

1 Our responses are in black, marked as **[Response]**, and the comments of the Reviewers are
2 in purple, marked as **[Comment]**. In our responses, we mark the changes in the manuscript
3 with shading and separate comments using “*****”.

4 **Reviewer #1 (Remarks to the Author):**

5 The authors investigate carbon cycle feedbacks under CO₂ and non-CO₂ GHG forcings.
6 Since non-CO₂ GHG lead to warming only, the CO₂ concentration induced component of the
7 carbon cycle feedbacks is missing for this forcing. This motivates the authors to investigate
8 what has been termed “non-linearity of carbon cycle feedbacks” in previous studies, but with
9 a focus on non-CO₂ forcings. The authors use an impressive set of idealized model
10 experiments to separate the different feedback components. The manuscript is generally well
11 written, well structured, and the methods are sound and well described, although some parts
12 of the manuscript could be improved in clarity and I found some of the results difficult to
13 understand (see my comments below). There are only very few studies dealing with the
14 interactions of non-CO₂ GHG forcing and the carbon cycle, even though non-CO₂ GHG
15 reduction will be an important climate mitigation measure in pathways that limit global warming
16 to below 2 degrees. Although the main results do not seem to be very surprising, I believe this
17 study is a valuable contribution to this field and I would recommend publication in Earth
18 System Dynamics after my comments listed below have been addressed.

19 We thank Dr. Schwinger for taking the time to read the manuscript and provide detailed
20 and insightful comments and suggestions that helped to improve the manuscript.

21 *****

22

23 **General comments**

24 **[Comment 1]**

25 The topic of this study is complicated and not easy to grasp for a reader without specific
26 knowledge of the carbon-cycle feedback literature. I would therefore encourage the authors to
27 critically review their introduction and provide more explanation of the basic concepts and how
28 they are related to the main topic of the study, the differences between CO₂ and non-CO₂
29 GHG forcings. More specifically, I think a link between the non-linearity of carbon cycle
30 feedbacks and the feedbacks due to non-CO₂ GHG needs to be made, given that this topic is
31 discussed quite extensively later in the manuscript. It would be a good idea to add a
32 **paragraph to the introduction that deals with the fact (and the causes for) that**

33 **temperature mediated feedbacks can be different under rising or constant CO₂, and**
34 **that this is the main difference between CO₂ and non-CO₂ GHG mediated feedbacks.**
35 Here it would be also pertinent to cite the two (to my knowledge) studies that have investigated
36 the topic of non-linearity previously (Zickfeld et al. 2011 and Schwinger et al. 2014, both
37 studies did not deal with non-CO₂ forcings). Also, in the Methods and Table 1, there are some
38 sources of confusion, which should be addressed (see my specific comments below).

39 **On a related note, why do the authors not go a step further and introduce a new**
40 **symbol for the cross term?** A clear definition of the “non-linear” or “cross-term” has been
41 hampered by the fact that in the first studies using the beta/gamma framework (Friedlingstein
42 et al. 2003, 2006), gamma was defined by [CO₂]-[CO₂bgc]. For this reason, also later studies
43 that actually had a [CO₂rad] simulation available continued using the term gamma for both
44 climate carbon feedbacks [CO₂rad] and [CO₂]-[CO₂bgc], as the authors mention themselves.
45 This study might be a good opportunity to clean up with this “notational mess”?

46

47 **[Response]**

48 We are grateful for this comment and for the insight around the “notational mess”. As
49 suggested, in Introduction we added a paragraph that introduces the nonlinearity concept with
50 the citations on the suggested studies.

51 The weakening of land and ocean carbon sinks due to non-CO₂ GHGs underscores
52 the importance of understanding the differences in carbon cycle feedbacks between CO₂ and
53 non-CO₂ GHGs. Only the changes in CO₂ concentrations are associated with the carbon-
54 concentration (β) feedback, that is the response of the land and ocean carbon uptake to the
55 changes in CO₂ concentration, mainly via the stimulation of photosynthesis through CO₂
56 fertilisation effect over land and the solubility pump over the ocean. The changes in both CO₂
57 and non-CO₂ concentrations are associated with the carbon-climate feedback (γ), that is the
58 response of the land and ocean carbon uptake to climate change, mainly via the increased
59 plant and soil respiration over land and reduction of the CO₂ solubility in the ocean with
60 warming (Arora et al., 2013; Schwinger et al., 2014; Zickfeld et al., 2011). Under changing
61 CO₂ concentrations, land and ocean carbon storages are simultaneously exposed to the
62 carbon-concentration and carbon-climate feedbacks. However, the interaction between these
63 feedbacks can introduce a non-linearity in the system, whereby the combined effect is not
64 simply the sum of individual feedbacks. Thus, temperature-mediated feedback can differ
65 under changing versus constant CO₂ levels, an important distinction when comparing CO₂ and
66 non-CO₂ GHG feedback mechanisms. Here, it is also important to acknowledge that other
67 factors, such as time lags and potential irreversibilities in the climate system, may also

68 contribute to these differences (Boucher et al., 2012; Chimuka et al., 2023; Schwinger et al.,
69 2014).

70 Previous studies investigated the nonlinearity in the carbon cycle feedback and
71 revealed that the nonlinearity, or the cross term, may be comparable in size with γ (Schwinger
72 et al., 2014; Zickfeld et al., 2011). They attributed the nonlinearity to the different responses
73 of the land biosphere to the temperature changes, depending on the presence or absence of
74 the CO₂ fertilisation effect, as well as the weakening of ocean circulation and mixing between
75 water masses of different temperatures. However, these studies did not consider non-CO₂
76 GHGs.

77 We also fixed the mix-up in Table 1.

78 Following the Reviewer's suggestion, we introduced a symbol χ for the cross-term. We
79 modified the Methods section to clarify the reasoning behind the need for the new symbol.

