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Response To Reviewer #2

Overall Comments

The PIF phenomenon consisting in the presence of strong induced turbulence around a
drone-type UAV leads to significant issues in direct measurements of atmospheric param-
eters. The manuscript proposes an original way to minimize the effect of the PIF phe-
nomenon in direct measurements by hanging a sonic anemometer under the drone as a
sling load. The study is interesting, urgent, and relevant to the topic of Atmospheric Mea-
surement Techniques. The results reported by the authors can be of great interest to AMT
readers. In my opinion, the below comments can help the authors to improve significantly
the quality of the manuscript.

Response

We thank the reviewer for the positive feedback and thoughtful comments. We appreciate the recognition of
the relevance and originality of our work and the suggestions provided to further improve the quality of the
manuscript.

Reviewer Comment

1) Pages 1 and 2, Lines 7-9 and 57. The authors write that “This research aims to assess the accu-
racy and reliability of the developed measurement approach.” In my opinion, the statement that ‘“The
results demonstrate that SAMURAI-S matches the data quality of conventional setups for horizontal
wind measurements while slightly overestimating vertical turbulence components. This overestimation
increases as the wind speed increases” does not fully correspond to the purpose and results of the work.
The authors should provide quantitative data on the discrepancy between Drone Data and Mast Data as
a function of the increasing wind speed.

* We thank the reviewer for this comment. Quantitative data on the discrepancies between drone-based
and mast-based measurements as a function of increasing wind speed were already provided in Figures
12 and 13 of the original draft. Nevertheless, we acknowledge the reviewer’s suggestion to include
more explicit metrics, and we have addressed this by adding two additional comparisons. First, we
have incorporated the integral length scale, which is also relevant to the reviewer’s third question,
where its inclusion is explicitly requested.

Second, we have introduced a calculation of the uncertainty in the flux measurements, following the
methodology presented by [1, 2, 3]. This framework is now documented in Section 4.2 of the updated
manuscript. Notably, wind speed plays a significant role in the calculation of these uncertainties,
directly addressing the suggestion provided by the reviewer.

2) Page 13, Line 253, Eq. (6). This equation should be corrected as Sw into Suw.

* We have corrected the equation, replacing S, with .S, as suggested by the reviewer.



3) Pages 17 and 20, Figures 8 and 10. The sonic anemometer allows measuring actual wind speed
and actual ambient temperature with high spatial and temporal resolution. The analysis of the mea-
surement series depicted in Figures 8 and 10 should be supplemented with the correlation coefficients,
the turbulence scale data, and the distance between the sonic anemometers installed on the drone and
the mast. In addition, histograms of the discrepancy between Drone Data and Mast Data, as well as
the Cumulative Percent, which characterize the statistics of the discrepancy between the data, should
be presented. It will be interesting to readers how the measurement data differ from each other at the
actual wind speed and temperature.

We agree that a comparison of the integral length scales between the mast and drone data adds value to
the study, and the manuscript now includes this as a new figure in the manuscript. Additionally, we have
incorporated an uncertainty analysis to further enhance the discussion.

However, providing correlation coefficients and similar statistical metrics could be misleading. Readers
might, for instance, expect a correlation coefficient of 1 if the drone-mounted anemometer were perfect.
However, even with a theoretically perfect sensor, the correlation coefficient would be less than one because
the two sensors are not located at the same position. Moreover, this correlation coefficient strongly depends
on atmospheric conditions (e.g., wind speed and atmospheric stability) and would not accurately reflect the
quality of the drone-mounted sensor due to the limited spatial coherence of turbulent eddies.

After discussions with our co-authors, we do not believe that including histograms of the discrepancies
or cumulative percentage statistics is necessary. While such visualisations can facilitate qualitative analysis,
we argue that these discrepancies are more effectively characterised using kurtosis, skewness, standard
deviation estimates, and power spectral densities, which are already included in the analysis.

4) It is desirable to provide the estimated spatial resolution so that a reader could evaluate possible
applications of the reported technique.

* We sincerely appreciate the reviewer’s comment and the opportunity to provide further clarification.
However, we find it difficult to precisely define “estimated spatial resolution” in this context. The
spatial resolution of the sonic anemometer is primarily influenced by the open-path averaging process,
which in turn depends on the geometry and specific model of the instrument used.

Reviewer Summary

The manuscript can be published in Atmospheric Measurement Techniques after revision
with allowance made for the above comments. I believe that this will qualitatively improve
both the clearness of the manuscript itself and the characteristics (accuracy, reliability, etc.)
of the approach to monitoring atmospheric turbulence developed by the authors.
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Abstract. This study introduces the SAMURALI-S, a novel measurement system that incorporates a state-of-the-art sonic
anemometer combined with a multi-rotor drone in a sling load configuration, designed to overcome the limitations of tra-
ditional mast-based observations in terms of spatial flexibility. This system enables the direct measurement of 3D wind vectors
while hovering, providing a significant advantage in manoeuvrability and positional accuracy over fixed mast setups. The ca-
pabilities of the system are-were quantified through a series of 10 min to 28 min flights, conducting close comparisons of
turbulence measurements at altitudes of 30 m and 60 m against data from a 60-meter tower equipped with research-grade
sonic anemometers. The results demonstrate that SAMURAI-S matches the data quality of conventional setups for horizontal

wind measurements while slightly overestimating vertical turbulence components. This overestimation increases as-the-wind

speedinereaseswith wind speed.

1 Introduction

Since the 1960s, mast-mast- and tower-based sonic anemometry has-have been the standard for high-frequency turbulence
measurements in atmospheric boundary layer (ABL) research (Foken, 2006; Mauder et al., 2021). With continuous technolog-
ical development over the years, state-of-the-art sonic anemometers allow for in-situ—flux-estimations-in situ flux estimation
(e.g., Foken et al., 2012) and for the spectral characterization (e.g., Midjiyawa et al., 2021) of turbulence. However, reeent
several studies in ABL meteorology and wind energy, such as Fernando and Weil (2010), Mahrt (2014), or Veers et al. (2019),
highlight the limitations of those traditional tower-based measurements, emphasizing the need for more flexible approaches to
address a wider-broader range of relevant ABL processes.

Some examples illustrating mast-based measurement limitations include the study of the coherence of turbulence (Cheynet
etal., 2018), whichis-a-eritical-a key design parameter for modern wind turbines. For such an investigation, it-would-berequired
to-ereeterecting multiple 300-meter masts close to each other would be required, which is impractical. The same holds for the
detailed investigation of wind turbine wakes within a wind farm, as, e.g., explored by Porté-Agel et al. (2020), as variability in
wind speed and direction make a proper positioning of masts in such dynamic conditions practically unfeasible. Other research

topics that require alternative sensor carriers are-include the investigation of the wave boundary layer (Wu and Qiao, 2022),
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air-sea-exchange over the ocean (Taylor et al., 2018), and air-ice-sea interactions in polar regions, €.g., over open water areas
within the sea ice (Marcq and Weiss, 2012).

Airborne platforms have been used to extend the range of turbulence-related measurements. Fixed-wing uncrewed aerial
vehieles(UAVsaircraft systems (UASs), often employing multi-hole probes (Mansour et al., 2011; Wildmann et al., 2014a, b;
Baserud et al., 2016; Witte et al., 2017; Calmer et al., 2018; Alaoui-Sosse et al., 2019; Rautenberg et al., 2019), have demon-
strated their capability in turbulence sampling along the flight track across larger areas. The-However, the inability to hover

restricts their ability to

or move very slowly is

measure in situations requiring stationary point measurements or localized vertical profiling.

Conversely, tethersonde systems equipped with sonic anemometers can provide quasi-stationary measurements and are ef-
fective in vertical profiling (Ogawa and Ohara, 1982; Hobby, 2013; Canut et al., 2016). Fhese-systems—require—however;
a-considerabletogistie-However, those systems require considerable logistical effort and have clear operational limits wwith
respeet-to-regarding wind speed and atmospheric turbulencethat-, which strongly affect their controllability. Consequently,
tethered systems cannot be easily deployed in remote areas and complex terrain ;-or safely operated elese-te-near structures
and buildings, e-g--such as in urban areas or the-vieinity-of near wind turbines and wind farms.

