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Abstract. Satellite retrievals of solar-induced chlorophyll fluorescence (SIF) can provide opportunities to improve our 

understanding of terrestrial ecosystem dynamics and the carbon cycle at the global scale. Here, we present a new 10 

biogeochemical process-based carbon and nitrogen cycle model for representing SIF retrievals (VISIT-SIF version 1.0) 

acquired by the Greenhouse gases Observing SATellite (GOSAT) with an hourly time step and a spatial resolution of 

approximately 0.31 × 0.31 degrees. VISIT-SIF is characterized by its ease of implementation for the representation of 

radiation transfer processes between surface canopy and satellite measurements. With an initial seven years of data (2009-

2015), our model simulations showed a consistent global mean value of 0.51±0.39, with GOSAT SIF retrievals of 15 

0.46±0.42 mW m-2 sr-1 nm-1; the root-mean-square error was 0.29 mW m-2 sr-1 nm-1. We also found that the mean seasonal 

variability in the simulated SIFs mostly consisted of the GOSAT SIF retrievals at the subcontinental scale. However, the 

simulated results indicated less sensitivity to water stress in the late dry season in arid and semiarid regions relative to that of 

the GOSAT SIF retrievals, which is consistent with the findings of previous studies using multiple biogeochemical process-

based models. This comparison suggested that there is a critical need to improve our knowledge of SIF variability and 20 

biophysical processes in such regions. 
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1 Introduction 

Carbon fixation by photosynthesis is a fundamental process for carbon cycling in terrestrial ecosystems (Beer et al., 2010). 25 

In the photosynthetic process, solar energy absorbed by chlorophylls is mainly dissipated through three pathways: 

photochemistry at the photosynthetic reaction center, nonradiative energy dissipation into heat, and reemission as a photon of 

fluorescence (Porcar-Castell et al., 2014). While most of the absorbed solar energy is utilized for photochemistry under light-

limited conditions, a small amount of energy (approximately 1-2% of the total absorbed radiation energy) is reemitted as 

chlorophyll fluorescence in the visible (VIS) to near-infrared spectrum between 640-800 nm (Maxwell and Johnson, 2000). 30 

When photosynthesis is light saturated or restricted by environmental stress, the energy flow through heat dissipation 

increases to prevent damae to the photosynthetic system due to the accumulation of excess energy. The amount of energy 

consumed by photochemistry and fluorescence decreases with increasing heat dissipation; hence, the quantum yield of 

photochemistry is positively and negatively correlated with fluorescence and heat dissipation (Flexas et al., 2000). Solar-

induced chlorophyll fluorescence (SIF) is the radiation emitted as chlorophyll fluorescence during photosynthesis under 35 

natural sunlight conditions. Despite the SIF radiance being weak, recent progress in spectral radiometers with high 

wavelength resolution has provided capabilities for mapping the global distribution of SIF with satellite observations (Joiner 

et al., 2011; Frankenberg et al., 2011; Joiner et al. 2013; Sun et al., 2017), as well as those at smaller scales, such as the leaf 

(Hikosaka and Noda, 2019) and canopy scales (Yang et al., 2015). Current satellite missions commonly quantify SIF 

emissions from Fraunhofer lines in the oxygen absorption band at approximately 760 nm, with the wavelength 40 

corresponding to a spectral peak of SIF at approximately 740 nm that emanates from photosystems I and II (PS I and II). 

While vegetation indices based on surface reflectance data, such as the normalized difference vegetation index (NDVI; 

Karlsen et al., 2008, 2014) and enhanced vegetation index (EVI; Wu et al., 2010), have been utilized for describing 

terrestrial vegetation dynamics, SIF data have attracted attention because of their ability to provide additional information for 

quantifying the photosynthetic activity of terrestrial vegetation under changing environmental conditions. Indeed, Joiner et al. 45 

(2011) and Frankenberg et al. (2011) successfully demonstrated strong correlations between SIF and gross primary 

production (GPP) for major global land cover types using satellite data acquired by the Greenhouse gases Observing 

SATellite (GOSAT) (Yokota et al., 2009). In addition, Liu et al. (2018) and Wang et al. (2019) demonstrated the availability 

of satellite SIF data as a diagnostic indicator for vegetation productivity with a rapid response to underlying environmental 

stress conditions such as drought. These SIF retrieval characteristics related to the photosynthetic process and dynamic status 50 

of vegetation have been implemented in numerous studies for the estimation of GPP, improvement in light use efficiency 

models (e.g., Guanter et al., 2014; Qiu et al., 2020), identification of environmental stress factors (e.g., Jiao et al., 2019), and 

adjustment of process-based model parameters (e.g., Norton et al., 2018). 

 The intensity of SIF is strongly affected by not only physiological processes but also canopy structure, e.g., the leaf 

area index (LAI) and leaf angle distribution, and the geometric relationships among the incidence angle of the emission to 55 

the sensor, solar azimuth, and orientation of leaves (Porcar-Castell et al., 2014; Zhang et al., 2019). Both the incident solar 

https://doi.org/10.5194/egusphere-2024-1542
Preprint. Discussion started: 21 June 2024
c© Author(s) 2024. CC BY 4.0 License.



