the findings of our study with emission-driven experiments, could contribute to 

validating and extending our findings.  

5 Conclusions 400 

This study first presents a novel approach to recalibrate the ERF of CH4 and N2O in ESMs without changing the radiative 

scheme of the model. We then discuss the effects of increases and decreases in the concentrations of the CO2 and non-CO2 

GHGs on the surface climate and carbon cycle. We find only small differences between CO2 and non-CO2 ramp-up and ramp-

down forcing on global and regional climate.  

The differences in climate responses can be linked to differences in the carbon cycle feedbacks. We show that CO2- and non-405 

CO2-driven carbon-climate feedback are nearly equivalent at a global scale. However, increasing atmospheric CO2 amplifies 

the reduction of the climate change-driven carbon sink, especially in the ocean. We propose a novel framework to disentangle 

the carbon-climate feedback into a component that is purely driven by climate change i.e., expressed as a temperature term, 

and a component driven by climate change and rising atmospheric CO2 at the same time, i.e., a cross term. Since the cross 

term can be quantified from the difference between COU, BGC and RAD simulations, we advocate for continuing to carry out 410 

all three types of experiments in the future phases of CMIP. We further warn that the cross term and non-additivity of feedback 

should be considered in the simple climate models (emulators).  

Finally, this study showcases the additional benefits of non-CO2 GHG mitigation on a smaller reduction of the ocean carbon 

sinks under overshoot scenarios. We stress that our findings do not imply that non-CO2 GHG mitigation should be given a 

priority over other means to mitigate climate change but they provide an insight on the intricate interplay between the carbon-415 

concentration and CO2- and non-CO2-driven carbon-climate feedbacks to inform comprehensive mitigation strategies.  

Appendix A 

 

A set of 40-year idealised IPSL-CM6A-LR simulations (840 years in total) has been carried out. In these experiments, the sea 

surface temperature (SST) and sea ice fractions were fixed to their preindustrial levels. CH4 concentration levels were kept at 420 

2×CH4, 3×CH4, 4×CH4, 5×CH4, 8×CH4, and 12×CH4, and N2O concentration levels were kept at 1×N2O, 1.25×N2O, 1.5×N2O, 

and 1.75×N2O (Table A1). 
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Table A1. Description of idealised recalibration experiments using IPSL-CM6A-LR 

№ Name  Concentration 

  CH4 (ppb) N2O (ppb) CO2 (ppm) 

0 piClim 808.25 273.02 284.32 

1 2×CH4 1616.50 273.02 284.32 

2 3×CH4 2424.75 273.02 284.32 

3 4×CH4 3233.00 273.02 284.32 

4 5×CH4 4041.25 273.02 284.32 

5 8×CH4 6466.00 273.02 284.32 

6 12×CH4 9699.00 273.02 284.32 

7 1×CH4-1d25N2O 808.25 341.28 284.32 

8 2×CH4-1d25N2O 1616.50 341.28 284.32 

9 3×CH4-1d25N2O 2424.75 341.28 284.32 

10 4×CH4-1d25N2O 3233.00 341.28 284.32 

11 5×CH4-1d25N2O 4041.25 341.28 284.32 

12 8×CH4-1d25N2O 6466.00 341.28 284.32 

13 12×CH4-1d25N2O 9699.00 341.28 284.32 

14 1×CH4-1d5N2O 808.25 409.53 284.32 

15 2×CH4-1d5N2O 1616.50 409.53 284.32 

16 3×CH4-1d5N2O 2424.75 409.53 284.32 

17 4×CH4-1d5N2O 3233.00 409.53 284.32 

18 5×CH4-1d5N2O 4041.25 409.53 284.32 

19 8×CH4-1d5N2O 6366.00 409.53 284.32 

20 12×CH4-1d5N2O 9699.00 409.53 284.32 

21 1×CH4-1d75N2O 808.25 477.79 284.32 

Fig. A1 shows the set of 40-year time series of global mean radiative forcing based on 21 idealised experiments. The piClim 

experiment holds pre-industrial levels of CO2, CH4 and N2O concentrations. The mean interannual variation of the radiative 425 

forcings (one standard deviation) is 0.15 Wm-2. The first 10 years of the experiments were dropped to allow the climate to 

adjust to the new radiative equilibrium after an abrupt change from the pre-industrial levels. The last 30 years were used to 

obtain eighteen data-points of mean global ERF by IPSL-CM6A-LR relative to the levels obtained from the piClim experiment. 