80 Zickfeld et al. (2011) and Schwinger et al. (2014) demonstrated that Eq. (4) includes
81 the residual term ε , which can be derived from the difference between [CO₂] – [CO₂bgc] and
82 [CO₂rad] - [piControl], using Eq. (5):

$$\varepsilon = \Delta U_{CO2} - \Delta U_{BGC} - \Delta U_{RAD}. \quad (5)$$

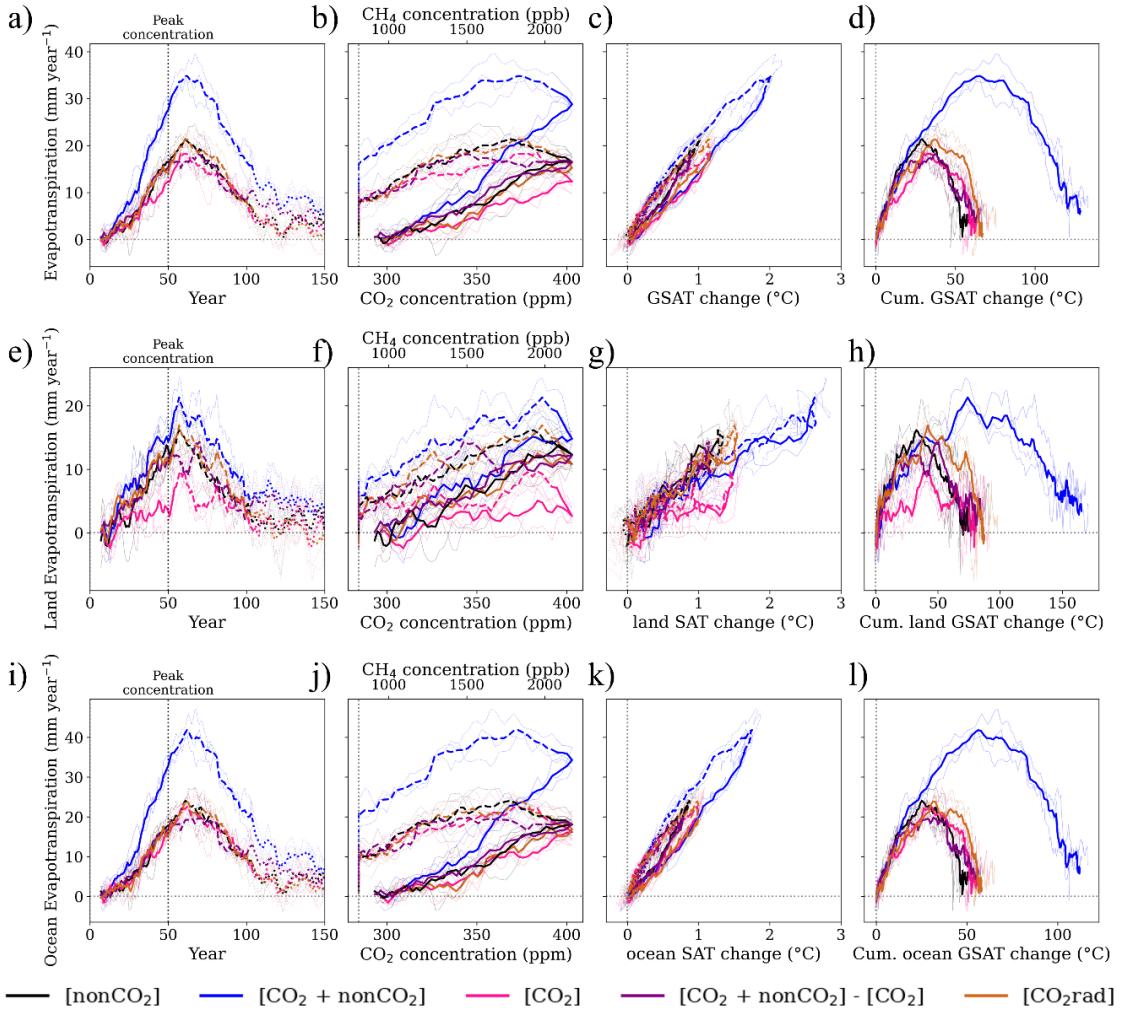
83 These studies revealed that the residual 'nonlinearity' term depends on both CO₂
84 concentration and climate change, and it can be of the same order of magnitude as the γ term.
85 Here, we propose attributing the residual nonlinearity to a cross term, associated with the
86 nonlinearity feedback χ . Although many recent studies continued to attribute χ to the γ
87 feedback—partly due to the absence of the [CO₂rad] experiment in some experimental
88 designs, and also because this approach has been widely established in earlier research
89 (Friedlingstein et al., 2003, 2006)—we show that these metrics become less well-defined when
90 examining the effects of both CO₂ and non-CO₂ GHGs on the carbon cycle.

