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Abstract. Uncrewed Aerial Systems (UAS) light detection and ranging (lidar) and structure-from-motion (SfM) 

photogrammetry have emerged as viable methods to map high-resolution snow depths (~1 m). These technologies enable a 15 

better understanding of snowpack spatial structure distribution and its evolution over time, advancing hydrologic and 

ecological applications. In this study, a series of UAS lidar/SfM snow depth maps were collected during the 2020/21 winter 

season in Durham, New Hampshire, USA with three objectives: (1) quantifying UAS lidar/SfM snow depth retrieval 

performance using multiple in-situ measurement techniques (magnaprobe and field cameras),measurements, (2) conducting a 

quantitative comparison of lidar and SfM retrievals of shallow snow depths (< 35 cm) throughout the winter, and (3) better 20 

understanding the spatial distribution structure of snow depth and its relationship with terrain features. TheEight UAS surveys 

were conducted over approximately 0.35 km2 including both open fields and a mixed forest. In the field, lidar had a slightly 

lower error than SfM compared to in-situ observations with a Mean Absolute Error (MAEDifference (MAD) of 3.05 cm for 

lidar and 54.0 - 14.3 cm for SfM. Snow depth maps from SfM and lidar were fairly consistent in the field with differences 

close to 0 cm on most dates. In the forest, SfM greatly overestimated in-situ snow depths compared to lidar (lidar MAE = 2.7 25 

- 7MAD = 6.3 cm, SfM MAE = 32.0 - 44.7MAD = 31.4 cm). Even though snow depth differencesThere was also no clear 

agreement between the magnaprobe and field cameras were found, they had only a modest impact on the UASSfM and lidar 

snow depth validation.values for individual 1 m2 pixels in the forest (MAD = 55.7 cm). Using the concept of temporal stability, 

we found that the spatial distribution structure of snow depth captured by lidar was generally consistent throughout the period 

indicating a strong influence from static land characteristics. Considering both areas (forest and field), the spatial distribution 30 

of snow depth was primarily influenced by vegetation type while also reflecting the effects of soil variables (e.g., soil organic 

matter). When the field and forest areas were analysed separately, the spatial distribution was distinctly affected by slope and 
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the shadowing effects of the forest canopy.Considering allboth areas (forest and fieldsfield), the spatial structure of snow depth 

was primarily influenced by vegetation type (e.g., fields, deciduous, and coniferous forests).  Within the field, the spatial 

structuredistribution was primarily correlated withaffected by slope and forest canopythe shadowing effects of the forest 35 

canopy. 

1 Introduction 

Snowpacks are vital to hydrologic, climatic, and ecological processes across multiple scales (Barnett et al., 2005; Clark et al., 

2011). Snowpack distribution and its temporal evolution are important to determine snowmelt runoff, infiltration, and 

groundwater recharge (Carroll et al., 2019; Harpold et al., 2015; Maurer and Bowling, 2014) as well as energy partitioning 40 

processes (Lawrence and Slater, 2010; Stieglitz et al., 2001; Sturm et al., 2017). Snowpack also exerts a strong control on 

snow-soil interactions because the insulating capacities of snowpack affect the underlying soil freeze-thaw state influencing 

soil respiration, nutrient retention, and carbon dynamics (Anderton et al., 2002; Schlogl et al. 2018; Cho et al., 2021; Monson 

et al., 2006; Sorensen et al., 2018; Reinmann and Templer, 2018; Wilson et al., 2020; Yi et al., 2015). 

Spatial patternsThe spatial variability of hydrologic statea snowpack is a function of static and dynamic variables and fluxes 45 

including(e.g., soil moisture, snow, interception, precipitation, and evapotranspiration reflect underlying static physical 

conditions and dynamic forcing from weather events. These patterns serve a variety of purposes including downscaling 

remotely sensed or model output, upscaling in situ observations, assimilation to update model simulations, and as proxies or 

analogues for similar hydrologic units. They can also provide insight into underlying landscape features, biogeochemical 

processes, and habitat viability. 50 

Snowpacks play a crucial role in hydrologic, climatic, and ecological processes at various scales (Barnett et al., 2005). 