The ERF is estimated as a TOA imbalance difference between each experiment and the piClim.  
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 430 

Figure A1. Time series of global mean radiative imbalance of IPSL-CM6A-LR idealised experiments  

There are two frequently used sets of equations to derive radiative forcing of well mixed greenhouse gases, e.g., CO2, CH4 and 

N2O, etc., based on their concentrations. The first set from Myhre et al. (Myhre et al., 1998), thereafter, M98, was used in 

IPCC AR3: 

𝑅𝐹(𝐶𝑂2) = 5.35 ×𝑙𝑛 (𝐶𝑂2/𝐶𝑂2𝑡=0)  

(A1) 

𝑅𝐹(𝐶𝐻4) = 0.036 × (√𝐶𝐻4 − √𝐶𝐻4𝑡=0) − (𝑓(𝐶𝐻4, 𝑁2𝑂𝑡=0) − 𝑓(𝐶𝐻4𝑡=0, 𝑁2𝑂𝑡=0)) 

𝑅𝐹(𝑁2𝑂) = 0.12 × (√𝑁2𝑂 − √𝑁2𝑂𝑡=0) − (𝑓(𝐶𝐻4𝑡=0, 𝑁2𝑂) − 𝑓(𝐶𝐻4𝑡=0, 𝑁2𝑂𝑡=0)) 

𝑓(𝐶𝐻4, 𝑁2𝑂) = 0.47 × 𝑙𝑛[1 + 2.01 × 10−5 × (𝐶𝐻4 × 𝑁2𝑂)0.75 + 5.31 × 10−15 × 𝐶𝐻4 × (𝐶𝐻4 × 𝑁2𝑂)1.52]  

Here the CO2, CH4 and N2O indicate their concentrations, where the units are ppm, ppb, and ppb. 435 

Etminan et al. (2016), thereafter, E16, improved the IPCC AR3 equations by inclusion of the shortwave (near-infrared) bands 

of CH4. Their set of equations was used in IPCC AR6. The radiative forcing of N2O in the M98 equation depends on the CH4 

and N2O concentrations, while the radiative forcing of N2O in the equation by E16 depends on the CO2, CH4 and N2O 

concentrations: 

𝑅𝐹(𝐶𝑂2) = [−2.4 × 10−7 × (CO2 − 𝐶𝑂2𝑡=0)2 + 7.2 × 10−4 × |CO2 − 𝐶𝑂2𝑡=0|

− 2.1 × 10−4 ×
1

2
(N2O + 𝑁2𝑂𝑡=0) + 5.36] ln (

CO2

𝐶𝑂2𝑡=0

)  
 

𝑅𝐹(𝐶𝐻4) = [−1.3 × 10−6 ×
1

2
(CH4 + 𝐶𝐻4𝑡=0) − 8.2 × 10−6 ×

1

2
(N2O + 𝑁2𝑂𝑡=0) + 0.043] × (√CH4

− √𝐶𝐻4𝑡=0) 
(A2) 
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𝑅𝐹(𝑁2𝑂) = [−8.0 × 10−6 ×
1

2
(CO2 + 𝐶𝑂2𝑡=0) + (4.2 × 10−6 ×

1

2
(N2O + 𝑁2𝑂𝑡=0)

− 4.9 × 10−6 ×
1

2
(CH4 +  CH4𝑡=0) + 0.117] × (√𝑁2𝑂 − √𝑁2𝑂𝑡=0) 

 

In the sets of Eqs. (A2), the radiative forcing due to CH4 depends not only on the CH4 concentration but also on that of N2O 440 

(and conversely) because CH4 and N2O absorption bands overlap to some extent. These simplified equations are therefore 

additive: the radiative forcing due to a change in CH4 and N2O concentrations (𝐶𝐻4, 𝑁2𝑂 ) relative to reference (preindustrial) 

values (𝐶𝐻4𝑡=0, 𝑁2𝑂𝑡=0) is equal to: 

𝑅𝐹(𝐶𝐻4, 𝑁2𝑂) = 𝑅𝐹CH4(𝐶𝐻4, 𝑁2𝑂) + 𝑅𝐹N2O(𝐻4, 𝑁2𝑂)       (A3) 

The effect of CO2 on the radiative forcing of N2O is small (<5%), and thus, for simplicity, is neglected in the rest of this study 445 

(Fig. A2). 

 

Figure A2.The ERF estimated from E16 with and without accounting for CO2 impact on the N2O forcing (including/excluding the 

term −𝟖. 𝟎 × 𝟏𝟎−𝟔 × 𝟎. 𝟓 × (𝑪𝑶𝟐 + 𝑪𝑶𝟐,𝒕=𝟎) in the equation) using the concentration values of the idealised experiments described 

in the Table 1 with preindustrial CO2 concentration (284.32 ppm) and the same set of the experiments with 3 × CO2 concentration 450 
(852.96 ppm). 

Figure A3 shows the ERFs simulated by IPSL-CM6A-LR and those estimated from the two equations from the IPCC report 

and revised by E16. IPSL-CM6A-LR underestimates CH4 ERF and overestimates N2O ERF, relative to both equations. 