3 

 

 

radiation to the canopy and the SIF emitted from each leaf are reflected, transmitted and absorbed within the canopy, and SIF 

is emitted upward from the canopy to the sensor. Thus, to incorporate the complex radiation transfer process of SIF, some 

studies have used radiative transfer models (RTMs) in addition to physiological process models (Koffi et al., 2015; Lee et al., 

2015). These studies commonly combined the Soil Canopy Observation of Photosynthesis Energy fluxes (SCOPE; van del 60 

Tol et al, 2009, 2014) model for the computation of radiative transfer with respect to the multilayer canopy structure and the 

geometric relationship. Additionally, in the study by Norton et al. (2019) global SIF retrieved from satellites was used as 

constraints on biochemical variables in response to photosynthesis based on the data assimilation method, leading to 

substantial improvements in reducing the uncertainties in global carbon cycle estimates, with a decrease in the uncertainty of 

global GPP from ±19.0 PgC y-1 to ±5.2 PgC y-1. The exploitation of process-based models, including physiological and 65 

radiation transfer processes for satellite-SIF at the global scale, has the potential to promote a better understanding of global 

carbon cycles, leading to significant advances in the representation of photosynthetic processes. 

 Nevertheless, a model system capable of simulating GOSAT SIF, which has the longest observation record of any 

single sensor, has not been developed since the launch of GOSAT in January 2009. Although the primary mission of 

GOSAT is to measure the column-averaged dry air molar fractions of carbon dioxide (CO2) and methane (CH4) to constrain 70 

the global distributions of their sources and sinks and improve understanding of carbon-climate feedbacks, SIF retrievals will 

provide independent constraints on terrestrial ecosystem carbon dynamics. This study aimed to develop a process-based 

model for representing chlorophyll fluorescence emissions during photosynthesis in major land cover types and a framework 

for estimating variability in GOSAT SIF, whereby the radiation transfer process from the surface canopy to satellite 

measurements is adjusted by utilizing a simplified SCOPE model. Our objective for constructing the model framework is to 75 

stimulate the study of terrestrial ecosystem dynamics by improving the formulation of related biophysical processes based on 

a combination of modeling approaches and GOSAT SIF. 

2 Methods 

2.1 GOSAT SIF data 

We used the SIF data acquired by GOSAT as reference observations for evaluating the model estimates. GOSAT was 80 

launched in January 2009 on a sun-synchronous orbit at an altitude of 666 km with a 3-day revisit cycle and a descending 

node at approximately 13:00 local time. GOSAT was dedicated to observing two greenhouse gases, namely, CO2 and CH4, 

with two instruments, the Thermal And Near infrared Sensor for carbon Observation–Fourier Transform Spectrometer 

(TANSO-FTS) and the Cloud and Aerosol Imager (TANSO-CAI). The former has wide spectral coverage from VIS to 

thermal infrared (TIR) radiation, and the latter is a radiometer covering the ultraviolet, VIS and shortwave infrared (SWIR) 85 

spectral range to retrieve cloud and aerosol characteristics. The TANSO-FTS has three bands (bands 1, 2, and 3) at SWIR 

https://doi.org/10.5194/egusphere-2024-1542
Preprint. Discussion started: 21 June 2024
c© Author(s) 2024. CC BY 4.0 License.



4 

 

 

wavelengths centered at 760, 1600, and 2000 nm, respectively, and a band (band 4) at TIR wavelengths covering 5.56-14.3 

𝜇m. 

GOSAT SIF data are retrieved using radiation spectral data at a retrieval window between 756.0 and 759.1 nm in the 

TANSO-FTS band 1 (Oshio et al., 2019). GOSAT SIF data are derived from the infilling of Fraunhofer lines retrieved from 90 

TANSO-FTS spectra minus the zero-level offset, which is an artifact signal resulting from nonlinearity in the analog circuit. 

The cloud pixel fraction (CPF) within the instantaneous field of view (IFOV) of the TANSO-FTS was computed using the 

integrated clear confidence level information in the cloud coverage data (TANSO-CAI Level 2 product). We used the CPF 

for cloud screening to remove the data contaminated by clouds and aerosols. The threshold for cloud screening was 

empirically set to CPF > 15%. Then, the observational geometries of the satellite observation zenith angle, solar zenith angle, 95 

and relative azimuth angle between GOSAT and the sun were computed for individual GOSAT observation points for 

angularity correction of the simulated SIF, as described in a later subsection. 

 

2.2 Model description 

2.2.1 Process-based terrestrial ecosystem model: VISIT 100 

This study used a process-based terrestrial ecosystem model, the Vegetation Integrative SImulator for Trace gases (VISIT; 

Ito, 2010, 2019), to simulate biophysical and biochemical processes. The VISIT is composed of multiple modules that 

represent matter flows within ecosystems and exchanges between the atmosphere and ecosystems. A box-flow scheme with 

eight carbon pools (leaf, stem, and root carbon for C3 and C4 plants, soil litter and humus) is adopted for the simulation of the 

carbon cycle in VISIT. GPP is represented as a function of the leaf area index (LAI), incident photosynthetically active 105 

radiation (PAR), air temperature and humidity, soil water content, and ambient CO2 concentration. The absorption and 

diffusion of radiation and carbon assimilation are simulated using a two-component canopy model by de Pury and Farquhar 

(1997). Leaf photosynthetic capacity is regulated by leaf nitrogen concentration, and LAI is predicted by leaf carbon amount 

and specific leaf area for each land cover type. This study classified global land cover into 16 land cover types based on the 

Terra and Aqua combined Moderate Resolution Imaging Spectroradiometer (MODIS) Land Cover Climate Modeling Grid 110 

(CMG) with International Geosphere-Biosphere Programme classification (MCD12C1-IGBP) (Sulla-Menashe and Friedl, 

2018) with a spatial resolution of 0.3125 degrees. 