Snowpack structure and its temporal evolution are important to determine snowmelt runoff, infiltration, and groundwater 

recharge (Carroll et al., 2019; Harpold et al., 2015; Maurer and Bowling, 2014) as well as energy partitioning processes 

(Lawrence and Slater, 2010; Stieglitz et al., 2001; Sturm et al., 2017). Snowpack also exerts a strong control on snow-soil 

interactions because the insulating capacities of snowpack affect the underlying soil freeze-thaw state influencing soil 55 

respiration, nutrient retention, and carbon dynamics (Anderton et al., 2002; Schlogl et al. 2018; Cho et al., 2021; Monson et 

al., 2006; Sorensen et al., 2018; Reinmann and Templer, 2018; Wilson et al., 2020; Yi et al., 2015). 

The spatial variability of a snowpack is a function of static and dynamic variables) over a range of spatial scales (Clark et al., 

2011; Grayson et al., 2002; Mott and Lehning, 2011; Trujillo et al., 2007). Over time, spatial patterns may evolve and change, 

but many hydrologic patterns persist until they are modified by weather conditions. Spatial snowpack patterns and their 60 

consistency, or repeatability, play a crucial role in various applications, including operational snowmelt predictions, the 

downscaling of remotely sensed or model outputs, the integration of in situ observations through upscaling, the assimilation 

of data to enhance model simulations, and the utilization of snowpack characteristics as proxies or analogs for similar 
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hydrological units (Pflug and Lundquist, 2020; Cho et al., 2023). They can also provide insight into underlying landscape 

features, biogeochemical processes, and wildlife habitats (Boelman et al., 2019; Pflug et al., 2023).  65 

Snowpacks play a crucial role in hydrologic, climatic, and ecological processes at various scales (Barnett et al., 2005). 

Snowpack structure and its temporal evolution are important to determine snowmelt runoff, infiltration, and groundwater 

recharge (Carroll et al., 2019; Harpold et al., 2015; Maurer and Bowling, 2014) as well as energy partitioning processes 

(Lawrence and Slater, 2010; Stieglitz et al., 2001; Sturm et al., 2017). Snowpack also exerts a strong control on snow-soil 

interactions because the insulating capacities of snowpack affect the underlying soil freeze-thaw state influencing soil 70 

respiration, nutrient retention, and carbon dynamics (Anderton et al., 2002; Schlogl et al. 2018; Cho et al., 2021; Monson et 

al., 2006; Sorensen et al., 2018; Reinmann and Templer, 2018; Wilson et al., 2020; Yi et al., 2015).Numerous investigations 

have introduced various approaches to capture snow distribution patterns and their evolution across diverse climatic and 

topographical environments. For example, Sturm and Wagner (2010) found that snow depth patterns remain stable across years 

due to persistent topographic and vegetation influences in an Arctic region, highlighting the value of empirical snow 75 

distribution patterns for improving snow model accuracy. Vögeli et al. (2016) used high-resolution airborne digital sensors to 

refine precipitation scaling in a snow distribution model (Alpine3D), demonstrating the potential of remote sensing data to 

better simulate complex snow dynamics in alpine regions. Pflug et al. (2021) examined the interannual consistency of snow 

patterns and proposed a downscaling approach based on historical snow patterns in the California Tuolumne River Watershed, 

which is particularly useful for predicting snow distribution during years with limited observations. Revuelto et al. (2020) 80 

introduced a method combining in-situ snow depth measurements with terrestrial laser scanner and time-lapse photography to 

produce temporal snow depth distribution patterns in a subalpine mountain environment, offering a transferable approach for 

deriving spatial snow data from limited ground observations. 

 

Traditionally, field (approximately 100 m) or local-scale (approximately 1 m) snow features are captured through in situ 85 

observations and field campaigns (Clark et al., 2011; Trujillo et al., 2007), whereas regional or continental-scale patterns are 

typically observed using airborne and satellite remote sensing techniques (Lievens et al., 2022; Painter et al., 2016; Derksen 

et al., 2005). Airborne and satellite remote sensing methods have provided the ability to collect snowpack data over a large 

spatial extent, thus expanding the understanding of snow distribution (Cho et al., 2019; Lievens et al., 2022; Painter et al., 

2016; Tsang et al., 2021). However, the ability to capture of small-scale snow patterns, discerned through field campaigns or 90 

less frequent, routine operational collections, is often hindered by challenges such as weather conditions, tree canopies, and 

site accessibility which can lead to infrequent sampling during the winter season.  

