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Abstract. Uncrewed Aerial Systems (UAS) lidar and structure-from-motion (SfM) photogrammetry have emerged as viable 

methods to map high-resolution snow depths (~1 m). These technologies enable a better understanding of snowpack spatial 

structure and its evolution over time, advancing hydrologic and ecological applications. In this study, a series of UAS lidar/SfM 15 

snow depth maps were collected during the 2020/21 winter season in Durham, New Hampshire, USA with three objectives: 

(1) quantifying UAS lidar/SfM snow depth retrieval performance using multiple in-situ measurement techniques (magnaprobe 

and field cameras), (2) conducting a quantitative comparison of lidar and SfM snow depths (< 35 cm) throughout the winter, 

and (3) better understanding the spatial structure of snow depth and its relationship with terrain features. The UAS surveys 

were conducted over approximately 0.35 km2 including both open fields and a mixed forest. In the field, lidar had a lower error 20 

than SfM compared to in-situ observations with a Mean Absolute Error (MAE) of 3.0 cm for lidar and 5.0 - 14.3 cm for SfM. 

In the forest, SfM greatly overestimated snow depths compared to lidar (lidar MAE = 2.7 - 7.3 cm, SfM MAE = 32.0 - 44.7 

cm). Even though snow depth differences between the magnaprobe and field cameras were found, they had only a modest 

impact on the UAS snow depth validation. Using the concept of temporal stability, we found that the spatial structure of snow 

depth captured by lidar was generally consistent throughout the period indicating a strong influence from static land 25 

characteristics. Considering all areas (forest and fields), the spatial structure of snow depth was primarily influenced by 

vegetation type (e.g., fields, deciduous, and coniferous forests). Within the field, the spatial structure was primarily correlated 

with slope and forest canopy shadowing effects. 

1 Introduction 

Spatial patterns of hydrologic state variables and fluxes including soil moisture, snow, interception, precipitation, and 30 

evapotranspiration reflect underlying static physical conditions and dynamic forcing from weather events. These patterns serve 
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a variety of purposes including downscaling remotely sensed or model output, upscaling in situ observations, assimilation to 

update model simulations, and as proxies or analogues for similar hydrologic units. They can also provide insight into 

underlying landscape features, biogeochemical processes, and habitat viability. 

Snowpacks play a crucial role in hydrologic, climatic, and ecological processes at various scales (Barnett et al., 2005). 35 

Snowpack structure and its temporal evolution are important to determine snowmelt runoff, infiltration, and groundwater 

recharge (Carroll et al., 2019; Harpold et al., 2015; Maurer and Bowling, 2014) as well as energy partitioning processes 

(Lawrence and Slater, 2010; Stieglitz et al., 2001; Sturm et al., 2017). Snowpack also exerts a strong control on snow-soil 

interactions because the insulating capacities of snowpack affect the underlying soil freeze-thaw state influencing soil 

respiration, nutrient retention, and carbon dynamics (Anderton et al., 2002; Schlogl et al. 2018; Cho et al., 2021; Monson et 40 

al., 2006; Sorensen et al., 2018; Reinmann and Templer, 2018; Wilson et al., 2020; Yi et al., 2015). 

The spatial variability of a snowpack is a function of static and dynamic variables over a range of spatial scales (Clark et al., 

2011; Grayson et al., 2002; Mott and Lehning, 2011; Trujillo et al., 2007). Over time, spatial patterns may evolve and change, 

but many hydrologic patterns persist until they are modified by weather conditions. Spatial snowpack patterns and their 

consistency, or repeatability, play a crucial role in various applications, including operational snowmelt predictions, the 45 

downscaling of remotely sensed or model outputs, the integration of in situ observations through upscaling, the assimilation 

of data to enhance model simulations, and the utilization of snowpack characteristics as proxies or analogs for similar 

hydrological units (Pflug and Lundquist, 2020; Cho et al., 2023). They can also provide insight into underlying landscape 

features, biogeochemical processes, and wildlife habitats (Boelman et al., 2019; Pflug et al., 2023).  

Traditionally, field or local-scale snow features are captured through in situ observations and field campaigns (Clark et al., 50 

2011; Trujillo et al., 2007), whereas regional or continental-scale patterns are typically observed using airborne and satellite 

remote sensing techniques (Lievens et al., 2022; Painter et al., 2016; Derksen et al., 2005). Airborne and satellite remote 

sensing methods have provided the ability to collect snowpack data over a large spatial extent, thus expanding the 

understanding of snow distribution (Cho et al., 2019; Lievens et al., 2022; Painter et al., 2016; Tsang et al., 2021). However, 

the capture of small-scale snow patterns, discerned through field campaigns or less frequent, routine operational collections, 55 

is often hindered by challenges such as weather conditions and site accessibility which can lead to infrequent sampling during 

the winter season.  

