Identification of volatile organic compounds emitted by Sitka spruce and determination of their emission pathways and fluxes

Hayley Furnell^{1, 2}, John Wenger^{1, 2}, Astrid Wingler^{2, 3}, Kieran N. Kilcawley^{4, 5}, David T. Mannion^{4, 5}, Iwona Skibinska^{4, 5}, Julien Kammer^{1, 2, 6}

¹School of Chemistry, University College Cork, Cork, T12 YN60, Ireland

²Environmental Research Institute, University College Cork, Cork, T23 XE10, Ireland

³School of Biological, Earth and Environmental Sciences, University College Cork, Cork, T23 TK30, Ireland ⁴Department of Food Quality and Sensory Science, Teagasc Food Research Centre, Moorepark, Fermoy, Cork, P61 C996, Ireland

⁵School of Food and Nutritional Science, University College Cork, T12 R220, Ireland ⁶Aix Marseille Université, CRNS, LCE, Marseille, 13331, France

Correspondence to: Julien Kammer (julien.Kammer@univ-amu.fr)

Supplementary Information

Set-up

Individual cylindrical Teflon enclosures were made for each spruce tree, using clear 0.1 mm thick Teflon FEP foil (Ortega and Helmig, 2008). The enclosures were designed to encompass all except the bottom few branches of the trees, and to minimise contact between the contained branches and the interior wall of the enclosure (Ortega and Helmig, 2008; Janson et al., 1999). The tops of the enclosures were fitted with a ¹/₄" inlet port and a ¹/₂" outlet port. A length of ¹/₄" Teflon tubing extended 20 cm from the inlet port into the enclosure to ensure homogenisation (Niinemets et al., 2011). The enclosures were sealed around the trees a week before emissions sampling was commenced. A separate, Empty enclosure, was made for background measurements (Hayward et al., 2004) (Fig. S3). ¹/₄

Figure S1 Three Sitka spruce trees used in this work: Spruce 1 (left), Spruce 2 (middle) and Spruce 3 (right).

Figure S2 Resin deposits on Spruce 1 (left) and Spruce 3 (right).

Figure S3 Enclosure around Spruce 3 (left), and empty enclosure (right).

Plant growth cycles

Figure S4 Temperature and PPFD variation during the Daily Cycle.

Figure S5 Temperature and PPFD variation during the Temperature Cycle.

Figure S6 Temperature and PPFD variation during the Light Cycle.

Biomass measurements

Table S1 Dried biomass measurements for each spruce tree.

	Dried Needle Mass	Dried Needle and Branch Mass
	g	g
Spruce 1	8.03	18.50
Spruce 2	9.80	19.56
Spruce 3	3.77	11.33

BVOC emissions

Formula	MW	Name	Spruce 1		Spruce 2	
	a mol ⁻¹		ToF- CIMS	TD_CC/MS	ToF- CIMS	TD-CC/MS
CaHoN	59 11			10-00/1015	CIMB	
	60.05	Acetic acid				J
C-H ₀	68.12	Isonrene				
C.H.O	70.09	Methacrolein		• •		
	74.08	Propanois acid				
	74.00	1 Putenol		V		
	74.12 80.12	1-Butalioi			/	
	82.10	2 Mathed france			V	
	82.10			V		
C ₅ H ₈ O	84.12	<i>E-3</i> -Penten-2-one				V
$C_5H_{10}O$	86.13	2-Methyl-3-buten-2-ol		\checkmark		
		2-Pentanone		\checkmark		\checkmark
		Pentanal				
$C_4H_8O_2$	88.11	Butanoic acid				\checkmark
$C_3H_8N_2O$	88.11		\checkmark			
$C_5H_{12}O$	88.15	3-Methyl-1-butanol		\checkmark		\checkmark
C ₇ H ₈	92.14				\checkmark	
C ₆ H ₆ O	94.11	Phenol				\checkmark
C ₆ H ₈ O	96.13				√*	
C ₆ H ₁₀ O	98.15	E-2-Hexenal			\checkmark	\checkmark
$C_5H_8O_2$	100.13		\checkmark			
$C_6H_{12}O$	100.16	Hexanal				\checkmark
		2-Hexanone				\checkmark
C7H16	100.20	Heptane		\checkmark		\checkmark
$C_6H_{14}O$	102.18	1-Hexanol		\checkmark		\checkmark
C ₇ H ₈ O	108.14		\checkmark		\checkmark	
C ₈ H ₁₂	108.18		\checkmark		\checkmark	
C7H10O	110.15				\checkmark	
$C_5H_{10}NO_2$	117.15		\checkmark			
C ₈ H ₈ O	120.15	Acetophenone				\checkmark
C ₉ H ₁₂	120.19		\checkmark		\checkmark	
$C_{7}H_{12}N_{2}$	124.18		\checkmark			
C ₈ H ₁₂ O	124.18				\checkmark	
C ₈ H ₁₆ O	128.21	1-Octen-3-ol				\checkmark
$C_{10}H_{10}$	130.19		\checkmark			
C8H18O	130.23	2-ethvl-1-hexanol				\checkmark
C10H14	134.22	o-Cvmene		\checkmark		\checkmark
CoHoO	132.16	(E)-Cinnamaldehvde	\checkmark	\checkmark	\checkmark	\checkmark
C ₆ H ₁₄ O ₃	134.18	, , <u> </u>	\checkmark			