Rotary-blade BAVs-uncrewed aerial vehicles (UAVs) offer a more suitable sensor platform for localized and stationary
measurements (Abichandani et al., 2020). Recent studies have explored the use of different methods of atmospheric flow
measurements, by-either-using-the-droneusing either the UAV’s motion and attitude as a proxy for wind estimates (Segales
et al., 2020; Gonzdlez-Rocha et al., 2020; Shelekhov et al., 2021; Wetz et al., 2021; Wildmann and Wetz, 2022), or by mounting
of-miniaturized sonic anemometers (Palomaki et al., 2017; Li et al., 2023) on the drenevehicle. Both methods show limitations
for turbulence investigations due to the limited sampling frequency and, for most small sonic anemometers, the inability to
measure the full 3D flow. First attempts of flying research-grade sonic anemometers (Hofsdf et al., 2019; Thielicke et al.,
2021) have shown promising results with-respeet-to-concerning the measurement of the mean wind speed, but full turbulence
measurement capabilities are still unproven.

One main reason is that the propeller-induced flow (PIF) by the UAV can affect and disturb the on-board flow measurements.
Mounting an extension arm +-to place the wind sensor either to the front (Hofsif et al., 2019), to the side, or above the drone
(Thielicke et al., 2021) is one obvious possibility to minimize the PIF effect. As-any-mass-outside-the-eenter-Any mass placed
outside the centre of gravity of the UAV system-will inevitably compromise flight stability and complicate flight control. Thus,
it is necessary to thoroughly investigate and characterize the PIF for appropriate sensor placement considerations (Ghirardelli
et al., 2023; Jin et al., 2024; Flem et al., 2024). The second optionto-mitigate-, which mitigates the potential PIF influence on
the measurements -witheut-heavy-impaet-on-without significantly impacting flight control and stability, is the-deptoymentof
to deploy the flow sensor as a sling load under the drone.

Based on the latter concept, this study introduces SAMURAI-S as a novel measurement system for airborne atmospheric

research using drones. To the authors’ knowledge, this represents the first attempt to deploy a research-grade sonic anemometer
as a suspended payload under a UAYV, in contrast to the conventional approach of mounting such instruments rigidly to the UAV
structure at relatively short distances (typically on the order of decimeters to a meter), as in the studies above.
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Carrying the turbulence sampling payload 18 m under a rotary-wing UAV, the sensor is elearly-located outside any measur-
able PIF effect (Flem et al., 2024). The payload consists of a research-grade-sonic anemometer, an inertial navigation system
(INS), a data acquisition unit, and a mounting frame. This design aims to overcome the abeve-mentioned-timitationslimitations
mentioned above, thus providing state-of-the-art sonic anemometry data with the added benefits of mobility, hover capability,
and adaptable positioning. This will enable detailed turbulence analysis in various settings, including observations close to
structures and in urban environments where other methods fail.

This research aims to assess the accuracy and reliability of the developed measurement approach. The methodology involves
a comparative analysis between traditional mast-mounted 3D sonic anemometers and the one suspended under the drone.
Another key aspect of this study is to evaluate the applicability of a dynamic tilt and motion compensation algorithm to account
for the inevitable motion of the payload caused by wind drag and the drone’s movements. This algorithm utilizes #n-situ-in situ
velocity and attitude data linked to the movement and orientation of the anemometer recorded by the INS. It aims to convert
sonic anemometer turbulence measurements obtained from a moving platform into a natural wind or streamline coordinate
system, as commonly used in ABL research.

The manuscript is organized as follows: Section 2 details the design of the UAV-payload system. Section 3 introduces the
algorithm developed to account for the payload motionand-it-, This section also outlines the data post-processing techniques
employed in the experimental comparison. Section 4 describes the experimental design for the-system validation, including the

measurement site and the setup of the mast instrumentation. Section 5 compares the integral and spectral flow characteristics

mast- and drone-mounted sonic anemometers. This-comparative-study-focused-on-various-aspeets-of-airflow;

derived from the

—Finally,
Section 6 summarizes the main findings of the study and concludes that SAMURAI-S provides a novel airborne instrument

platform with a large potential for effectively measuring ambient turbulent flow with unprecedented flexibility.

2 The SAMURALI-S system
2.1 Airframe

Several important design criteria guided the selection of an appropriate airframe. Turbulence measurement with a drone-
mounted sonic anemometer requires the-ability-to-liftlifting a payload of roughly 4kg. This weight estimate results from the
required components, i.e., a research-grade sonic anemometer, an inertial navigation system (INS), a battery, a data logger,
and a mounting frame. A flight time of at least 15 min to 20 min is required fer-gathering-to collect turbulent flow time
series that allow robust turbulence statistics for variances and covariances, as well as spectral analysis (Van-der Hoven; 1957
(Van der Hoven, 1957; Kaimal and Finnigan, 1994). Finally, to comply with European regulations for drone operations in the
open category, we want-wanted to limit the UAV’s maximum take-off weight (MTOW) to 25 kg, which also aids the logistical
aspects of deploying the system in the field. At the same time, we considered flight safety, stability, and precision in positioning

to-be-design-priorities—-design priorities since they are crucial across-in different real-world scenarios, e-g--operation-in-the
proximity-ef-such as operations near infrastructures, human presence, or in-complex environments.
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Figure 1. The SAMURAI-S UASinehading-, showing the Foxtech D130 octocopter (left) and the sampling payload (right). The D130 is

an x8-configuration UAV measuring approximately 1.9m x 0.7m. The payload features a cross-shaped aluminium frame, with a longer

arm (0.9 m) supporting two Here3 GNSS antennas and a shorter arm (0.6 m) holding an RM Young 81000 ultrasonic anemometer (mounted

upside down) and a Raspberry Pi 4 powered by a dedicated power bank. An IMU is positioned on the side of the anemometer. Key components

of the payload are highlighted in the figure.

To address these considerations, we opted for the Foxtech D 130 (Figure 1). This UAV has a nominal maximum payload
of 20 kg and a maximum flight time in hovering mode of up to 45 min without payload, depending on the atmospheric con-
ditions. It is equipped with eight coaxial contra-rotating propellers, where four pairs of propellers, each driven by brushless
electric motors, share the same rotational axis and are mounted on arms extending from the main body (x8 configuration). The
configuration of the propellers provides redundancy in case of a motor failure. The YAV s-frame-frame of the UAV weighs
approximately 9 kg. In its default configuration, it is powered by two 6S lithium polymer (LiPo) batteries, each with a capacity
of 22 Ah, resulting in a take-off weight of roughly 15 kg excluding the sensor payload. The UAV has-an-onboard-autopilot
anit-gmounts a Cubepilot Cube Orange -eombined-with2-GNSSautopilot unit combined with two global navigation satellite
system (GNSS) antennas (Here3). The inclusion of an open-source autopilot unit in the Foxtech D130’s standard configuration,
combined with its modular design that supports customization and easy rebuilding, ultimately led us to select this model over

other alternatives available on the market.

The UAV’s specifications are shown in Table 1.
2.2 Sensor placement

The placement of the sonic anemometer is critical for the quality of the turbulence observations, as it is-proven-has been

shown that placing the sensor at a certain distance from the propellers effectively reduces the impact of the PIF (Prudden et al.,
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Table 1. Specifications of Foxtech D130

Components Characteristics

UAV diameter (m) X height (m) 1.88 x 0.74

UAV frame’s weight (kg) 9

Propellers Foxtech Supreme C/F 2880T
Propeller diameter (m) X pitch (m) 0.71m x 0.20
Propeller’s weight (g) 8 x 90

Battery 2 x 6S1P LiPo"

Battery’s weight (kg) 2x24

Motors T-Motor U10IT"™"
ESEElectronic speed controller (ESC) ~ T-Motor Flame 80A
Autopilot Cubepilot Cube Orange™”
GNNS Here3 dual antenna
Flight Time (min) 40 to 45

T22Ah;222V;30C

** 8.6 kg maximum thrust when paired to Foxtech Supreme C/F Pro-
peller 2880T

“* ArduCopter v4.3.6 in Aug and v4.4.3 in Dec

2016; Thielicke et al., 2021; Wilson et al., 2022). However, this approach requires an-estimation-of-identifying the volume
significantly affected by the PIF, which varies with the UAV’s geometry (Guillermo et al., 2018; Lei and Cheng, 2020; Lei
et al., 2020). Moreover, the angular momentum resulting from the additional weight mounted outside the UAV’s centre of
gravity could significantly compromise flight stability.

To limit the influence of the PIF on the-velocity measurements, sensors mounted on a boom above the mean rotor plane of
UAVs have been used in the past (Palomaki et al., 2017; Shimura et al., 2018; Natalie and Jacob, 2019; Thielicke et al., 2021;
Wilson et al., 2022). This mounting configuration is designed to achieve an evenly balanced weight distribution around the
drone by aligning the sensor’s weight with the UAV’s vertical axis and centre of mass. Nevertheless, this point is true primarily
in low wind conditions. In scenarios with stronger winds, the drone must tilt further to counteract the increased drag, affecting
the initial balance and tilt angle. Finding the right boom length that effectively reduces PIF while maintaining the drone’s
manoeuvrability and determining its best orientation remains a subject of ongoing research.