Uncrewed Aerial Systems (UASs) have been used to provide spatially continuous, opportunistic snow-covered area and snow 

depth observations at scales between in situ and airborne and satellite remote sensing (Bühler et al., 2016; De Michele et al., 

2016; Harder et al., 2016; 2020; Meyer et al., 2022; Revuelto et al., 2021). UAS-based remote sensing enables the acquisition 60 

of data at finer spatial resolutions, reaching scales as precise as centimeters for a designated area. UAS platforms also offer a 

cost-effective alternative to aerial surveys, facilitating routine monitoring of snow conditions (Gaffey et al., 2020). Hence, the 

capabilities of UAS platforms equipped with diverse sensors allow for the observation of field-scale physical interactions 

between snowpacks and land/soil characteristics (Cho et al., 2021).  
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UAS lidar and Structure-from-Motion (SfM) photogrammetry have emerged as viable methods for mapping high-resolution 65 

snow depths (~1 m), enabling a better understanding of snowpack spatial structure and its evolution over time at the field scale 

(Feng et al., 2023; Harder et al., 2019; Jacobs et al., 2021; Koutantou., 2022). As the use of UAS-based high-resolution snow 

depth mapping becomes more prevalent, there is a growing need for a comprehensive understanding of their strengths and 

weaknesses for capturing snowpack evolution throughout the entire snow period for various landscape features (e.g., forest 

and fields). However, investigating these transition periods poses challenges, primarily due to the snow becoming increasingly 70 

shallow and patchy, eventually revealing bare ground. Despite these challenges, these transition periods hold significant 

hydrological, ecological, and energy implications (Harrison et al., 2021; Harpold et al., 2017; Grogan et al., 2020). 

This study aims to achieve three main objectives using a series of UAS lidar/SfM snow depth maps over a mixed-use temperate 

forest landscape: (1) quantify UAS snow depth retrieval performance by comparing it with multiple in-situ measurement 

techniques, (2) conduct a quantitative comparison of lidar and SfM snow depths (< 35 cm) throughout the snow period, and 75 

(3) gain a better understanding of the spatial structure of snow depth, its stability over time, and its relationship with multiple 

physical terrain features. This paper is organized as follows: Section 2 provides an overview of the study area, including its 

land characteristics. Section 3 describes the datasets utilized in the study, including UAS lidar, SfM photogrammetry, field 

observations, and the methods employed, such as the relative difference concept. Section 4 presents the results, with 

subsections detailing comparisons between UAS snow depth and in-situ measurements (4.1), as well as comparisons between 80 

lidar and SfM snow depth (4.2). Additionally, spatial structures and temporal changes in snow depth, along with relevant 

physical variables characterizing those snow patterns, are discussed in Sections 4.3 and 4.4. Section 5 discusses new insights 

derived from the comparison results and spatial structures of snow depth, along with the limitations of this study and future 

perspectives. Finally, conclusions are drawn in Section 6. 

2 Study area 85 

This study was conducted at the University of New Hampshire Thompson Farm Research Station in southeast New Hampshire, 

United States (N 43.10892°, W 70.94853°, 35 m above sea level), which was chosen for its mixed hardwood forest and open 

field land covers (Perron et al. 2004; Burakowski et al., 2015; Jacobs et al., 2021) that are characteristic of the region (Error! R

eference source not found.). Thompson Farm has an area of 0.83 km2 and little topographic relief (18 to 36 m ASL) (Perron et 

al., 2004). The agricultural fields are actively managed for pasture grass with unmown grass. The deciduous, mixed, and 90 

coniferous forest is composed primarily of white pine (Pinus strobus), northern red oak (Quercus rubra), red maple (Acer 

rubrum), shagbark hickory (Carya ovata), and white oak (Quercus alba). The forest soils are classified as Hollis/Charlton very 

stony-fine sandy loam and well-drained; field soils are characterized as Scantic silt-loam and poorly drained (Perron et al. 

2004). There are two logging access roads running north-south through the pasture and western forest section. The winter 

climate at Thompson Farm is characterized by cold, maritime winter climate with a mean winter air temperature of -3.0°C, 95 

annual snowfall of 114 cm, and three weeks to over three months of days having snow cover (Burakowski and Hamilton, 
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2020). Average wind speed was 1.41 m/s for the study period. Snow depth can range from a trace up to 94 cm and typical 

snow density ranges from 100 to 400 kg/m3 (Burakowski and Hamilton, 2020). 

 

Figure 1. Summary of Thompson Farm survey area located in Durham, NH, USA. (a) In-situ sample sites and field 

and forest boundaries are overlain on the snow-off imagery. Maps of (b) vegetation type, (c) slope, (d) shadow hour, (e) 

soil hydraulic conductivity (Ksat), (f) organic matter, and (g) aspect are shown for both the field and forest areas.   
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3 Datasets and methods 100 

A series of UAS lidar surveys, UAS SfM photogrammetry surveys, and in-situ sample campaigns were conducted at Thompson 

Farm during the winter 2020-2021. Eight snow-on campaigns were conducted between February 10th and March 11th, 2021 

during which UAS lidar, UAS SfM photogrammetry and in-situ data were collected (Table 1). The UAS snow-on surveys 

were conducted prior to in-situ sampling on each of the campaign dates. A snow-off baseline survey was conducted on April 

2nd, 2021 following snowmelt. 105 

Table 1. Number of 1x1 meter grid cells sampled by land cover type for each snow-on UAV flight over the field campaign period in 

2021. Each grid cell was comprised of nine Magnaprobe snow depth measurements and one snow tube SWE measurement. 
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3.1 UAS LiDAR and SfM photogrammetry 

The lidar sensor payload consisted of the Velodyne VLP-16 laser scanner, and the Applanix APX-15 Inertial Navigation 120 

System (INS; GNSS+IMU). The VLP-16 is a lightweight (~830 grams) low power (~8W) sensor, which makes it ideal for 

UAS deployment. The sensor incorporates 16 rotating IR lasers that are arranged and oriented on the payload to provide a 30° 

along-track field of view with a cross-track field of view limited only by the range of the sensor (approximately 100 m). At an 

altitude of 65 m, the range of the sensor produces an effective cross-track field of view of approximately 98°. Each laser 

operates at a wavelength of 903 nm.  125 

For these acquisition missions, the VLP-16 was hard-mounted to a DJI Matrice 600 to maintain constant lever arm offsets 

between the inertial navigation system (INS) GNSS antenna, the lidar sensor, and the INS board. As opposed to a gimbal 

mounted system, this hard-mounted configuration achieves a more tightly coupled system, resulting in improved point cloud 

geolocation accuracy. The lidar sensor was set to dual-return mode to improve ground detection in the forested areas of our 

field site. We flew the system at an altitude of 65 m with a flight speed of 3 m/s and ~40 m spacing between flight lines. Flights 130 

produced between a total of ~70-140 million returns per mission, depending on site ground conditions. 