 Table S2 BVOC emissions from Spruce 1 and Spruce 2 detected with ToF-CIMS and TD-GC/MS.

-						
$C_8H_8O_2$	136.15	Methyl benzoate	<u> </u>	\checkmark		\checkmark
C9H12O	136.19				\checkmark	
$C_{10}H_{16}$	136.24	Monoterpene	✓		\checkmark^*	
		Myrcene		\checkmark		\checkmark
		β-Phellandrene		\checkmark		\checkmark
		δ-Limonene		\checkmark		\checkmark
		α-Pinene		\checkmark		\checkmark
		Camphene		\checkmark		\checkmark
$C_8H_{12}O_2$	140.18				\checkmark	
$C_9H_{10}O_2$	150.17				\checkmark	
C ₃ H ₉ N	150.22		<u>√</u>			
C ₇ H ₄ O ₄	152.10		✓			
$C_8H_8O_3$	152.14	Methyl salicylate		\checkmark	\checkmark	\checkmark
$C_{10}H_{16}O$	152.23	Piperitone	✓	\checkmark	\checkmark	\checkmark
		Camphor	✓	\checkmark	\checkmark	\checkmark
C ₁₀ H ₁₈ O	154.25	Eucalyptol		\checkmark	\checkmark	\checkmark
C ₁₂ H ₁₆	160.25		<u>√</u>			
C ₁₁ H ₁₄ O	162.23					
$C_5H_{10}O_6$	166.13					
$C_{10}H_{14}O_2$	166.22				$\sqrt{*}$	
$C_{10}H_{16}O_2$	168.24					
$C_{10}H_{20}O_2$	172.26	Isopentyl isovalerate		\checkmark		\checkmark
$C_{12}H_{16}O$	176.26				\checkmark	
$C_{12}H_{20}O$	180.29		✓			
$C_{10}H_{16}O_3$	184.23				\checkmark	
$C_{13}H_{12}O$	184.24					
C ₁₄ H ₁₆ O	200.28		✓		\checkmark	
$C_{10}H_{18}O_4$	202.25		✓		\checkmark	
C15H24	204.36	<i>E</i> -β-Farnesene			\checkmark	\checkmark
$C_{10}H_{14}O_5$	214.22		✓			
C ₁₇ H ₂₆ O	246.39		\checkmark		\checkmark	
C ₂₀ H ₂₄	264.40		\checkmark		\checkmark	
$C_{13}H_{30}O_5$	266.37		\checkmark		\checkmark	
C ₁₈ H ₃₄ O	266.46		\checkmark		\checkmark	
$C_{20}H_{24}O_2$	296.40		\checkmark		\checkmark	

* Isomers with different temporal trends detected by ToF-CIMS as different ions. Counted as two distinct BVOCs. Monoterpenes are ordered according to decreasing concentration, which were inferred from TD-GC/MS chromatogram peak areas.

Chlorophyll fluorescence

Maximum photosystem II efficiency (F_v/F_m) was determined by measuring chlorophyll fluorescence. F_v/F_m reflects the ability of photosystem II to reduce its electron acceptors in the photosynthetic electron transport chain and it is used to infer plant health (Henriques, 2009). The chlorophyll fluorescence was measured on three days during the *Daily Cycle* (Table 2).

Table S3 Chlorophyll fluorescence measurements for Spruce 1 and Spruce 2 during the Daily Cycle. Each value is the average of three measurements taken from three branches on the same tree.

