
A comprehensive land surface vegetation model for multi-stream
data assimilation, D&B v1.0
Wolfgang Knorr1, Matthew Williams2, Tea Thum3, Thomas Kaminski1, Michael Voßbeck1,
Marko Scholze4, Tristan Quaife5, T. Luke Smallman2, Susan C. Steele-Dunne6, Mariette Vreugdenhil7,
Tim Green2, Sönke Zaehle8, Mika Aurela3, Alexandre Bouvet9, Emanuel Bueechi7, Wouter Dorigo7,
Tarek S. El-Madany8, Mirco Migliavacca8,9, Marika Honkanen3, Yann H. Kerr10, Anna Kontu3,
Juha Lemmetyinen3, Hannakaisa Lindqvist3, Arnaud Mialon10, Tuuli Miinalainen3, Gaétan Pique10,
Amanda Ojasalo3, Shaun Quegan11, Peter. J. Rayner1, Pablo Reyez-Muñoz12,
Nemesio Rodríguez-Fernández9, Mike Schwank13, Jochem Verrelst12, Songyan Zhu2,
Dirk Schüttemeyer14, and Matthias Drusch14

1The Inversion Lab, Tewessteg 4, D-20249 Hamburg, Germany
2University of Edinburgh, Edinburgh, UK
3Finnish Meteorological Institute, Helsinki, Finland
4Lund University, Lund, Sweden
5University of Reading, Reading, UK
6Department of Geosciences and Remote Sensing, Delft University of Technology, The Netherlands
7Vienna University of Technology, Wien, Austria
8Max-Planck Institute for Biogeochemistry, Jena, Germany
9DG Joint Research Centre, European Commission, Ispra, Italy
10Centre d’études Spatiales de la Biosphère (CESBIO), Université de Toulouse 3 Paul Sabatier, Centre National de la
Recherche Scientifique, Centre National d’Etudes Spatiales, Institut de Recherche pour le Développement, Institut National
de Recherches pour l’Agriculture, l’Alimentation et l’Environnement, Toulouse, France
11University of Sheffield, Sheffield, UK
12University of Valencia, Valencia, Spain
13Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
14European Space Agency, ESTEC, Noordwijk, The Netherlands

Correspondence: Wolfgang Knorr (wolfgang.knorr@inversion-lab.com)

Abstract. Advances in Earth Observation capabilities mean that there is now a multitude of spatially resolved data sets available

that can support the quantification of water and carbon pools and fluxes at the land surface. However, such quantification ideally

requires efficient synergistic exploitation of those data, which in turn requires carbon and water land-surface models with the

capability to simultaneously assimilate several of such data streams. The present article discusses the requirements for such

a model and presents one such model based on the combination of the existing DALEC land vegetation carbon cycle model5

with the BETHY land-surface and terrestrial vegetation scheme. The resulting D&B model, made available as a community

model, is presented together with a comprehensive evaluation for two selected study sites of widely varying climate. We then

demonstrate the concept of land surface modelling aided by data streams that are available from satellite remote sensing. Here

we present D&B with four observation operators that translate model-derived variables into measurements available from

such data streams, namely: fraction of photosynthetically active radiation (FAPAR), solar-induced chlorophyll fluorescence10
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(SIF), vegetation optical depth (VOD) at microwave frequencies, and near-surface soil moisture, also available from microwave

measurements. As a first step, we evaluate the combined model system using local observations, and finally discuss the potential

of the system presented for multi-stream data assimilation in the context of Earth Observation systems.

1 Introduction

Monitoring the status of land surface carbon pools has gained significant attention following various climate related pledges to15

balance carbon sources and sinks (Heiskanen et al., 2022). Indeed, even though anthropogenic carbon fluxes are responsible

for creating a large imbalance of the global carbon cycle that has led to sustained and accelerating greenhouse-gas forcing, the

largest CO2 fluxes globally are related to plant photosynthesis, plant respiration and the decay of dead plant matter (Friedling-

stein et al., 2022). These carbon fluxes are determined by climatic factors, the presence and amount of photosynthesising

vegetation, and soil water availability, the latter due to the intrinsic water limitation of biological processes (Gerten et al.,20

2005).

A reliable characterisation of both carbon and water fluxes and pools at a range of spatial scales is therefore of paramount

importance, as we currently lack a robust, spatially and temporally explicit knowledge of the sources and sinks of CO2 :::::
within

::
the

:::::::::
terrestrial

::::::::
biosphere, or of the drivers of those variations. Current climate predictions and climate policy scenarios crucially

depend on assumptions about the future fate of the terrestrial carbon stores
::::
pools

:
and their interaction with future climate25

variations, but how those variations work and
::::::::
variations

::
in

::::::
carbon

:::::
fluxes interact with various forcing factors

:::::
(such

::
as

:::::::
climate,

:::
land

::::
use,

:::::::::::::::
CO2 fertilisation) is still only partially understood (Arora et al., 2020). This makes policies that rely on future climate

scenarios intrinsically unreliable.

:::
The

::::
lack

::
of

::::::::::
knowledge

:::::
exists

::::::
despite

::
of

:::
the

::::::::::
availability

::
of

:::::::
products

:::
of

:::
net

::
or

:::::
gross

::::::
carbon

::::::
uptake

::
by

::::::::
terrestrial

::::::::::
vegetation,

::::
such

::
as

:::::
those

::::
from

:::::::
MODIS

:::::
with

::::
daily

::::
and

:::
up

::
to

:::
250

:::
m

::::::::
resolution

::::::::::::::::
(Zhao et al., 2005),

::
or
:::::

from
:::
the

::::::::::
Copernicus

::::::
Global

:::::
Land30

::::::
Service

::::
with

::
a
:::
300

:::
m

:::::
spatial

::::
and

::::::
10-day

::::::::
temporal

:::::::::
resolution

::::::::::::::::::
(Swinnen et al., 2021).

::::
One

:::::
issue

::
is

::::
that

::::
those

::::::::
products

:::
are

:::
no

:::::
direct

::::::::::
observations

::
of

::::::
carbon

::::::
fluxes,

:::
but

:::::
rather

::
a
::::::::::
combination

:::
of

:::::::
remotely

::::::
sensed

::::::::::
information

::::
and

:
a
:::
set

::
of

:::::::::::
assumptions.

:::::
They

:::
thus

:::
do

:::
not

::::::::::
necessarily

:::::
agree

::::
with

::::
each

:::::
other

::
or

::::
with

:::
the

::::::
results

:::
of

:::::::::
ecosystem

::::::
models

::::::::::::::::::::::::::::::
(Turner et al., 2006; Sun et al., 2021)

:
.

:::::::
Another

::::
issue

::
is

:::
that

:::
we

::::
lack

:::::::
spatially

:::::::::
distributed

::::
data

::::
sets

::
of

::::::::
terrestrial

::::::::
biosphere

:::::::::::
CO2 sources.

:

::::::::
However,

::
in

::::
order

::
to

:::::::
identify

:::
the

:::::
drivers

::
of

:::::::::
terrestrial

:::::
carbon

:::::::
sources

:::
and

:::::
sinks,

::::
such

::
as

:::::::::
vegetation

::::
state,

::::
soil

:::::
carbon

:::::::
content

::
of35

:::::::
different

::::::::
qualities,

::::::::::
temperature,

::::
soil

::::::::
moisture,

::::::::::
atmospheric

::::::::
humidity,

::
or

:::::
light

:::::::::
availability,

:::
we

:::::
need

::::::
models

:::
that

:::
are

::::::::::
thoroughly

::::::::
evaluated

::::::
against

:::::::
reliable

:::::::::::
observations.

::
If

:::
we

::::
also

::::
want

:::
to

::::::
identify

:::::::
existing

:::::::
carbon

::::::
sources

::::
and

:::::
sinks

:::
and

::::::::
attribute

::::
those

:::
to

:::::
certain

::::::
drivers

::::
and

::::::::
processes,

:::
we

::::
also

::::
need

::
to

::
be

::::
able

::
to

:::
run

::::
and

:::::::
evaluate

::::
those

:::::::
models

::
at

:::
the

:::::
spatial

::::
and

:::::::
temporal

:::::::::
resolution

::
of

::::::
interest.

::::::::
Running

::::::
models

::
at

::::
high

:::::
spatial

::::
and

:::::::
temporal

:::::::::
resolution

:
is
:::
not

:::
an

::::
issue

::
in

::::::::
principle.

::::
The

:::::::
problem

:::
lies

::
in

::::::
finding

:::::::
suitable

::::::::::
observations

::
at

::::
high

::::::::
temporal

:::
and

::::::
spatial

::::::::
resolution

:::
for

::::::::
terrestrial

:::::::::
ecosystem

::::::
model

::::::::
evaluation

::::
and

::
in

::::::
finding

:::
out

:::::
which

::::::
model40

:::::::::::
formulations,

:::::
initial

:::::::::
conditions

:::
and

:::::::::::::
paramerisations

::::
can

::::::::
reproduce

:::::
those

:::::::::::
observations.

Earth observation technology offers a powerful tool for observing the land vegetation and soil water status in multiple,

complementary ways across time and space. However, there remain serious challenges for their exploitation, in particular a
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lack of a direct link between the variable of interest and remotely sensed information. In other words, remote sensing regularly

provides only an indirect measure (Disney et al., 2016; Gao et al., 2021) – with widely varying accuracy – of some underlying45

processes, such as photosynthetic activity, rather than a quantification of carbon pools and fluxes. Or if carbon fluxes or

pools are estimated, those estimates heavily rely on models and auxiliary inputs (Running and Zhao, 2015), or have so far

been validated only locally (Liu et al., 2022).
::::
Data

::::::::::
assimilation

::
is
::
a
:::::::
valuable

:::::::
method

:::
for

:::::::::::
automatically

:::::::
finding

:::
the

:::::::
optimal

::::::::::
combination

::
of

::::::
model

::::::
initial

::::::
values,

::::::::::
parameters

:::
and

:::::
even

:::::
input

::::::::
quantities

:::::
given

:::
the

:::::::::::
observations

:::::::::::
assimilated,

:::::::
pertinent

:::
to

:::::
certain

:::::::::::
assumptions

:::::
about

:::::
prior

:::::
values

::::
and

:::::::::::
uncertainties

::
of

::::::
models

::::
and

::::
data

:::::
within

::
a
::::::::
Bayesian

:::::::::
framework

:::::::::::::::
(Tarantola, 2005)50

:
.
:::::
While

:::
not

::::::::
providing

::
a
:::::
ready

:::::
made

::::::
answer

::
–

:
it
::::::
always

::::::
needs

::
to

::
be

:::::::
assured

:::
that

:::
the

::::
thus

:::::::::
optimised

:::::
model

::::::::::
simulations

::::::
"make

:::::
sense"

::
–

::::
data

::::::::::
assimilation

:::
can

:::
be

::::
used

::
to

::::
find

:::
the

::::
most

:::::::
reliable

::::::
model

:::
and

::::
data

:::::
based

::::::::
estimates

:::
of

::::::::
quantities

::
of

:::::::
interest,

::::
e.g.

:::::
carbon

::::::
fluxes,

:::
and

:::::
serve

::
as

:
a
::::
tool

:::
for

::::::::
evaluating

:::::::::::
assumptions

:::::
about

::
the

:::::::
inherent

::::::::
processes

:::::::
driving

:::::::
changes

:
in
:::::
those

::::::
fluxes. Thus,

we expect significant added value if those
::::
earth

::::::::::
observation

:
data are used within a data assimilation framework, allowing the

synergistic use of multiple data streams (Berger et al., 2012; Ciais et al., 2014; Scholze et al., 2017). This is particularly relevant55

given that remote sensing offers unparalleled data coverage over large regional to global scales at high temporal frequency.