Date Number of 

samples (Field) 

Number of samples 

(Coniferous) 

Number of samples 

(Deciduous) 

Number of samples 

(Mixed) 

Feb 4th  30 9 9 9 

Feb 10th  9 2 1 1 

Feb 20th  9 4 1 1 

Feb 23th  9 4 1 1 

Feb 24th  30 9 9 9 

Feb 28th  9 4 1 1 

Mar 3rd  9 3 1 1 

Mar 7th  9 4 1 1 
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Lidar observations were georeferenced using position and attitude measurements acquired with the Applanix APX-15 Inertial 

Navigation System (INS). The INS produced 2–5-cm positional, 0.025-degree roll and pitch, and 0.08-degree true heading 

uncertainties following post-processing. Post-processing of INS data was performed using POSPac UAV (v. 8.2.1, Applanix 

Corporation 2018), correcting differentially against a permanent Continuously Operating Reference Station (CORS) at the 135 

University of New Hampshire in Durham, NH (NHUN). Position and attitude data were output as a Smoothed Best Estimate 

of Trajectory (SBET), then time synchronized with lidar returns to produce a georeferenced point cloud using LidarTools (v. 

3.1.4, Headwall Photonics, Inc.). 

Three-dimensional point clouds were processed using a progressive morphological filter (PMF) within the R programing 

language package ‘lidR’ to identify ground returns. For ground classification, point clouds were chunked into 100-m square 140 

tiles with a 15-m buffer on all sides using catalogue options in lidR to ensure returns near tile edges were classified. The PMF 

was parameterized using a set of window sizes of 1, 3, 5, and 9 m, and elevation thresholds of 0.2, 1.5, 3, and 7 m, which were 

determined by varying value sets and assessing digital terrain models (DTMs) to determine the parameter sets that produced a 

visually smooth surface over a dense grid (Muir et al. 2017). Following ground classification for each tile, returns within the 

15-m tile buffers were removed, and all resulting 100-m square ground classified tiles were merged. The result of the PMF is 145 

that non-ground returns (i.e., trees, shrubs, and noise) were filtered out of the point cloud data sets, so that only returns from 

ground surfaces remained. The two data sets, non-ground returns and ground returns from the original point clouds, were coded 

according to LAS specifications and merged. Lidar snow depths were calculated as the difference between the ground classified 

snow-on and snow-off elevations within each pixel. For comparison to in situ observations, the ground returns were extracted 

for the 1 x 1 m square sampling sites, corresponding to the alignment and orientation of the respective PVC grids. The lidar 150 

snow depth was calculated as the difference between the mean snow-on and mean snow-off elevations within each sampling 

grid.  

Photogrammetry bare-earth and snow-on elevation models were constructed from UAS-borne optical imagery. RGB images 

were collected with the DJI Phantom 4 Real Time Kinematic (RTK) UAS platform equipped with a 20-megapixel CMOS 

sensor. The RTK system integrates a static base station that relays GNSS corrections to the UAS, enabling sub-centimeter 155 

accuracy of image geotags. To ensure photogrammetry snow depth products align correctly with the UAS lidar products, the 

RTK base-station was placed over a monument with known coordinates which were entered into the DJI flight app. Flights 

were conducted at an altitude of 65 m AGL and a flight speed of 8 m/s. The shutter triggering interval was set to achieve a 

forward overlap of 80% between image pairs and the flight lines were spaced to achieve 80% side overlap. Three Ground 

Control Points (GCPs) were placed within the AOI to verify the accuracy of the photogrammetry products. The GCPs were 160 

surveyed in using base/rover RTK equipment with sub-centimeter accuracy.  

The acquired image datasets were processed through the basic photogrammetry workflow using Agisoft Metashape (version 

1.8.4). Sparse clouds were constructed using the default key point and tie point limits of 40,000 and 4,000, respectively. Points 

with high errors within the sparse clouds were then removed using the gradual selection tool. This included points exceeding 

the following thresholds; reprojection error > 0.5, reconstruction uncertainty > 50, and projection accuracy >5. The camera 165 
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intrinsic/extrinsic parameters were optimized following the removal of the poorly localized points. Dense clouds were then 

made with the quality setting set to high and depth filtering set to moderate. Ground returns were classified using the ground 

classification tool within Metahape. A first pass at establishing a ground surface is done by triangulating the lowest point 

elevation within 50-m grid cells. The default thresholds for maximum distance and angle (1 m and 15 degrees respectively) of 

all points relative to the triangulated surface were used to determine which points are part of the ground surface. Finally, digital 170 

elevation models (DEMs) were made based on the ground classified points within the dense clouds. Snow depth products were 

derived following the same procedure as the lidar. 