 

2.2.2 SIF simulation 

We simulated the spatiotemporal variability of SIF using a combination of the VISIT and SCOPE version 1.74 models. A 115 

diagram of the VISIT-SIF model system is shown in Fig. 1. In the model system, the chlorophyll fluorescence on the top of 
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vegetation canopy F (mW m-2 sr-1 nm-1) at the observation angle is described by a combination of the chlorophyll 

fluorescence emitted from sunlit and shaded leaves as follows: 

 

𝐹 = 𝐹sun(1 +  𝑟shade/sun) (1) 120 

 

where Fsun is the chlorophyll fluorescence emitted from sunlit leaves at the observation angle (mW m-2 sr-1 nm-1) and rshade/sun 

is the ratio of chlorophyll fluorescence emitted from shaded leaves to Fsun, the details of which will be described later. Fsun 

can be described by: 

 125 

𝐹sun =  
APARsun 𝛷F,sun 𝑟oz sz⁄  𝑓u

𝜋
 (2) 

 

where APARsun and ΦF,sun are the absorbed photosynthetically active radiation (APAR; W m-2) and the quantum yield of 

chlorophyll fluorescence in sunlit leaves, respectively. roz/sz is a correction factor for converting the chlorophyll fluorescence 

emitted from sunlit leaves to remote-sensed chlorophyll fluorescence in arbitrary observation directions. Under the 130 

assumption that VISIT simulates biogeochemical processes occurring within sunlit leaves where the viewing angle coincides 

with the sun zenith angle, we adopted the APAR computed with VISIT as APARsun. The variable fu represents the fraction of 

the SIF emitted in the upward direction to that in both the upward and downward directions at the canopy level, which was 

derived from SCOPE. ΦF,sun is calculated as a function of energy allocation between photochemistry and chlorophyll 

fluorescence as follows: 135 

 

𝛷F,sun = 𝛷Fm′,sun (1 − 𝛷P,sun) (3) 

 

where ΦFm',sun and ΦP,sun are the quantum yield of fluorescence at light-acclimated leaves exposed to saturated irradiance and 

by actual photochemistry, respectively. ΦFm',sun is defined as the ratio of irradiance emitted as chlorophyll fluorescence to 140 

total irradiance as follows: 

 

𝛷Fm′ ,sun =
𝑘F

𝑘F + 𝑘D + 𝑘N,sun

(4) 

 

where k denotes the rate coefficient for chlorophyll fluorescence (kF), for nonphotochemical quenching (NPQ) of dark-145 

acclimated leaves (kD), and for NPQ of sunlit leaves (kN,sun). In this study, kF and kD are fixed at 0.05 and 0.95 according to 

Tol et al. (2014), respectively. kN,sun is represented using the following empirical equations (Flexas et al., 2002): 
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𝑘N,sun = (6.2473𝑥 − 0.5944) 𝑥 (5) 

𝑥 = 1 −
𝛷P,sun

𝛷P0

(6) 150 

 

where x is the degree of light saturation and ΦP0 is the quantum yield for photochemistry in dark-acclimated leaves. ΦP0 is 

defined as follows: 

 

𝛷P0 =
𝑘P

𝑘F + 𝑘D + 𝑘P

(7) 155 

 

where kP is the rate coefficient of irradiance emanated during photochemical reactions to the irradiance total (kP = 4.0) (Tol 

et al., 2014). 

ΦP,sun is described as: 

 160 

𝛷P,sun = 𝛷P0 

𝐽a,sun

𝐽e,sun

(8) 

 

where Ja,sun and Je,sun (μmol m-2 s-1) are the actual and potential electron transport rates, respectively. Ja,sun is given by VISIT 

based on de Pury and Farquhar (1997) and van del Tol (2014) as: 

 165 

𝐽a,sun =  4𝐴sun

𝐶𝑖 + 2𝛤∗

𝐶𝑖 − 𝛤∗
(9) 

 

where Asun (μmol m-2 s-1) is the CO2 assimilation in sunlit leaves, Ci (Pa) is the intercellular CO2 partial pressure, and Γ* (Pa) 

is the CO2 compensation point of photosynthesis. Asun is calculated as follows: 

 170 

𝐴sun =  min (𝐴c,sun, 𝐴j,sun) (10) 

𝐴c,sun =  𝑉c𝑚𝑎𝑥

𝐶𝑖 − 𝛤∗

𝐶𝑖 + 𝐾′
(11) 

𝐴j,sun =  𝐽𝑠𝑢𝑛

𝐶𝑖 − 𝛤∗

4(𝐶𝑖 + 2𝛤∗)
(12) 
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where Ac,sun and Aj,sun are the Rubisco- and RuBP regulation-limited CO2 assimilation in sunlit leaves. Vcmax (μmol m-2 s-1) is 175 

the maximum carboxylation rate, which varies depending on LAI, canopy temperature, nitrogen condition and water stress. 