In this study we present a process-based modelling system that is suitable for the assimilation of a wide range of such data

streams, enabling a synergistic multi-data stream land surface carbon monitoring and prediction system. So far, there have

been a number of relevant studies, mostly using single data streams. For example, the Biosphere Energy-Transfer HYdrol-

ogy scheme (BETHY, Knorr, 2000) has a long record of data assimilation studies using land surface temperature (Knorr and60

Lakshmi, 2001), atmospheric CO2 (Rayner et al., 2005), fraction of photosynthetically active radiation (FAPAR, Knorr et al.,

2010; Kaminski et al., 2012), eddy-flux measurements (Knorr and Kattge, 2005)
::::::::::::::::::::::::::::::::::
(Knorr and Kattge, 2005; Kato et al., 2013),

solar-induced fluorescence (SIF, Norton et al., 2017, 2018, 2019), the combination of CO2 and passive-microwave-derived soil

moisture (Scholze et al., 2016) as well as the combination of CO2, L-band passive-microwave soil moisture and vegetation op-

tical depth (Scholze et al., 2019). BETHY is a combined carbon and water land surface model that focuses on faster processes,65

such as energy and water exchanges, and carbon fluxes at time scales from hours up to several years, coinciding with the typical

time span of satellite missions. BETHY
::
is also the core of the first Carbon Cycle Data Assimilation System (CCDAS, Rayner

et al., 2005; Kaminski et al., 2013). BETHY has been developed specifically for the purpose of assimilating both satellite and

locally measured carbon and energy flux data. The main limitation of the above studies, however, is that BETHY does not

account for plant growth and allocation, and therefore cannot capture slow increases in living-plant biomass over time.70

Following up from the experiences gained from the studies previously cited, we identify the following essential requirements

for a process-model at the centre of the envisaged land surface carbon monitoring system:

– representation of internal processes affecting carbon, water and energy fluxes at time scales of hours to several years, to

permit spatial and temporal scaling;

– representation of specific variables that directly link to remotely sensed information and, if needed, related ’observation75

operators’, i.e. modules that simulate the same variable as provided by the assimilated data stream;
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– computational efficiency, high degree of simplicity while retaining sufficient realism, and ideally the availability of the

adjoint model code to enable the use of efficient variational assimilation approaches.

We address these
::::
There

:::
are

::
a
::::::
number

:::
of

::::::
models

::::
that

:::::
could

:::::::::
potentially

:::::
fulfill

:::::
those

:::::::::::
requirements.

:::::
They

:::::
range

:::::
from

::::::
carbon

::::::
models

:::::::::::
incorporated

::::
into

::::::
routine

:::::::
weather

::::::::::
forecasting,

:::::
such

::
as

::::::::::
C-TESSEL

:::::::::::::::::::
(Boussetta et al., 2013)

:
,
::
to

::::::
highly

::::::::
complex

::::
land80

::::::
surface

:::
and

:::::::::
ecosystem

::::::
models

:::
that

:::
can

:::
be

:::::::
operated

::::
both

:::::
within

:::::
earth

::::::
system

::::::
models

::
or

::::::::::::
independently,

::::
such

::
as

::::::
JULES

:::::::::::::::::::::::::::::::
(Best et al., 2011; Harper et al., 2016)

::
or

::::::::::
ORCHIDEE

:::::::::::::::::
(Traore et al., 2014).

:::
Of

:::::
these,

::::::::::
C-TESSEL

:::
has

::::::::
probably

:::
the

:::::::
strongest

:::::::::::
track-record

:::
for

::::::::::
assimilation

::
of

:::::::
satellite

::::
data,

::::::
mainly

:::
for

:::
the

::::::
purpose

:::
of

::::::::::
constraining

:::
soil

::::::::
moisture

::::::::::::::::
(Scipal et al., 2008)

:
.
::::::::
However,

:
it
::::
does

:::
not

::::::::
simulate

:::
the

::::
mass

:::::::
balance

::
of

::::::
carbon,

::::::
despite

:::::::::
simulating

:::::::::::::
photosynthesis

:::
and

::::::::::
respiration,

:::
nor

:::
can

::
it

::::::
predict

:::
leaf

::::
area

::::::
index,

:::::
which

::
it

:::::::
requires

::
as

::::
input

:::::
data.

:::::::::
C-TESSEL

::
is

::::::::
therefore

::
of

::::::
limited

:::
use

:::::
when

::::::::::
assimilating

:::::::
FAPAR,

::
or

::::::::
variables

::::::
related

::
to

::::::::
biomass.85

::
By

::::::::
contrast,

::::::
JULES

:::::::
includes

:
a
::::
full

::
set

::
of

::::::
carbon

:::::
fluxes

::::
and

:::::
pools

:::::::::::::::
(Clark et al., 2011)

:
.
:::
An

::::::
adjoint

::::::
version

::
of

::::::
JULES

:::
has

:::::
been

::::::::
developed

::
to

::::::::
optimise

:::::::::
parameters

::
at

:::
site

::::
level

:::::
using

:::::
eddy

:::
flux

::::
data

::::::::::::::::
(Raoult et al., 2016)

:
.
:::::::::::
ORCHIDEE

:::::::
includes

:::
not

::::
only

::::::
carbon

:::
but

:::
also

::::::::
nitrogen

::::::
cycling

:::::::::::::::::::
(Vuichard et al., 2019).

::
A

::::::::::::::
data-assimilation

::::::::::
framework

:::
for

::::::::::
ORCHIDEE

::::
also

::::::
exists,

:::::
which

:::
has

:::::
been

::::::::::
successfully

::::::::
employed

::
at

:::
site

::::
level

:::
for

:::
the

::::::::
step-wise

::::::::::
optimisation

::
of
::::::
model

:::::::::
parameters

:::::
using

::::::
remote

::::::
sensing

::::
data

::::
(e.g.

::::::::
FAPAR),

::
as

::::
well

::
as

:::::
water

:::
and

::::::
carbon

::::
flux

::::::::::
observations

:::::
from

:::
the

::::
eddy

:::::::::
covariance

::::
flux

:::::::
networks

:::::::::::::::::
(Peylin et al., 2016).

:
90

:::
We

::::
note

::::
that

:::
less

::::::::
complex

::::::
models

:::::
such

::
as

::::::::::
C-TESSEL

:::
are

:::::
often

:::::
much

::::::
better

:::::
suited

:::
for

::::
data

:::::::::::
assimilation

::::
than

::::::::
complex

::::::
models,

:::::::
because

::
a
:::::::
simpler

::::::::
structure

::::
with

:::::
fewer

::::::::::
parameters,

::::::::
omitting

::::::::
processes

::::
not

:::::::
relevant

::
at

:::
the

:::::
time

:::::
scales

:::
of

:::::::
interest,

:::::
makes

:::::::::::
optimisation

::::
both

:::::::::::::
computationally

:::
and

:::::::::::::
mathematically

:::::
much

:::::
more

:::::::
feasible.

:::
For

::::::::
example,

:::::::::
C-TESSEL

::::
and

:::::::
BETHY

::::
lack

:::::::::::
representation

:::
of

::::::
carbon

:::::
pools

::::::
(except

:::
for

::::
leaf

::::
area

::
in
::::

the
::::
case

::
of

::::::::
BETHY)

::::
due

::
to

::
a

:::::
focus

::
on

:::::
short

::::
time

::::::
scales

::
of

:::
up

::
to

::
a

:::
few

:::::
years.

::::
This

::
is

:::::::::
contrasted

::
by

:::::::
another

::::::
model,

:::::::
DALEC

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Data Assimilation Linked Ecosystem Carbon, Williams et al., 2005)95

:
,
:::::
which

:::::::
focuses

:::
on

::::::
carbon

:::::
pools

::::
and

::::::::::
longer-term

:::::::::
processes,

::::
but

::
is

::::::::::
structurally

::::
also

::::::
simple.

::::::::
DALEC

:::
has

:::::
been

:::::::::
developed

:::::::::
specifically

:::
for

::::::::::
assimilating

::::::::::
information

:::
on

::
C

:::::
fluxes

::::
and

::::
pools

:::::
from

:::::::
satellite

::::::::::
observations

::::::::::::::::::::::::
(Bloom and Williams, 2015),

:::::
eddy

:::::::::
covariance

::::::
systems

:::::::::::::::::::::::::::::::::::::::::::
(Bloom and Williams, 2015; Famiglietti et al., 2021),

::::
and

::::::::
biometric

:::
data

::::::::
including

:::::::
biomass

::::::::::::::::::::::::::::::::::::
(Smallman et al., 2017; Quegan et al., 2019)

:
.

::
In

:::
this

::::::
study,

:::
we

:::::::
therefore

:::::::
address

:::
the

::::::
above requirements by the development of a new process model, which combines100

the BETHY and DALEC (Data Assimilation Linked Ecosystem Carbon) models, both of which have been specifically de-

signed with data assimilation in mind and have a corresponding track record. BETHY provides a detailed representation

of fast and intermediate-time scale
:::::
(hours

::
to
::::::::

months)
:
processes while DALEC provides a focus on slower processes of

carbon allocation and turnover
:::::::
(months

::
to

::::::
years). This combination opens up the possibility of retrieving variables such

as biomass carbon stocks, that were not the focus of the assimilation studies using BETHY. DALEC is a mass-balance105

model that simulates the dynamics of live and dead carbon pools and associated fluxes (Williams et al., 2005; Bloom and

Williams, 2015). DALEC has been developed specifically for assimilating information on C fluxes and pools from satellite

observations (Bloom and Williams, 2015), eddy covariance systems (Bloom and Williams, 2015; Famiglietti et al., 2021), and

biometric data including biomass (Smallman et al., 2017; Quegan et al., 2019). Data assimilation is used to assign parameter

values and their uncertainty ranges, as well as model initial conditions, at the pixel-scale across the modelled domain. DALEC110
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requires input in the form of either gross or net primary productivity (NPP) from a separate model, in this case BETHY. In

return, DALEC provides information on leaf area back to BETHY.

In this contribution we present the newly developed D&B (DALEC & BETHY) model together with original measurements

from two study sites of widely varying climate and vegetation, both
:
.
:::::
Both,

:::
the

:::::
model

:::::::::::
development

:::
and

:::
the

::::
field

::::::::
campaign,

:::::
were

::::::
carried

:::
out within the ESA-funded Land surface Carbon Cycle (LCC) study. Due to the considerable computational demands115

of data assimilation, D&B avoids any complexity that cannot be justified by the need to improve the realistic simulation of

target variables. Coupling of the two models together with their respective components, state and driving variables is shown in

Section 2 (Figure 1). D&B has been developed with the specific purpose of providing a modular and flexible modelling scheme

for the assimilation of multiple data streams. We present the various components of the core model, and a detailed evaluation

of the a priori, uncalibrated model. We also present observation operators for FAPAR, SIF, vegetation optical depth (VOD)120

and near-surface soil moisture, and a further evaluation of the model combined with each observation operator against locally

measured data, as a precursor to the use of satellite-derived Earth observation data.

2 Model description

The D&B model is comprised of three interconnected components: (i) photosynthesis and autotrophic respiration, (ii) energy

and water balance, and (iii) carbon allocation and cycling, including heterotrophic respiration (Figure 1). The first comprises125

processes that lead to the uptake of CO2 via plant photosynthetic activity (gross primary production, GPP), influenced by

temperature, light absorption across the canopy, and stomatal control, as well as carbon loss from the respiration of live

vegetation (R
A

, autotrophic respiration). The remaining carbon flux is then passed as net primary production (NPP = GPP -

R

A

) into the Carbon Allocation and Cycling component. The Energy and Water Balance determines the energy input to and

output from the canopy in the form of radiative heat, latent and sensible heat transport, taking into account the water balance130

of the canopy and soil, as well as the rate of water uptake from the roots. Components (i) and (ii) are based on BETHY, and

component (iii) on DALEC.