92

93 *****

94 **[Comment 2]**

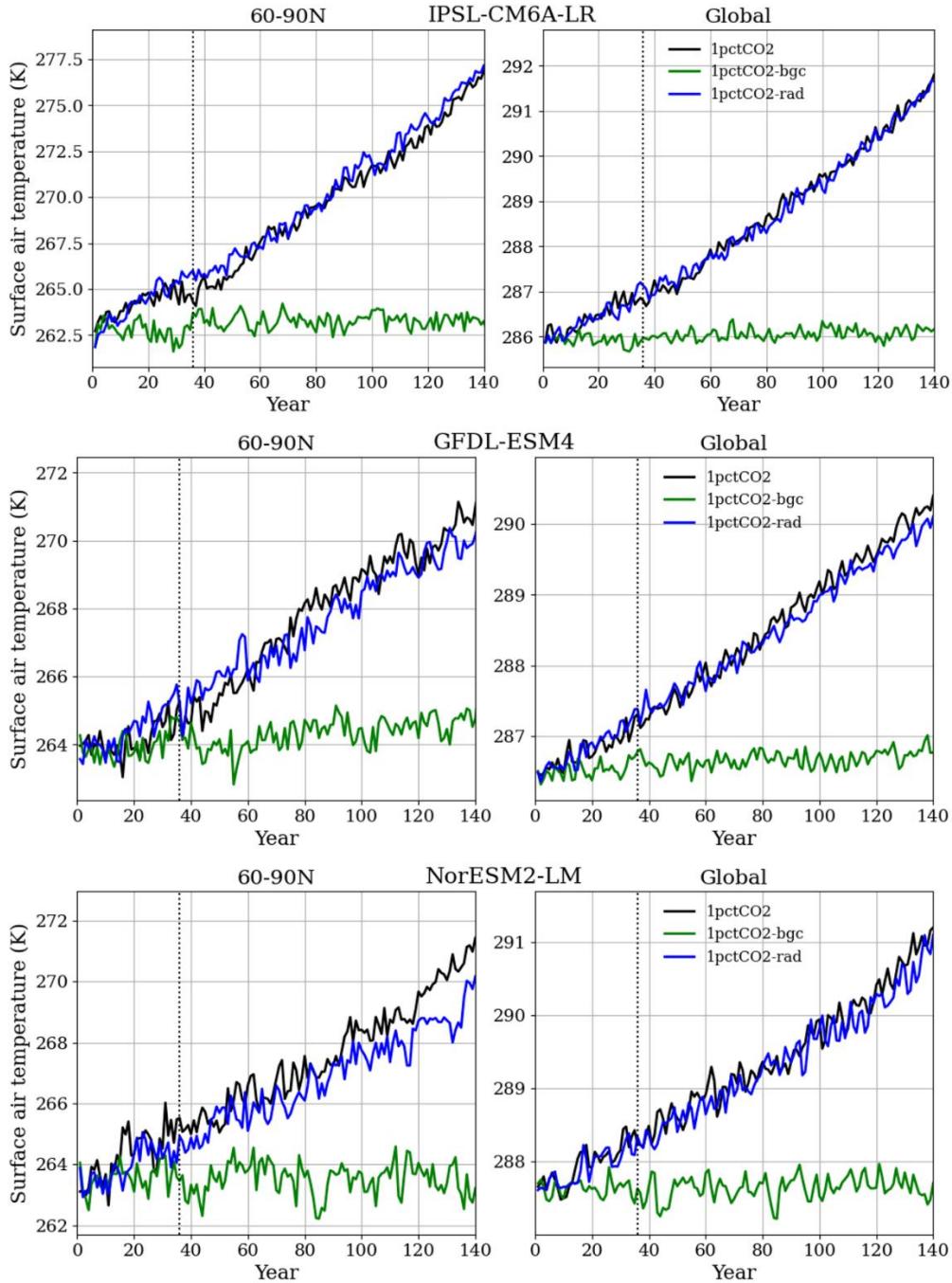
95 In the section on the physical climate (section 3.1), the strongest warming is found in
96 [CO2rad], but it is not explained why. [CO2rad] is warmer, particularly in the Arctic, than both
97 [CO2] and [nonCO2], if I am not mistaken. Results show no very strong CO2 physiological
98 warming in [CO2bgc], but nevertheless the CO2 physiological warming is used to explain the
99 differences in simulations several times (e.g. lines 221-222), and it remains completely unclear
100 to me why then [CO2rad] is the warmest simulation? **In previous studies, the strongest CO2**
physiological warming was found in the Arctic region for CMIP5 ESMs (Park et al. 2020),


102 **with significant regional SAT contributions. This study, which includes the predecessor**
103 **ESM IPSL-CM5A-LR, could be mentioned in the context of the CO₂ physiological**
104 **warming.** In the present study, the authors find the CO₂ induced total warming smaller than
105 the radiative warming alone in high latitudes (line 224, Fig. S5e), which is opposite from the
106 results of the Park et al. study. This needs at least to be mentioned and if possible some
107 explanation should be provided (the authors mention differences in snow albedo as an
108 explanation, but this is rather a consequence than a cause of the different surface
109 temperatures?).

110

111 **[Response]**

112 Indeed, we completely missed this point in the original manuscript. In the revised
113 version, we added discussion on the larger warming in the [CO₂rad] compared to the [CO₂]
114 experiment. We added some discussion, including a comparison with the findings of Park et
115 al. (2020). We also revised Fig. S3 to include the [CO₂rad] - [CO₂] combination.


116 We tested several potential mechanisms that could lead to a larger warming in
117 [CO₂rad] compared to the [CO₂] experiment. Particularly, Park et al. (2020) describe two
118 contrasting effects of CO₂ fertilisation: (1) CO₂ leads to reduction in the stomatal conductance,
119 which in its turn decreases evaporative cooling, and (2) CO₂ leads to higher leaf area index,
120 which (i) increases evaporative cooling and (ii) decreases albedo, which also leads to warming.
121 We cannot approve either of these mechanisms because land evaporation is slightly higher in
122 the [CO₂rad] experiment (Fig S5).

123
124 **Figure S5. (a-d) Global, (e-h) land and (i-l) ocean annually-averaged changes in**
125 **evapotranspiration (mm year⁻¹) as a function of (a, e, i) time (year), (b, f, j) CO₂**
126 **concentration (ppm) / CH₄ concentration (ppb, only for [nonCO₂]), (c, g, k) GSAT (°C)**
127 **and (d, h, l) cumulative GSAT (°C).**

128 The behaviour of the IPSL-CM6A-LR model remains the same in other similar

129 experiments. Comparison of CMIP6 1pctCO₂ (fully-coupled experiment with 1% CO₂ increase
130 per year) and 1pctCO₂-rad (same but radiatively-coupled) shows that, in agreement with our
131 results, the fully coupled experiment produces a slightly higher surface air temperature
132 increase, especially in the northern high latitudes, at moderate CO₂ levels (Figure R1). Similar
133 behaviour can be seen in the GFDL-ESM4 simulations but is absent in the NorESM2-LM. As
134 noted by the Reviewer, the ensemble size in our study is small and the effects of the model's
135 internal variability should be considerable.

136

137 **Figure R1.** Time series of (left) northern high-latitude ($>60^{\circ}$ N) and (right) global surface
 138 air temperature increase (K) in the radiatively-, biogeochemically- and fully-coupled
 139 1pctCO₂ experiments by selected CMIP6 ESMs. The vertical dotted line indicates year,
 140 when the experiment's CO₂ concentration is nearly equal to the maximum CO₂
 141 concentration (403 ppm) of this study.

142

143 We have added the following discussion of the differences between our results and
 144 those of Park et al. (2020).

145 The combined effects of CO₂ physiological and radiative forcing do not lead to more
146 warming, as the radiative forcing alone ([CO₂rad] experiment) leads to a slightly higher global
147 temperature increase compared to the coupled [CO₂] experiment (Fig. 2a, b). This
148 temperature difference is particularly evident in the Arctic region (Fig. S3a). Our findings differ
149 from those of a CMIP5 intercomparison study, which reported that CO₂ physiological warming
150 amplifies the Arctic warming (Park et al., 2020). The study showed that the CO₂ physiological
151 effect contributes to high-latitude warming by reducing evaporative cooling due to stomatal
152 closure under elevated CO₂ levels. In contrast, we observe higher evapotranspiration in the
153 [CO₂rad] compared to the [CO₂] experiment (Fig. S5), which is probably a consequence of the
154 lower warming in the [CO₂] experiment. In our study, the greater warming in the [CO₂rad]
155 experiment may be driven by increased surface albedo, especially over the Arctic Ocean (Fig.
156 S3b). While the underlying causes remain unclear, this pattern appears consistent in other
157 experiments conducted with IPSL-CM6A-LR under moderate CO₂ levels (not shown).
158 Because the ensemble size in our study is limited and the effects of the model's internal
159 variability should be considerable, future research should validate the robustness of our
160 findings with larger ensemble simulations.