3.2 Field observations 

In-situ snow depth sampling was conducted in the field and forest using two methods: a Snow-Hydro LLC magnaprobe and 

three Moultrie Wingscapes Birdcam Pro Field Cameras. The magnaprobe sampling was conducted along three parallel 175 

transects (39 points) and at two rectangular areas (18 points). The three transects were each approximately 145 m long and 

were laid out from east to west and separated by approximately 10 m, north to south (Figure 1). From east to west, each 

transect started in the open field area, then transitioned to the coniferous, then mixed, and finally, deciduous forested areas. 

The two rectangular areas were located in the open field; one in the northwest portion and the other in the southeast. At each 

point, nine measurements were taken within 1 m x 1 m grid cells. It is worth noting that sampling was not conducted for every 180 

flight. Full sampling occurred on February 4th and 24th, while selective sampling was conducted on the remaining dates (Table 

1). All sampling locations were geolocated using a Trimble© Geo7X GNSS Positioning Unit and Zephyr™ antenna with an 

estimated horizontal uncertainty of 2.51 cm (standard deviation 0.95 cm) in the field and 4.17 cm (standard deviation 4.60 cm) 

in the forest after differential correction.   

Field camera snow depths were acquired following the method used in NASA’s 2020 SnowEx field campaign in Grand Mesa, 185 

CO (personal communication, 16th November 2023). The three cameras were placed in each land cover type; one in the open 

field, one in the coniferous forest, and one in the deciduous forest. Each camera was mounted approximately 0.85 m above the 

ground and placed approximately 5.5 m from its respective 1.5 meter marked PVC pole. Each PVC pole was spray-painted 

red and marked with 1 cm and 10 cm increments. The cameras captured images of the poles every 15-minutes for the duration 

of the study period. Snow depth was derived by manual inspection of the photos and recorded to the nearest cm. Daily 190 

precipitation and mean temperature data were collected for the season by a NOAA Office of Oceanic and Atmospheric 

Research U.S. Climate Reference Network (USCRN) station (NH Durham 2 SSW) located in the western portion of the field.    

3.3 Physical land characteristics 

Land and soil characteristic variables are investigated as physical drivers of field scale spatial structure of snow depth. The 

variables used in this study are plant functional type, slope, aspect, shadow hours, saturated hydraulic conductivity (Ksat), and 195 

organic matter (Figure 1). Mapped at a one-meter scale, all physical variables are derived from UAS snow-off observations 

except the two soil variables. Vegetation cover type (field/forest) was manually delineated in geographic information system 
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(GIS) software based on the image orthomosaics created during SfM processing. The forested area was further classified as 

coniferous or deciduous for the study region by applying the Green Leaf Index (GLI) (Louhaichi, Borman, and Johnson 2001) 

(Error! Reference source not found.) to the optical three-band (red, green, and blue) orthomosaics derived from the snow-o200 

ff DJI Phantom 4 RTK survey.   

GLI =
(Green−Red)+(Green−Blue)

(2∗Green)+Red+Blue
                               (1) 

The GLI algorithm delineated the dense vegetation (conifer trees) from the less dense leaf-off deciduous trees (Borman, and 

Johnson, 2001). The direct application of the GLI algorithm on the three-band orthomosaics was further filtered and refined 

as follows. The output was clustered using the k-means algorithm with number of k classes equal to two: one class for 205 

coniferous trees (high GLI) and one class for deciduous trees (low GLI). Noise within the clustered GLI map was removed by 

convolution with a median filter. To establish continuous delineations of coniferous regions, morphological closing was 

applied to the map to fill in any interior holes within the delineated regions.  

The slope and aspect are derived from the UAS lidar 1 m snow-off DEM using Horn's method (Horn, 1981). The shadow 

hours represent the number of hours from 7 am to 5 pm that experience shadowing and was calculated using the unfiltered 210 

UAS lidar digital terrain model and the sun’s incidence angle. The two soil variables, Ksat and organic matter, are at soil depth 

of 0–5 cm obtained from Probabilistic Remapping of SSURGO (POLARIS) maps at 30‐m spatial resolution (Chaney et al., 

2016; 2019). The soil maps were disaggregated to 1-m spatial resolution without employing interpolation methods to mitigate 

additional uncertainties. 

3.4 Relative difference concept  215 

The relative difference concept, first introduced by Vachaud et al. (1985), has been widely used in the soil moisture 

remote sensing community to quantify spatio-temporal variability (or stability) of soil moisture at field or regional scales (Cho 

and Choi, 2014; Cosh et al., 2004; Jacobs et al., 2004; Mohanty & Skaggs, 2001; Starks et al., 2006). In this study, we apply 

this concept to the UAS-lidar snow depth measurements. The relative difference in the snow depth measurements can be 

expressed as  220 

𝑅𝐷𝑖,𝑡 =
𝑆𝑁𝐷𝑖,𝑡−𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑚𝑒𝑎𝑛(𝑆𝑁𝐷𝑡)

𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑚𝑒𝑎𝑛(𝑆𝑁𝐷𝑡)
                                                                  (2) 

where SNDi,t is individual snow depth measurement at grid i and date t, and spatial mean (SNDt) is the spatial mean value of 

snow depth at date t. For each grid i, the mean relative difference (MRDi) is the average relative difference from each of the N 

flights and can be calculated by 

𝑀𝑅𝐷𝑖 =
1

𝑁
∑ 𝑅𝐷𝑖,𝑡
𝑁
𝑡=1                                                                  (3) 225 
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4 Results 