Depending on the domain for which the model is set up, D&B distinguishes up to 13 Plant Functional Types (PFTs) as

shown in Table 1. Each PFT is characterised by a unique set of parameter values. All PFTs use the C3 photosynthetic pathway,

except for PFT 10, for which a separate module for C4 photosynthesis is used (see the Supplementary Information, SI, Section135

1.1.1). Management of arable crops is represented by appropriate parameters for leaf onset and fall, as well as assumptions

about a minimum level to which soil moisture is allowed to fall, as an approximation of irrigation (SI Section 1.2.7).

The fundamental model time step is 1 hour. The following components are, however, simulated at a daily time step in order

to decrease the computational effort:

– soil water balance140

– canopy water balance

– snow module
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Table 1. Parameter combinations are available for the following plant functional types in D&B:

PFT# Short name Description

1 TrEV Tropical broadleaf evergreen tree

2 TrDD Tropical broadleaf deciduous tree

3 TmEv Temperate broadleaf evergreen tree

4 TmSg Temperate broadleaf deciduous tree

5 EvCn Evergreen coniferous tree

6 SgCn Deciduous coniferous tree

7 EShr Evergreen shrub

8 DShr Deciduous shrub

9 C3Gr C3 grass

10 C4Gr C4 grass

11 TunV Tundra

12 WetV Wetland

13 ArbC Arable crop

– the observation operators for VOD and surface soil moisture

The model simulates several PFTs in sub-grid tiles. Each PFT is simulated separately as if it would cover the full grid cell,

with the results re-scaled by multiplying them with the grid-cell fraction occupied by the specific tile. Inter-PFT competition145

for light or water are neglected. A given grid cell can thus comprise several PFTs each with its specific cover fraction.

2.1 Photosynthesis and Autotrophic Respiration

The C3 photosynthesis module (SI Section 1.1.1) is based on the biochemical model of photosynthesis by Farquhar et al.

(1980). It determines light absorption, light-limited electron transport, CO2-limited carboxylation rate and the resulting gas

exchange of CO2. Light absorption in the photosynthetically active spectrum is calculated within a two-flux approximation (SI150

Section 1.1.1), following Sellers (1985). D&B divides the canopy into several vertical layers of equal LAI, the sum of which

constitutes the total canopy LAI. In the standard configuration, the number of layers is three. The amount of light absorbed

and thus available for photosynthesis is dependent on LAI, statistical leaf orientation (assumed to be isotropic) and leaf single-

scattering albedo. Photosynthetic capacity decreases from top to bottom of the canopy, assuming that decreasing levels of

daily-average solar radiation drives
::::
drive

:
decreases in leaf nitrogen content and maximum rates of light-limited photosynthesis.155

The photosynthesis module further divides GPP into NPP and R

A

(SI Section 1.1.2). R
A

is modelled as the sum of mainte-

nance and growth respiration (Knorr, 1997). While maintenance respiration is proportional to photosynthetic capacity, growth

respiration is proportional to NPP, and zero when NPP is negative. Both continually increase with temperature. Negative NPP

is also passed on to the C Allocation and Cycling component, where it leads to the depletion of the labile C pool.
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The rate of photosynthesis is first computed under standard conditions without limitation by water availability. This potential160

photosynthesis rate is translated into an equivalent stomatal conductance, i.e. the stomatal conductance necessary to provide

the flow of CO2 to the leaf interior. This value for stomatal conductance without water limitation is reduced depending on

the vapour pressure deficit of the surrounding air, and available soil moisture. This modified stomatal conductance, or "actual

stomatal conductance", then determines actual photosynthesis and, using information from the Energy and Water Balance

component, the rate of transpiration.165

2.2 Energy and Water Balance

The Energy and Water Balance component requires the rate of transpiration from the photosynthesis module, due to the tight

coupling between water loss through transpiration and CO2 uptake by leaves. Transpiration (SI Section 1.2.4) is subsequently

combined with other evaporative fluxes, namely of intercepted water (canopy evaporation, Figure 2, SI Section 1.2.3), and

from the soil surface (soil evaporation, SI Section 1.2.5), including snow sublimation (SI Section 1.2.7), to arrive at
:::::
derive170

total evapotranspiration and latent heat flux. Latent heat flux is constrained by the available net radiative energy input, which

the model computes separately for the vegetation canopy and the soil (SI Section 1.2.6). Sensible heat flux is computed from

the assumption of energy closure from net radiation, latent and soil heat flux. The model uses incoming shortwave (solar) and

longwave (thermal) radiation as input, but simulates both outgoing radiation components internally, using information on the

albedo of the soil background and vegetation (SI Section 1.2.8).175

Soil evaporation proceeds at the equilibrium rate driven by the soil net radiation from a thin surface layer. This corresponds to

a typical depth for which microwave remote sensing can provide soil moisture estimates (Babaeian et al., 2019). Evapotranspi-

ration from the canopy happens as either canopy evaporation from leaf surfaces at the equilibrium rate (E
i

, Jarvis and McNaughton, 1986)

:::::::::::::::::::::::::
(Jarvis and McNaughton, 1986), or as transpiration through leaf pores(E

t

). Precipitation enters either the leaf interception

pool(W
i

), or the soil pool (W
r

and W

s

, see SI Section 1.2.1). Precipitation happens as either snow (P
sn

, SI Section 1.2.7), or180

rainfall(P
r

), partitioned into a canopy-interception part(E
i

), soil infiltration(P
s

), and surface runoff(Q
s

). Soil water drains as

sub-surface runoff(Q
d

), or base flow(Q
b

). Infiltration into the soil (SI Section 1.2.2), runoff, drainage and baseflow (SI Section

1.2.5) are simulated following a new implementation of the variable infiltration capacity approach (Wood et al., 1992), where

a thin surface layer has been added to a single root-zone layer, (Scholze et al., 2016). The surface soil moisture layer overlaps

with the root zone layer, so that the near-surface soil water pool (W
s

) forms part of the root-zone soil water pool (W
r

, Figure 2).185

The former has a nominal depth of 4 cm, the latter a depth equal to a PFT-specific root depth, d
r

(SI Table 1 in Section 1.1.2).

Both depths are limited by depth to bedrock. Soil water exiting the root zone downwards is considered subsurface drainage,

while there is no upward water movement from below the root zone. The root zone soil moisture pool contains all simulated

soil water, while the surface layer is added in order to be able to calculate soil evaporation, as well as for diagnostic purposes,

taking account of
:::::::::
accounting

:::
for the impact of surface soil moisture on microwave remote sensing.190

Once per day around the time of maximum evaporative demand, assumed to be at the hourly time step closest to 13:00 hours

local solar time (Knorr, 1997), the parameters determining actual stomatal conductance are reset to reflect soil water status. To

do this, transpiration is simulated as the minimum of a root water supply rate, which increases linearly as soon as soil water
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exceeds the permanent wilting point,
:::::::
reaching

::
a

::::::::
maximum

::::
with

::::
soil

:::::
water

::
at

::::
field

:::::::
capacity,

:
and the demand for transpiration.

This rate of demand is determined by the potential rate of photosynthesis without water stress
::::::::
computed

:::::::::
previously

::
at

::::
each

::::
time195

:::
step. Potential photosynthesis is assumed as the rate at a fixed ratio of leaf to atmospheric CO2 content (0.87 for C3 and 0.67

for C4 photosynthesis). Actual photosynthesis and stomatal conductance are then set such that transpiration is capped at the

root supply rate
:::::::::::
downregulated

:::::
from

::
its

::::::::
potential

:::
rate

::
to

:::
the

::::
rate

::
of

:::::::::
maximum

:::
root

:::::
water

::::::
supply. A supply-demand calculation

then determines the rate at which leaf stomata close in response to the water vapour deficit of the surrounding air.
:::
(See

:::::::
Section

:::::
1.2.4,

::::
Equ.

::
67

::
of

:::
the

::::
SI).200

Finally, the surface reflectance, or background albedo (⇢
S

), is affected by soil brightness, surface soil water content, and

the presence of snow. Vegetation albedo as a function of absorption in the photosynthetically active spectrum, computed in the

photosynthesis module, and snow albedo is modelled depending on snow age (Loth and Graf, 1996; Knorr, 1997).

2.3 Carbon Allocation and Cycling

The carbon cycle in D&B is expressed as a series of six equations describing the dynamics of six carbon pools. Other than the205

original DALEC model, D&B employs an hourly time step for allocation, the same as the time step used by the photosynthesis

module. There are four live C pools, for foliage (fol), wood (wd) and fine roots (fr), a labile (lab) pool which supports foliage

expansion, and two dead organic matter pools, namely litter (lit) and soil organic matter (SOM). The state equations describe

the change over time in pool sizes on the basis of C fluxes in and out of the pool. Carbon inputs all derive
::
are

:::
all

:::::::
derived

originally from NPP. NPP is allocated to each of the four live biomass pools based on fixed site of
:
or

:
PFT-specific fractions.210

The labile C pool in D&B represents the stored C used to initiate accelerated leaf development at the start of the growing

season (SI Section 1.3.1). The phenology scheme parameterises timing of local bud burst via allocation to leaves from the labile

pool based on calibrated climate sensitivity. Leaf development thus depends on the allocation of labile carbon, replenished from

NPP, to the leaf carbon pool in addition to direct allocation from NPP. The leaf area index is determined by the conversion of

leaf carbon pool size to leaf area by way of fixed values of leaf mass per area.215

The
:::::
Losses

:::::
from fine root (fr) and wood pools (wd) are determined by first-order differential equations, using a decay con-

stantcombined with an fractional input, again from NPP
:
.
:::::::
Biomass

::::::::
dynamics

::
of

:::::
plant

:::::
pools

:::
are

:::
the

:::::::
outcome

::
of

::::
NPP

:::::::::
allocation

:::
and

:::::
these

::::::::
mortality

:::::
losses

:
(SI Section 1.3.2). Thus, a fraction of

:::::::::
Parameters

:::
for

:::
the

::
C

:::::
cycle

::
in

:::::
D&B

::::
use

::::
PFT

::::::::::
calibrations

::::::
derived

:::
for

:::::::
DALEC

:::::
using

:::
the

:::::::::::::
CARDAMOM

:::::::::
model-data

::::::
fusion

::::::::
approach

:::::::
(Bloom

:::
and

::::::::
Williams

::::::
2015).

:::::::::::::
CARDAMOM

::::
uses

::::::::
ecological

::::
and

:::::::::
dynamical

:::::::::
constraints

::
to

::::::
ensure

::::
that

:::::::::
allometric

::::::::::
relationships

::::::
arising

:::::
from

:::::::::
parameter

:::::::
selection

:::::
(like

::::::::
emergent220

::::::::
root:shoot

::::::
ratios)

:::
are

::::
kept

::::::
within

::::::::::
ecologically

:::::::
realistic

:::::::
bounds.

:::
By

:::::::::
calibrating

::::::::
DALEC

:::::
using

::::
both

::::
LAI

:::
and

:::::::
woody

:::::::
biomass

::::
data,

:
a
:::::::::
constraint

:
is
::::::
placed

:::
on

:::::::
relevant

:::::
model

:::::::::
parameters

::
to

::::::
match

:::
the

::::::::
measured

:::::::
biomass

::
of

:::::
these

::::
plant

::::::
organs.