161
162

163 *****

164 **[Comment 3]**

165 Table 1 is somewhat confusing. Column 4 refers only to beta and gamma such that
166 both experiments [CO₂rad] and [CO₂]-[CO₂bgc] appear to be the same (they include the
167 carbon cycle feedback “CO₂ gamma”), but it is not mentioned that the cross-term is present
168 in [CO₂]-[CO₂bgc]. The same is true for [nonCO₂] and [CO₂bgc+nonCO₂]-[CO₂bgc]. Also, in
169 the 5th column the only term listed for [CO₂]-[CO₂bgc] is the cross term, while the actual
170 gamma-term is missing. Again, the same is true for [CO₂bgc+nonCO₂]-[CO₂bgc]. In the
171 footnotes, the terms $\Delta U_{\gamma, \text{CO2physiological}}$ and $\Delta U_{\beta\gamma, \text{CO2physiological}}$ are not defined anywhere. I would
172 suggest to just say that the warming from the physiological CO₂ forcing is assumed to be
173 negligible.

174

175 **[Response]**

176 Columns 4 (“Included carbon cycle feedback”) and 5 (“Included carbon cycle terms
177 from Eq.2”) in the original manuscript included such information, and apparently column 4

178 adds more confusion than clarity to the description of the experimental design. Thus, in the
179 revised manuscript we delete it.

180 As the Reviewer pointed out, the terms in column 5 had errors on the included terms,
181 which is now corrected. We also remove the original explanation on the $\Delta U_{Y,CO_2\text{physiological}}$ and
182 $\Delta U_{\beta Y,CO_2\text{physiological}}$ terms and added the following instead:

183 *according to equations by Etminan et al. (2016), warming from the physiological CO₂
184 forcing is assumed to be negligible.
185

186 *****

187 **[Comment 4]**

188 In the abstract (line 21-22), even if Arora et al 2020 and Schwinger et al. 2014, did not
189 use the term “cross-term” but “non-linearity”, the results are consistent with these studies. So
190 I would suggest adding “consistent with previous studies that considered CO₂ forcing only”.

191 **[Response]**

192 We agree with the suggestion and revised the abstract accordingly.

193 We introduce a framework, consistent with previous studies that focused exclusively
194 on CO₂ forcing, to separate the carbon-climate feedback into the temperature and cross terms.
195 Our findings reveal that these feedback terms are comparable in magnitude for the global
196 ocean. This underscores the importance of considering both terms in carbon cycle feedback
197 framework and climate change mitigation strategies.
198

199 *****

200 **Specific comments**

201 **[Comment 1]**

202 Equation 2: It might be pertinent to cite Schwinger et al. 2014 here, who used the
203 Taylor expansion to define “nonlinearity” of carbon cycle feedbacks. Please double check the
204 factor 1/2 in the cross-term (also in Equation 5), which is wrong I believe (only the quadratic
205 terms have the factor of 1/2).

206 **[Response]**

207 As suggested, we added the citation, changing text to:

208 Following Schwinger et al. (2014) the formulation can be expanded to a Taylor series...

209 Besides we agree that the factor of 1/2 is wrong here, removed.

210 *****

211 **[Comment 2]**

212 Equations 3-4: Why are the quadratic terms included here? They cannot be quantified,
213 so they belong to the residual term in the context of this study.

214 **[Response]**

215 We respectfully disagree, because via our analysis, we conclude that second-order
216 terms (quadratic terms) cannot be neglected. We think it is necessary to show them
217 consistently with the quadratic term that is needed to define the cross term (ΔU_χ), as shown
218 below.

$$219 \Delta U_\beta = \frac{\partial U}{\partial C_{CO_2}} \Delta C_{CO_2} + \frac{1}{2} \frac{\partial^2 U}{\partial C_{CO_2}^2} (\Delta C_{CO_2})^2 + Res., \quad (7)$$

$$220 \Delta U_\gamma = \frac{\partial U}{\partial T} \Delta T + \frac{1}{2} \frac{\partial^2 U}{\partial T^2} \Delta T^2 + Res., \quad (8)$$

$$221 \Delta U_\chi = \frac{\partial^2 U}{\partial C_{CO_2} \partial T} \Delta T \Delta C_{CO_2} + Res.. \quad (9)$$

222

223 *****

224 **[Comment 3]**

225 Line 19-20: Please double check the sentence: Shouldn't this be the other way around
226 – “Non-CO₂ forcing primarily affects temperature driven feedbacks...” or did I misunderstand
227 something here?

228 **[Response]**

229 This indeed should be the other way around, now corrected.

230 CO₂ forcing affects both carbon-climate and carbon-concentration feedbacks, whereas non-
231 CO₂ gases influence only the carbon-climate feedback.

232 *****

233 **[Comment 4]**

234 Line 22: It is a bit unclear what “both components” refers to. Also, non-CO₂ forcing are
235 usually considered in Earth system modelling, e.g., in SSP scenarios. Please reword this
236 sentence to make the main conclusion of this paper clearer.

237 **[Response]**

238 We changed the wording to “feedback terms” to be consistent with the previous
239 sentence. We further reworded the last sentence of the abstract by rewording “considered in
240 Earth system modelling” to “considered in carbon cycle feedback framework”. Now it reads as
241 follows:

242 Our findings reveal that these feedback terms are comparable in magnitude for the
243 global ocean. This underscores the importance of considering both terms in carbon cycle
244 feedback framework and climate change mitigation strategies.

245
246
247 *****

248 **[Comment 5]**

249 Line 75-81: “like many contemporary models” could be made more specific by saying
250 “like all other ESMs participating in CMIP6” or similar. Generally, I think this paragraph is not
251 necessary here. These are idealized concentration-driven experiments, so why discuss the
252 lack of CH₄ and N₂O emission-driven capability in the Introduction? Particularly, since a
253 section on “limitations” exists at the end of the manuscript. I would suggest deleting this
254 paragraph and move parts of the text to Section 4.