Uncrewed Aerial Systems (Uncrewed Aerial Systems (UASs)) have been used to provide spatially continuous, opportunistic 

snow-covered area and snow depth observations at scales between in situ and airborne and satellite remote sensing (Bühler et 

al., 2016; De Michele et al., 2016; Harder et al., 2016; 2020; Meyer et al., 2022; Revuelto et al., 20212021a; Geissler et al., 95 

2023). UAS-based remote sensing enables the acquisition of data at finer spatial resolutions, reaching scales as precise as 

centimeters for a designated area. UAS platforms also offer a cost-effective alternative to aerial surveys, facilitating routine 
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monitoring of snow conditions (Gaffey et al., 2020). Hence, the capabilities of UAS platforms equipped with diverse sensors  

allow for the observation ofcan observe snowpack properties and support analyses of  field-scale physical interactions between 

snowpacks and land/soil characteristics (Cho et al., 2021).  100 

UAS light detection and ranging (lidar) and Structurestructure-from-Motionmotion (SfM) photogrammetry have emerged as 

viable methods for mapping high-resolution snow depths (~1 m), enabling a better understanding of snowpack spatial structure 

distribution and its evolution over time at the field scale (Feng et al., 2023; Harder et al., 2019; Jacobs et al., 2021; Koutantou., 

2022; Geissler et al., 2023). As the use of UAS-based high-resolution snow depth mapping becomes more prevalent, there is 

a growing need for a comprehensive understanding of their strengths and weaknesses for capturing snowpack evolution 105 

throughout the entire snow period for various landscape features (e.g., forest and fields).. However, investigating thesethe 

transition periods between snow-on and snow-off poses challenges, primarily due to the snow becoming increasingly shallow 

and patchy, eventually revealing bare ground. Despite these challenges, these transition periods hold significant hydrological, 

ecological, and energy implications (Harrison et al., 2021; Harpold et al., 2017; Grogan et al., 2020). 

This study aims to achieve three main objectives using a series of UAS lidar/SfM snow depth maps over a mixed-use temperate 110 

forest landscape: (1) quantify UAS snow depth retrieval performance by comparing it with multiple in-situ measurement 

techniquesmeasurements, (2) conduct a quantitative comparison of lidar and SfM snow depths throughout the snow period for 

a range of depths that reflect the specific conditions observed in our dataset (i.e., 0 to 35 cm)conduct a quantitative comparison 

of lidar and SfM snow depths (< 35 cm) throughout the snow period, as this range of snow depth reflects the specific 

conditions observed in our dataset, and (3) gain a better understanding of the spatial structuredistribution of snow depth, 115 

its stability over time, and its relationship with multiple physical terrain features. This paper is organized as follows: Section 

2 provides an overview of the study area, including its land characteristics. Section 3 describes the datasets utilized in the 

study, including UAS lidar, SfM photogrammetry, and field observations, and the methods employed, such as the relative 

difference concept. Section 4 presents the results, with subsections detailing comparisons between UAS snow depth and in-

situ measurements (4.1), as well as comparisons between lidar and SfM snow depth (4.2). Additionally, spatial patterns 120 

structures and temporal changes in snow depth, along with relevant physical variables characterizing those snow patterns, are 

discussed in Sections 4.3 and 4.4. Section 5 discusses new insights derived from the comparison results and spatial patterns 

structures of snow depth, along with the limitations of this study and future perspectives. Finally, conclusions are drawn in 

Section 6. 

2 Study area 125 

This study was conducted at the University of New Hampshire Thompson Farm Research Station in southeast New Hampshire, 

United States (N 43.10892°, W 70.94853°, 35 m above sea level), which was chosen for its mixed hardwood forest and open 

field land covers (Perron et al. 2004; Burakowski et al., 2015; Jacobs et al., 2021) that are characteristic of the region (Error! 

Reference source not found.).(Figure 1). Thompson Farm has a rich history of forest ecology research and data collection. 
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Thompson Farm has an area of 0.83 km2 and little topographic relief (18 to 36 m ASL) (Perron et al., 2004). The agricultural 130 

fields are actively managed for pasture grass with unmown grass.. The deciduous, mixed, and coniferous forest is composed 

primarily of white pine (Pinus strobus), northern red oak (Quercus rubra), red maple (Acer rubrum), shagbark hickory (Carya 

ovata), and white oak (Quercus alba). The forest soils are classified as Hollis/Charlton very stony-fine sandy loam and well-

drained; field soils are characterized as Scantic silt-loam and poorly drained (Perron et al. 2004). There are two logging access 

roads running north-south through the pasture and western forest section. A review of snow climatology from Sturm and Liston 135 

(2021) and Johnston et al. (2024) determined that ephemeral and transitional snowpacks cover large areas but are understudied. 