:

:::::
Losses

:::::
from

:
the fine root pool replenishes

:::::::
replenish

:
the litter pool, added by strongly periodic inputs linked to leaf senes-

cence, while wood directly feeds SOM. The litter pool decays either to CO2 via heterotrophic respiration, or is transferred

::::::::::
decomposed

:
to the SOM pool. Mineralisation of both SOM and litter C pools by heterotrophic respiration thus results in225

further CO2 fluxes. Total ecosystem respiration (TER) is determined by the sum of autotrophic growth and maintenance res-

piration, and mineralisation of dead organic matter (lit or som), creating a flux of heterotrophic respiration. Following the
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procedure used for DALEC, the prior parameters
::::::::
parameter

::::::
values of the Carbon Allocation and Cycling are set through a

regional-scale calibration procedure, as described in SI Section 1.3.3.

3 Observation Operators230

The task of an observation operator is to simulate the equivalent of an observation from the model’s state variables. This in-

cludes the simulation of the variable that is retrieved at the time when it was observed and over the footprint of the observations

(Kaminski and Mathieu, 2017). In this manuscript, we will present the simulation of four data streams, namely FAPAR, SIF,

L-band VOD and near-surface soil moisture, and then confront model simulations with local measurements. Of the four data

streams, FAPAR and surface soil moisture are internally calculated.235

3.1 Fraction of absorbed photosynthetically active radiation (FAPAR)

FAPAR is a measure of the capacity of terrestrial vegetation to absorb sunlight in the visible spectrum, i.e. that part that can

be utilised as
:::
for photosynthesis. It is defined as the amount of photosynthetically active radiation (PAR) absorbed by green,

functioning leaves divided by the total incoming PAR. FAPAR is calculated within the two-flux canopy radiative transfer

scheme (SI Section 1.1.1) required for the calculation of GPP (Section 2.1). However, due to the dependence of FAPAR on240

solar zenith angle, it is necessary to take into account the solar zenith angle at time of observation. Therefore, the observation

operator for FAPAR needs to insure that either a separate calculation of FAPAR at the correct solar zenith angle is performed,

or it utilizes FAPAR calculations from the modelrun
:::::::::
performed

:::::
within

:::
the

:::::::
model’s

::::::::::::
photosynthesis

::::::::::
component at the times and

dates where model and observations solar zenith angles match.

3.2 Solar Induced Fluorescence (SIF)245

Strictly speaking, the canopy level solar-induced chlorophyll fluorescence, or SIF, is a measure not of the photosynthetic rate

as such, but of the amount of radiation absorbed by the leaf and not used for the purpose of photosynthesis. Some of that

surplus radiation is re-emitted as fluorescent light as part of a copying mechanism of the photosynthetic system. Under normal

field conditions, however, SIF can often be used as an indication of photosynthetic activity, as opposed to FAPAR, which only

characterises the photosynthetically active light that is potentially available (Porcar-Castell et al., 2014; Mohammed et al.,250

2019).

To calculate SIF, we use the formulation of Gu et al. (2019). This choice is motivated by the direct link to the photosynthesis

routines and the relatively parsimonious implementation, which fits with the modelling strategy adopted here. The canopy layer

SIF, S
n

, is given by:

S

n

= s

SIF

J

n

1� 

PSIImax

q

L

 

PSIImax

(1+ k

DF

)
, (1)255
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where J

n

is the electron transport in canopy layer n (SI Equ. 8),  
PSIImax

is the maximum photochemical quantum yield

of photosystem II, q
L

is the fraction of open photosystem II reaction centres and k

DF

the ratio of the first order rate constants

for heat dissipation and fluorescence. We take the values prescribed by Gu et al. (2019). Note that the original equation in that

paper also has a term for the photon escape probability from the canopy. In D&B, this is calculated explicitly by the layered

2-stream model (SI Section 2) and hence is not required here. As an extension to the model by Gu et al. (2019) in view of the260

anticipated calibration in a data assimilation scheme, we further introduce the scaling factor s
SIF

, which compensates for large

uncertainties in (1) the values of the three constants  
PSIImax

, q
L

, and k

DF

and (2) the spectral conversion that is described

below. We set the prior value of s
SIF

to 1.

SIF produced by the D&B model via the layered 2-stream model described in Section 2 of the SI has native units of

mol.m

�2
s

�1. It represents the total flux of photons into the hemisphere above the canopy for all wavelengths. Satellite mea-265

surements and in situ observations, however, are typically recorded in energy flux units per steradian, per nano-metre of the SIF

spectra, e.g. Wm

�2
s

�1
nm

�1
sr

�1. To convert from molar to energy units, we apply the molar form of the Planck equation,

providing energy per mole of photons, e. (e= ahc/�

�

, where a is Avogadro’s number, 6.023⇥ 1023, h is the Planck constant,

6.626⇥ 10�34
m

2
kg.s

�1), c is the speed of light, 3.0⇥ 108 m.s

�1 and �
�

is the wavelength of the SIF photons in metres.

We convert to steradians by using a constant factor of 1
2⇡ , which assumes that the emittance of SIF from the top of the270

canopy is isotropic, and finally weight by the relative strength of emissions at �
�

compared to a reference SIF spectrum, i.e.:

w =
E(�

�

)P
i

E(�
�,i

)
, (2)

where E is the SIF emission spectrum of arbitrary units. Hence:

SIF

0 = SIF

ew

2⇡
, (3)

Where SIF has units of mol.m

�2
s

�1 and SIF

0 has units of Wm

�2
s

�1
sr

�1
nm

�1.275

For the present study we use a SIF emission spectrum observed at the Hyytiälä site in Finland (Magney et al., 2019). The

SIF spectrum was measured for four Scots pine trees at light level of 1200 molm

�2
s

�1 and then averaged.

3.3 Vegetation optical depth (VOD)

Vegetation optical depth (VOD)
::
D is essentially a parameter describing the attenuation of microwave radiation at some wave-

length due to the presence of vegetation. It depends on the dielectric properties (due to water content, temperature and chemical280

composition) as well as the structure and geometry of the vegetation, and sensor properties (e.g. wavelength, polarization). Due

to the relatively static nature of structure, dynamics of VOD are generally attributed to changes in above ground biomass and

water content (Ulaby and Wilson, 1985; Konings et al., 2019). It is measured within the microwave spectrum with passive in-

struments, using the black body radiation of the surface in the microwave domain), or active instruments such as scatterometers

or synthetic aperture radars.285
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Common retrieval methods may extract both the surface soil moisture and VOD simultaneously from satellite remote sensing

data, provided enough measurements are performed. For example the SMOS (Kerr et al., 2010) retrieval algorithm (Kerr et al.,

2012) is based on the so-called ⌧ �! formulation for the vegetation contribution (Kirdiashev et al., 1979; Mo et al., 1982) of

the microwave signal, where VOD is denoted by ⌧ , the perpendicular vegetation optical depth (Wigneron et al., 2007, 2010).

Here, however, we compare simulations to locally measured L-band passive VOD measurements. Due to the local setup290

where separate sensors are placed above and below the canopy (see SI Section 3.6), it is possible to measure VOD directly

without having to solve for soil moisture simultaneously.

We use a semi-empirical formulation for L-band VOD, expressed as:

⌧

�

= f(T )(l
wd

C

wd

+ l

fol

C

fol

)(l
s

f

soil

+ l

f

f

E

+ l0), (4)

where the subscript � denotes its wavelength dependence, C
fol

and C

wd

are the leaf and woody biomass pools, respectively295

(see SI Section 1.3.2), f
soil

(SI Equ. 91) is fractional plant-available soil water content, and

f

E

= E

t

/E

t,max

(5)

i.e. the ratio of actual to potential transpiration (see SI Equs. 59 and 64). f
soil

describes slow changes in the plant’s hydrological

status, hence multiplied by parameter l
s

, and f

E

fast changes, multiplied by parameter l
f

. The other empirical parameters are

l0, l
wd

for dependence on woody biomass, and l

fol

for dependence on leaf biomass.
:::
We

::::
note

:::
that

:::
the

:::
five

::::::::
empirical

::::::::::
parameters300

::
are

::::::::::::::::::::
wavelength-dependent;

::
for

:::::::::::
convenience

:::
we

:::::
refrain

:::::
from

::::::
adding

::
an

:::::::::
additional

:::::::
subscript

::
⌧ .
:

Following Schwank et al. (2021), we include an explicit temperature dependency in the form of:

f(T ) = 0.25+0.75/(1+ e

�0.5(T+3)), (6)

which approximates theoretically derived behaviour around the freezing point, with T being 2-m air temperature. This for-

mulation can be used across a range of microwave wavelengths, using different parameter values in each case. The second305

multiplicative factor in Equ. (4) is an empirical, linear expression using both woody and foliar biomass with the assumption

that VOD will be zero if no biomass is present. The third multiplicative factor describes how the water status of the vegeta-

tion modifies this expression. This last one also contains a constant factor, l0 > 0, because we expect positive VOD even if

vegetation water stress is at its maximum.

In this contribution, we apply it to passive L-band microwave measurements. The
:::::
values

::
of

:::
the parameters for the empirical310

VOD observation operator, shown in Table 2, were chosen to reproduce
:::::::
selected

::::
such

:::
that

:::
the

::::::
model

:::::::::
reproduces

:
a reasonable

fit to L-band observations from SMOS over bptj the Sodankylä and the Majadas del Tietar sites.

3.4 Near-surface soil moisture

In the D&B model, near-surface soil moisture is represented by an explicitly modelled thin surface soil moisture layer, with

a depth of 4 cm, unless depth-to-bedrock indicates a lower value. It is therefore a state variable in the model’s soil water315

component, and is described in detail in Section 2.2. This surface layers
::::
layer therefore here serves a dual purpose, to

:
.
:::::
First,
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Table 2. Parameters for empirical observation operator for L-VOD.

Parameter Unit Value

lwd m2/gC 2.0⇥ 10�4

lfol m2/gC 2.0⇥ 10�4

ls - 1.20

lf - 4.0

l0 - 0.4

::
to

:::::::
simulate

:::
soil

:::::::::::
evaporation.

:::::::
Second,

::
to diagnose a variable that can potentially be used as an assimilated data stream, and to

simulate soil evaporation.

::
be

::::::::
retrieved

::::
from

:::::::
satellite

:::::::::::
observations.

:
Near-surface soil moisture data is usually available from passive data

:::::::::
microwave

:::::::::::
measurements

:
when retrieved simultaneously with VOD

::::::
Section

:::
5.3. These retrieval algorithms explicitly separate the contri-320

butions to the microwave signal that come either from the vegetation (VOD) or from the soil (surface soil moisture).

4 Model evaluation

We first present an evaluation of the D&B model on its own, followed by an evaluation of the model together with the observa-

tion operators for the four data streams FAPAR, SIF, L-VOD and surface soil moisture. The methods used to derive the driving

data for the model as well as those of the measurements undertaken for model evaluation
:::::
driving

::::
and

::::::::
evaluating

:::
the

::::::
model are325

described in Section 3 of the SI.

4.1 Study sites

The D&B model is run for two study sites
:::
with

::::::
widely

:::::::
varying

:::::::
climate, one representing a boreal forest – Sodankylä in

Finland, a Class 1 site of the ICOS network (Rebmann et al., 2018) – the other representing a temperate savanna ecosystem –

Majadas de Tietar in Spain, also an ICOS network site. The Sodankylä Scots pine forest site (67o21’44.6”N, 26o38’18.9”E) is330

situated 100 km north of the Arctic Circle (Thum et al., 2007; Honkanen et al., 2023). It also has an understory of evergreen

ericacecous shrub (mostly blueberry) as well as lichen and mosses. The soil is characterised as predominantly sand (0-10 cm:

0.5/6.0/88.1/5.4% clay/silt/sand and stone, respectively; 10-20 cm: 0.3/4.1/93.5/2.1%; 20-40 cm: 0.2/2.8/91.9/5.1%.