4.1 In-Situ vs UAS-measured Snow Depths 

Daily temperature, daily precipitation, cumulative precipitation, and measured snow depths in the field and forest for this 230 

period are shown in Figure . During the 2020/2021 winter, December and early January were characterized by two ephemeral 

snowpacks of less than 10 cm which melted within a week. Between December 15th, 2020 and March 12th, 2021, the maximum 

temperature was recorded by the USCRN station on January 31st at 19° Celsius (C) and the minimum was recorded on March 

11th at -19° C. The cumulative precipitation measured by the USCRN station for the winter season was 20.4 cm. A snowpack 

was continuously present from late January through the middle of March. The largest precipitation event captured by the 235 

USCRN station was 11 cm and occurred on January 16th. The maximum snow depth measured by the field cameras occurred 

on February 10th with 21 cm in the field and 19.5 cm in the forest. A second peak occurred on February 20th with 20 cm in the 

field and 15.5 cm in the forest. A sustained period of warm temperatures occurred in late February and early March and 

corresponded to a decrease in snow depth due to the warming temperatures and two rain-on-snow events. The March 7th 

campaign captured the transition from a snow-cover-dominated field area on March 3rd to bare ground cover-dominated.  240 

In the field, the overall evolution of snow depth among the different measurement types shows strong agreement for the study 

period (Figure ). The magnaprobe field sites typically measured deeper snow than the field camera, but otherwise, they 

followed a similar trend. The greatest differences in in-situ measured snow depths occurred at the beginning and end of the 

field season. On February 4th, the average snow depth at the magnaprobe sites was 17 cm, but the field camera only observed 

4 cm of snow. On the last sample date, the magnaprobe sites had 5 cm of snow, while there was negligible snow at the field 245 

camera site. The UAS-based SfM and lidar snow depth observations were able to capture snow depth changes on the order of 

5 cm or less. Neither UAS-based measurement technique consistently measured deeper or shallower snow depths than the 

other, regardless of snowpack depth. However, SfM snow depths across the field sites were typically much more variable than 

the lidar snow depths. The largest SfM standard deviations exceeded 10 cm on two dates.  
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 250 

In the forest, the trends in snow accumulation and ablation between in-situ measurement methods were similar for much of 

the study period, however, snow depths at the magnaprobe sites were typically much deeper than snow depths measured by 

the two forest cameras. During the ablation period, UAS-based measurements typically showed a decreasing snow depth that 

matched the progression from the in-situ measurements. However, the standard deviations for the SfM snow depths were 

Figure 2 Timeseries of UAS-based and in-situ snow depth measurements in the field (top) and forest (bottom) for the 2021 

sample season. UAS-based measurements represent average of all samples at specified sampling location (i.e., field camera, 

magnaprobe site). 
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anomalously high on February 4th and February 20th. SfM snow depths had much greater variability than lidar on most days. 255 

Compared to camera and magnaprobe measurements, UAS lidar tended to underestimate snow depths whereas UAS SfM 

overestimated them. The SfM snow depths closely tracked the magnaprobe measurements during the ablation period. 

All snow observing methods were able to distinguish that the average snow depth was slightly deeper in the forest than the 

field. Sensor performance was also relatively consistent in both the field and forest. The magnaprobe recorded deeper mean 

snow depths than the cameras in both the field (Magnaprobe = 14.2 cm, Cameras = 9.4 cm) and forest (Magnaprobe = 14.8 260 

cm, Cameras = 9. 6 cm) (Table A1). In most cases, UAS-measured snow depths agreed well with in-situ measurements of 

snow depth regardless of the location (Figure 3). However, samples from the field indicated better agreement (i.e., fewer 

outliers) between UAS and in-situ measurements than the forest. Lidar measurements typically had less deviation from the 1:1 

line than SfM, indicating that lidar performed better than SfM compared to in-situ observations, especially in the forest. Most 

outliers were a result of SfM overestimating snow depth compared to in-situ measurements.  265 

 

Summary statistics (Table A1) indicate that the UAS lidar outperformed the UAS SfM in both the field and forest. SfM snow 

depths had higher mean absolute error (MAE) than the lidar as compared to the magnaprobe (SfM = 5.0 cm, Lidar = 3.0 cm) 

and the field camera (SfM = 14.3 cm, Lidar = 3.0 cm) in the field. In the forest, the MAE values increased modestly for the 

lidar, but sharply for the SfM snow depths when compared to both the magnaprobe observations (SfM = 32.0 cm, Lidar = 7.3 270 

cm) and the two camera observations (SfM = 44.7 cm, Lidar = 2.7 cm). In addition, lidar measurements had a greater r2 value 

than SfM at all the magnaprobe sites in the field (SfM = 0.33, Lidar = 0.65) and the forest (SfM = 0.01, Lidar = 0.41) and all 

camera sites in the field (SfM = 0.06, Lidar = 0.71) and the forest (SfM = 0.01, Lidar = 0.80).  

Figure 3 Comparison of UAV and in-situ based snow depth measurements for the field (left) and forest (right). 
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4.2 Comparison between LiDAR and SfM Snow Depth 

A direct comparison between the snow depths measured by lidar and SfM was conducted over the entire study area, 275 

encompassing four segmented areas. The overlapping 1 m x 1 m snow depth pixel values for the two UAS techniques were 

compared (Error! Reference source not found.). In both the field and forest, SfM snow depth frequently recorded much deeper s

now than the lidar. Compared to the northwestern (NW) and eastern (E) portions of the field, the western (W) field area had 

the most similar snow depth values for SfM and lidar. In that field, both lidar and SfM techniques captured relatively deeper 

snow depths ranging from 50 to 100 cm. However, there was no clear agreement between SfM and lidar in the forest, largely 280 

due to extensive regions in which SfM snow depths were anomalously high.  