The winter climate at Thompson Farm has a mean winter air temperature of -3.0°C and an annual snowfall of 114 cm with 

three weeks to over three months of days having snow cover (Burakowski and Hamilton, 2020; Johnston et al., 2024). The 

winter climate at Thompson Farm is characterized by cold, maritime winter climate with a mean winter air temperature of -

3.0°C, and a low persistence ephemeral snow class with an annual snowfall of 114 cm, and three weeks to over three months 140 

of days having snow cover (Burakowski and Hamilton, 2020). Average wind speed was 1.41 m/s for the study period. ; 

Johnston et al., 2024). Snow depth can range from a trace up to 94 cm and typical snow density ranges from 100 to 400 kg/m3 

(Burakowski and Hamilton, 2020). The snowpack at Thompson Farm is short-lived and warm, and snow climatologies from 

Sturm and Liston (2021) and Johnston et al. (2024) both classify the area as ephemeral. A review of existing research on the 

snow classes defined by Sturm and Liston (2021) and Johnston et al. (2024) determined that, despite covering large areas in 145 

the northern hemisphere, the ephemeral snow class is largely understudied, making new research on ephemeral snowpacks 

valuable. 
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Figure 1. Summary of Thompson Farm survey area located in Durham, NH, USA. (a) In-situ sample sites and field 

and forest boundaries are overlain on the snow-off imagery. Maps of (b) vegetation type, (c) slope, (d) shadow hour, (e) 

soil hydraulic conductivity (Ksat), (f) organic matter, and (g) aspect are shown for both the field and forest areas.   
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Figure 1 Thompson Farm survey area located in Durham, NH, USA. (a) In-situ sample sites and field and forest boundaries are 150 
overlain on the snow-off imagery. The pond, section of dense shrubs, outbuildings, and USCRN station in the western field were not 

representative of the field and were removed. Maps of (b) vegetation type, (c) slope, (d) shadow hour, (e) soil hydraulic conductivity 

(Ksat), (f) soil organic matter (SOM), and (g) aspect are shown for the field and forest areas. The derivation of each of these variables 

is explained in Section 3.    
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3 Datasets and methods 155 

A series of UAS lidar surveys, UAS SfM photogrammetry surveys, and in-situ sample campaigns were conducted at Thompson 

Farm during the winter 2020-2021. Eight snow-on campaigns were conducted between February 10th and March 11th, 2021 

during which UAS lidar, UAS SfM photogrammetry and in-situ data were collected (Table 1S1). The UAS snow-on surveys 

were conducted prior to in-situ sampling on each of the campaign dates. Because AcCompaction of underlying vegetation 

during snow-on periods can result in negative snow depths when compared to the snow-off baseline (Masný, Weis, and 160 

Biskupič, 2021), so the snow-off baseline survey was conducted on April 2nd, 2021 following snowmelt. 

Table 1. Number of 1x1 meter grid cells sampled by land cover type for each snow-on UAV flight over the field campaign period in 

2021. Each grid cell was comprised of nine Magnaprobe snow depth measurements and one snow tube SWE measurement. 
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3.1 UAS LiDARlidar and SfM photogrammetry 175 

The lidar sensor payload consisted of the Velodyne VLP-16 laser scanner, and the Applanix APX-15 Inertial Navigation 

System (INS; GNSS+IMU). The VLP-16 is a lightweight (~830 grams) low power (~8W8 W) sensor, which makes it ideal 

for UAS deployment. The sensor incorporates 16 rotating infra-red (IR) lasers that are arranged and oriented on the payload 

to provide a 30° along-track field of view with a cross-track field of view limited only by the range of the sensor (approximately 

100 m). At an altitude of 65 m, the range of the sensor range produces an effective cross-track field of view of approximately 180 

98°. Each laser operates at a wavelength of 903 nm.  