Considering the improvements introduced by E16 to include the shortwave bands of CH4, we use their equations (and not of 

IPCC AR3) to recalibrate the IPSL-CM6A-LR model. 455 
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Figure A3. The ERF of CH4 and N2O from IPSL-CM6A-LR idealised experiments (points and fitted solid lines) and estimated from 

M98 (* and fitted dotted lines) and E16 (x and fitted dashed lines) equations, fitted to polynomial regressions for three levels of N2O 

concentrations. 

A system of equations can convert the input CH4 and N2O concentrations to the effective concentrations so that, if used in the 460 

climate model, would yield actual forcing from the equations by E16. Among several linear and nonlinear functions to relate 

the actual concentrations of CH4 and N2O with the concentrations seen by IPSL-CM6A model (effective concentrations) that 

have been tested, the following set of equations yielded the best fit: 

 𝐶𝐻4
𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒

= 𝐶𝐻4𝑡=0 + 𝑎 × (CH4𝑎𝑐𝑡𝑢𝑎𝑙 − 𝐶𝐻4𝑡=0)𝑐   
(A4) 

𝑁2𝑂𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 = N2𝑂𝑡=0 + 𝑏 × (𝑁2𝑂𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑁2𝑂𝑡=0)𝑑 

 

The initial values of CH4 and N2O concentrations are fixed at the preindustrial levels (t = 0). Those of the effective CH4 and 465 

N2O concentrations are also assumed to take the same respective preindustrial levels. The Eq. (A1) is used to relate the effective 

concentrations of CH4 and N2O of IPSL-CM6A-LR to the ERF estimated by E16: 

𝑅𝐹𝐸𝑡𝑚 = 𝑅𝐹𝐶𝐻4, 𝐸𝑡𝑚 + 𝑅𝐹𝑁2𝑂, 𝐸𝑡𝑚

= (−1.3 × 10−6 ×
1

2
(CH4𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 + 𝐶𝐻4𝑡=0) − 8.2 × 10−6 ×

1

2
(N2𝑂𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 + 𝑁2𝑂𝑡=0)

+ 0.043) × (√CH4𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 − √𝐶𝐻4𝑡=0) + (4.2 × 10−6 ×
1

2
(𝑁2𝑂𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 + 𝑁2𝑂𝑡=0)

− 4.9 × 10−6 ×
1

2
(CH4𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 +  𝐶𝐻4𝑡=0) + 0.117) × (√𝑁2𝑂𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 − √𝑁2𝑂𝑡=0) 

(A5) 
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We optimise the four parameters of Eq. (A4) by minimising the sum of squared residuals between ERF estimated by E16 

equations and simulated by IPSL-CM6A-LR using a Python implementation of the Limited-memory Broyden–Fletcher–

Goldfarb–Shanno bound-constrained algorithm (L-BFGS-B) that is an algorithm for solving large nonlinear optimization 

problems with simple bounds (Byrd et al., 1995). The cost function is defined as: 

𝐶𝐹 = ∑ (𝑅𝐹𝐼𝑃𝑆𝐿 − 𝑅𝐹𝐸𝑡𝑚)2𝑖=21
𝑖           (A6) 475 

 

 

Figure A4. (a) Scatterplot of ERF simulated by IPSL-CM6A and estimated by E16 equations using the corrected effective 

concentrations from Eq. (A3), and (b) The effective IPSL-CM6A-LR concentrations of CH4 and N2O as a function of the actual 

concentrations derived via a system of nonlinear functions. 480 

The residual error after fit equals 0.03 (Wm-2)2 (Fig. A4). The solution of the cost function provides the estimates of four 

uncertain parameters for Equations 3, indicated in Table A2. The effective IPSL-CM6A-LR concentrations of CH4 and N2O 

are functions of the actual concentrations (Fig. A4b). Higher effective CH4 and lower N2O effective concentrations are needed 

for IPSL-CM6A-LR to reproduce the ERF in agreement with IPCC estimates. 

Table A2. Estimated parameters in Eq. (A4) 485 

Parameter Estimate 

a 19.44701978 

b 0.84856644  

c 0.49593024  

d 1.13865386 

The estimated parameters were applied to derive the effective IPSL-CM6A-LR concentrations for a target scenario (Fig. A5). 

Higher CH4 and lower N2O concentrations are required to reproduce the ERF correctly. 
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Figure A5. The actual (dashed lines) and new recalibrated effective CH4 and N2O IPSL-CM6A-LR concentrations (solid lines) for 

the CH4-N2O experiment of this study. 490 

Data and materials availability 

The piControl output data from the CMIP6 simulations are available from the CMIP6 archive: https://esgf-

node.llnl.gov/search/cmip6 (WCRP, 2022)), additional IPSL-CM6A-LR outputs are available upon request. The Jupyter 

notebook and data to reproduce the figures are stored in the Zenodo archive: https://doi.org/10.5281/zenodo.12200056. 
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