 

Figure 4 Comparison of SfM and lidar measurements for all sample dates by area. Top scatter plots compare snow depth 

for (a) the three field areas and (b) the forest area. Bottom probability density plots show the distribution of snow depth 

values for (c) the field and (d) the forest area by measurement type.   
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A timeseries of snow depth maps for lidar and SfM over the entire sample area are shown in Error! Reference source n

ot found.. The difference between the snow depths maps for each technique was calculated for each sample date to identify 

locations where the techniques had the greatest difference in measured snow depths. There was an overall trend of decreasing 285 

snow depth over time in both the field and forest areas. The spatial difference between SfM and lidar was fairly consistent in 

the field on each day (approximately 0 cm) except for February 20th and 24th where the southeastern field showed a negative 

difference compared to other sample dates. It was clear that areas of missing data (such as that on February 4th) had a significant 

impact on results. In the forest, missing or patchy SfM data were found on many days (e.g., February 4th and 28th).  

Figure 5 Time series of snow depths (SD) for Lidar and SfM in the field and forest. Difference is calculated as Lidar SD 

minus SfM SD. All values shown in cm. 
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4.3 Spatial Structure of Snowpack and its Temporal Changes 290 

To explore the spatial structure of snow depth over time, daily relative difference of snow depth maps were generated from 

the UAS lidar-based snow depth maps (Figure 6). The spatial patterns of relative differences were fairly consistent throughout 

the period. Generally, there was relatively deeper snow depth in the northern part of the field (about 50% larger than the spatial 

mean), and shallower snow depth was found in forested areas as well as the central part of the field. Also, there were shallower 

snow depth measurements along the northeastern boundaries of the field. These patterns were very clear during the 295 

accumulation period before the peak snow depth around February 22nd. During the ablation period, the patterns were still 

consistent even though there were some gaps with no snow present because of patchy snow. This indicates that there are 

minimal changes in spatial structure of snow depth over the season in this environment.  

The MRD map in Figure 7 show the average spatial structure of snow depth formed in the study domain over the time period. 

The field had relatively deeper snow depths by up to 70% relative to the spatial mean. Within the field, the snow depth in 300 

northern areas was generally deeper than that in the southern areas, except for near the northern edges where it was generally 

shallower. In forested areas, the snow depth was shallower by up to -70% relative to the spatial mean. Distinct differences in 

Figure 6 Relative difference (RD) maps generated from the UAS lidar-based SD maps from February 4th to March 7th. 
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the transition zones between field and forest show edge effects. A shallower snowpack is evident immediately south of the 

forest at the northern extent of the field. There is a transition zone with deepening snow with increasing distance from the 

forest edge. In the western field, markedly deeper snow is found north of the forest. 305 

 

4.4 Physical Variables Characterizing Spatial Structures of Snow Depth 

To evaluate the effect of physical land characteristics on the spatial structure of snow depth, the MRD values were analyzed 

with respect to five land and soil characteristic values (e.g., vegetation type, slope, shadow hours, Ksat, and soil organic matter) 

over the study domain (Figure 8). Boxplots of MRD by physical feature are shown for the combined forest and field areas 310 

(Figure 8a) and field only (Figure 8b). In the combined areas (i.e., forest + field), the snow spatial structure is primarily 

controlled by vegetation type. Coniferous forests have low MRDs (mean: -0.36) which means snow in those areas is shallower 

relative to the spatial mean of snow depth by around 36%. For the deciduous forest, the mean MRD is -0.2 with a wide quantile 

range from –0.23 to 0.19. MRD values in the field are higher compared to the two forest types which ranged from –0.11 to 

0.22 (mean: 0.08). For both cases, the combined areas and field only, slope contributes to snowpack spatial patterns, even 315 

though the study area has gentle slope (less than 20%). High MRDs are found in flat areas (0 – 5% slope) and gradually 

decrease with increasing slope. The shadow hours show a clear but contradictory contribution to snow depth patterns in the 

field area and the combined area. In field, low MRDs are found in areas where shadow hours are short (e.g., less than 2 hours), 

and the MRDs gradually increase with increasing shadow hours. For the combined area, the highest shadow had the lowest 

Figure 7 The snow depth Mean Relative difference (MRD) map generated by averaging the eight RD maps from the UAS 

lidar-based snow depth maps from February 4th to March 7th. 
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snow depth, but this is likely the result of a mixed effect due to the dense shading in the coniferous forest. Ksat shows little 320 

evidence of contributing to the spatial structure of snow depth in the field. In the combined areas, the MRDs seem to decrease 

with increasing the Ksat values, except for the highest Ksat group, there are no significant patterns of MRDs when field areas 

are analyzed only. Compared to Ksat, soil organic matter (SOM) has a clearer relationship showing that snow depth decreases 

with increasing SOM in both the combined areas and field analysis.   