255 **[Response]**

256 We followed the Reviewer’s suggestion by deleting this paragraph and moving part of
257 it to the section on study limitations as follows:

258 However for this study, the use of the model is justified because current changes in
259 CH₄ and N₂O concentrations are primarily driven by anthropogenic sources, suggesting that
260 the absence of interactive modules of natural sink/source processes does not significantly
261 affect the representation of natural variability trends for the CH₄ and N₂O concentration
262 (Nakazawa, 2020; Palazzo Corner et al., 2023; Zhu et al., 2013).

263
264 *****

265 **[Comment 6]**

266 Line 210-214: Although the physiological warming might be “significant” it is still quite
267 small. Also, I would suggest being more careful here (and elsewhere in the manuscript), since
268 the ensemble size is small and decadal scale variability can still be present in the ensemble

269 mean. For example, the “significant CO₂ physiological warming” in [CO₂bgc] over “the high
270 latitudes of land and ocean during stabilization period” could very well be an effect of AMOC,
271 which happens to be significantly stronger over much of the stabilization period of [CO₂bgc]
272 compared to [piControl] in two of three ensemble members (Fig. S1a).

273 **[Response]**

274 We agree and, thus, changed the paragraph to include a more careful statement.

275 The CO₂ physiological warming that can be quantified by comparing [CO₂bgc] with
276 [piControl] is small (green line in Fig. 2). Spatially, some differences are ubiquitous over land,
277 e.g., CO₂ physiological warming persists over Eurasia during the ramp-up period, and over
278 the high latitudes of both land and ocean during the stabilisation period (Fig. S3a). A larger
279 ensemble size of model simulations would be required to investigate these differences more
280 thoroughly. In our following analysis on carbon cycle feedbacks, we assume the CO₂
281 physiological warming to be negligible.

282

283 *****

284 **[Comment 7]**

285 Line 219: “... the higher sensitivity to non-CO₂ forcing compared to CO₂ forcing”. This
286 should be the other way round (SAT is higher under CO₂ forcing)?

287 **[Response]**

288 Indeed, this should be the other way round, corrected.

289

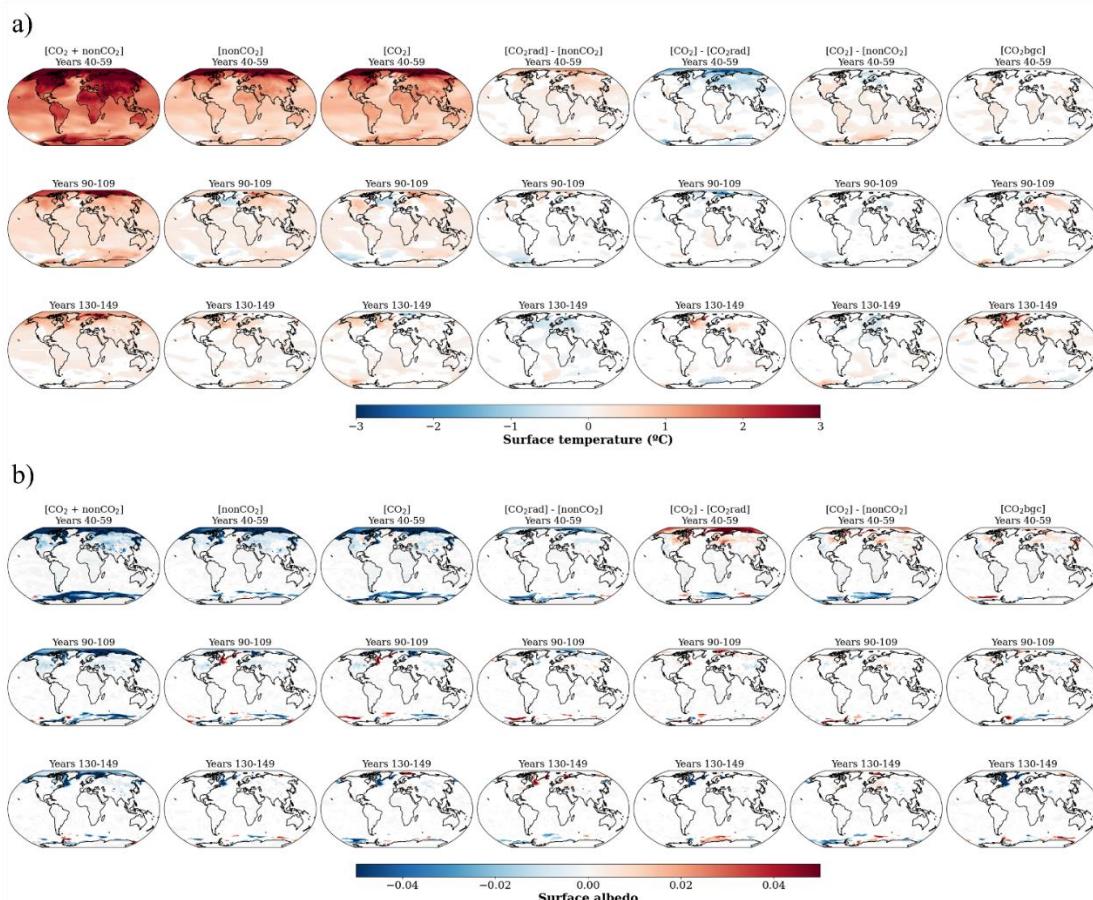
290 *****

291 **[Comment 8]**

292 Line 220-221: “The combined effect of CO₂ physiological and radiative forcing leads
293 to more warming in the coupled [CO₂] experiment compared to both the [CO₂rad] experiment.”
294 I guess the “both” should be deleted? Also, I cannot see this in Fig 2a, here [CO₂rad] shows
295 a stronger warming than [CO₂]. This is consistent with the figures in the supplementary, which
296 also show that [CO₂rad] seems to be warmer than both [CO₂] and [nonCO₂], particularly in
297 the high latitudes (Fig S3a). What is the reason for this? Also, as mentioned above, this is
298 different from the CMIP5 study of Park et al. 2020.

299 **[Response]**

300 We deleted the unnecessary “both” term. We agree with the comment and revised the
301 paragraph, as described in our response to General comment 2.