Date	PPFD	Temperature	Spruce 1		Sprud	e 2
	µmol m ⁻² s ⁻¹	°C	$\mathbf{F}_{v}/\mathbf{F}_{m}$	STD	$\mathbf{F}_{v}/\mathbf{F}_{m}$	STD
04/11/2021	0	12	0.85	0.02	0.75	0.01
08/11/2021	0	12	0.79	0.02	0.83	0.03
11/11/2021	0	12	0.81	0.02	0.82	0.08

Chlorophyll fluorescence was measured in the dark period. The F_v/F_m values were similar for both Spruce 1 and Spruce 2 and was centred around 0.81 (unitless). However, for both trees values below 0.8 were recorded on one of the days, suggesting that there was some extent of photoinhibition due to stress. Lower F_v/F_m ratios indicate that all chlorophyll is not taking part in photosynthesis, which could be due to damage, and implies the plant is stressed (Maxwell and Johnson, 2000). It is unlikely the trees were suffering from stress, as the temperatures used in this study are representative of the natural environment, and the PPFD was an order of magnitude lower than that measured for the ambient atmosphere.

Figure S7 Time series of the CO₂ flux for Spruce 1 (top) and Spruce 2 (middle) during the Temperature Cycle.

Table S4 Chlorophyll fluorescence measurements for Spruce 1 and Spruce 2 during the Temperature Cycle. Each value is the average of three measurements taken from three branches on the same tree.

Date	Light Intensity	Temperature	Spruce 1	Spruce 2
	µmorm s	U		
16/11/2021	0	12	0.815	0.810
16/11/2021	44	18	0.762	0.773
19/11/2021	0	12	0.821	0.831
19/11/2021	44	18	0.820	0.785
22/11/2021	0	12	0.815	0.760
22/11/2021	44	18	0.785	0.805

The F_v/F_m values obtained for Spruce 1 and Spruce 2 during the *Temperature Cycle* are listed in Table S2.5. The values in the dark were centred around 0.8 and were similar to those observed during the *Daily Cycle*. One branch on Spruce 2 had lower measurements, and may indicate that Spruce 2 was stressed.

Light Cycle

Figure S8 Time series of CO₂ flux for Spruce 1 (top) and Spruce 2 (middle) during the Light Cycle.

Table S5 Chlorophyll fluorescence measurements for Spruce 1 and Spruce 2 during the Light Cycle. Each value is the average of three measurements taken from three branches on the same tree.

Date	Light Intensity	Temperature	Spruce 1	Spruce 2
	μmol m ⁻² s ⁻¹	°C		
28/11/2022	0	18	0.804	0.828
28/11/2022	164	18	0.653	0.742
30/11/2021	0	18	0.694	0.768
30/11/2021	164	18	0.718	0.751
02/12/2021	0	18	0.726	0.769
02/12/2021	164	18	0.750	0.724

The F_v/F_m values recorded during the *Light Cycle* for Spruce 1 and Spruce 2 were slightly lower than those measured during the other cycles. This indicates that although Spruce 2 was stressed, it was not suffering any additional stress during the *Light Cycle*.

Standardisation

Table S6 BVOC emission fluxes from Spruce 1 standardised to 1000 μ mol m⁻¹ s⁻¹ and 30°C in μ g h⁻¹s⁻¹. BVOC emissions ordered in order of decreasing standardised emission flux.

Formula	BVOC	Standardisation Method	Standardised Emission Flux
			μg h ⁻¹ s ⁻¹
C ₁₀ H ₁₆ O	Piperitone	Combined	17.290
C ₅ H ₈	Isoprene	Biosynthesis	6.306
C ₁₀ H ₁₆	Monoterpene	Combined	0.925
C ₁₀ H ₁₄ O		Combined	0.859
C ₅ H ₈ O ₂		Biosynthesis	0.467
$C_{10}H_{16}O_2$		Combined	0.455
C ₉ H ₈ O	(E)-Cinnamaldehyde	Biosynthesis	0.334
C ₁₃ H ₃₀ O ₅		Combined	0.276
C ₁₂ H ₂₀ O		Biosynthesis	0.271
C ₁₀ H ₁₆ O	Camphor	Combined	0.199
$C_5H_{10}O_6$		Biosynthesis	0.196
$C_{20}H_{24}$		Combined	0.177
$C_{10}H_{14}O_2$		Combined	0.166
C ₁₀ H ₁₀		Biosynthesis	0.155
$C_{10}H_{20}O_2$	Isopentyl isovalerate	Biosynthesis	0.148
C ₈ H ₁₂		Combined	0.147
C ₁₄ H ₁₆ O		Combined	0.138
$C_7H_{12}N_2$		Biosynthesis	0.127
C ₃ H ₈ N ₂ O		Biosynthesis	0.082
$C_6H_{14}O_3$		Combined	0.082
C ₁₂ H ₁₆		Biosynthesis	0.081
C ₁₁ H ₁₄ O		Combined	0.077
$C_{20}H_{24}O_2$		Combined	0.074
C7H4O4		Combined	0.067
C ₇ H ₈ O		Combined	0.052
C ₁₇ H ₂₆ O		Combined	0.046
C ₇ H ₈		Combined	0.040
C ₉ H ₁₂		Combined	0.030
C ₁₃ H ₁₂ O		Biosynthesis	0.025
$C_{10}H_{18}O_4$		Combined	0.020
$C_{10}H_{14}O_5$		Combined	0.016