 325 

Figure 8 Boxplots of the snow depth Mean Relative difference (MRD) by each physical feature (vegetation type, slope, 

shadow hours, Ksat, and soil organic matter) for the combined areas (forest and field) and field only.  
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5 Discussion 

5.1 Comparison with previous findings: UAS SfM and LiDAR snow depths 

The value of lidar datasets for capturing the horizontal and vertical structure of forests and snow cover depth is well 

established. However, the technology remains expensive and data processing is complex. UAV SfM provides a low-cost 

alternative to lidar for creating point clouds using photogrammetry. However, its accuracy for measuring forest snow depths 330 

is still being explored (Donager et al. 2021). The lower cost of SfM techniques compared to lidar make them a valuable tool 

for conducting surveys of snowpack change over time. Post-processing of RGB imagery is often less complex than lidar data 

processing, and a variety of SfM software is now available, including some open-source options. While it is apparent that the 

accuracy of SfM-derived snow depth estimates cannot match that of lidar, the results of this study indicate that they can 

provide sufficient accuracy for investigation of flat, unforested land cover types. However, specific conditions which 335 

influence the relative performance of SfM for measuring snow depths in these areas, such as that observed in the western 

field, were still unclear. One potential reason for this could be overcast skies and features that present challenges for SfM 

processing, whereas lidar is less impacted by these challenges.  

Compared to in-situ measurements, SfM experienced modestly higher error in the field and notably higher errors in the 

forest than lidar. In SfM processing, an insufficient number of point clouds in the field may degrade the accuracy of SfM SD 340 

data (Harder et al., 2016). The direct comparison of SfM and lidar measurements revealed that, despite SfM typically 

measuring deeper snow depths than lidar, both SfM and lidar had better agreement in the field than the forest. However, the 

techniques did not have consistent agreement over the entire field, with the best agreement occurring in the western portion 

of the field. These findings are similar to previous studies which compared UAS SfM and snow probe measurements where 

the RMSE for snow depths is typically less than 31 cm in sparsely vegetated and alpine land cover types and increases to as 345 

much as 37 cm in areas with bushes, high grass, or forests (De Michele et al., 2016, Bühler et al., 2016, Avanzi et al., 2018, 

Belmonte et al., 2021). Studies using UAS SfM alongside rulers and snow stakes measured a smaller RMSE (less than 14 

cm) in both forested and prairie land cover types (Fernandes et al., 2018; Harder et al., 2016). Findings were also similar for 

studies comparing UAS lidar to rulers or snow stakes which measured a RMSE less than 17 cm, with even lower RMSE in 

shallow snow and in sunny areas (Harder et al., 2020; Feng et al., 2023; Koutantou et al., 2022). Lidar RMSE also tends to 350 

increase in vegetated areas regardless of the vegetation class or type (Harder et al. 2020). Much like the erroneous SfM snow 

depth measurements observed by Harder et al. (2016) several meters above the snow surface, we observed SfM measured 

snow depths were greater than 150 cm in some forest locations. Conversely, lidar measured snow depths never exceeded 25 

cm, indicating a more consistent performance in forested areas.  

Regardless of the sampling technique used, the unique capability of UAS for measuring snowpack properties at the field-355 

scale at a high temporal-resolution makes them useful for observing snowpack evolution over time. Collection of in-situ 

snow depth timeseries data is often time and cost prohibitive and may be especially challenging in complex or avalanche-
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prone terrain. It is clear from the results of this study and previous ones that both UAS SfM and lidar techniques provide a 

viable method for monitoring snow depth change across many land cover types. Monitoring snow depth change over time at 

the field scale allowed for identification of accumulation and ablation patterns across the entire study area and between 360 

different land cover types (i.e., forest and field). Comparing maps of snow depth change to maps of the physical variables 

present at the site revealed the specific variables which may influence snowpack change over the winter season.   

5.2 Physical variables at field scale  

With a limited wind redistribution, time stability shows that the relative differences of the snowpack over the study region 

were generally stable throughout the accumulation and melting periods. In addition to the previous findings that snowpack 365 

patterns are relatively consistent from year to year (Pflug and Lundquist, 2020; Revuelto et al., 2014), this study showed that 

fixed physical variables including vegetation, topography, and soil characteristics sufficiently control the spatial variations of 

snowpack throughout a winter period. The findings regarding the influence of vegetation and topographical factors on the 

snowpack’s spatial variability align with previous studies conducted (Currier and Lundquist, 2018; Deems et al., 2006; Trujillo 

et al., 2007). As compared to vegetation and terrain characteristics, few studies have examined the influence of soil 370 

characteristics on the snowpack. Our results found that snowpack depth decreases with increasing soil organic matter. This 

finding aligns with our previous study, which utilized maximum entropy modeling to analyze spatial variations of shallow 

snowpack over the same domain but during different periods (Cho et al., 2021). Even though a clear relationship between 

saturated hydraulic conductivity and snowpack was not found in this study (Figure 8b), it is acknowledged that soil thermal 

properties, such as the thermal conductivity of the soil beneath the snowpack, generally influence the rate of heat transfer 375 

between the snow and soil layers (Kane et al., 2001; Zhang, 2005). Also, the moisture content of the soil can affect the 

distribution of soil frost (Bay et al., 1952) and snowpack because the energy transfer at the snow-soil interface is controlled by 

wetness of the soil (Bay et al., 1952; Fu et al., 2018). Even though spatial distribution of soil moisture contents is typically 

considered to be constant (frozen) during winter, intermediate rainfall events and freeze-thaw cycles can dramatically change 

the spatial patterns of soil moisture and freeze-thaw states. This can be critical because the thermal conductivity in frozen state 380 

is more sensitive to soil type than non-frozen condition, because the thermal conductivity of ice is four times larger than that 

of liquid phase (Penner, 1970). However, fewer studies have investigated how soil moisture patterns may control the spatial 

structure of snowpack. This is likely because of the difficulty of measuring spatial distributions of soil moisture and freeze-

thaw states beneath the snowpack. Even though this study did not focus on it, future investigations could measure spatial 

patterns of soil moisture and freeze-thaw states beneath the snowpack to quantify their interactions with the snowpack. A better 385 

understanding of the soil characteristics and their impact on the snowpack in various environments would help snow 

community accurately predict and model snow distribution and snowmelt processes.  