302
303 *****

304 **[Comment 9]**

305 Line 223-224: “...the CO₂-induced total surface warming is larger than CO₂-induced
306 radiative warming almost everywhere, except for the high northern latitudes over the land and
307 ocean (Fig. S3).” I can’t see this from Fig S3, because [CO₂]-[CO₂rad] is not shown there.
308 Again, the most striking difference is that [CO₂rad] is warmer than [nonCO₂], particularly in
309 high latitudes (and by comparison with the next column also warmer than [CO₂] in the high
310 latitudes. What is the reason for this difference?

311 **[Response]**

312 We added the [CO₂]-[CO₂rad] experiment to Fig. S3 in the revised manuscript version.
313 We also revised the discussion, as described in our response to General comment 2.

314
315 **Figure S3. Spatial variation of three-member-ensemble mean changes in (a) surface**
316 **temperature (°C) and (b) surface albedo averaged over 20 years at the end of (first rows)**

317 ramp-up, (middle rows) ramp-down, and (bottom rows) stabilisation phases relative to
318 piControl under selected scenarios. We draw only grids significantly different from
319 piControl ($p < 0.1$ based on t test, N=60) and between [CO₂], [CO₂rad] and [nonCO₂]
320 experiments using three ensemble members ($p < 0.1$ based on t test, N=60).

321

322 *****

323 **[Comment 10]**

324 Line 238-243: This paragraph is very confusing. It seems to repeat things that have
325 been explained in the Methods section, but in a way that I doubt is helpful for the reader. I
326 would suggest either rewording and expanding this paragraph or deleting it. Again, the terms
327 $\Delta U_{\gamma, \text{CO2physiological}}$ and $\Delta U_{\beta\gamma, \text{CO2physiological}}$ have never been defined in the manuscript.

328 **[Response]**

329 We now deleted the paragraph, as in section 3.1 we state that we assume CO₂
330 physiological warming to be negligible.

331

332 *****

333 **[Comment 11]**

334 Table 2: While CO₂ (and non-CO₂ GHG) concentrations are all the same in the
335 different concentration driven experiments, this is not the case for the temperature increase.
336 For example, SAT is 10-15% lower for [nonCO₂] compared to [CO₂] and [CO₂rad] (estimated
337 from Fig.2). Therefore, I am wondering if it would not make more sense to give values for
338 gammas in this table? I would expect $\Delta U_{\gamma, \text{nonCO2}}$ be somewhat lower than $\Delta U_{\gamma, \text{CO2rad}}$ just
339 because of the lower temperature increase, while it is actually gamma which makes the most
340 useful comparison between the simulations. More importantly, how are the cross-term carbon
341 uptakes (first line in the lower part of the table) calculated? Shouldn't this be the difference
342 between the second and fourth line of the upper part of the table? I cannot see this is the case.

343 **[Response]**

344 We chose to report values of cumulative fluxes rather than those of the feedback
345 parameter because we wanted to show the changes for ramp-up, ramp-down and stabilisation
346 periods. Estimation of the feedback parameter values for the end of the ramp-up period is
347 possible and we included it in the newly added Table S1. We also added a column with
348 experiment's peak temperatures (mean temperature at the end of ramp-up period) to Table 2.

349 However, due to the lagged responses of both temperature and carbon fluxes,
350 estimation of feedback parameters for the ramp-down period is more challenging. Furthermore,

351 we would face numerical issues for calculating carbon cycle feedback parameters for
 352 stabilisation and total periods.

353 The newly added Table S1 (below) shows larger negative γ for land and smaller
 354 negative γ for ocean in the [CO₂rad] compared to [nonCO₂] experiment, but these differences
 355 are not statistically significant.

356 We confirmed some errors in the table for the means of the cross terms. We corrected
 357 them in the revised manuscript.

358 **Table 2. Cumulative CO₂ and climate change-driven changes in the land and ocean**
 359 **carbon fluxes (GtC), shown as three- member ensemble mean. The \pm indicates one**
 360 **standard deviation among the three members. Note that all experiments are analysed**
 361 **relative to their [piControl] counterparts.**

Experiment	Max. warming (K)*	Terms	Years 1-50 (ramp-up)		Years 51-100 (ramp-down)		Years 101-150 (stabilisation)		Total	
			Land	Ocean	Land	Ocean	Land	Ocean	Land	Ocean
[CO ₂ bgc]	0.1±0.0	$\Delta U_{\beta,CO_2}$	179.3±2.2	103.8±0.7	16.3±6.0	19.7±1.0	106.3±0.4	32.1±0.8	59.4±1.8	53.4±0.9
[CO ₂ rad]	1.1±0.1	$\Delta U_{\gamma,CO_2}$	18.6±2.4	2.4±0.2	4.5±5.7	0.0±1.4	11.4±4.0	0.3±1.9	2.2±2.0	2.1±0.6
[nonCO ₂]	0.9±0.1	$\Delta U_{\gamma,nonCO_2}$	14.8±3.6	2.3±1.0	1.3±6.0	0.5±1.3	10.2±2.4	1.3±0.5	2.5±2.9	1.6±0.2
[CO ₂] - [CO ₂ bgc]	1.0±0.0	$\Delta U_{\gamma,CO_2}$ + $\Delta U_{\chi,CO_2}$	14.7±1.0	4.5±0.2	3.8±3.0	1.4±1.0	8.2±1.9	0.6±0.5	3.8±3.1	5.5±1.4
		$\Delta U_{\chi,CO_2}$	3.9±2.1	2.2±0.4	0.7±7.3	1.4±0.5	3.2±5.9	0.2±2.3	1.6±5.0	3.4±2.0
		$\Delta U_{\chi,nonCO_2}$	3.5±1.5	1.6±1.0	2.8±7.9	0.1±1.1	1.6±1.5	1.0±1.3	2.0±4.0	2.5±1.0
		$\Delta U_{\gamma,CO_2}$ - $\Delta U_{\gamma,nonCO_2}$	3.8±5.0	0.1±0.9	3.2±3.6	0.5±0.9	1.2±2.6	1.0±2.2	0.3±2.7	0.5±0.7
		$\Delta U_{\chi,CO_2}$ - $\Delta U_{\chi,nonCO_2}$	0.4±3.5	0.6±0.7	3.5±3.4	1.6±1.0	1.6±7.4	1.3±3.3	3.6±5.5	1.0±2.8

362 * defined as the mean Δ GSAT during years 41-60.