For these acquisition missions, the VLP-16 was hard-mounted to a DJI Matrice 600 to maintain constant lever arm offsets 

between the Iinertial Nnavigation Ssystem (INS) GNSS antenna, the lidar sensor, and the INS board. As opposed to a gimbal 

mounted system, this hard-mounted configuration achieves a more tightly coupled system, resulting in improved point cloud 

geolocation accuracy. The lidar sensor was set to dual-return mode to improve ground detection in the forested areas of our 185 

field site. We flew theThe system was flown at an altitude of 65 m with a flight speed of 3 m/s and ~40 m spacing between 

flight lines. Flights produced between a total of ~70-140 million returns per mission, depending on site ground conditions. 

Date Number of 

samples (Field) 

Number of samples 

(Coniferous) 

Number of samples 

(Deciduous) 

Number of samples 

(Mixed) 

Feb 4th  30 9 9 9 

Feb 10th  9 2 1 1 

Feb 20th  9 4 1 1 

Feb 23th  9 4 1 1 

Feb 24th  30 9 9 9 

Feb 28th  9 4 1 1 

Mar 3rd  9 3 1 1 

Mar 7th  9 4 1 1 
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Lidar observations were georeferenced using position and attitude measurements acquired with the Applanix APX-15 Inertial 

Navigation System (INS). The INS produced 2–5- cm positional, 0.025- degree roll and pitch, and 0.08- degree true heading 

uncertainties following post-processing. Post-processing of INS data was performed using POSPac UAV (v. 8.2.1, Applanix 190 

Corporation 2018), correcting differentially against a permanent Continuously Operating Reference Station (CORS) at the 

University of New Hampshire in Durham, NH (NHUN). Position and attitude data were output as a Smoothed Best Estimate 

of Trajectory (SBET), then time synchronized with lidar returns to produce a georeferenced point cloud using LidarTools (v. 

3.1.4, Headwall Photonics, Inc.). 

Three-dimensional point clouds were processed using a progressive morphological filter (PMF) within the R programing 195 

language package ‘lidR’ to identify ground returns. For ground classification, point clouds were chunked into 100-m square 

tiles with a 15-m buffer on all sides using catalogue options in lidR to ensure returns near tile edges were classified. The PMF 

was parameterized using a set of window sizes of 1, 3, 5, and 9 m, and elevation thresholds of 0.2, 1.5, 3, and 7 m, which were 

determined by varying value sets and assessing digital terrain models (DTMs) to determine the parameter sets that produced a 

visually smooth surface over a dense grid (Muir et al. 2017). Following ground classification for each tile, returns within the 200 

15-m tile buffers were removed, and all resulting 100-m square ground classified tiles were merged. The result of the PMF is 

that non-ground returns (i.e., trees, shrubs, and noise) were filtered out of the point cloud data sets, so that only returns from 

ground surfaces remained. The two data sets, non-ground returns and ground returns from the original point clouds, were coded 

according to LAS file specifications and merged. Lidar snow depths were calculated as the difference between the ground 

classified snow-on and snow-off elevations within each pixel. For comparison to in situ observations, the ground returns were 205 

extracted for the 1 x 1 m square sampling sites, corresponding to the alignment and orientation of the respective PVC 

gridstransect. The lidar snow depth was calculated as the difference between the mean snow-on and mean snow-off elevations 

within each sampling grid.  

Photogrammetry bare-earth and snow-on elevation models were constructed from UAS-borne optical imagery. RGB images 

were collected with the DJI Phantom 4 Real Time Kinematic (RTK) UAS platform equipped with a 20-megapixel 210 

Complementary Metal Oxide Semiconductor (CMOS sensor. The RTK system integrates a static base station that relays GNSS 

corrections to the UAS, enabling sub-centimeterapproximately 3-cm accuracy of image geotags. To ensure photogrammetry 

snow depth products align correctly with the UAS lidar products, the RTK base-station was placed over a monument with 

known coordinates which were entered into the DJI flight app. Flights were conducted at an altitude of 65 m AGL and a flight 

speed of 8 m/s. The shutter triggering interval was set to achieve a forward overlap of 80% between image pairs and the flight 215 

lines were spaced to achieve 80% side overlap. Three Ground Control Points (GCPs) were placed within the AOIarea of 

interest to verify the accuracy of the photogrammetry products. The GCPs were surveyed in using a Trimble© Geo7X GNSS 

Positioning Unit and Zephyr™ antennabase/rover RTK equipment with sub-centimeter accuracy.  