Previous studies (Ghirardelli et al., 2023; Jin et al., 2024), based on the Foxtech D130, suggest that the best trade-off between
boom length and PIF reduction --while keeping the payload close to the UAV’s fuselage +-is achieved by positioning the boom
upwind, with the sensor at the boom’s end. This orientation avoids the areas significantly affected by the PIF as shown by
Ghirardelli et al. (2023). However, to fully take advantage of this configuration, it is necessary to automatically align the sensor

or UAV with the mean instantaneous wind direction, i.e. requiring an automatic flight control loop such as the "weathervaning"
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algorithm recently implemented in ArduCopter v4.4.0 (see https://ardupilot.org/copter/docs/weathervaning.html) or through
adjustments in forward flight. To the authors’ knowledge, a reliable prototype of this design has yet to be developed.

In this study, we present a novel approach, carrying the sonic payload platform as sling load 18 m under the drone,
corresponding to about 26 rotor diameters (D). This setup places the payload in a stable equilibrium state instead of mounting
it above the drone. When the payload is suspended beneath the drone, it creates a pendulum, swinging around the point of
minimal potential energy. This natural stability allows the payload to stabilize itself through its oscillations, reducing the need
for the drone to actively counteract these movementsactively. The PIF features depend more on thrust rather than UAV’s
geometry in the far field of the drone, i.e., in a distance of more than 5 D from the rotor plane, when the individual rotor
downwash regions have merged to one, (Ghirardelli et al., 2023; Flem et al., 2024). This should extend the applicability of the
payload set-up to a wider range of multi-copter platforms.

Simulations and observations were used to estimate the required vertical displacement of the wind sensor below the UAV. As
detailed in Ghirardelli et al. (2023), simulations within a domain extending 9.0 m below the drone ;revealed that the ambient
wind effectively carries away the downdrafts. Notably, airflow closely resembled free-flow conditions at this domain’s lower
boundary, directly under the drone and in-eenditions-where wind speeds surpassed 2.5ms~!. This observation was further
supported by Jin et al. (2024), which utilizes a configuration of three CW Doppler LIDARs to measure the PIF generated by
Foxtech D130 in hover. Measurements-indicated-The measurements indicated a negligible PIF distortion at a distance of 4.5 m
below the Foxtech D130, in an ambient flow of 4.0ms™!. Finally, Flem et al. (2024) showed how, for the same drone model
and in the absence of a background flow, the downdraft drops by more than 40 % in the range between 1.5m to 6 m under
the plane of the rotors. An additional empirical confirmation can be derived from visual observations of a multi-rotor drone
over the surface of a lake in low wind conditions (Flem et al., 2024), showing that the PIF of the drone does not reach the
surface with the UAV hovering at a height of 15 D above the water. To add a margin of safety, we opted to double the distance
identified in the CFD simulations.

2.3 Payload Description

The payload consists of an RM Young 81000 sonic anemometer, an SBG Elipse-D inertial navigation system (INS) equipped
with two GNSS antennas, and a Raspberry Pi 4 (RPi 4) microprocessor serving as a data logger (Figure 1 and Figure 2). The
SBG Elipse-D is a compact INS featuring a dual-antenna GNSS receiver. It includes a MEMS-based Inertial-Measurement
Unitinertial measurement unit (IMU) and uses an Extended-ialman-Filter-extended Kalman filter (EKF) to fuse inertial and
GNSS data. Table 2 and Table 3 provide key specifications of the sonic anemometer and the INS, respectively.

For the integration of the different sensors, the battery, and the data logger, we constructed a horizontal T-shaped aluminium
frame with a 0.55 m long main bar and a 1.00 m long crossbar. In addition, we added a T-shaped support leg to better protect
the sensors during landing, transport, and storage and a triangular wind vane to aid the sensor alignment with the mean wind
direction and dampen lateral and rotational oscillations around the yaw axis.

The sonic anemometer was mounted upside down in the front of this frame, with the INS attached via a custom-fitted

mounting plate to the side of its cylindrical support structure, assuring parallel alignment of both sensor coordinate systems.


https://ardupilot.org/copter/docs/weathervaning.html

INS
IMU @100 Hz | | GNSS @5Hz

Gyroscopes (3 axes) Dual Antenna

Accelerometers (3 axes)

Wind Sensor V EKF @50Hz
Ultrasonic Anemometer Logger
RM Young81000 @32Hz RPI4

Figure 2. Diagram and blueprint of the measurement and acquisition system showing the-how data flow from the sensors te-into the logger.

On the left, two main sensor outputs —INS (highlighted in blue) and the ultrasonic anemometer (highlighted in red)— are depicted as bein

stored and logged by the RPi 4 (highlighted in green). The diagram also indicates the sampling rates, namely 32 Hz for the ultrasonic

anemometer and a 50 Hz extended Kalman filter (EKF) output from the INS, which fuses data from a 100 Hz IMU signal and 5 Hz GPS

data. On the right, a schematic of the payload shows the physical placement of each component, colour-coded to match the diagram on the

left.

Table 2. Specifications of RM Young 81000 sonic anemometer.

Specifications RM Young 81000
Wind Speed Range (ms ') 0 to 40
Wind Speed Resolution (ms™ b 0.01

Wind Speed Accuracy (m s, % RMSE) 40.05, +1,
Wind Dir. Elevation Range (°) +60.0
Wind Dir. Resolution (°) 0.1

Wind Dir. Accuracy'(°) +2

Sonic Temp. Range (°C) —50 to 50
Sonic Temp. Resolution (K) 0.01

Sonic Temp. Accuracy(K) +2

Air Sample Path (m) 0.15

Output Rate (Hz) 4t0 32
Weight (kg) 1.7

*0ms™! to 30ms~" range

The crossbar of the frame served as an attachment point for two nylon ropes used to link the payload to the sides of the UAV
and a 0.94 m long baseline for the two GNSS antennas mounted on the tips of the bar. The data logger and a battery were

positioned at the tail of the frame.
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Table 3. Specifications of the SBG Ellipse-D inertia nav-

igation system with RTK aiding for airborne applications

Specifications Ellipse-D"
Horizontal position accuracy 0.01m
Vertical position accuracy 0.02m
Horizontal velocity accuracy 0.03ms™!
Vertical velocity accuracy 0.03ms™!
Pitch and Roll accuracy 0.05°
Heading accuracy 0.4°

Weight INS (including GNSS antennas) 0.3 kg

“data were logged using the sbgBasicLog-
ger program (sbgECom library v3.2.4011,
https://github.com/SBG-Systems/sbgECom)

The attachment points for the ropes are-were aligned with the pitch axis of both the UAV and the sling load (SL) frame.
The entire payload system was balanced for the sonic anemometer’s pitch by shifting the position of the crossbaras-wel-as-the
batteryand-, the battery, and the data logger. The-According to this payload design and placement, the roll motion is directly

transferred to the sonic anemometer from the dronein-contrast-to-, whereas the yaw motion s-while-results from a combination

of the drone’s dynamics and aerodynamic drag, and the pitch depends selely-on-the-balance-of-the-payload-mainly on the
ayload balance. Although the drone-payload setup behaves like a compound pendulum due to the two suspension ropes

attached to the same weight (the payload), it has been treated as a simple pendulum for simplicity. The natural oscillation
period (T) is estimated using the formula T' = 27 \/g , where [ is the length of the ropes, and g = 9.81 ms ™2 is the gravitational
acceleration. This calculation yields an oscillation period of approximately 8.5s, corresponding to a frequency of 0.12 Hz.
Preliminary analysis of the sonic data, conducted before performing the motion compensation, consistently reveals-revealed a

distinct peak at this frequency across all flights.

2.4 Flight Operation

The operation of the SAMURAI-S UAS requires a team of three: a radio control (RC) pilot, a ground control station (GCS

operator, and a payload operator. Before each flight, the UAV and the payload are positioned approximately 10 m apart. The

UAV batteries are securely connected, and a telemetry and an RC link are established. The two ropes are attached to two

release servos on the UAYV, ensuring that they are free of entanglement with the landing gear or ground obstacles. The payload

is powered on and held steady to allow proper IMU initialization and gyro calibration, Finally, the operator connects to the RPi
4 hotspot to verify data streams from the sonic anemometer and the INS, checking for stable GNSS signal and EKF solutions.
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During take-off, the payload operator holds the payload steady while the RC pilot executes a vertical ascent to an altitude
of approximately 10 m, ensuring that the ropes lift freely without entanglement. Once the ropes are taut, the payload operator
releases the payload, and the RC pilot increases the ascent speed. From this point onward, the flight typically continues in
auto-mode, following a predefined flight plan, including an algorithm to actively adjust the UAV’s heading to face the wind
(weathervaning).