K´ (Pa) is the effective Michaelis-Menten constant of Rubisco and is calculated based on land cover-specific parameters and 

temperature. Jsun is the electron transport rate in sunlit leaves and is described as: 

 

𝐽𝑠𝑢𝑛 =  
𝐼sun + 𝐽max − √(𝐼sun + 𝐽max)2 − 4𝜃l 𝐼sun 𝐽max

2𝜃l

(13) 180 

 

where Isun (μmol m-2 s-1) is the absorbed photosynthetic photon flux density, Jmax is the maximum electron transport rate 

(μmol m-2 s-1), θl is the curvature showing the leaf response to irradiance for electron transport (=0.7; de Pury and Farquhar, 

1997). Jmax is calculated as a function of Vcmax along with land cover-specific parameters that vary with canopy temperature 

and nitrogen conditions in VISIT. Je,sun is calculated as follows: 185 

 

𝐽e,sun =  APARsun ∙   𝛷P0 (14) 

 

 The geometric coefficients of roz/sz and rshade/sun constantly vary in space and time with changes in the solar zenith 

angle (SZ), observation zenith angle (OZ), and relative azimuth angle of the solar and observation directions (AZ). We 190 

employed a low-computational-cost approach using a look-up table to formulate the geometric coefficients for every 

observation point instead of solving the radiation transfer process directly with RTM. The probability distributions of roz/sz 

and rshade/sun were computed by shifting the angle parameters SZ, OZ and AZ in 10°, 10° and 30° angle steps, respectively, 

and the values of LAI and solar radiation (SRAD; W m-2) in 0.5 and 200 W m-2 steps using the SCOPE model with the 

parameters set in Table A1, respectively, as follows: 195 

 

𝑟oz sz⁄ =
𝐹SCOPE,sun(LAI, SZ, OZ, AZ, SRAD)

𝐹SCOPE,sun,sz=oz(LAI, SZ, OZ′, AZ′, SRAD)
(15) 

𝑟shade sun⁄ =
𝐹SCOPE,shade(LAI, SZ, OZ, AZ, SRAD)

𝐹SCOPE,sun(LAI, SZ, OZ, AZ, SRAD)
(16) 

 

where FSCOPE,sun, FSCOPE,sun,sz=oz, and FSCOPE,shade are the chlorophyll fluorescence from sunlit leaves when the observation 200 

direction and solar incoming direction are located along one axis (OZ’ = SZ, AZ’ = 0) and from shaded leaves, all of which 

were computed using the SCOPE model. When implementing Eqs. (15) and (16) in the simulation of SIF variability, LAI 

and SRAD are driven by VISIT, and the angle parameters are computed from the geometric information obtained for every 

GOSAT observation. 
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 The simulated SIF F given by Eq. (1) is ideally denoted as the total fluorescence emission that occurs in the full 205 

chlorophyll emission spectrum. To compare F with GOSAT SIF retrievals, radiance should be converted to chlorophyll 

emission at wavelengths between 756.0 and 759.1 nm (SIF756). We computed the SIF756 by multiplying the value by a 

correction factor as follows: 

 

SIF756 = 𝐹 ∙  𝑟756 (17) 210 

 

where r756 is the factor with respect to the fraction of SIF emission at wavelengths between 756.0 and 759.1 nm to the total 

chlorophyll emission ranging between 641 and 850 nm. The shape of the SIF emission spectra varies with the reabsorption 

process and depends on the leaf chlorophyll content. This study used a simple approach to describe r756 as a function of the 

contents of chlorophyll a, chlorophyll b and carotenoids per unit of leaf area (Cab; μg cm-1) (Fig. B1). This study used the 215 

land cover-specific values of Cab from the study of Norton et al. (2019). Here, the relationship between Cab and r756 was 

simulated by operating the SCOPE model with changes in the LAI but with less sensitivity of r756 to changes in LAI values 

between 1 and 8. We used a regression formula (r756 = 1.2 ∙ 10-3 ln (Cab) + 4.7 ∙ 10-3) to estimate r756 for whole land cover 

types regardless of changes in the LAI (Table A2 and Fig. B1). 

 220 

 

Figure 1. Schematic diagram of the VISIT-SIF model system. 
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2.3 Model processing 

Initialization of the VISIT model was achieved by a spin-up run of 900 years with repeated use of climate forces. Then, the 225 

model system was operated over 7 years for 2009-2015 in hourly time steps. In the following analyses, we used only the 

model results that were simulated at 13:00 local time and with a cloud fraction lower than 0.5. The composite data of the 

European Centre for Medium Range Weather Forecasts (ECMWF) Reanalysis-interim (ERA-interim) at a 3-hour resolution 

(Dee et al., 2011) and the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis 

(CFSR) at an hourly resolution (Saha et al., 2010) were used as the climate forcings. Once all the meteorological variables in 230 

the CFSR were scaled to those of the reference datasets on a month-to-month basis, the Climate Research Unit (CRU) Time-

Series (TS) (Harris et al., 2019) for precipitation and specific humidity and the ERA interim for other variables were used. 

Regarding the specific humidity, the ratio of the vapor pressure in the CRU TS to that in the CFSR, which was computed 

from the specific humidity, was substituted to scale the CFSR values. Then, the hourly composite data were constructed by 

adding hourly meteorological fluctuations derived from the CFSR to the 3-hourly ERA interim datasets, for which the 235 

specific humidity was calculated using the dew point and surface pressure data. Deviations between the hourly CFSR 

variables and 3-hourly means were used to determine the hourly fluctuations. For the wind velocities, the CFSR data were 

used without corrections. In this process, the ERA interim and CRU TS datasets were interpolated onto the T382 CFSR grid. 