The Majadas de Tietar site is a Mediterranean open woodland of evergreen Holm oak in western Spain (39o56’24.68”N,

5o45’50.27”E, Wang et al., 2016; El-Madany et al., 2018). The soil (Nair et al., 2020) contains an upper sandy layer (5% Clay,335

20% silt, 75% sand, 20 cm deep) underlain by a clay layer (30 to 60 cm depth, no information for 20 to 30 cm).

4.2 Model setup

The model simulation was run for the period 1 Jan 2009 to 31 Dec 2021 for Sodankylä, and 1 Apr 2014 to 31 Dec 2021 for

Majadas de Tietar
:::
We

:::
use

::::::
locally

::::::::
observed

::::
data

::
to

:::::
drive

:::
the

:::::
model

::::
(see

:::
SI

::::::
Section

::::
3.1).

:::
C

a::
is
:::

set
::
to
::

a
:::::::
uniform

:::::
value

::
of

::::
405
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::::
ppm,

:::
i.e

::::::::::::::::::::::::::::::
C

a

= 405⇥ 10�6mol(CO2)/mol(air),
:::::
which

::
is
::::::::::::
approximately

:::
the

::::::
annual

:::::
mean

:::::
value

::
at

::::::
Mauna

::::
Loa,

::::::
Hawaii,

::::::::
centered340

::::::
around

:::
the

::::::::
beginning

:::
of

:::::
2017

::::::::::::
(NOAA, 2024)

:
.
::::::
Model

::::
runs

:::
are

:
with a priori values of the parameters for all modules and

observation operators. Initial water content of the soil was set to 50% of field capacity. Simulations for the first two calendar

years (2009 and 2010 for Sodankylä, 2014 und 2015 for Majadas de Tietar) were discarded to avoid model biases due to initial

conditions of the water balance and short-lived carbon pools.
:::
The

::::::::
fractional

:::::::::
vegetation

:::::
cover

::
is

:::
set

::
to

::::::
f

c

= 1
::
for

::::
both

:::::
sites.

For Sodankylä, the model is run
::::::::
simulation

::::
was

:::
run

:::
for

:::
the

::::::
period

::
1

:::
Jan

::::
2009

:::
to

::
31

::::
Dec

:::::
2021,

:
with two PFTs, evergreen345

coniferous forest (PFT 5, 67% of ground area) and evergreen shrub (PFT 7, 33%). For Majadas del Tietar, we
::::::::
Measured

::::
soil

::::::::::
temperature

::
as

:::::
model

:::::
input

:
is
:::
for

::
1

::
m

:::::
depth.

::::
The

:::
soil

::::::
texture

::::
class

::
is

::::::::::::::
"medium/coarse"

:::
(cf.

:::
SI

::::::
Section

:::::
1.2.5,

:::::
Table

:::
4),

::::::::
following

::
the

:::::::::::
classification

::
of
:::
the

::::::
global

:::
soil

::::::
texture

::::
data

:::
set

::
by

::::::::::::
Zobler (1986).

:::::::::
Parameter

:::
and

:::::
initial

::::::
values

::::::
related

::
to

::::::
carbon

:::::::
turnover

:::
are

::
set

:::::::::
according

::
to

::
SI

:::::
Table

:
6
:::
(SI

:::::::
Section

::::
1.4).

:::
For

:::::::
Majadas

::
de

::::::
Tietar,

:::
the

:::::::::
simulation

::
is

:::
for

:
1
::::
Apr

::::
2014

::
to

:::
31

:::
Dec

:::::
2021.

:::
We

:
assume the site area to comprise C3 grass (PFT350

9, 80% of ground area) and temperate evergreen trees (PFT 3, 20%). The fractional vegetation cover is set to f

c

= 1 for both

sites.

We use locally observed data to drive the model (see SI Section 3.1). C
a

is set to a uniform value of 405 ppm, i.e

C

a

= 405⇥ 10�6mol(CO2)/mol(air), which is approximately the annual mean value at Mauna Loa, Hawaii, centered around

the beginning of 2017 (NOAA, 2024). Measured soil temperature as model input at Sodankylä is for 1 m depth. At Majadas355

del Tietar, the model is
:::::
model

:
is
:
driven by soil temperature measured at 80 cm depth averaged between four two locations, two

in open grassland and two under a tree canopy.

The soil texture class is "medium/coarse"for Sodankylä and "medium" for Majadas del Tietar (cf. SI Section 1.2.5, Table 4),

following the classification of the global soil texture data set by Zobler (1986).
:
.
:::::::::
Parameters

:::
and

:::::
initial

::::::
values

::::::
related

::
to

::::::
carbon

:::::::
turnover

:::
are

::
set

:::::::::
according

::
to

::
SI

:::::
Table

::
7.360

4.3 Evaluation approach

The D&B model is compared against eddy covariance data of carbon and energy fluxes, locally observed radiation balance,

and, in the case of the boreal site, snow depth. This is a first evaluation of the model with its a priori parameterisation and its

purpose is to assess whether the model is able to reproduce measurements with a reasonable degree of realism. The role of the

in situ observations is to serve as an independent evaluation data set.365

We compare multi-year averages of the annual cycle,
:::
time

:::::
series

:::
by

:::::::
showing

:::
the

::::::::
following

::::::
values

:::
for

::::
both

::::::::::
observations

::::
and

:::::
model

:::::::::::
simulations:

:::::::::::::
f

j

,f

min

j

,f

max

j

,
::::::
where

f

j

=
1

n

nX

i=1

f(i, j),

::::::::::::::

(7)

:::
and

::
f

:
is
:::
the

::::
flux

::
of

:::::::
interest,

:
i

::::::
counts

:::
the

::
n

:::::::::
simulation

:::::
years

::::
used

:::
for

:::
this

:::::::
analysis,

::
j

:::
the

:::
day

::::::
within

:::
the

::::
year

::::
(Jan

:
1
::
to

::::
Dec

::::
31).

::::
f

min

j ::::
and

:::::
f

max

j ::::::
denote

:::
the

::::::::
minimum

::
or

:::::::::
maximum

::::::
across

:::
the

::
n

:::::
values

::::::::::::::::::
{f(1, j), . . . ,f(n,j)},

:::::::::::
respectively.

:::
We

::::
also

:::::
show

:::
the370

multi-year mean , and also use as a measure of comparison the explained variance (r2) and
::
for

::::
both

:::::::::::
observations

:::
and

:::::::
models
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::
as

f̄ =
1

nm

nX

i=1

mX

j=1

f(i, j),

:::::::::::::::::::

(8)

:::::
where

::
m

::
is

:::
the

:::::::
number

::
of

::::
days

:::
per

::::
year.

:::
In

:::::::
addition,

:::
we

:::::::
provide

::
the

:::::::::
following

:::::::
metrics: root-mean square error (RMSE) at the

::
of

::::
daily

:
375

RMSEdaily =
1

nm

vuut
nX

i=1

mX

j=1

⇥
fmod(i, j)� fobs(i, j)

⇤2

::::::::::::::::::::::::::::::::::::::::::::

(9)

:::
and

::::::
annual

::::::
values:

RMSEannual =
1

n

vuut
nX

i=1

⇣
f̄

i,mod � f̄

i,obs
⌘2

,

::::::::::::::::::::::::::::::::::::

(10)

::::
with

::
f̄

i::::::::
denoting

::::::
annual

:::::::
average

:::::
fluxes

:::
for

::::
year

::
i

:::
for

:::::
either

::::::::::
simulations

::::::
(mod)

::
or

:::::::::::
observations

:::::
(obs);

:::
as

::::
well

::
as

:::::::::
explained

:::::::
variance

::::
(r2)

::
at daily and annual time scales, where model and measured values are statistically compared on the basis of380

daily or annual averages, respectively. An outlook at setting up D&B together with its observation operators within a data

assimilation framework is giving in Section 6.
:
:

r

2
daily =

P
n

i=1

P
m

i=j

�
f̄mod(i, j)� f̄obs

�2
P

n

i=1

P
m

i=j

�
f̄obs(i, j)� f̄obs

�2
:::::::::::::::::::::::::::::::::::

(11)

:::
and

r

2
annual =

P
n

i=1

⇣
f̄

i,mod � f̄obs
⌘2

P
n

i=1

⇣
f̄

i,obs � f̄obs
⌘2

:::::::::::::::::::::::::::::

(12)385

Carbon fluxes are gross primary productivity (GPP), total ecosystem respiration (TER), and net ecosystem exchange (NEE=TER-

GPP). NEE is defined as going from the vegetation to the atmosphere, i.e. positive values denote a flux of CO2 towards the

atmosphere. Energy fluxes are latent heat flux (LHF) and sensible heat flux (SHF), with the addition of net radiation, which is

the balance of incoming minus outgoing solar and thermal radiation fluxes. Both carbon and energy fluxes, and net radiation

are measured over a representative area of each ecosystem, consisting of different PFTs.390

The length of comparison is
:::
For

:::
the

:::::::
purpose

::
of

:::::::::
calculating

:::
the

:::::
above

::::::::
statistics,

:::
we

::::
used

:::
the

:
6 years (

:::
year

::::::
period

::::
from

:
2016

to 2021 ) for both sites. We additionally use snow depth measurements from the period 2011 to 2021 for validation at the

Sodankylä site. Biomass and soil carbon measurements, also at the Sodankylä site, were taken in 2011, and are compared to

mean values of the simulations form 2011 to 2021 (Sodankylä) or 2016 to 2021 (Majadas del Tietar). See SI Section 3 for

details of measurement methods.395
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4.4 Evaluation at Boreal forest site: Sodankylä

At the boreal-forest site (Figure 3), measurements show a markedly smaller amplitude of the annual cycle of carbon fluxes

(NEE) than to the model. While in the spring time, there is a reasonable agreement with an initial rapid increase in the

magnitude of NEE, carbon loss during the winter, and carbon uptake during summer and early autumn are clearly larger for the

model. Between DOY
:::::::::
day-of-year

::::::
(DOY)

:
200 and 260 (mid July to mid September), the discrepancy in NEE is associated with400

an underestimate
:::::::::::::
underestimation by the model of respiration (TER) and an overestimate of GPP. Not surprisingly, GPP agrees

well during the winter as it is well constrained due to the lack of light and low temperatures, but TER is generally higher for

the model. There is also a conspicuous phase shift of TER between the two curves, with measurements showing TER peaking

much later, while the phases of GPP agree reasonably.

For the energy flux evaluation (Figure 4), what stands out is the good agreement between modelled and simulated net405

energy input (i.e. net radiation minus ground heat flux, cf. SI Equ. 124. 127). LHF is also well matched, except during

the early
::::
SHF,

::::::
except

:::
for

:::
the

:
spring (ca. DOY 50 to 100), where the model underestimates the early onset of evaporative

fluxes. SHF is
::::::::::
observations

::::::
exceed

::::::::::
simulations.

::::
LHF

::
is

::::
also well matched during the summer, but overestimated during winter

and spring.Correspondingly, there is slight overestimate of the net radiation during winter. The fact that net radiation is also

overestimated during the summer while both LHF and SHF math very well also deserves attention: the
:::
(ca.