Throughout the flight, the GCS operator monitors the system’s performance and payload data as long as the WiFi connection
to the RPi 4 is maintained, After completing the programmed flight plan, the RC pilot can manually or automatically trigger a

return-to-launch (RTL) command. In addition, other fail-safe mechanisms, including low battery, are set to trigger an automatic

RTL command based on preset conditions.

During landing, the RC pilot takes control as the UAV_approaches the landing area, while the payload operator prepares
to catch the payload. During the initial fast descent phase, the UAS is flown diagonally to avoid potential stability issues,
such as the vortex ring state (Chenglong et al., 2015; Talaeizadeh et al., 2020). The UAV then descends slowly, with the pilot
counteracting any swaying of the payload to ensure a smooth catch. Once the payload is secured, the GCS operator releases
the ropes via the servos. The RC pilot then increases the distance between the UAV and the payload before initiating the final
landing phase. When the UAV is landed, the payload is placed on the ground, and the data acquisition is stopped. After each
flight, the data from the payload and flight controller are downloaded and quickly checked, the UAV and payload are powered
off, and the batteries are recharged for future flights.

The system consistently performs excellently, showing no stability issues during the flight, take-off, or landing phases, even

1

under strong wind conditions of up to 15ms~".

3 Payload data processing workflow

This section outlines the methodological approach to convert the raw flow data sampled by the payload into the natural wind
vector expressed in the standard meteorological coordinate system. One primary challenge is the-handling-ef-handling asyn-
chronous raw sensor outputs-output expressed in different coordinate frames. In addition, it is necessary to compensate the
measurements-for the motion of the payload. The workflow herein presented addresses both points through a three-stage pro-
cess—first, First, the sonic and INS outputs are-were filtered to remove faulty data and outliers;-enhaneing-theirquality-and
rehiability. Next, INS-and-sonie-output-are-these outputs were synchronized, creating a unified temporal framework. Finally,
dynamic rotational and translatory transformations are-were applied to account for changes in the orientation of the payload
and its movements, which primarily come from swinging motions during hovering. For clarity, we first introduce the reference

systemsthat-, which describe the coordinates in which the data are collected and the rotations performed.
3.1 Wind vector, coordinate frames and transformation

We here define two right-handed coordinate systems to describe the motion of the payload: the inertial frame and the body

frame, denoted by the indices i, and b,, (n = 1,2,3), respectively. The inertial (or NED) frame is Earth-fixed, and its axes
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Figure 3. Panel (a) illustrates the inertial frame (NED), where the axes i1, i2, and i3 point northward, eastward, and downward, respectively.
Panel (b) depicts the body frame centred at the sonic anemometer’s sampling volume, with axes b1, bz, and b3 pointing forward, to the right,
and downward. This panel also includes the Euler angles ¢, 6, and ¢ depicting the orientation of the body frame relative to the inertial frame,

along with the relative velocity vector V2. Panel (c) illustrates how the payload is attached to the drone by two nylon ropes so that the drone’s

motion influences the payload’s body frame. This configuration causes the payload to inherit the drone’s yaw (1)) and roll (/) motions while

allowing it to pitch freely. Finally, panel (d) shows the meteorological frame used-to-represent-that represents the wind vector U, with axes
oriented-eastward, northward, and upward axes.

(1, 12, i3) are oriented northward, eastward, and downward, respectively (Figure 3a). The body frame is centred at the sonic
anemometer’s sampling volume and moves along with the payload. Its axes are defined based on the geometry of the payload,
with by pointing forward, bo to the right side, and b3 downward (e.g., Palomaki et al. 2017). Its orientation (attitude) and
movements relative to the inertial frame can be described by the Euler angles and the velocity vector measured by the INS,
respectively (Figure 3b).

To transform the raw flow measurements from body frame coordinates (Vy) to inertial frame coordinates (Vj), a rotation
matrix R(¢,0,1) is applied (Beard and McLain, 2012; Wetz et al., 2021). This matrix, defined by the roll, pitch, and yaw
angles (¢, 6, and 1), adjusts the raw wind vector to reflect the orientation of the payload relative to the inertial frame ;-and
is fully detailed in Appendix A. By subtracting the relative velocity vector VIZ-’, accounting for the movement of the body
frame relative to the inertial frame, it is in-additien—possible to eliminate any component of the velocity due to the motion
of the payload, isolating the natural wind vector in the inertial frame. The equation that accounts for both of these dynamic

corrections is expressed as:

Vi = R(¢,0,1)Vy — V. (1)

10
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A final orthogonal rotation by right angles is perfermed-needed to retrieve the wind vector (U) in the standard meteorological

coordinate frame, the natural wind coordinate system, with x, y, and z pointing east, north, and up, respectively (Figure 3c).
01 0

U=([1 0 0|V 2
00 -1

3.2 Data filtering

The sonic anemometer, providing the three wind velocity components and the sonic temperature, was set to a sampling fre-

quency of 32 Hz. Each data instance is-was timestamped according to the Raspberry-Pi-RPi 4 internal clock. Since the Raspberry

P+RPi 4 does not have a GNSS signal, the internal clock does not necessarily correspond to the exact UTC. Therefore, these

time stamps are-were converted to us from the start of the logging interval, using the first recorded timestamp as an offset. In

The raw INS output consists of 100 Hz IMU data and 5 Hz GNSS data. The IMU provides angular rates (gyroscope data)
and accelerations (accelerometer data), while the GNSS supplies the local velocity, latitude, longitude, altitude, and roll and
yaw angles. Furthermore, the INS outputs Kalman-filtered(EKF-)-EKF data at 50 Hz, fusing inputs from both GNSS and
IMU. It consists of 3D velocity data and Euler angles, both given in the NED inertial frame, as well as latitude, longitude and
altitude data. Given the prototype nature of the developed system, the data processing was exclusively based on the EKF output
(Table 3).

Moreover, the SBG Ellipse-D INS allows te-eutput-the output of position, velocity and attitude data at a geometrically
specified location relative to the sensor. For convenience, we thus configured the INS to output data in the body frame centred
on the sonic anemometer measurement volume. Each data point from the INS is-was timestamped with the INS internal time
in ns from the start of the data log and in UTC post-GNSS signal acquisition. Figure 2 shows a schematic representation of the

payload system.

Before any steps in the filtering workflow, the raw time series were adjusted to account for the sonic anemometer’s upside-down

mounting orientation. This ensured the measured vectors were appropriately rotated in the body frame coordinates.
As an initial filter, we removed all data collected before establishing a valid and stable GNSS time. Following this, data

points exceeding the measurement range of the instruments were discarded from further analysis. The filtering thresholds were
determined based on the sensor specifications provided by the manufacturers. Additionally, following a despiking method
adopted from Mauder et al. (2013), outliers were removed using a moving absolute deviation (MAD) filter relying on a sliding
window of 10s and a distance of =7 MAD from the median. Misst : ata— ss—than2-%

collected-datafor-each-individual flight The combined amount of missing and flagged points, following this procedure, did
not exceed 2 % in any flight data set. Thus, they were filled using linear interpolation. The third and final step of the filtering

process consisted of identifying the time windows corresponding to the hovering state of the drone. This involved a two-step

filtering approach. Initially, a filter was applied based on the median altitude £ 3 m, followed by a & 4 m median filter on

11
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Figure 4. Normalized FurbutentKinetie Energy-turbulent kinetic energy (TKE) curves across validation flights (named s1 to s10) plotted
as a function of time delay (in seconds) of the sonic anemometer output relative to the INS output. Each TKE profile is normalized by its
minimum value to facilitate direct comparisons. Vertical lines at —0.185s (dashed line) and Os (dash-dot line) indicate the time window
where all minimum values are located. The axes limits are set to -1 to 1 for the x-axis and 1 to 1.1 on the y-axis to highlight subtle differences

among the profiles.

horizontal movements to address horizontal swinging. Finally, the EKF output is-ther-was downsampled to 32 Hz to match the

sampling frequency of the sonic anemometer via linear interpolation.
3.3 Data synchronization and coordinates transformation

Ensuring accurate synchronization between the INS and the sonic anemometer outputs is crucial for correctly applying Equa-
tion (1), designed to compensate for payload motion during flight. To address potential synchronization discrepancies, we
implemented an iterative process that involves progressively changing the time lag of the sonic anemometer relative to the INS
within a range of + 2, with each step corresponding to 1/32 s. At each adjustment step, Equation (1) is-was applied to the

sonic data, and we ealeulate-calculated the mean turbulent kinetic energy (TKE) from the resulting time series—, defined as

Notably, the TKE as a function of the time lag consistently shows a reverse bell shape with the minimum located between
—0.185s to 0, as shown in Figure 4. Apart from the location of the time lag, this figure also indicates that potential errors
associated with an imperfect time-lag correction, e.g. by a few time increments, would result in small relative errors in the

computed TKE.