3 Results 

3.1 Global VISIT-SIF simulation and comparison with GOSAT SIF 240 

We present the global distribution of the mean SIF from the GOSAT retrievals and model simulations for 2009 and 2015 at a 

spatial resolution of 2.5 degrees (Fig. 2). The map of the model simulations was generated by using only the data 

corresponding to the locations and times of available GOSAT retrievals. GOSAT retrievals show a pronounced increase in 

SIF in the tropics in the Amazon, Borneo and New Guinea, with an approximate value of 0.67 mW m-2 sr-1 nm-1. The 

intensities of SIF showed a gradual decrease with increasing latitude, whereas large variations in SIF are shown with 245 

increasing longitude. In boreal forests, the intensities of SIF for satellite observations, approximately 0.21 mW m-2 sr-1 nm-1, 

are lower than those in the mid-latitudinal zone, with approximately 0.35 mW m-2 sr-1 nm-1. The model simulations showed 

spatial patterns similar to those of satellite observations worldwide. The global mean value and standard deviation of the SIF 

for the model simulations are 0.51 ± 0.39 mW m-2 sr-1 nm-1, which are in good agreement with the satellite observations, 

with a value of 0.46 ± 0.42 mW m-2 sr-1 nm-1. However, at the regional scale, differences in SIF between model simulations 250 

and satellite observations are identified, including overestimation in Southeast Africa and western North America and 

underestimation in central Amazon. 
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Figure 2. Global distributions of annual mean SIF (mW m-2 sr-1 nm-1) for (a) VISIT-SIF simulations, (b) GOSAT SIF 

retrievals, and (c) their differences for 2009 and 2015. The spatial resolution is aggregated to a 2.5-degree grid. 255 
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A direct comparison of the mean SIF for the satellite observations and model simulations (Fig. 2) is shown in Fig. 

3a. according to this comparison, the two data points are correlated (correlation coefficient R = 0.76; root mean squared error 

RMSE = 0.29 mW m-2 sr-1 nm-1) and follow the 1:1 line, indicating similar intensities. This suggested that VISIT-SIF can 

produce proper spatial variability in GOSAT SIF retrievals, whereas deviations from the 1:1 line and outliers are identified 260 

between the two datasets, depending on the region, as shown in Fig. 2c. These differences may be due to various factors: the 

random retrieval error of GOSAT SIF, which is approximately 0.2 mW m-2 sr-1 nm-1 (Oshio et al., 2019); variations in SIF 

across space used for spatial aggregation; and insufficient parameterization of SIF variability at the local scale in the model. 

As described in section 2.2.2, this study simulated GOSAT SIF retrievals by accounting for the observational 

geometry using the parameters roz/sz and rshade/sun. The performances of these geometrical correction parameters in the 265 

simulations are shown in Fig. 3b, which indicates that the SIF was simulated without geometrical correction. Here, the SIF 

variability was simulated by replacing F in Eq. (17) with Fsun in Eq. (2), where roz/sz = 1. The SIF values are obviously 

greater than those of the satellite observations, and the differences are greater (RMSE = 0.50 mW m -2 sr-1 nm-1) than the 

differences in the simulated SIF with geometric correction, as shown in Fig. 3a. GOSAT has a two-axis pointing mechanism 

with pointing angles of ±35 degrees and ±20 degrees in the cross-track (CT) and along-track (AT) directions, respectively, 270 

and points at any target observation area mainly by rotating in the CT direction (Kuze et al. 2012). The geometric 

relationships among the incidence angle of the emission to the sensor, solar azimuth, and orientation of leaves can vary 

widely between observations, even for adjacent scans. Accordingly, the differences without geometrical correction shown in 

Fig. 3 suggest that the observational geometry is critical information for obtaining more reliable simulations of GOSAT SIF 

retrievals. 275 
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Figure 3. Relationship between the GOSAT SIF retrievals (x axis) and simulated SIF (y axis) (a) with geometric correction 

using the parameters roz/sz and rshade/sun and (b) without correction. The scatterplots represent the mean annual values 

aggregated to a 2.5-degree grid. The color bar shows the number of data points. 280 

 

To evaluate the simulated SIF intensity across land cover types, the mean SIF values for 2009 and 2015 at a 2.5 

degree spatial resolution obtained from satellite observations and model simulations were compared for each land cover type. 

Fig. 4 shows box plots of the mean SIF values for 12 land cover types. Overall, the satellite observations showed wide 

dispersion along with negative SIF values regardless of the land cover type. The negative SIF values are not actual physical 285 

quantities because of the presence of retrieval noise, but this study used all the satellite observations without discarding the 

negative values to prevent significant biases in the probability distribution of the SIF variability. We found that model 

simulations exhibited land cover-specific variation consistent with that of satellite observations: higher SIF values for 

evergreen broadleaf forests, with mean values of 0.99 and 0.96 mW m-2 sr-1 nm-1 for model simulations and satellite 

observations, respectively, and lower SIF values for open shrublands and grasslands, with mean values of 0.17 and 0.31 mW 290 

m-2 sr-1 nm-1 for model simulations and 0.11 and 0.16 mW m-2 sr-1 nm-1 for satellite observations, respectively. However, the 

divergence in the mean values between the model simulations and satellite observations increased for some land cover types, 

especially for deciduous forest types: deciduous needleleaf forests (0.36 mW m-2 sr-1 nm-1) and deciduous broadleaf forests 