:::::
DOY

:::::::::
120–260).410

::::
Since

:::
in

:::
the

::::::
model, energy balance is by definition exactly matched by the model (i.e.SHF plus LHF equal

:::::
exactly

::::::::
fulfilled,

::
we

::::::
would

::::::
expect

::
an

::::::
equally

:::::
good

:::::
match

:::
for

:::
the

:::
net

::::::
energy

:::::
input

::::
(i.e. net radiation minus soil heat flux).

::::::
ground

::::
heat

::::
flux,

:::
cf.

::
SI

::::
Equ.

::::
124.

::::
127)

::
if

:::
the

::::::
energy

::::::
balance

::
is
::::
also

:::::::
fulfilled

:::
for

:::
the

:::::::::::
observations.

::::::::
However,

::::::::::
observations

::::::
during

:::
the

:::::::
summer

::::::
period

::
are

::::::::::::
systematically

::::::
lower

::::
than

::::::::::
simulations.

:
Therefore, we attribute the mismatch in net radiation during the summer to a lack

of energy closure of the eddy covariance measurements.
:::::::
However,

:::
for

:::
the

::::::
winter

:::::::
months,

::::
SHF

::
is

::
in

::::
good

::::::::::
agreement,

:::
but

::::
both415

::
net

::::::
energy

:::::
input

::::
and

::::
LHF

:::::
show

::::::::::::
systematically

:::::
higher

::::::
values

:::
for

:::
the

::::::
model,

:::
and

::::::
hence

::::
there

::
is
:::
no

:::::::
evidence

:::
of

::::
lack

::
of

::::::
energy

::::::
closure

:::
for

:::
the

::::::::::::
measurements.

::::
The

::::::::
difference

:::::
might

::::
thus

:::
be

:::::
mostly

::::
due

::
to

::
an

:::::::::::
overestimate

::
by

:::
the

::::::
model.

:

Another noteworthy period is the winter time, where the model produces slightly negative SHF and at the same time overes-

timates LHF compared to observations. Both deviations about cancel each other, and there does not seem to be an issue with

energy closure for the observations.420

Snow depth observations taken from within the forest and simulated snow depth for the evergreen conifer tree PFT agree

generally very well with each other (Figure 5). The model tends to somewhat underestimate the observations, especially at the

time of snow melt, where snow depth is receding, but the differences are small and the comparison favourable, in particular

when noting the good agreement in interannual variations. The peak winters with highest values (e.g. the winter 2019/2020)

are also well reproduced.425

On an annual average basis, modelled NEE shows a small carbon sink with NEE equal to -197 gCm�2yr�1, against a smaller

source in magnitude for the measurements of +34 gCm�2yr�1 (values given in Table 3 converted from molar units). GPP is

534 gCm�2yr�1 observation-derived against 927 gCm�2yr�1 for the model. In contrast to the mean, the explained variance,

r

2, is not sensitive to the absolute magnitude of the fluxes, and since the phases agree well (Figure 3) it is not surprising that it
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Table 3. Metrics for the different variables simulated at Sodankylä for the period 1/2016 to 12/2021. RMSE: root-mean square. Units: µmol

m�2 s�1 (Gross primary productivity, GPP; total ecosystem respiration, TER; net ecosystem exchange, NEE), W m�2 (latent heat flux,

LHF; sensitive heat flux, SHF), cm (snow depth).

Metric GPP TER NEE LHF SHF Snow depth

r2 daily 0.87 0.69 0.51 0.39 0.50 0.78

r2 annual 0.49 0.26 0.12 0.36 0.55 0.84

RMSE daily 1.86 0.89 1.55 26.97 41.57 14.57

RMSE annual 1.09 0.52 0.63 16.00 9.63 6.88

observed mean 1.38 1.46 0.09 22.74 28.87 21.82

model mean 2.45 1.92 -0.52 34.64 19.23 15.22

shows a very high value of 0.87 for GPP at the daily time step. For TER, however, due to the phase shift previously discussed,430

we find a lower value (r2 = 0.69). The value of r2 for NEE is smaller than for GPP and TER, as we would expect, because

NEE is the difference of two larger fluxes and has therefore a much smaller magnitude. (If we assume for example that the

true NEE is zero, while each, the model and the measurements, reproduce broadly GPP=TER, but add some "noise" or model

error to it, both of which are uncorrelated, then we would expect the model-measurement correlation for NEE to be zero, but

substantial, depending on the level of the noise added, for GPP or TER.)435

The value of the annual r2 in Table 3 captures exclusively interannual variations and the values are much smaller than

derived on the basis of daily averages. It appears that the model only partially reproduces the observation-derived interannual

variability, especially for NEE. Note, however, that the number of data points is only 6. RMSE for GPP and NEE on a daily

basis is similar to the annual mean GPP, likely due to day-to-day variations in the measurements not being captured by the

model.440

Over all seasons, the model shows much higher LHF than the measurements, but much lower SHF (Table 3). The difference

comes almost entirely from the winter and spring seasons, as noted when discussion
::::::::
discussing

:
Figure 4. r2 are also signifi-

cantly smaller for energy than for carbon fluxes (Table 3) due to the seasonally varying model-observation differences, which

creates
:::::
create differing seasonal cycles between the two. By contrast, snow depth shows a very high r

2 at both the daily and

the annual time scale, as it was apparent from Figure 5.445

Modelled carbon pools differ substantially from locally derived values: The mean and standard deviation of total soil organic

carbon found was 3.70±0.16 kgC m�2, against a model-based estimate of 38.7 kgC m�2. It appears that the model underes-

timates
:::
the turnover time of the slowest soil carbon pool. The observed above-ground biomass at the site was 37.3 t/ha and

against a model estimate of 62.5 t/ha, assuming 50% carbon content of dry mass and 85% of woody biomass above ground

(Helmisaari et al., 2002).450
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Table 4. Metrics for the different variables simulated at Majadas de Tietar for the period 1/2016 to 12/2021. RMSE: root-mean square. Units:

µmol m�2 s�1 (Gross primary productivity, GPP; total ecosystem respiration, TER; net ecosystem exchange, NEE), W m�2 (latent heat

flux, LHF; sensitive heat flux, SHF)

Metric GPP TER NEE LHF SHF

r2 daily 0.61 0.47 0.27 0.31 0.81

r2 annual 0.16 0.26 0.54 0.56 0.66

RMSE daily 2.11 1.56 1.88 30.12 54.37

RMSE annual 1.19 1.23 0.16 7.35 40.49

observed mean 3.39 3.34 -0.05 39.87 40.10

model mean 2.25 2.16 -0.09 32.87 80.49

4.5 Evaluation at Temperate savannah site: Majadas de Tietar

The seasonal course of carbon exchanges at the temperate-savannah site (Figure 6) is characterised by a pronounced spring-time

net carbon uptake and a prolonged period of carbon loss during the summer and autumn. However, the strength of the spring

draw-down (ca. DOY 50 to 150) derived from the observations is much lower than the model-derived one. For the remaining

seasons, model and observed NEE largely agree in terms of magnitude and timing, except for pronounced fluctuations in the455

measured NEE flux during summer and autumn that are not reproduced by the measurements, and are
::::::
model.

::::
Such

::::::::::
fluctuations

::
are

::::
also

:
found in the observation-derived TER flux. The discrepancy in the spring draw-down appears to be the result of a

model over-estimate of GPP combined with an under-estimate of TER.

If we consider the climate of the site, with hot-dry summers, cool winters, and a winter rainfall maximum, we can assume

that the most favourable growth conditions happen in the spring, where we indeed find the largest net CO2 uptake rate in both460

model and observations. Under those spring-time conditions, however, the model predicts a higher GPP then the observation-

based value, but a lower GPP value for the remaining seasons where growth is either temperature and light (winter/autumn) or

water (summer/autumn) limited. In other words, compared to the observations, the model over-predicts GPP under favourable

conditions, but under-predicts GPP under conditions of GPP limitations — by way of dry conditions in the summer, low light

levels in the autumn and temperature during winter. We thus find that the model likely overestimates moisture limitation, and465

also other GPP limiting factors,
:::::
while

:::::::::::::
overestimating

::::::::::::
photosynthetic

:::::::
capacity.

On an annual basis (Table 4), simulated carbon fluxes are generally smaller in both directions compared to observations, with

a simulated GPP and TER of
::::
GPP

:
(844 and

::
gC

::::
m�2

:::::::
year�1)

::
is

::::::::
generally

::::::
smaller

:::::::::
compared

::
to

::
the

::::::::::
observation

:::::::
derived

:::::::
estimate

:::::
(1283

:::
gC

::::
m�2

:::::::
year�1).

::::
The

:::::
same

::::
also

::::::
applies

::
to

:::::
TER

:
(814 gC m�2 year�1 , respectively, against eddy-covariance derived

values of 1283 and
::
vs. 1264 gC m�2 year�1 , respectively

::::::
derived

:::::
from

::::
eddy

:::::::::
covariance

:::::::::::::
measurements). Net flux (mean NEE)470

is small and agrees well (-30 vs. -19 gC m�2 year�1 for model vs. observations). In contrast to Sodankylä, r2 for the annual

values shows that the interannual variability of NEE is reproduced well, in fact better then that for the components GPP and
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TER. However, daily r

2 is much lower for NEE than for GPP or TER, due to the different shape of the seasonal cycle of the

model, showing a pronounced spring draw-down, as already discussed. RMSE of GPP and NEE
:::
TER

:
on a daily basis is

:::
are

similar in magnitude to the modelled, but less than the observed mean, while annual RMSE for NEE is remarkably low, which,475

together with
:
.
:::::
While

:
the high r

2 , suggests that the model reproduces the interannual variability of the net carbon fluxes well

for this site,
:::
the

:::::::::::
combination

::
of

:::::
rather

::::
high

::::::
RMSE

:::
and

::::::
similar

::::::::
observed

:::::
means

::::::::
suggests

:::
that

:::::::::
day-to-day

::::::::
variations

:::
are

::::
less

::::
well

:::::::
captured.

As far as the energy balance is concerned, we find a similar result for Majadas de Tietar
::::::
(Figure

::
7)

:
compared to the boreal-

forest site(Figure 7): net energy input (net radiation radiation minus ground heat flux) agrees very well between model and480

observations, but there is a rather large over-estimate by the model of the sensible heat flux, albeit with a very similar shape of

the seasonal cycle (r2 = 0.81, SHF daily, Table 4). For most of the year, except for a pronounced summer decline for the model

but not for the observations, LHF agrees well. This is likely related to the model’s pronounced under-prediction, compared to

the observations, of GPP, resulting in a lower transpiration flux through more pronounced stomatal closure, and thus also lower

LHF. Given strict energy closure for the model, if net energy input and LHF agree between model and measurements, then485

SHF should also agree. However, while the model has exact energy closure, the data apparently do not. For instance, at the

start of the years until ca. DOY 130, net radiation and LHF agreement suggests an imbalance
:
in

:::
the

:::::::::::
observations starting close

to zero at the start of the year
:::
and

:
increasing to around 40 Wm�2. During the summer season, the model overestimates SHF

by around 100 Wm�2, but underestimates LHF by only around 60 Wm�2, while net radiation agrees, which also suggests a

deviation from energy closure of around 40 Wm�2. This has again to be taken into account when evaluating the model.490

On average (Table 4), the model slightly underestimates LHF, but overestimates SHF by close to a factor of two. For both

LHF and SHF, we find high values for r2 based on annual averages, and a very small value for annual RMSE for LHF, which

suggest that the model, apart from a general overestimate of LHF, simulates interannual variability of energy fluxes reasonably

well, with the caveat that only six full years are being considered here.