363 **Table S1. Changes in the carbon cycle feedback parameters for land and ocean at the**
 364 **end of the ramp-up period, shown as three- member ensemble mean. The \pm indicates**
 365 **one standard deviation among the three members. We use temperature of the fully**
 366 **coupled experiments to estimate γ and χ feedbacks.**

Experiment	Terms	Years 1-50 (ramp-up)	
		Land	Ocean
[CO ₂ bgc]	β_{CO_2} (GtC ppm ⁻¹)	1.51 ± 0.02	0.88 ± 0.01
[CO ₂ rad]	γ_{CO_2} (GtC K ⁻¹)	-17.02 ± 1.44	-2.17 ± 0.14
[nonCO ₂]	γ_{nonCO_2} (GtC K ⁻¹)	-16.74 ± 4.12	-2.58 ± 1.19
[CO ₂] - [CO ₂ bgc] - [CO ₂ rad]	χ_{CO_2} (GtC ppm ⁻¹ K ⁻¹)	0.03 ± 0.02	-0.02 ± 0.0
[nonCO ₂ bgc] - [CO ₂ bgc] - [nonCO ₂]	χ_{nonCO_2} (GtC ppm ⁻¹ K ⁻¹)	0.03 ± 0.01	-0.01 ± 0.01

367
 368 *****

369 **[Comment 12]**

370 Line 282-284: As mentioned above, it is a choice to “attribute” the cross-term to the
371 carbon-climate feedback, which makes sense in the context of previous studies. But I don’t
372 see why this would be necessary, and I would encourage the authors to drop this attribution
373 and just go ahead with beta, gamma, and the cross-term (as mentioned above, maybe
374 introduce a new symbol for the cross term?).

375 **[Response]**

376 We thank the Reviewer for the encouragement. We have divided the original "Carbon-
377 Climate Feedback" section by creating a new section titled "Nonlinearity in Carbon Cycle
378 Feedback." Additionally, we introduce the symbol χ to represent the cross term.

379

380 *****

381 **[Comment 13]**

382 Line 304: “larger climate change driven carbon source” is not precise. It is rather a
383 larger climate change driven reduction of the ocean sink. The ocean remains a sink throughout.
384 Same comment applies for line 312.

385 **[Response]**

386 Revised accordingly.

387 Over ocean, the contribution from the χ term leads to a greater reduction in the carbon
388 sink driven by climate change (Fig. 3).

389 ..

390 Spatially, while the Southern Ocean remains the largest ocean carbon sink in all
391 considered experiments involving atmospheric CO₂ changes, it, along with the Atlantic Ocean,
392 undergoes the largest climate change-driven reduction in carbon sink (Fig. 4).

393

394 *****

395 **[Comment 14]**

396 Line 324: Why would reducing non-CO₂ GHG only change ΔU_Y ? By changing
397 temperature, the cross-term would be affected, too.

398 **[Response]**

399 Agreed, changed to “implies alteration of ΔU_Y and ΔU_X terms.”

400

401 *****

402 **[Comment 15]**

403 Line 369-370: Again, the highest GSAT is found in [CO2rad] which is inconsistent with
404 this conclusion.

405 **[Response]**

406 We removed this sentence from the Conclusions in the revised manuscript.

407

408 **Technical comments**

409 **[Comment 1]**

410 Line 37: delete “over”

411 **[Response]**

412 Deleted

413 *****

414 **[Comment 2]**

415 Line 69: consider changing to “to clarify whether the climate responses to declining
416 CO2 and non-CO2 GHGs differ globally and regionally.”

417 **[Response]**

418 Changed to the suggested formulation.

419 *****

420 **[Comment 3]**

421 Line 86: Place reference to Boucher et al. 2020 after the model name, not after CMIP.
422 Replace CMIP by CMIP6

423 **[Response]**

424 Changed accordingly.

425 *****

426 [Comment 4]

427 Line 96: Confusing sentence, please consider rewording. Maybe "... between a model
428 experiment with perturbed GHG concentration but fixed sea surface and ice temperatures and
429 a control simulation with pre-industrial GHG concentrations." or similar.

430 [Response]

431 Changed to the suggested formulation.

432

433 *****

434 [Comment 5]

435 Line 108: "referred to" could be understood as if the effective concentrations are used
436 in the text and figures. I would suggest rewording this sentence.

437 [Response]

438 We reworded the second half of the sentence, which now reads:

439 The effective concentrations of CH₄ and N₂O are used as input to the radiative transfer scheme
440 of the climate model throughout the rest of this study. In the text and figures, these are
441 presented as the actual (equivalent) concentrations.

442 *****

443 [Comment 6]

444 Line 156: Delete "atmospheric CO₂ induced".

445 [Response]

446 Deleted.

447

448 *****

449 [Comment 7]

450 Line 199: thermostatic -> thermosteric

451 [Response]

452 Corrected.

453

454 *****

455 **[Comment 8]**

456 Line 201: Consider replacing “under considered timescale” by “within the time-horizon
457 considered here” or similar.

458 **[Response]**

459 Changed as suggested.

460

461 *****

462 **[Comment 9]**

463 Line 250: “... which induces carbon sink...” -> “which represents the CO₂ induced
464 carbon sink...”

465 **[Response]**

466 Changed as suggested.

467

468 *****

469 **[Comment 10]**

470 Line 254: Complicated sentence. Why not say “Over the ocean beta is positive (carbon
471 sink) in all regions ...”

472 **[Response]**

473 Changed, as suggested. The sentence now reads:

474 Over the ocean β is positive (carbon sink) in all regions during the ramp-up period (Fig.
475 4).

476

477 *****

478 **[Comment 11]**

479 Line 278: What do you mean by “prolonged duration of beta”? Please clarify.

480 **[Response]**

481 Changed to “the extended period of large β influence”.

482

483 *****

484 **[Comment 12]**

485 Line 286: Please spell out what “equivalent” means (within one standard deviation?).

486 **[Response]**

487 Added (within one standard deviation uncertainty range).

488 *****

489 **[Comment 13]**

490 Line 287: Remove subscript betas before “in Table 2”.

491 **[Response]**

492 Corrected

493

494 *****

495 **[Comment 14]**

496 Line 295: the gamma -> gamma

497 **[Response]**

498 Corrected.

499 *****

500 **Reviewer references**

501 Park, SW., Kim, JS. & Kug, JS. The intensification of Arctic warming as a result of CO₂
502 physiological forcing. *Nat Commun* **11**, 2098 (2020). <https://doi.org/10.1038/s41467-020-15924-3>

504 Schwinger, J., and Coauthors, 2014: Nonlinearity of Ocean Carbon Cycle Feedbacks
505 in CMIP5 Earth System Models. *J. Climate*, **27**, 3869–3888, <https://doi.org/10.1175/JCLI-D-13-00452.1>.