(0.46 mW m-2 sr-1 nm-1). This suggested that there is some inconsistency in the seasonal cycle of the simulated and observed 

SIF variations for these land cover types. A detailed analysis of the seasonal variability is given in the following subsection. 295 

 

 

Figure 4. Box plots of annual mean values (2009-2015) of VISIT-SIF simulations (light gray) and GOSAT retrievals (gray) 

on a 2.5-degree grid for 12 land cover types: ENF: evergreen needleleaf forests; EBF: evergreen broadleaf forests; DNF: 

deciduous needleleaf forests; DBF: deciduous broadleaf forests; MF: mixed forests; CS: closed shrublands; OS: open 300 
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shrublands; WS: woody savannas; SV: savannas; GL: grasslands; CL: cropland; and MS: mosaic. The black dots represent 

the mean values. 

 

3.2 Seasonal SIF variability 

To compare the seasonal variability in the simulated SIF with that of satellite observations, the global terrestrial area was 305 

divided into 42 subcontinental regions based on the source regions for global CO2 and CH4 source and sink estimates that 

have been applied in the GOSAT Level 4 data product. The boundaries of these source regions are shown in Fig. C1. Fig. 5 

shows the seasonal variability in the monthly mean SIF averaged over 7 years (2009-2015) for the model simulations and 

satellite observations and their differences over the 42 regions. The seasonal cycles appear rather similar for model 

simulations and satellite observations, with relatively large amplitudes in the mid-latitude regions and small amplitudes in 310 

the tropics and high-latitude regions. Seasonal variations in the model simulations vary smoothly relative to those based on 

the satellite observations in the regions where GOSAT retrievals showed large fluctuations with time; these include region 8, 

which is dominated by temperate deciduous forests; region 14, temperate grasslands and shrublands; region 22, grasslands 

and savannas; region 17, tropical forests and savannas; and region 16, tropical forests, savannas, and deserts. The variations 

in these regions were 0.82, 0.52, 0.48, 0.16, and 0.37 mW m-2 sr-1 nm-1 for the model simulations and 1.15, 0.82, 0.72, 0.67, 315 

and 0.65 mW m-2 sr-1 nm-1 for the satellite observations, respectively. For the maximum differences in the monthly mean 

values between the model simulations and satellite observations, the model overestimates the intensity of SIF by up to 0.68, 

0.66, 0.64, 0.55, and 0.52 mW m-2 sr-1 nm-1 in region 22, region 24 (dominated by savannas), region 30 (tropical forests and 

deserts), region 29 (deserts), and region 15 (grasslands and savannas), respectively. These overestimates in the model 

resulted from inconsistencies in vegetation phenology during the dormant season: the model estimates vigorous 320 

photosynthetic activities, while satellite observations depict attenuation of photosynthesis. 
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Figure 5. The seasonal variability in SIF averaged for 2009 and 2015 for (a) VISIT-SIF simulations and (b) GOSAT 

retrievals in 42 subcontinental regions and their differences. Gray grid cells indicate that no data were available. 325 

 

To quantify the differences in the seasonal variations and intensities between the model simulations and satellite 

observations, the RMSE and R2 were computed for each region based on the monthly mean SIF values (Fig. 6). Strong linear 

relationships and lower RMSE values were observed over the subarctic zone on the Eurasian continent (regions 25, 26, 41, 

and 42), with R2 > 0.88 and RMSE < 0.08 mW m-2 sr-1 nm-1. In contrast, weaker relationships were found in southeastern 330 

Africa (regions 22 and 24) and the Indian subcontinent (region 30), with R2 < 0.03 and RMSE > 0.33 mW m-2 sr-1 nm-1. We 

found that these discrepancies occurred for the late dry season to early rainy season when the number of valid retrievals was 

not much lower than that in the rainy season. This relatively high level of data acquisition can reduce random retrieval 

errors; thus, the large differences in the seasonal variations in SIF and its intensity in the 3 regions suggested that the model 

representation could be poorly constrained, especially for the vegetation response to water stress over arid and semiarid 335 

regions, perhaps due to a lack of ground-based observations. 
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Figure 6. The relationships between R2 and RMSE for the mean monthly variability in the VISIT-SIF simulations and 

GOSAT retrievals in the 42 subcontinental regions. The numbers in the figure correspond to the regional IDs shown in Fig. 340 

C1. 

 

 We further examined monthly mean SIF variations from 2009 to 2015 for 9 selected regions extending from the 

tropics to the mid-latitudinal region (Fig. 7). The model simulations appear to capture the seasonal cycles of satellite 

observations except for region 23 with tropical forests, grasslands, and savannas and region 34 with tropical forests. In 345 

particular, for region 23, the most striking difference was observed for July and September, when satellite observations 

showed a distinct decrease, while model simulations indicated weaker seasonal variability. In the tropical forest area in this 

region, the seasonal precipitation cycle has weakened, with a significant increase in the boreal winter dry season and a 

decrease in the boreal spring wet season, which may be driven by changes in sea surface temperature, particularly in the 

Atlantic and Indian Oceans (Wang et al., 2021). However, the GOSAT SIF yields a distinct seasonality. Note that region 23 350 

has fewer valid retrievals due to the existence of continuous clouds. The spatiotemporal variations in SIF variability, as well 

as regional meteorological and hydrological cycles, in tropical regions need further investigation. 
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Figure 7. Time series of monthly SIF for VISIT-SIF simulations (blue) and GOSAT retrievals (pink) for 2009 and 2015 in 9 355 

selected regions: 6, 7, 10, 12, 23, 26, 32, 34 and 39. The shaded areas shows the standard deviations. 