The concept of “time stability” (or “temporal stability”) implemented in this study has not been used in snow 

hydrology, though there are numerous studies using similar concepts to characterize temporal changes in the spatial structure 

of snowpack across topographically uniform landscapes, encompassing both open field and forested environments. The 390 
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numerous investigations in the soil moisture community that have examined temporal variability were valuable for developing 

robust validation sites and sampling strategies for satellite-based soil moisture assessments (Grayson and Western, 1998; Cosh 

et al., 2008; Brocca et al., 2009; Mohanty & Skagge, 2001; Jacobs et al., 2004). Similar to its utility in soil moisture studies, 

the integration of the time stability concept into snowpack analysis at the field scale could facilitate the identification of 

representative sampling locations and inform the design of sampling protocols for optimal spatial extrapolation. Extending 395 

this approach to diverse snow environments will contribute to quantifying spatio-temporal variability in snowpack, thereby 

enhancing the establishment of core validation sites for potential snow missions such as the Canadian Terrestrial Snow Mass 

Mission (TSMM; Derksen et al., 2019). 

5.3 Limitations and future perspectives 

Given that our investigation was conducted in a relatively uniform landscape characterized by a shallow snowpack, it is 400 

imperative to extend the analysis to encompass diverse plant functional types, climatic zones, and/or snow classes (Johnston 

et al., 2024; Sturm and Liston, 2021) to ascertain the generalizability of the findings. This is essential as snow depth 

distributions are influenced by terrain attributes and snow regimes (Clark et al., 2011; Currier and Lundquist, 2018). In contrast 

to the present study area, where spatial heterogeneity in snowpack is predominantly influenced by static terrain characteristics 

and vegetation cover, alpine and prairie regions experience variability due to wind-driven processes (Elder et al., 1991). Further 405 

investigation incorporating additional analyses of energy fluxes and meteorological parameters, including solar radiation, soil 

temperature and wind speed/direction, would enhance the comprehensiveness of the findings concerning the primary 

determinants of snowpack spatial variability across both static and dynamic variables. 

Even though we analyzed spatial-temporal variability of snowpack using a well-validated UAS-based snow depth, this may 

not guarantee similar results with snow water equivalent (SWE) that would be necessary for hydrologic applications. Snow 410 

density, needed to calculate SWE from snow depth, is affected by snow metamorphosis differently than snow depth . Snow 

density may change during snowmelt as water percolates into the snowpack and refreezes. Also, vegetation and soil 

characteristics strongly control turbulent and ground heat fluxes and impact snow properties including snow density (Pomeroy 

and Brun, 2001). Studies have used a snow modeling approach using physics-based sophisticated models such as SnowModel 

(Liston and Elder, 2006) and Crocus (Vionnet et al., 2012) to understand those SWE patterns with physical processes how 415 

spatial variations of snowpack are formed. However, observational approaches focusing on spatial structures of SWE are quite 

limited because only now are sensing techniques emerging that directly observe the spatial distribution of snow density with 

a UAS system (McGrath et al., 2022). A potential future direction is to develop reliable, high-resolution SWE maps by 

integrating emerging techniques such as lidar and gamma-ray spectrometry (Harder et al., 2023), enabling the quantification 

of spatial structures of SWE across diverse snow environments. Another direction could involve employing an integrative 420 

approach using physical models to maximize in-situ and UAS snow observations through data assimilation and/or novel 

interpolation methods, utilizing machine (or deep) learning approaches. 
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6 Conclusion  

In this study, UAS lidar and SfM snow depth measurements were assessed using the ground-based magnaprobe and field 

cameras then used to confirm that spatial patterns of snowpack depth are temporal stable. Differences between in-situ 425 

measurement techniques had only a modest impact on validation of lidar and SfM-based snow depth. Lidar demonstrated 

superior performance compared to SfM when evaluated against in-situ observations, exhibiting lower errors. Both UAS 

techniques exhibited lower errors in field settings than in forested environments. Though, as expected, differences between 

lidar and SfM snow depths were more pronounced in forested regions, with SfM often registering anomalously deep snow 

depth values. The spatial structures of snow depth captured by lidar remained consistent throughout the study period and were 430 

primarily influenced by factors such as vegetation type, slope, shadow hour, and soil organic matter. When examining 

combined landscapes including forests and fields, we observed that the spatial structure of snow depth was predominantly 

shaped by the type of vegetation present. Within the field, the spatial distribution of snow depth tracked with relatively modest 

local slope variations and shadowing effects at the forest-field edge. As ephemeral snow conditions expand in a warmer 

climate, these results are valuable for effectively comparing UAS and in-situ sampling techniques for ephemeral, shallow 435 

seasonal snowpacks. It is also expected that this study contributes to the enhancement of land surface and snow models by 

offering insights into parameterizing sub-grid scale snow depths, downscaling coarse-scale remotely sensed snow 

observations, and comprehending snowpack evolution at the field scale, particularly in ephemeral snow environments. 

 

Data availability. The UAS lidar and SfM photogrammetry snow depth maps, along with topographic variables developed in 440 

this study, will be available for download from the Hydroshare repository once this manuscript is accepted and published 

(currently being set up with an ODC Attribution license for unrestricted access). Daily precipitation and mean temperature 

data are available from the NOAA U.S. Climate Reference Network at 

https://www.ncei.noaa.gov/access/crn/sensors.htm?stationId=1040. 
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