5 Evaluation of observation operators495

5.1 Evaluation of FAPAR simulations

The simulations showed larger FAPAR values during the summer than the observations (Figure 8), with a pronounced seasonal

cycle. We find this to be a robust feature of the simulations (not shown). By contrast, observed values stay at approximately the

same level during the observation period, with some larger values during the autumn. The
:::::
values

::
of

:::
the

::::::::
observed

::::::
FAPAR

::::::
match

::
the

::::::::
expected

::::::::
behaviour

:::
of

::
the

::::::
largely

::::::::
aseasonal

:::::::::
evergreen

:::::::
canopies

::
of

:::
the

:::::
PFTs

:::
for

:::
the

:::::
boreal

::::::
region.

::::
The pronounced seasonal500

cycle of FAPAR in the model runs corresponds to a seasonal cycle in the LAI of the model.
:::
The

::::::::
modelled

::::
LAI

::::::::
behaviour

::::::
results

::::
from

:::::::::
calibration

:::::
using

::::::::::
Copernicus

::::
LAI

::::
time

:::::
series

:::::
which

:::::
have

:
a
::::::
strong

::::
(and

::::::::::
unexpected)

::::::::::
seasonality.

:
By contrast, measured

FAPAR shows only weak signs of seasonality, such as a very slight increase between DOY 170 and 200. There is, however,

a cluster of elevated measured FAPAR values towards late summer/ autumn, alternating with lower values in line with those

measured earlier. Here we must take into account that maximum solar elevation towards the end of the measurement period505
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(22 October) did not exceed 12o. Therefore, rays of direct sunshine have a longer path through the canopy, increasing FAPAR.

The effect is seen to a lesser extent also in the simulations, but with an LAI driven seasonality dominating the time course of

the data.

Extensive LAI sampling during the summer 2022 from hemispherical photographs give an average value of 1.37, and mea-

surements using Li-Cor LAI-2200 an average value 1.32. These agree rather well with a simulated annual-average LAI of 1.3510

for the tree PFT, however, there is a pronounced seasonality of simulated LAI corresponding to the seasonality of FAPAR seen

in Figure 8, with significantly lower values for September (DOY 244 to 273: 1.37) than for mid June to the end of August

(from DOY 166 to 243: 2.96). The across-plot average at different dates from the hemispheric photographs show no such

seasonality, with a June to August average (measured on DOY 166, 192, 207, 212 and 217) of 1.39 vs. a September average of

1.34 (measured on DOY 254 and 271).515

5.2 Evaluation of SIF simulations

SIF measurements provide an opportunity to document the presence of photosynthetically active plant material, and are there-

fore an interesting quantity for model validation. At the Sodankylä site, the observations started in spring 2021 as part of

the LCC campaign activities. The measurement angle was adjusted in early June and therefore we show comparisons to the

simulations starting only from June 3 onwards.520

Simulated SIF values are shown here (Figures 9 to 11) with a multiplication factor of 10, i.e. with the scaling factor s
SIF

in the SIF source term, Equ. (1), set to 10.
:::::
While

:::
the

:::::
prior

:::::
value

::
of

:::::
s

SIF::::
was

::
1,

::::
this

::::::
change

:::::::
reflects

:::
the

::::
high

::::::::::
uncertainty

::::::::
regarding

:::
the

:::::::
absolute

:::::::::
magnitude

::
of

::::
the

::::::::
measured

::::
SIF. Observations are shown for two methods of retrieving SIF from the

actual measurements, namely Frauenhofer line discrimination and spectral fitting (see SI Section 3.5).

:::
The

:::::::::
difference

::
in

:::::::::
magnitude

:::::::
between

:::
the

::::::::
modelled

:::
and

::::::::
observed

::::
SIF

:
is
::::::

likely
:::
due

::
to

:::
the

::::::
choice

::
of

:::::
prior

:::::::::
parameters

:::
for

:::
the525

:::
SIF

::::::
model,

:::::
taken

::::
from

:::::::::::::
Gu et al. (2019)

:
,
:::
and

:::
the

::::::
specific

:::::::
spectral

:::::::::
conversion

::::
used

:::::
(Equ.

:::
2).

::::::::
Although

::
it

:::
has

:::
not

::::
been

::::
done

:::::
here,

::::
there

::
is

:::::
scope

:::::
within

:::::
D&B

::
to

::::::
adjust

::::
these

:::::::::
parameters

::
in
:::
the

:::::::::::
assimilation.

:::
We

:::::::
believe,

:::::::
however,

::::
that

::
it

:
is
:::::
more

:::::::::
important,

::
in

:::
the

:::
first

::::::::
instance,

:::
that

:::
we

::::
have

::
a
:::::
model

::::
that

:::
can

:::::
track

:::
the

:::::::
seasonal

:::
and

:::::::
diurnal

::::
cycle

::
of
:::
the

::::::::::::
observations,

:::
and

:::
this

:::::::
appears

::
to

:::::
work

:::::::::
reasonably

::::
well.

:

At the Sodankylä site, the simulations are able to track both the diurnal and seasonal cycles of the observations reasonably530

well (Figure 9). However, there are indications of water stress in the measured diurnal cycles in June, July and August. These

are shown in as a dip in far-red SIF during midday (Figure 9a), and for June also in red SIF (Figure 9b). The decline in SIF is

likely due to midday depression of photosynthesis (Lin et al., 2024). The model reproduces this behaviour only for June and

to a much lesser extent. Also, the model shows larger SIF signals for June compared to July, but not the measurements. Since

mid-day depression is observed as a response to stomatal closure due to water stress, the comparison indicates that the model535

underestimates water stress at the boreal site. The simulations also show an earlier increase and later decrease during the day

during the summer months. This may partly be attributed to retrieval problems for high sun zenith angles.

The measured far-red SIF (760 nm) of the trees at Majadas de Tietar site (PFT 3, Figure 10a) shows a clear seasonal cycle of

SIF peaking in July. For red SIF (687 nm, Figure 10b), there is no clear seasonal maximum. This is independent of the retrieval
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method. The model by contrast shows a clear peak in May. The diurnal cycle of SIF in the model peaks later, usually around540

2 pm, and extends further into the afternoon compared to the measurements, which peak around 11am to 12pm (central vertical

line).

By contrast, the SIF measurements on grass (PFT 9) show almost complete senescence of the grass during June and July

when using the spectral fitting method, but some remaining activity when using Frauenhofer line discrimination of the red-

spectrum signal (Figure 11). For this combination, red SIF with Frauenhofer line discrimination, model simulations are in good545

agreement with the measurements, with suitable scaling factor s
SIF

in the SIF source term (Equ. (1)). However, judging from

the other spectral bands or retrieval methods, the results suggest that the model may under-estimate the water stress of the

grasses.

5.3 Evaluation of VOD simulations

Figure 12 shows the comparison between observed and simulated L-VOD for the period after the first change in measurement550

geometry, for all three elevation angles. Observations only include the trees, and therefore simulated L-band VOD is for the

tree PFT only. The temporal variations of the measurements are well captured by the simulation, in particular after the second

change in viewing geometry after DOY 280.

The increase in biomass in the field of view through the first change in measurement geometry on 17 September (DOY 260)

was estimated to be a factor of three (see SI Section 3.6). The revised field of view was also found to better represent typical555

conditions of the wider area, with the initial field of view capturing the signal from much sparser vegetation. To simulate

L-VOD for the period before DOY 260, we therefore reduce assumed biomass entering the VOD observation operator (C
wd

,

C

fol

in Equ. (4)) to one third of their default modelled values.

With this provision, the simulations match both temporal variations and magnitude of the locally measured L-VOD rather

well (Figure 13, see SI Section 3.6 for the default simulations). This includes the rise in spring, including a peak around560

DOY 60, and also temporal variations between DOY 90 and 130. Only ca. DOY 130 to 180 shows a systematic overestimate

compared to measurements. A slow decline after DOY 220 is also reproduced by the model. We thus find a very satisfactory

performance of the empirical L-VOD observation operator together with D&B.

5.4 Evaluation of surface soil moisture

Measured soil moisture at Sodankylä (Figure 14) shows very similar temporal variations between different depths. The temporal565

variations of the D&B simulations are also similar, only that the overall magnitude differs, even though the magnitude of the

shallowest measured depth (5 cm) is closest to the model. We point out that the depth of the surface layer in D&B is 4 cm. Both

measurements and simulations also indicate significant interannual variability, with some years (e.g. 2019, 2020) exhibiting

some pronounced summer drying, of which only some is captured by the measurements due to data gaps.

At Majadas de Tietar, variations in soil moisture measured between different depths are again relatively small, showing570

that the exact depth for which these are simulated is of lesser importance (Figure 15). In fact, the two depths closest to the

surface (5 and 10 cm depth) show an almost identical temporal profile, including the maximum soil moisture depletion during
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the summer (July, August). The main characteristics of the observed seasonal cycle are also well reproduced by the D&B

model. The timing of individual rain events can be well traced in the measurements, and is well reproduced by the simulations,

including the lack of such events during the summer months. However, in the simulations, soil moisture decreases to near zero,575

whereas according to the measurements some soil moisture remains even at the peak of the summer.

6 Discussion

6.1 Implications of study results

The comparison of the model simulations at the two sites against local data indicates that D&B does a reasonable job at

representing energy and carbon fluxes between the atmosphere and terrestrial vegetation
:
,
:::::
albeit

::::
with

:::
the

:::::::
seasonal

:::::::::
amplitude

::
of580

::
the

:::
net

::::::
carbon

::::::::
exchange

::::::::::::
overestimated

::
at

:::
the

::::::
boreal

:::
site. The comparison shows that carbon fluxes in particular are simulated

reasonably well, with lesser agreement for energy fluxes but also significant imbalances between the measured energy fluxes

and the net radiation available to the canopy, i.e. there is a significant deviation from energy closure. We conclude that there is

a need for multi data sources to be used for evaluating carbon and water flux models of terrestrial ecosystems, as opposed to

relying chiefly on eddy covariance data.585

The addition of dedicated observation operators led to further insights regarding model performance. In particular, local SIF

measurements further revealed the power of those measurements to detect limitations on photosynthesis, such as water stress,

beyond the capability of FAPAR measurements, and this despite remaining uncertainties regarding the absolute magnitude of

the simulated SIF signal (see Figure 9). We were able to identify a possible under-estimate of soil water limitation of the Scots

Pine forest as
::
at Sodankylä during the summer, which may partly explain why the model overestimates GPP at this site.590

At the Majadas de Tietar temperate savannah site, we clearly identified that the model underestimates latent heat flux

during the summer months, while it also underestimated the site’s overall photosynthetic uptake (GPP). This underestimate

:::::::::::::
underestimation appears to be a result in particular of the model over-estimating moisture limitations of the savanna ecosys-

tems during the summer, possibly due to non-matching parameterisation of the stomatal model. This matched the insights

provided by the SIF measurements that the trees of the ecosystem continue transpiring and photosynthesising across the sum-595

mer without major limitations due to water stress. Surface soil moisture data also indicated too much soil drying during the

summer months. Possibly, the model fails to represent the strongly heterogeneous soil texture at Majadas del Tietar, with a

sandy top and deeper clay soil, underestimating the soil water holding capacity of the deeper soil layers to which only the trees

have access. These considerations demonstrate the added value of the dedicated observation operators for the evaluation of

D&B at the local scale.600

6.2 Potential for further applications

The process model in combination with its observation operators presented here has been designed to be used within a varia-

tional data assimilation framework, planned to be set up following the existing CCDAS (Rayner et al., 2005). This means that
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D&B will be complemented with tangent and adjoint versions, which efficiently provide derivative information for variational

assimilation. The anticipated default setup in data assimilation mode is for combined calibration
:::
and

::::::::::
initialisation, i.e. adjust-605

ment of parameters of the process model, its observation operators and of the initial state of the carbon pools. Assimilated

data streams are planned to come chiefly from Earth Observation sources. This setup will provide both capabilities for assim-

ilating more data streams than previous studies (e.g. Scholze et al. (2019)), while also including a full description of biomass

pools as so far provided by other, more complex process models, e.g. LPJ-GUESS (Smith et al., 2001), albeit with lesser data

assimilation capabilities.610

In anticipation of such an application, we have in this contribution refrained from adjusting individual parameters "by hand"

in order to improve the match to any of the validation data sets used in Sections 4 and 5. However, we can already assess, to

an initial degree, the potential of the system to obtain a superior fit to measurements by way of optimising its parameters. As

an example, comparing measured and simulated surface soil moisture (Section 5.4) and taking into account model’s functional

dependencies, we can infer that changing the assumed texture of the soil near its surface will immediately change the absolute615

magnitude of the simulated signal, but have only a negligible impact (via soil evaporation) on its temporal course.