507 Zickfeld, K., M. Eby, H. D. Matthews, A. Schmittner, and A. J. Weaver, 2011:
508 Nonlinearity of Carbon Cycle Feedbacks. *J. Climate*, **24**, 4255–4275,
509 <https://doi.org/10.1175/2011JCLI3898.1>.

510 **References**

511 Arora, V. K., Boer, G. J., Friedlingstein, P., Eby, M., Jones, C. D., Christian, J. R., Bonan, G.,
512 Bopp, L., Brovkin, V., Cadule, P., Hajima, T., Ilyina, T., Lindsay, K., Tjiputra, J. F., and Wu, T.:
513 Carbon–Concentration and Carbon–Climate Feedbacks in CMIP5 Earth System Models, *J. Climate*, 26, 5289–5314, <https://doi.org/10.1175/JCLI-D-12-00494.1>, 2013.

515 Boucher, O., Halloran, P. R., Burke, E. J., Doutriaux-Boucher, M., Jones, C. D., Lowe, J.,
516 Ringer, M. A., Robertson, E., and Wu, P.: Reversibility in an Earth System model in response
517 to CO₂ concentration changes, *Environ. Res. Lett.*, 7, 024013, <https://doi.org/10.1088/1748-9326/7/2/024013>, 2012.

519 Chimuka, V. R., Nzotungicimpaye, C.-M., and Zickfeld, K.: Quantifying land carbon cycle
520 feedbacks under negative CO₂ emissions, *Biogeosciences*, 20, 2283–2299,
521 <https://doi.org/10.5194/bg-20-2283-2023>, 2023.

522 Etminan, M., Myhre, G., Highwood, E. J., and Shine, K. P.: Radiative forcing of carbon dioxide,
523 methane, and nitrous oxide: A significant revision of the methane radiative forcing,
524 *Geophysical Research Letters*, 43, 12,614–12,623, <https://doi.org/10.1002/2016GL071930>,
525 2016.

526 Friedlingstein, P., Dufresne, J.-L., Cox, P. M., and Rayner, P.: How positive is the feedback
527 between climate change and the carbon cycle?, *Tellus B: Chemical and Physical Meteorology*,
528 <https://doi.org/10.3402/tellusb.v55i2.16765>, 2003.

529 Friedlingstein, P., Cox, P., Betts, R., Bopp, L., von Bloh, W., Brovkin, V., Cadule, P., Doney,
530 S., Eby, M., Fung, I., Bala, G., John, J., Jones, C., Joos, F., Kato, T., Kawamiya, M., Knorr,
531 W., Lindsay, K., Matthews, H. D., Raddatz, T., Rayner, P., Reick, C., Roeckner, E., Schnitzler,
532 K.-G., Schnur, R., Strassmann, K., Weaver, A. J., Yoshikawa, C., and Zeng, N.: Climate–
533 Carbon Cycle Feedback Analysis: Results from the C4MIP Model Intercomparison, *J. Climate*,
534 19, 3337–3353, <https://doi.org/10.1175/JCLI3800.1>, 2006.

535 Nakazawa, T.: Current understanding of the global cycling of carbon dioxide, methane, and
536 nitrous oxide, *Proceedings of the Japan Academy, Series B*, 96, 394–419,
537 <https://doi.org/10.2183/pjab.96.030>, 2020.

538 Palazzo Corner, S., Siegert, M., Ceppi, P., Fox-Kemper, B., Frölicher, T. L., Gallego-Sala, A.,
539 Haigh, J., Hegerl, G. C., Jones, C. D., Knutti, R., Koven, C. D., MacDougall, A. H.,
540 Meinshausen, M., Nicholls, Z., Sallée, J. B., Sanderson, B. M., Séférian, R., Turetsky, M.,
541 Williams, R. G., Zaehle, S., and Rogelj, J.: The Zero Emissions Commitment and climate
542 stabilization, *Frontiers in Science*, 1, <https://doi.org/10.3389/fsci.2023.1170744>, 2023.

543 Park, S.-W., Kim, J.-S., and Kug, J.-S.: The intensification of Arctic warming as a result of CO₂
544 physiological forcing, *Nature Communications*, 11, 2098, <https://doi.org/10.1038/s41467-020-15924-3>, 2020.

546 Piao, S., Wang, X., Park, T., Chen, C., Lian, X., He, Y., Bjerke, J. W., Chen, A., Ciais, P.,
547 Tømmervik, H., Nemani, R. R., and Myneni, R. B.: Characteristics, drivers and feedbacks of
548 global greening, *Nature Reviews Earth & Environment*, 1, 14–27,
549 <https://doi.org/10.1038/s43017-019-0001-x>, 2020.

550 Schwinger, J., Tjiputra, J. F., Heinze, C., Bopp, L., Christian, J. R., Gehlen, M., Ilyina, T., Jones,
551 C. D., Salas-Mélia, D., Segschneider, J., Séférian, R., and Totterdell, I.: Nonlinearity of Ocean
552 Carbon Cycle Feedbacks in CMIP5 Earth System Models, *Journal of Climate*, 27, 3869–3888,
553 <https://doi.org/10.1175/JCLI-D-13-00452.1>, 2014.

554 Zhu, X., Zhuang, Q., Gao, X., Sokolov, A., and Schlosser, C. A.: Pan-Arctic land-atmospheric
555 fluxes of methane and carbon dioxide in response to climate change over the 21st century,
556 Environmental Research Letters, 8, 045003, <https://doi.org/10.1088/1748-9326/8/4/045003>,
557 2013.

558 Zickfeld, K., Eby, M., Matthews, H. D., Schmittner, A., and Weaver, A. J.: Nonlinearity of
559 Carbon Cycle Feedbacks, Journal of Climate, 24, 4255–4275,
560 <https://doi.org/10.1175/2011JCLI3898.1>, 2011.

561