12



The time series adjusted using the time lag that minimizes the TKE are-were selected for further analysis. This selection
is-was based on the assumption that the payload movement is most effectively compensated at this optimal lag. Finally, these

270 time series are-were transformed into natural wind coordinates using Equation (2).

4 Data and methods for the validation experiment

The validation study was conducted at the Plateforme Pyrénéenne d’Observations Atmosphériques (P20OA) in Lannemezan,
southwestern France, during two special observation periods in August and December 2023, as part of the Model and Observa-

tion for Surface Atmosphere Interactions (MOSAI) campaign. These-periodsteatured-the-deployment-of-During these periods,

275 the SAMURALI-S, reusable radiosondes, multiple eddy-covariance stations, meteorological masts, and various remotely piloted
ing-were used to study the effects

of surface heterogeneities on the local wind conditions. Additionally, a tethered balloon equipped with a sonic anemometer

aircraft systems

(Canut et al., 2016) ;-provided a complementary method for assessing atmospheric turbulence. While this constitutes an im-
portant experimental dataset, the current work focuses solely on the-validation-ef-validating the SAMURAI-S system. Detailed
280 analysis of the scientific data from the experimental campaign is reserved for future publications.

The P20A observatory is located in a rural and heterogeneous area, primarily—charaeterized—characterized primarily by
agricultural fields and forests, with a typical length scale of 500 m (e.g., BLLAST Lothon et al., 2014). The site is-equipped
with-has a 60-meter meteorological tower featuring-with a triangular lattice structure (Figure 5). The surrounding-terrain-terrain
around the tower is predominantly flat and is characterized by a heterogeneous mix of grazing land, grasslands, crop fields, and

285 forest. Within 1 km of the 60-meter tower, grasslands are more prevalent. The tower is equipped with slow-response sensors
for temperature, humidity, wind speed, and direction at five levels (2m, 15m, 30m, 45m and 60 m) and eddy-covariance
systems at three levels (30 m, 45 m and 60 m), of which only the lower- and uppermost system were operational during our
validation period. Fhe-two-Two Campbell Scientific CSAT3 sonic anemometers are mounted on horizontal booms on the tower
at heights of 30 m and 60 m meters above the ground (633 m and 663 m above mean sea level), with an erientation-azimuth

290 of 218.0° and 230.5°, respectively. These anemometers are-operated with a sampling frequency of 10 Hz, recording the three
velocity components and the sonic temperature. The validation study described herein comprises several hovering flights of
SAMURALI-S at target altitudes of 30 m and 60 m sin-close-proximity-to-near the mast.

4.1 Tower validation study: theoretical framework

For this validation study, we

express the wind vector U in streamlined
295 coordinates-with-the-a coordinate system that is aligned with the mean flow streamlines (Kaimal and Finnigan, 1994). In this

coordinate system, the three velocity components (u, v, and w) seorresponding-correspond to the along-wind, cross-wind,
and vertical (upward) directions, respectively(Kaimal-and-Finnigan;1994). We apply Reynold decomposition, splitting each

component ¢ = u,v,w A-is-into a mean, 4, and a fluctuating part, ¢'. The fluctuating component with a zero mean is treated
as a stationary, homogeneous, ergodic, and Gaussian random process. The standard deviations of the u, v, and w components

13
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Figure 5. SAMURAI-S hovering side-by-side with the reference mast. The two CSAT sonic anemometers are mounted at 30 m and 60 m

agl, oriented towards 218.0° and 230.5°, respectively.

are represented by o, 0,, and o,,. Additionally, the skewness and kurtosis of these components, which quantify the deviation

from the assumption of Gaussian fluctuations, are denoted by ~; and ;.
This study utilizes the blunt and pointed spectral models (Olesen et al., 1984; Tieleman, 1995) to examine whether the

velocity spectra conform to the —5/3 power law in the inertial subrange. The models are expressed-dimensionless-as-folows:
a good approximation of the turbulence spectra in the atmospheric surface layer. In this study, they are expressed in their

dimensionless form as
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T ATE )
fsu(f) _ a”Uf’I‘
w2 (1+b,f)"? ©
ISuw(f) w fr
@ +ab 2/ ©
fRe(Su(f)) fRe(Suw(f)) _  auwfr (7)
u? u? (Lt buf)?

14



310 whef&jr—:%fepfesemﬁhﬁeé&eeéﬁeqﬁeﬂey—whﬁ&m a; and b;, with i = {u, v, w,uw}, are coefficients empirically
determined —and f;. is a reduced frequency defined as

_ Iz

Ir (3
~
The Obukhov length 5 Monin and Obukhov, 1954) can be calculated as
30
L= _ WPy )
gr(w'0;,)

315 where 0, is the mean virtual potential temperature approximated by the sonic temperature, x = 0.40 is the von Kdrmédn con-
stant, and w'@), is the vertieal kinematiefluxof virtual potential-temperaturebuoyancy flux. The nondimensional stability pa-
rameter ( is defined as ¢ = z/L, where z is the height above the surface.

Following Kolmogorov’s hypothesis of local isotropy in the inertial subrange, the spectral ratios Sy, /.S, and S, /S, should
converge toward 4/3 as the frequency increases (Busch and Panofsky, 1968; Kaimal et al., 1972). To compare the effectiveness

320 of the mast-mounted and drone-mounted sonic anemometers in resolving turbulence with minimal flow distortion, we apply a
quadrant analysis based on the comparison of the ratio S,,/.S,, between the two sensor configurations (Figure 6). In the ideal
scenario, data points in this figure would cluster around the centre of the plot, as the 4/3 ratio is reached by both the drone and
mast-based data. Deviations from this ratio could indicate flow distortion caused by the supporting structure, the sensor head,
or both (Cheynet et al., 2019; Pefia et al., 2019). A spectral ratio approaching but not reaching 4/3 may suggest that isotropy in

325 the inertial subrange is not achieved within the investigated frequency range (Chamecki and Dias, 2004). A spectral ratio that
plateaus without reaching the 4/3 law may reflect flow distortion, typically manifesting as an underestimation of the vertical
velocity component. It should be noted that Kolmogorov’s hypothesis of local isotropy in the inertial subrange may not apply
under non-stationary conditions, e.g., in very stable atmospheric conditions with intermittent turbulence. Thus, the quadrant
analysis was conducted only for samples with a mean wind speed above 2 ms~1!, which was sufficient in this study to eliminate

330 samples that did not exhibit characteristics consistent with the framework adopted here to describe turbulence.

In this study, the spectral ratios are studied using a limited frequency range of interest, which is computed using the reduced
frequency f=F=/%f, (Eq.(8)), and f, > 2 following Kaimal et al. (1972). An upper boundary f, < 10 is also applied to

ensure a fairer comparison between the drone and mast data.