 

4. Discussion 

Interest in satellite-based SIF observations has grown since successful global SIF retrievals have been achieved with GOSAT, 

with the hope that these observations can stimulate our understanding of terrestrial ecosystem dynamics. However, as SIF is 360 

only a small amount of energy being reemitted in concert with photochemical reactions and heat dissipation, a biochemical 

process model is needed to connect SIF retrievals with ecosystem-level processes. Various underlying models are still in 

development (e.g., Parazoo et al., 2020), and the retrieved SIF intensity significantly varies among satellites with different 

observed spectral ranges, observational times, and angles between the viewing and sun directions (Oshio et al., 2019; 

Murakami et al., 2024). Here, we developed a VISIT-SIF biogeochemical process model to estimate GOSAT SIF retrievals 365 
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by incorporating observational geometry using the parameters roz/sz and rshade/sun. This geometric correction is necessary for 

predicting the GOSAT SIF retrievals precisely, as shown in Fig. 3, partly because GOSAT has a wide range of observation 

angles due to the operation of the two-axis pointing mechanism for precise viewing of target locations (Kuze et al., 2012). 

The new model system presented here still has some room for improvement; however, it is appropriate for 

estimating the global distribution with respect to the mean values of the GOSAT SIF retrievals (Fig. 2). The comparison with 370 

GOSAT SIF retrievals provided insights into how SIF emitted from the terrestrial biosphere responds to seasonal changes in 

meteorological and hydrological conditions in a given region. This comparison revealed that the seasonal variability in the 

simulated SIF indicated an insufficient decline for the late dry season in arid and semiarid regions relative to that of satellite 

observations (Figs. 5 and 7). Similarly, Parazoo et al. (2020) reported that insufficient NPQ formulation under drought 

conditions, especially for lower-latitude regions, can result in a weak decrease in SIF with little to no sensitivity to water 375 

stress. As shown in section 2.2.2, this study calculates NPQ (= kN, sun) using the variables Vcmax, Jmax and Isun, which vary in 

response to canopy structure and environmental stresses in the model, such as leaf area index, temperature and water and 

light limitations. Accordingly, our simulations of GOSAT SIF retrievals using an initial configuration of ecophysiological 

model parameters demonstrated that careful improvements in model representation are necessary for estimating NPQ 

dynamics and related biophysical processes, particularly as they relate to water stress in arid and semiarid regions. 380 

In terms of the NPQ response to water stress, soil water content is a crucial factor that directly restricts Vcmax and 

thus Jmax in the VISIT model, as well as temperature and intercellular CO2 concentration (Ito and Oikawa, 2002). Water 

stress is expressed as an empirical function of the soil water content, with coefficients for the field capacity of soil water, soil 

moisture photosynthesis limitation, and weight factors of water stress sensitivity, all of which have been validated using field 

observational data at 17 sites worldwide. The apparent discrepancy in the simulated SIF seasonality in arid and semiarid 385 

regions may be primarily attributed to the poor representation of water stress using the empirical relationship and the limited 

amount of available validation data. Indeed, despite the obvious importance of water stress, the physiological mechanisms 

underlying the relationship between photosynthesis and water stress have not been well characterized, and a more 

mechanistic understanding is needed. 

For parameter optimization using satellite SIF retrievals, Norton et al. (2018) proposed a data assimilation 390 

framework to minimize model-observation misfitting by constraining uncertainty in some key parameters, such as Vcmax and 

Cab, using satellite SIF retrievals as assimilated observations. As these parameters directly or indirectly define the 

photosynthetic rate, the posterior parameters demonstrated a successful reduction in uncertainty in global GPP estimates. 

Their results encouraged us to use a data assimilation framework to combine GOSAT SIF retrievals and VISIT-SIF, which 

may provide the benefit of constraining SIF and improving GPP estimates. Saito et al. (2014) constrained VISIT parameters 395 

by incorporating atmospheric CO2 concentration observations in a data assimilation system, but GOSAT SIF retrievals have 

not yet been tested to optimize VISIT-SIF parameters. Thus, optimizing VISIT-SIF parameters would be our next step for 
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improving model representations of SIF variability and biophysical processes on a global scale, as well as further improving 

model formulations associated with SIF variability. 