$C_5H_{10}NO_2$	Combined	0.015
C ₁₈ H ₃₄ O	Combined	0.014
C ₃ H ₉ N	Combined	0.012

Table S7 BVOC emission fluxes from Spruce 2 standardised to 1000 μ mol m⁻¹ s⁻¹ and 30°C in μ g h⁻¹s⁻¹. BVOC emissions ordered in order of decreasing standardised emission flux.

Formula	BVOC	Standardisation Method	Standardised Emission Flux
			μg h ⁻¹ s ⁻¹
C10H16	Monoterpene	Combined	1.226
C ₁₀ H ₁₆ O	Piperitone	Combined	1.029
C ₆ H ₈ O		Pooled	0.192
C ₂₀ H ₂₄		Pooled	0.134
C ₉ H ₈ O	(E)-Cinnamaldehyde	Combined	0.120
C ₆ H ₁₀ O	E-2-Hexenal	Pooled	0.104
C15H24	E-β-Farnesene	Combined	0.097
C ₈ H ₁₂ O		Combined	0.073
C ₁₄ H ₁₆ O		Combined	0.071
$C_{10}H_{14}O_2$		Pooled	0.066
C ₁₀ H ₁₆ O	Camphor	Combined	0.061
C ₇ H ₈ O		Combined	0.056
$C_{13}H_{30}O_5$		Combined	0.055
C ₈ H ₁₂		Combined	0.051
C ₉ H ₁₂ O		Combined	0.046
C9H12		Combined	0.035
$C_8H_8O_3$	Methyl salicylate	Combined	0.033
$C_{20}H_{24}O_2$		Combined	0.033
C ₇ H ₈		Combined	0.031
C ₁₀ H ₁₆		Pooled	0.029
$C_{10}H_{18}O_4$		Combined	0.025
C ₆ H ₈		Combined	0.023
C ₁₀ H ₁₈ O	Eucalyptol	Combined	0.022
C ₁₇ H ₂₆ O		Combined	0.018
$C_9H_{10}O_2$		Combined	0.018
C ₁₂ H ₁₆ O		Combined	0.012
C ₇ H ₁₀ O		Combined	0.009
$C_{10}H_{16}O_3$		Combined	0.008

C_8H_{12}	Combined	0.007
C ₆ H ₈ O	Combined	0.007
$C_{10}H_{14}O_2$	Pooled	0.006
C ₁₈ H ₃₄ O	Combined	0.003

References

Hayward, S., Tani, A., Owen, S., and Hewitt, C.: Online analysis of volatile organic compound emissions from Sitka spruce (Picea sitchensis), Tree Physiology, 24, 721-728, 10.1093/treephys/24.7.721, 2004.

Henriques, F.: Leaf Chlorophyll Fluorescence: Background and Fundamentals for Plant Biologists, Botanical Review, 75, 249-270, 10.1007/s12229-009-9035-y, 2009.

Janson, R., De Serves, C., and Romero, R.: Emission of isoprene and carbonyl compounds from a boreal forest and wetland in Sweden, Agricultural and Forest Meteorology, 98-9, 671-681, 10.1016/S0168-1923(99)00134-3, 1999.

Maxwell, K. and Johnson, G.: Chlorophyll fluorescence - a practical guide, Journal of Experimental Botany, 51, 659-668, 10.1093/jexbot/51.345.659, 2000.

Niinemets, Ü., Kuhn, U., Harley, P. C., Staudt, M., Arneth, A., Cescatti, A., Ciccioli, P., Copolovici, L., Geron, C., Guenther, A., Kesselmeier, J., Lerdau, M. T., Monson, R. K., and Peñuelas, J.: Estimations of isoprenoid emission capacity from enclosure studies: measurements, data processing, quality and standardized measurement protocols, Biogeosciences, 8, 2209-2246, 10.5194/bg-8-2209-2011, 2011.

Ortega, J. and Helmig, D.: Approaches for quantifying reactive and low-volatility biogenic organic compound emissions by vegetation enclosure techniques - Part A, Chemosphere, 72, 343-364, 10.1016/j.chemosphere.2007.11.020, 2008.