335

The uncertainties associated with turbulent flux measurements are analysed using the methodology described by Wyngaard (1973); Forrer a

. This a

this framework, the uncertainties in the momentum fluxes (a.,,,, @4.,), the buoyancy flux (a, and those associated with an

roach quantifies the random error arising from a fixed averaging period (7) and the mean wind speed (). Within
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Figure 6. Quadrant analysis of the spectral ratios S., /S, to identify which sensor configuration may overestimate or underestimate the
vertical velocity component. For brevity, "drone" refers to the drone-mounted sonic anemometer in this figure, and "mast" refers to the mast-

mounted sonic anemometer.

turbulent variable £ are expressed as the following non-dimensional quantities:
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These uncertainties reflect the assumption of ergodicity, which states that the time average converges towards the ensemble

345 average given a sufficiently long averaging period. This assumption is at the core of the turbulence analysis with ultrasonic
anemometers. Consequently, these uncertainties are inversely proportional to both the averaging time and the wind speed.
Equations (10) to (12) are typically associated with greater uncertainties than Eq. (13), as the estimation of covariance requires

a longer averaging period than variance estimates (Kaimal and Finnigan, 1994). The relative magnitude of uncertainties also

depends on terrain roughness and stability conditions. Following the recommendations of Stiperski and Rotach (2016); Cheynet et al. (2019

350 , uncertainties below 0.5 indicate high-quality measurements.
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4.3 Integral length scales

The integral length scales of turbulence are one-point statistics that quantify the spatial structure of turbulent eddies. These
length scales are used both in micrometeorolgy and wind engineering for structural design. One integral length scale can be
defined per velocity component. In this study, the integral length scales were estimated in two steps. First, the integral time scale
was determined by fitting an exponential function to the autocovariance function of the velocity fluctuations. Fhis-atigns-the

me-series-of horizontal-veloeity, eorreeting any-time tags-up-to-6s-through-tinear-interpotation-The autocovariance function
for a given velocity component, &, is defined as:

Reg(r)=E0ET1 7). (14

ARAAAD

where R¢¢(7) is the autocovariance function at lag 7. The integral time scale, T, was then obtained by a least-square fit of an
exponential function to Eqg. (14

ARAAAD

Ree (1)~ Ree (0) exp (;5) . (15)

In the second step, Taylor’s frozen turbulence hypothesis was applied to convert the integral time scale into the integral length
scale. Taylor’s hypothesis is generally valid for moderate and low turbulence intensities. Hereinafter, we define turbulence as
"frozen" when the following conditions are satisfied:

I,=2"<05 and @>1ms L. (16)
u

Under these conditions, the integral length scale, L, is given by:

ng ﬂTg, (17)
4.4 Data processing

Data from the payload and the mast-mounted anemometers are collected at different locations. Therefore, the same turbulent
structures may be detected at slightly different times due to flow advection. To address this, the two datasets are initially
synchronized by an automated procedure that iteratively identifies and applies the optimal time shift (up to a maximum of 6
) that maximizes the cross-correlation of the horizontal velocity fluctuations. The procedure then uses linear interpolation to
align the time series and ensure both datasets capture the same turbulent features. Subsequently, the data are decimated by a

factor of 4, and an anti-aliasing finite impulse response (FIR) filter of order 4 is applied. This leads to a sampling frequency of
8 Hz, which was adequate for properly comparing the two datasets.

Misalignments eould-oceur-when-mounting-the-sonic-anemometer-due to small errors in estimating the orientation of the
sonic_anemometers mounted on the tower or the relative positioning between the INS and the sonic anemometer on the
payload can occur. To detect such discrepancies, the datasets from both the payload and the mast (set as the reference) are

compared after retrieving the velocity components—namely u, v, and w—using single, double, or triple rotation methods
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Table 4. Summary of the ten samples assessed in this study.

Sample ID Starting Time Duration Mean wind Direction Payload height =~ Wind Speed  Stability parameter ¢
(UTC) (mimmnin) SN (m) " ms—Hms 1) )
S1 21-Aug-2023 14:05:32 28.0 97 28 3.1 -0.46
S2 07-Dec-2023 12:33:52 18.7 277 27 0.8 0.38
53 07-Dec-2023 13:15:26 17.6 265 50 0.4 0.32
S4 07-Dec-2023 15:08:09 17.8 277 57 0.6 1.25
S5 08-Dec-2023 15:09:53 10.6 282 56 7.4 0.07
56 13-Dec-2023 07:27:17 18.3 300 48 8.2 0.2
s7 13-Dec-2023 07:53:37 153 304 49 104 0.1
58 13-Dec-2023 08:37:11 153 310 23 7.1 0.20
S9 13-Dec-2023 09:54:21 16.5 298 26 6.5 0.01
S10 13-Dec-2023 10:19:58 20.2 296 49 7.1 0.05

* Value estimated by the mast-mounted sonic anemometer closest to the payload height during the hovering window

™ Average height of the drone during the hovering window.

(McMillen, 1988). While the single rotation aligns u with the mean wind direction, the double-rotation method involves an
additional pitch rotation, ensuring w = 0. In contrast, the triple rotation includes a third rotation around the roll axis to ensure
the crosswind component of the kinematic momentum flux (v/w’) becomes zero. A preliminary comparison involving these
three rotations showed limited differences, demonstrating the suitability of the measurement setup. TherefereFor simplicity,
the double-rotation method was chosen for both the mast-mounted and the drone-mounted anemometers for further analysis.

Integral and spectral turbulence characteristics are studied using linearly detrended data. Auto (PSPpower spectral densities
(PSDs) and cross-power spectral densities (EPSDCPSDs) of the velocity and temperature fluctuations are estimated using
Welch’s method (Welch, 1967). This-invelves—segmenting-We divided the data into three parts-segments with 50% overlap.
An additional step includes smoothing the PSDs by bin-averaging them over 100 logarithmically-spaced bins (Kaimal and
Finnigan, 1994).

5 Results and discussion

In this study, we examine a data set comprising ten samples, labelled s; to s1¢ in Table 4, to assess turbulence measurements
obtained via the drone-mounted sonic anemometer.

These samples were chosen from 17 initial flights, with the selection criteria based on at least 10 min of continuous, high-
quality EKF output corresponding to hovering flight. Notably, so, s3, and s4 have mean flows of less than 2ms~!. The
assumptions of turbulence being stationary, homogeneous, ergodic, and modelled as a Gaussian random process might not hold

for these flights:

—, making them unsuitable for the quadrant analysis the-framewerk
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Figure 7. Drone altitude (left panel) and horizontal position relative to the tower (right panel) during the measurement periods of the ten
validation flights. The sonic anemometers on the mast are mounted at heights of 30 m and 60 m, oriented at 218° and 230.5°, respectively.

Wind directions for each flight are shown as coloured arrows, originating from the average horizontal positions. The arrow lengths correspond

to a reference vector of 2ms™!. Imagery ©2024 Maxar Technologies, Map data ©2024 Google

of-which-is-presented-framework proposed in Section 4.1. Nevertheless, they are-were included in the rest-of-the-analysisfor
completeness—analysis for the sake of completeness.

Figure 7 shows the associated altitude of the payload above the ground (left panel) and the hovering distance from the tower
during the measurement periods (right panel).

Although all flights were analyzed, for brevity, Section 5.1 features a detailed comparison of the exemplary cases from
sample s; and s7 as they exhibit markedly different characteristics. Sample s; targeted a height of 30 m and features convective
conditions (¢ = —0.46) with rather weak wind of 3.1ms~!. Conversely, sample s7, which targeted 60m, is characterized by
stable stratification conditions (¢ = 0.1) and the highest wind speed in the series (10.4ms™!). It will be shown that while
s1 exhibits an excellent correlation between the drone-mounted anemometer and its mast-mounted counterpart, s; presents
some discrepancies in the vertical component when comparing the two anemometers. Following these detailed examinations,
we systematically compare all samples based-on-their-integral-flow-characteristies-in Section 5.2. Finally, we conclude the
comparison by presenting flux uncertainties between the drone and mast-based datasets in Section 5.3

5.1 Cases of samples s; and s~

This section focuses first on the second-order structure of turbulence (i.e., variances and covariances) of s; and s7, theugh-the

as these samples show strongly contrasting characteristics, as pointed out in the previous section. The third and fourth statistical
moments (i.e., skewness and kurtosis) are also briefly discussed for completeness. Resultsrelated-to-temperature-are-presented
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Figure 8. Velocity time series from-of the wind components: streamwise (u), crosswind (v), and vertical (w), from drone and mast-based
set-ups during flights s1 (upper panel) and s7 (lower panel)where-the- SAMURAI-S-anemometerislocated-near-, The time series from the

sonte-drone and tower-based setup are coloured blue and orange, respectively. The double rotation (samples-srMethod: rot2) was applied to.
both the drone and tower data. The variable z corresponds to the height of the sonic {sample-smanemometer mounted on the tower, which

was the one closest to the drone-mounted sonic anemometer hovering altitude. At the same time, w denotes the average streamwise wind
component calculated over the sampling period.

separately-later-in-the-seetion—Figure 8 presents time series of the velocity components u, v, and w for samples s; and s7.
Results related to temperature are presented separately later in the section.

Table 5 expands further-on this comparison by showing the statistical moments for the three velocity components between

the reference mast data and the SAMURALI-S data.

Flow statistics from the drone and mast-mounted sensors

are in good agreement, except for the vertical velocity component w of sample s7, where the drone-mounted sonic anemometer
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Table S. Statistical-moments-Mean and turbulent flow statistics for samples s1 and s7 for drone and mast Patadata. Samples s1 and s7

refer to the samples described in Table 4. o, ~;, and k;, where ¢ = u, v, w, refer to the standard deviation, skewness, and kurtosis estimates,

respectively. The table also includes the momentum flux values (u’w’) and buoyancy flux (w’6,, respectively) values.