 Satellite SIF observations provided us with a new indicator of photosynthetic capacity on a global scale. Available 400 

satellite sensors capable of SIF retrievals include the Global Ozone Monitoring Experiment-2 (GOME-2) aboard the 

Meteorological Operational Satellite Program of Europe (MetOp), the Orbiting Carbon Observatory-2 (OCO-2), and the 

TROPOsheric Monitoring Instrument (TROPOMI) abord the Sentinel-5 Precursor (S5p), as well as TANSO-FTS aboard 

GOSAT and TANSO-FTS-2 aboard GOSAT-2, which is the successor of GOSAT (Mohammed et al., 2019). Although these 

satellite sensors are designed for atmospheric studies and are not dedicated to SIF monitoring, these SIF retrievals allow for 405 

the investigation of ecosystem responses to environmental stresses even at the local scale (e.g., Lee et al., 2013; Murakami et 

al., 2024). This study utilized GOSAT SIF retrievals to evaluate the newly developed VISIT-SIF model, which demonstrated 

the ability to express seasonal SIF variability even in areas lacking ground-surface observations. The measurement coverage 

is not always sufficient in the tropics, which are often covered by clouds. By utilizing other satellite SIF retrievals that were 

observed with different spectral ranges, IFOV, measurement coverage, and on-orbit operation will complement each other 410 

for tracking variations in SIF and GPP with high accuracy and high spatial and temporal resolutions. 

 

5. Conclusions 

We developed a new biochemical process model to simulate GOSAT SIF retrievals. The SIF variability emitted at the top of 

the canopy is expressed as a combination of the chlorophyll fluorescence emitted from sunlit and shaded leaves as 415 

determined by the SCOPE model. The model was operated with an hourly time step and a spatial resolution of 0.3125 

degrees for 2009 and 2015, and a geometrical correction was included to account for changes in the SIF intensity depending 

on the viewing angle of the sensor and the direction of the sun. Then, the simulated SIFs were compared with the GOSAT 

SIFs using only the data corresponding to the location and time of the valid GOSAT observations. An important first step 

was to evaluate the global distribution of mean SIF values. The comparison of the model simulations with the GOSAT SIF 420 

retrievals showed consistency overall, with global mean values of 0.51±0.39 and 0.46±0.42 mW m-2 sr-1 nm-1 for the model 

simulations and satellite observations, respectively, with an RMSE = 0.29 mW m-2 sr-1 nm-1. We also compared the seasonal 

variability in SIF over the 42 subcontinental regions. This comparison indicated overestimates of simulated SIF during the 

dormant season in arid and semiarid regions, with less sensitivity to water stress. This study is still only a first step toward a 

comprehensive understanding of global SIF variability and its interaction with biophysical processes. 425 
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Appendix A: Input parameters 

Table A1. Parameters of SCOPE used for computing roz/sz and rshade/sun. 

Parameter Symbol Unit Value or range Note 

Incoming short wave radiation Rin W m-2 0-1000 
 

Chlorophyll a+b content Cab μg cm-2 80 Default of SCOPE 

Dry matter content Cdm g cm 0.012 Default of SCOPE 

Leaf equivalent water thickness Cw 
 

0.009 Default of SCOPE 

Senescent material Cs 
 

0.0 Default of SCOPE 

Leaf structure N 
 

1.4 Default of SCOPE 

Maximum carboxylation rate Vcmax μmol m-2 s-1 60 Default of SCOPE 

Leaf angle distribution parameter a LIDFa 
 

-0.35 Default of SCOPE 

Leaf angle distribution parameter b LIDFb 
 

-0.15 Default of SCOPE 

Leaf width w m 0.1 Default of SCOPE 

Ball–Berry stomatal conductance parameter m 
 

8 Default of SCOPE 

Dark respiration rate at 25 ℃ as fraction of Vcmax Rd 
 

0.015 Default of SCOPE 

Cowan’s water use efficiency parameter Kc 
 

700 Default of SCOPE 

Leaf thermal reflectance ρ 
 

0.01 Default of SCOPE 

Leaf thermal transmittance τ 
 

0.01 Default of SCOPE 

Soil thermal reflectance ρs 
 

0.06 Default of SCOPE 

Leaf area index LAI m2 m-2 0-10 
 

Fluorescence quantum yield efficiency fqe 
 

0.01 Default of SCOPE 

Canopy height Hc m 1 Default of SCOPE 

Solar zenith angle SZ 
 

0-75 
 

Observing zenith angle OZ 
 

0-75 
 

Relative azimuth AZ   0-180   

 

 430 

 

 

 

 

 435 
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Table A2. The values of r756 for each land cover type as estimated using the regression formula shown in Fig. B1. 

 

Land cover type r756 

Evergreen needleleaf forest 0.0087 

Evergreen broadleaf forest 0.0087 

Deciduous needleleaf forest 0.0082 

Deciduous broadleaf forest 0.0091 

Mixed forest 0.0085 

Closed shrublands 0.0073 

Open shrublands 0.0082 

Woody savannas 0.0085 

Savannas 0.0085 

Grasslands 0.0082 

Permanent wetlands 0.0076 

Croplands 0.0089 

Urban and developed area 0.0080 

Cropland/natural vegetation 

mosaic 0.0080 

Snow and ice 0.0080 

Barren or sparsely vegetated 0.0080 

 

 440 
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Appendix B: Relationship between Cab and r756  

 

Figure B1. The relationship between Cab and r756 computed with the SCOPE model. r756 was simulated by correcting Cab to 

fall in the range of 5 to 80 μg cm-2 at 5 μg cm-2 intervals and LAI to fall in the range of 1 to 8 at an interval of 1 (open 

triangles). 445 

 

Appendix C: IDs in 42 subcontinental regions 

 

 

Figure C1. The 42 subcontinental regions. 450 
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Code and data availability 

The model code used in this study is archived at https://doi.org/10.5281/zenodo.11243578 (Miyauchi et al., 2024) 
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