In particular the good match between simulated and locally measured L-VOD, which includes details of most temporal vari-

ations, offers considerable opportunities for the assimilation of widely available satellite-derived L-VOD over larger regions.

6.3 Limitations

While the initial task to match and compare modelled and observed data streams was successfully demonstrated, the results620

of this study also point at the need to further investigate the
::::::::::::
representation

::
of

:::
the seasonal cycle of LAI in northern evergreen

conifer forests . In this context, it is important to note that the
:::
and

::::::
shrubs.

:::::
Earth

:::::::::
observation

::::::::
products

::
for

:::
the

::::::
boreal

:::::
region

:::::
show

:::::::::
seasonality

::
in

::::
LAI

:::
that

::
is

:::
not

:::::::::
consistent

::::
with

::::::::
ecological

::::::::::
expectation

::::
and

::::::
FAPAR

:::::
data.

:::
The

:
phenology scheme of D&B has the

flexibility to simulate vegetation with a small amount of seasonal variation in LAI, if corresponding information is provided for

the prior calibration of the parameters in the phenology scheme. The seasonality of LAI in D&B depends on the way DALEC625

is trained on remotely sensed observation. It remains to be seen to what extent those data were affected by seasonally varying

observation conditions.
::::
Such

::::::::::
information

:::::
could

:::::
come

::::
from

::::
field

:::::::::::
observations

::
of

::::
LAI

::::
time

:::::
series

::
in

:::::
boreal

::::::
regions

:::
or

::::::::
improved

::::::
satellite

::::::::
products.

:

Another issue that occurred is that the scaling factor s
SIF

in the SIF source term (Equ. (1)) is highly uncertain. In a data

assimilation mode, it would be included (possibly in PFT-specific form) into the list of parameters to be adjusted. This would630

effectively allow scaling the simulated SIF time series shown in Figs. 9, 10 and 11. Similarly, the parameters in the empirical

observation operator for VOD would also be included in the set of parameters to be adjusted in assimilation mode. We also note

that many of the model’s parameters are not very well constrained, and could therefore change substantially. For example, an

adjustment of the turnover times for the litter and soil organic matter pools will change heterotrophic respiration, and according

to SI Equ. 153 the fit to simulated TER shown in Figure 3 and Figure 6. This could happen in the framework of either a local-635

scale assimilation of eddy flux measurements as used here for evaluation, or on a regional to global scale with the assimilation

of atmospheric CO2 data, including those from space-based remote sensing (Buchwitz et al., 2017).
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A further limitation we found is that the model overestimates soil water limitation at the savannah site. This may be linked

to the parameterisation of soil hydrological properties, or to the parameterisation of rooting depth and root penetration of the

soil, both of which warrant further investigation.
::
We

::::
also

::::
find

::::
that

:::
the

:::::
model

::::
may

:::::::::::
overestimate

:::
soil

::::::::::
evaporation

:::
for

::::
very

::::
dry640

::::
soils.

:

A principal advantage of the process-based modelling approach presented here is that the system can be used to identify,

better investigate and quantify specific processes – a fundamental and often decisive advantage over machine learning, or

complex statistical modelling systems (Thessen, 2016; Lary et al., 2018). The advantage translates into a principal limitation

in that if a given process contributes to the measured signal, it has to be represented. Otherwise, missing process representation645

can lead to misleading parameter choices that use processes included within the system to compensate for the missing process

– also known as "matching observations for the wrong reasons". Therefore, process modelling requires significant expert

knowledge on ecosystem functioning as well as experience with or direct contact to experimental teams, compared to statistical

interference methods, including machine learning .
:
–

:::::
which

:::
by

::::::::
definition

:::
can

:::::
never

:::
be

:::::
"right

:::
for

:::
the

::::::
wrong

:::::::
reasons",

:::
as

::::
they

::
are

:::::
used

::::::::
essentially

:::
as

::::
black

::::::
boxes.

::::
The

:::::::
potential

:::::::::
advantage

::
of

:::::
D&B

::::::
coupled

::
to
::::::::
multiple

:::::::::
observation

::::::::
operators

::
is

:::
that

::
it
::::::
allows650

:::::
model

::::::
testing

:::
via

:::::::
multiple

::::
data

:::::::
streams,

::::
thus

:::::::::
providing

:::
are

::::
more

:::::::::::::
comprehensive

:::::
model

:::::::::
evaluation

::::::
which

:::::
makes

::
it
::::
less

:::::
likely

::
the

::::::
model

:::::::
matches

:::::::::::
observations

:::::
while

:::::::::::::
misrepresenting

::::::::
important

:::::::::
processes.

6.4 Outlook

In this study, we have shown the value of the four data streams (FAPAR, SIF, VOD and surface soil moisture), as opposed

to the intrinsically local measurements used for the initial evaluation, which lies in their availability over large spatial scales.655

Therefore, such data streams derived from Earth Observation sources will make it possible to evaluate the model across larger,

regional scales. The immediately
::::::::
immediate

:
next step would therefore be to evaluate D&B with regional rather than local

observations and see if in such a set-up the noted model-observation differences are reduced. The advantage of regional com-

parisons is that substantial uncertainties arising from small-scale conditions are averaged out, and the scale of comparison may

by more appropriate for a typical application of the model.660

At such a regional scale, it will further be possible to assimilate those data streams using the principle setup described above.

Here, it will be possible to either adjust parameters spatially grouped by PFT, following CCDAS (Kaminski et al., 2013), or

independently at each pixel following DALEC (Quaife et al., 2007). A further approach that has not yet been tested would

be a combination of the two, where parameters are adjusted at every grid cell independently, but with a partial constraint on

parameter values assuming that those values co-vary depending on closeness of geographical location, altitude, land use, PFT,665

or soil type.

A significant advantage of such a data assimilation system will be the possibility to investigate if the process model is capable

of matching the observations not only for
:
a
:
specific parameter set, but within reasonable bounds of the entire model-parameter

space. Only if that is not possible can we rigorously conclude that the remaining model-observation mismatch is caused by

missing processes
::
or

:::::::::
unsuitable

::::::
process

::::::::::::
representation. We consider such investigations the next logical step of development of670
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the D&B modelling system, besides any inclusion of further Earth Observation data streams. The further goal would then be

to apply it to the task of routinely producing data products on carbon and energy fluxes.

Code and data availability. The D&B code in Fortran90 is hosted, with simulation results, at the Zenodo repository under the AGPL li-

cense, available through https://zenodo.org/doi/10.5281/zenodo.11243753 and will also be
:
is

:::
also

:
available, with updates, from its repos-

itory via https://gitlab.gwdg.de/tccas-team/TCCAS.git. The observations are available on the TCCAS home page https://tccas.inversion-675

lab.com/database.html and have been permanently archived at https://zenodo.org/doi/10.5281/zenodo.12725764
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Figure 2. Energy and water balance of the D&B model with symbols for fluxes (normal) and reservoirs (italics). as: soil absorption of

shortwave radiation, av: canopy absorption of shortwave radiation, Ei: intercepted-water (canopy) evaporation, Es: soil evaporation; Esn:

snow evaporation, Et: transpiration, G: ground heat flux, Pi: intercepted rainfall; Pr: rainfall; Ps rainfall on soil; Psn: snowfall, Ptot: total

precipitation; Pv: throughfall, Qb: baseflow, Qd: horizontal drainage, Qs: surface runoff, RL,": upwelling longwave radiation, RL,#: down-

welling longwave radiation, Rsw: downwelling shortwave radiation,
:::
Sm:

:::::
snow

::::
melt, tl,v: longwave canopy transmission, Wi: intercepted

water amount, Wr: root-zone soil moisture, Ws: surface-layer soil moisture, Wsn: snow amount, ⇢S : surface reflectance.
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Figure 3. Annual cycles of daily (a) GPP, (b) TER, and (c) NEE at Sodankylä, averaged over the years 2016 to 2021. Black line is observation

based on eddy-covariance data, the red line D&B.
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The
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shaded
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areas

:::::::
represent
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the

::::::
ranges

:
of
:::

the
:::::::
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and
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simulated
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daily

::::
cycles

::::
over

:::
the

:::::
period.
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Figure 4. Annual cycles of daily (a) sensible heat flux, (b) latent heat flux, and (c) net radiation minus ground heat flux at Sodankylä, averaged

over the years 2016 to 2021.
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The

:::::
shaded

::::
areas

:::::::
represent

:::
the

:::::
ranges

::
of

:::
the

:::::::
observed

:::
and
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simulated

::::
daily

:::::
cycles

::::
over

::
the

::::::
period.
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Figure 6. Annual cycles of daily (a) GPP, (b) TER, and (c) NEE at Majadas de Tietar, averaged over the years 2016 to 2021. Black line is

observation based on eddy-covariance data, the red line D&B.
:::
The

::::::
shaded

::::
areas

:::::::
represent

:::
the

:::::
ranges

::
of

:::
the

:::::::
observed

:::
and

::::::::
simulated

::::
daily

::::
cycles

::::
over

:::
the

:::::
period.

:
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Figure 7. Annual cycles of daily (a) sensible heat flux, (b) latent heat flux, and (c) net radiation minus ground heat flux at Majadas de Tietar,

averaged over the years 2016 to 2021.
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The

:::::
shaded

::::
areas

:::::::
represent

:::
the

:::::
ranges

::
of

:::
the

:::::::
observed

:::
and

:::::::
simulated

::::
daily

:::::
cycles

::::
over

::
the

::::::
period.
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Figure 9. Average diurnal cycle by month of far-red (a
::::
upper

::::
panel) and red SIF (b

::::
lower

:::::
panel) for pine forest (PFT 5) at Sodankylä for

months June to October in 2021. D&B simulations (red) against measurements with the Fluorescence Box (FloX): retrievals made with the

Frauenhofer line discrimination (black) and retrieval made with the spectral fitting method (blue).
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Figure 10. Average hourly diurnal cycle by month of SIF in the far-red (a
::::
upper

:::::
panel) and red (b

::::
lower

::::
panel) for evergreen trees (PFT 3) at

Majadas de Tietar for months April to December in 2021. D&B simulations (red) against measurements: retrievals made with Frauenhofer

line discrimination (black) and spectral fitting method (blue).
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Figure 11. Average hourly diurnal cycle by month of SIF in the far-red (a
::::
upper

::::
panel) and red (b

::::
lower

:::::
panel) for C3 grass (PFT 9) at

Majadas de Tietar for months April to December in 2021. D&B simulations (red) against measurements: retrievals made with Frauenhofer

line discrimination (black) and spectral fitting method (blue).
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