Sample s1 Sample s7

Statistic Drone Data Mast Data Drone Data Mast Data
u (ms—ms_") 3.1 3.1 9.9 10.4
ou (ms—tms ) 0.9 1.0 1.4 1.5
oy (ms—ms ") 1.1 1.0 1.2 1.3
ow (mrs—ms ") 0.8 0.7 1.3 1.0
Yu 0.2 0.2 0.0 -0.1
Vo 0.4 0.4 0.1 0.0
Y 0.0 0.3 0.2 0.3
K 3.0 2.7 2.8 3.0
Ko 3.4 2.8 32 33
K 2.8 3.4 2.8 3.4
W (s ). -0.2 0.1 0.7 05
w (Kms ) 0.1 0.1 0.1 00

shows slightly larger fluctuations (o, = 1.3ms~!) than those from the mast-mounted sensor (¢, = 1 ms~!). All three velocity
components in the mast and the payload data exhibit skewness and kurtosis values close to zero and three, respectively. These

measurements indicate Gaussian fluctuations, typically observed in—under stationary conditions within the ABL. Despite a

11 m altitude discrepancy between the sensors (see Figure 7), the drone-mounted sensor accurately tracks short-term horizontal
velocity fluctuations. The altitude difference is primarily due to the UAV’s altitude control being based on pressure rather than
GNSS. Unfortunately, this discrepancy was only noticed during the post-processing phase and was not corrected in the field.

Figure 9 presents the auto power spectral density (PSD) for each velocity component and the real part of the cross-spectrum
between u and w for samples s; and sz, plotted on a log-log scale and multiplied by the frequency f to highlight spectral
features. The smooth PSD is computed using Equations-(4)-to(7)-Egs. (4) to (7) that s fitted to the data recorded by the payload
sensor. This least-square fit is useful to assess whether the estimated PSD follows the —5/3 power law associated with the
inertial subrange for the S, S, and S,, spectra, and the —7/3 power law for the co-spectrum Re(.S,.,). A slightly steeper
roll-off is observed for the mast data.

Both sensors consistently capture the along-wind (u) and across-wind (v) velocity components for the selected samples s
and s7. In sample s, the S, spectrum reveals a small peak at approximately 0.20 Hz. This peak cannot be attributed to the
oscillation frequencies of the payload, which are established around 0.11 Hz. Thus, it is more likely related to a—real-flow

featurerandom fluctuations. The co-spectrum between u and w for sample s; features unusual positive values in the mast-
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Figure 9. Power spectral density (PSD) estimates of the velocity componentsfe%beﬂﬁheﬁymgﬁeme—dﬁememeteﬁ -+ streamwise (), crosswind
(v), and vertical (w), as well as the : - es—co-spectrum (Re(S,w)),

from drone and mast-based set-ups during flight s1 (tepupper panels) and the-one-mounted-at-660-m-for-s7 (bottomlower panels). The solid
black line refers to the blunt model (for Sy, Sy, and Sz Re(Syw)) or pointed model (for Sy,) fitted to the data from the drone-mounted

anemometer. The variances of the velocity components (o,,, 0, and o0,,) and the Reynold stress element «/w’ are indicated within each

corresponding plot.

mounted data between 0.03 Hz to 1 Hz, with a distinctive positive peak at 0.04 Hz. These features are not present in the
SAMURAI-S data, indicating differences in the flow between those captured by the tower-mounted instrument. This peak is
unlikely related to a shadow effect of the tower, given that the wind direction was 97° and the tower-mounted sonic sensor is
oriented towards 218° for s.

For flight s7, the power spectral density of the vertical component clearly shows a higher energy content at all frequencies
recorded by the drone-based sonic anemometer compared to those from the tower (Figure 9). This is consistent with the higher

o _values from the drone data shown in Table 5. This feature is present in nearly all flights (see Section 5.2), although it is

particularly pronounced in s7.
The comparative analysis of the sonic temperature time series reveals a good agreement across sample s; and sy, with

minor deviations for the mean temperature likely attributable to different calibration values between the sonic anemometers

445 (Figure 10). Further insights are provided by Figure 11, which displays the PSD estimates of the sonic temperature and the
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Figure 10. Time series of the fluctuations of the sonic temperature (0,,) for samples sy (left panel) and s7 (right panel) measured b
the drone-mounted anemometer (blue line) and the mast-mounted sonic (orange line) at a height of 30 m and 60 m above the ground
respectively. The mean sonic temperature () is also indicated in each panel for both the drone and the mast measurements.

CPSD between the vertical and the along wind component with the virtual potential temperature. Notably, the PSD for sample
s1 demonstrates an excellent agreement between the sonic temperature from the mast-mounted sensor and SAMURAI-S.
However, for sample s7, the PSD of the drone-based anemometer deviates from the expected —5/3 power law at frequencies
greater than 1 Hz. This deviation scales with frequency f, suggesting the influence of white noise on the measurement data.

450 For the mast-mounted anemometer, the PSD estimates of the temperature exhibit slight discrepancies from this —5/3 power
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Figure 11. PSD estimates of the sonic temperature fluetuations<(0,,) and associated EPSB-with-CPSDs, including the vertical (Re(Sy0,))

and the-along-wind-along-wind (Re(Sy4,)) component for both the flying sonic anemometer (blue line) and the one mounted on the mast
(orange line) 30 m above the ground for samples s1 (left panels) and at 60 m above ground for samples s7 (right panels).

law in samples s; and s7. Additional plots showing PSD spectra for samples ss, Sg, Ss, Sg and s1g are provided in Appendix B

5.2 €Comprehensive Mean and turbulence statistics comparison

A-comprehensive-This section presents a detailed analysis of the sensor performanceis-condueted-in-this-seetion, focusing on
integral mean flow and turbulence characteristics for all three velocity components u, v, and w (Figure 12 Yforal-tensamples:

and Figure 13). The drone-mounted anemometer shghtly underestimates the mean wind speed u (Figure 12a), but the data
scatter is low. imationt i i he height difference

between the two sensors may explain this underestimation (Table 4). More specifically, the payload height was on average 4 m
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lower than the target altitude for the sonic at 30 m and 8.5 m for the sonic at 60 m. The standard deviations of the along-wind
and across-wind velocity components denoted o, (Figure 12b) and o, (Figure 12c), respectively, show excellent agreement.
The drone-mounted anemometer slightly overestimates the standard deviation o, of the vertical component (Figure 12d), and
this overestimation increases nearly linearly with the mean wind speed in absolute terms.

465 The covariance estimates u/w’ (Figure 13a) exhibit a larger scatter than v/w’ (Figure 13b). The-ecovariance-between-sonie

temperature-0-and-the-fluctuating-vertical- component-w At the same time, the covariance estimate of #’w’ (Figure 13c), and
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to measurements at 60 m. Only samples associated with I, < 0.5 and w > 1ms~ ~ are used to satisfy the conditions required for applyin
Taylor’s hypothesis of frozen turbulence.

the Obukhov length L (Figure 13d) demonstrate good correlation and small scatter. The vertical velocity component is used
in the numerator and denominator when calculating L. Thus, the lower scatter may be attributed to the larger uncertainties
associated with component w cancelling each other to some degree. Sample s5, depicted in pink, consistently exhibits the
highest scatter. This sample has the shortest duration, lasting only 10 min, which is at least 4.7 min shorter than all other

samples. Thus, sample s5 may be more prone to errors associated with insufficient sampling of the largest turbulent eddies.

Figure 14 compares the integral length scales for each velocity component, estimated following the procedure presented in
Section 4.3, Samples 59, 53, and s4 did not satisfy the conditions required to apply Taylor’s hypothesis of frozen turbulence,
which were defined as a turbulence intensity of /,, = 0,,/% < 0.5 and a mean wind speed of 7 > 1ms_!. All other samples
met these conditions, with Z,, ranging from 0.15 to 0.31 and a mean wind speed exceeding 3ms™ ",

The streamwise length scale L, (Fig. 14, left panel) shows a rather large scatter around the 1:1 line. However, there is no
systematic deviation between mast and drone measurements. In contrast, the middle panel suggests that the drone-mounted
anemometer systematically underestimates the lateral length scale L, However, it is unclear whether this discrepancy arises
from sensor characteristics or the specific position of the drone. The best agreement is observed in the right panel for the

vertical length scale L,,, which exhibits low scatter and no clear bias, despite the overestimation of o, by the drone-mounted

sonic anemometer (Fig. 12d).

The discrepancies between the vertical velocity spectral densities estimated by the mast-mounted sonic anemometers and
by the drone are explored in more detail through the ratios S,,/.S,, and S, /S, following the method presented in Section 4.1.
Chamecki and Dias (2004) states that if the spectral ratio trends towards 4/3 without actually reaching it, this could indicate
that isotropy in the inertial subrange has not been achieved within the examined frequency range, a situation typically occurring
in-stable-stratificationflow-under stable atmospheric conditions. In this study, the spectral ratios reached a plateau for all ten
samples, albeit not always with a value of 4/3. This suggests that the atmospheric conditions were faverable-to-the-ebservation
of-Joealisotropy—favourable to observing local isotropy but that flow distortion may have been present. The results for all the
samples are shown in Figure 15. Values corresponding to so, 53, and s4 are displayed with grey triangle markers to highlight
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are representative of intermittent turbulence, for which the assumption of local isotropy in the inertial subrange may not be defined.

their non-stationary nature, which does not fit within the analysis framework. The following discussion and comments exclude

these three samples unless explicitly stated otherwise.
Figure 15 shows that a i

% — i ; sti s-thisratio-as-< S, /9, >. As wind speed increases, the ratio
measured by SAMURAL-S diverges further from 1.33, whereas the mast data display-ratios-fluctuates between 1.0 and 1.25.
While-these-mast-data-may-be This could be related to the bigger g, values measured by the drone setup.

Although the mast data appear closer to the expected ratio of 1.33 compared to the SAMURAI-S, they could still represent

an underestimation of up to 20% of the vertical fluctuating component. As discussed above, not achieving the 4/3 ratio may
hint at the presence of flow distortion caused by the mast or the sonic anemometer itself, contributing to this underestimation.
Similar observations apply for the ratios < S, /S, >. For u > 6ms™!, the ratio < S,,/S,, > exceeds the expected value of
1.33 in drone measurements.

The recorded-data—data recorded in this study mainly represent stable or near-neutral atmospheric conditions;-as——was
positive-formostflights. An exception is found in s1, collected under unstable atmospheric conditions ({ = —0.46) and features
the-elosestagreementshows one of the closest agreements between the drone and mast-mounted sensors. It should also be noted
that for all flights except s, the wind consistently came from the 280° to 3107 sector. The limited number of samples and the
variability in stability and wind direction prevent determining whether the improved agreement under unstable conditions is a
systematic effect or influenced by differences in wind direction over heterogeneous topography. Further research is necessary

to determine whether convective conditions consistently enhance the performance of the drone-based setup described in this
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5.3 Uncertainties analysis

2 2

Figure 16 presents the uncertainty metrics associated with the calculation of g7, 7. o5, ww’, v'w’, and 0w’. Most samples
exhibit reasonably low uncertainties, as indicated by the green patch in Fig. 16, which corresponds to a normalised value of 0.5,
consistent with that used in Stiperski and Rotach (2016); Cheynet et al. (2019). However, samples s, 53, and s4 systematically
fall outside this green area due to the low wind speed at the time of recording. Consequently, they should not be included in the
analysis of turbulence statistics, at least within the framework of stationary homogeneous turbulence. These samples exhibit
characteristics of intermittent turbulence, the study of which is beyond the scope of this work.

In Fig, 16, the uncertainty metric aj , shows higher-than-expected uncertainties for samples s5 and sy. The relatively high
uncertainty for sample s; is partly attributable to the short duration of the record—less than 10 min, which results in large
uncertainties for covariance estimates. Sample s has a record duration of approximately L7 min, so the high uncertainty value
remains unclear, notably since it is only visible in the covariance between the sonic temperature and the vertical velocity.
Wthe A 1 in o 10 1 N1 o

anemometer. It should be noted that the uncertainty metrics are generally comparable between the drone-based and mast-based
measurements, supporting the potential of this mobile platform for turbulence analysis.

6 Conclusions

This study presents a pioneering effort in atmospheric research, focusing on using a research-grade 3D sonic anemometer
mounted 18 m under a drone to observe turbulence. The goal was to assess the effectiveness of drone-mounted sonic anemome-
ters as a versatile tool for turbulence measurement, challenging traditional methods that mount the same sensor on masts or
towers. A notable aspect of this research was the application of a dynamic motion compensation algorithm that accounts for

the motion and tilt of the sonic anemometerwhile-, At the same time, the drone hovered above the location of interest. This

Data collection took place during the Models and Observations for Surface Atmosphere Interactions (MOSAI) campaign
in France. The methodology included a comparative analysis between conventional mast-mounted 3D sonic anemometers
at 30 m and 60 m above ground and the drone-mounted anemometer. This comparison focused on mean flow and turbulence
characteristies;-eross-covarianeestatistics, including the integral length scales, covariance, and auto- and cross-spectral densities
of velocity fluctuations. Our findings indicate that the drone-mounted anemometer effectively captures detailed turbulence
measurements. Although there is good agreement regarding the along-wind and cross-wind flow when comparing the drone and
mast data, the-drone-based observations consistently overestimate the-fluctuations-of-the-vertical-wind-vertical wind fluctuations

across all flightsperfermed. This overestimation increases as the wind speed increases, calling for further analysis under a

28



545

550

555

T T T TTTTT] T T T TTTTT] T T TTTTT]
[ ]
o A o®
g 100 ° g 10°p g 100 E
o - A - © - A -1 o - B
= - = - q1 = - |
o - 4o - 1o - -
ak [ RS [ T [ 1
N [~ 1< - 13 - (] -
1| a 51
1 | 1 | 1 | A 52
10— | 10— | 10— I OS
_ _ _ 3
107! 10° 107! 10° 107! 10°
® 54
a?, mast a%, mast a*, mast @S5
uz Vz VVZ
O 56
T T T TITT T T T 11T T T T TT1T1T]
@57
(6} . e} ASg
2 100  a 42 100 a 48 100k a||aso
o - 1 & - 1 e - )] s
] r 1< r 13 r % o @710
2 5 4.2 B 1 2 B B
Naﬁ | ‘ | N§> | A 7(\!.:?: | . |
A PO N i L |
1071 Lol 1071 (R 1071 Lol
107! 10° 107! 10° 107! 100
a2, mast a2, mast ang mast

Figure 16. Uncertainty metrics (Egs. (10) to (13)) estimated for the drone-mounted sensor (y-axis) and the mast-mounted sensor (x-axis).

The green patch represents the region with low statistical uncertainties.

broader range of wind conditions. Also, our findings show that the drone-mounted sensor and mast-mounted sonic anemometers
rovide turbulence statistics with similar levels of uncertainty.

For the drone-mounted anemometer, the spectral ratio S,,/S, was up to 63% larger than the local isotropy hypothesis
predicted in the inertial subrange. However, it was also observed that the mast-mounted anemometer could significantly under-
estimate the vertical turbulence component, with a spectral ratio S,,/.S,, that was up to 22% lower than predicted by the local
isotropy hypothesis in the inertial subrange.

The sonic temperature and the Obukhov length estimated by both sensors were also investigated. The comparison provides
a positive and encouraging overall picture, with good agreement between the mast and drone measurements. The only excep-
tion is the shortest sample (10 min compared to at least 15 min for all others), which exhibits markedly divergent behaviour
compared to its mast-measured counterpart.

Overall, the findings underscore the

component-and-its—potential-potential of the SAMURAI-S system, especially its complementarity with mast-mounted sonic
anemometers and Scanning Doppler wind lidar for the-study—of-atmespherie-studying three-dimensional turbulence in the

atmosphere.

Data availability. Data underlying the results presented in this paper can be obtained from the authors upon reasonable request.
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Appendix A: Trasformation Matrix

The transformation matrix R(¢,0,) is defined as

R(¢,0,1) = [R3(¢)Ra(0) Ry (¥)]"

where
costp siny O
Ri(¢)=| —siny cosyp 0],
0 0 1
cosf 0 —sinf
Ry () = 0 1 0 )

sinf 0 cosf

1 0 0
R3(¢)=10 cos¢ sing
0 —sing cos¢

Appendix B: Power spectral density estimates for other samples

Figure B1 presents the power spectral densities of the three velocity components, as well as the cross-spectral densities between
u and w, for samples s5, s6, 58, 59, and 519, Where the concept of spectral density is well-defined. For clarity, these spectral
densities are normalised by the variance or covariance of the corresponding variable. Similarly, Fig. B2 displays the normalised
power spectral densities of the sonic temperature, along with the normalised co-spectral densities. These figures exhibit trends
similar to those observed for samples s; and s7, which were analysed in detail in this study.
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Figure B1. Normalised power spectral densities of the three velocity components and co-spectral densities for samples ss, sg, Ss, Sg, and
$10:
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