The acquired image datasets were processed through the basic photogrammetry workflow using Agisoft Metashape (version 

1.8.4). Sparse clouds were constructed using the default key point and tie point limits of 40,000 and 4,000, respectively. Points 220 

with high errors within the sparse clouds were then removed using the gradual selection tool. This included points exceeding 
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the following thresholds; reprojection error > 0.5, reconstruction uncertainty > 50, and projection accuracy > 5. The camera 

intrinsic/extrinsic parameters were optimized following the removal of the poorly localized points. Dense clouds were then 

madeproduced with the quality setting set to high and depth filtering set to moderate. Ground returns were classified using the 

ground classification tool within Metahape. A first pass at establishing a ground surface is done by triangulating the lowest 225 

point elevation within 50-m grid cells. The default thresholds for maximum distance and angle (1 m and 15 degrees 

respectively) of all points relative to the triangulated surface were used to determine which points are part of the ground surface. 

Finally, digital elevation models (DEMs) were made based onderived from the ground classified points within the dense 

clouds. Snow depth products were derived following the same procedure as the lidar. by calculating the difference between 

the ground classified snow-on and snow-off elevations within each pixel. Additional filtering based on the point confidence 230 

metric was completed for the February 20th and 24th snow depth maps to remove the points with high uncertainty.   

GCPs surveyed by using the base/rover equipment a Trimble© Geo7X GNSS Positioning Unit and Zephyr™ antenna were 

used to co-register the UAS data. Linear, horizontal, and vertical shifts were applied to align all SfM and lidar DEMs to the 

GCPs.  

3.2 Field observations 235 

In-situ snow depth sampling was conducted in the field and forest using two methods: a Snow-Hydro LLC magnaprobe (Sturm 

and Holmgren, 2018) and three Moultrie Wingscapes Birdcam Pro Field Cameras. The magnaprobe sampling was conducted 

along three parallelfollowed a single long transect (18 points) and two short transects (393 points) and at two rectangular areas 

(18 points each). The three transects were each long transect was approximately 145 m long and were laid out from east to 

west and separated by approximately 10 m, north to south (Figure 1). From east to west, eachthe transect started in the open 240 

field area, then transitioned to the coniferous, then mixed, and finally, deciduous forested areas. The two rectangular areasshort 

transects were located in the open field; one in the northwest portion and the other in the southeast. At each point, nine, evenly 

spaced measurements were taken within 1 m x 1 m grid cells. It is worth noting that sampling was not conducted for every 

flight. Full sampling occurredsome dates were missing sample points due to disturbance of the sample area, either by collection 

on February 4thprevious days or recreational use at the site, or due to personnel and 24th, while selective sampling was 245 

conducted on the remaining dates equipment limitations (Table 1S1). All sampling locations were geolocated using a 

Trimble© Geo7X GNSS Positioning Unit and Zephyr™ antenna with an estimated horizontal uncertainty of 2.51 cm (standard 

deviation 0.95 cm) in the field and 4.17 cm (standard deviation 4.60 cm) in the forest after differential correction.   

Field camera snow depths were acquired following the method used in NASA’s 2020 SnowEx field campaign in Grand Mesa, 

CO (personal communication, 16th November 20232020). The three cameras were placed in eachdifferent land cover 250 

typetypes; one in the open field, one in the coniferous forest, and one in the deciduous forest. Each camera was mounted 

approximately 0.85 m above the ground and placed approximately 5.5 m from its respective 1.5 meter marked PVC pole. Each 

PVC pole was spray-painted red and marked with 1 cm and 10 cm increments. The cameras captured images of the poles every 

15-minutes for the duration of the study period. Snow depth was derived by manual inspection of the photos and recorded to 
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the nearest cm. Daily precipitationPrecipitation equivalent and mean temperature data were collected for the seasonmeasured 255 

by a NOAA Office of Oceanic and Atmospheric Research U.S. Climate Reference Network (USCRN) station (NH Durham 2 

SSW) located in the western portion of the field.   Hourly air temperatures at the USCRN station are averaged from two-second 

readings from three independent thermometers. Hourly precipitation is computed from 5-minute readings of depth change 

measured by a weighing precipitation gage.       

3.3 Physical land characteristics 260 

Land and soil characteristic variables are investigated as physical drivers of field -scale spatial distribution structure of snow 

depth. The variables used in this study are plant functional type, slope, aspect, shadow hours, saturated hydraulic conductivity 

(Ksat), and soil organic matter (SOM) (Figure 1). Mapped at a one-meter 1-m scale, all physical variables are derived from 

UAS snow-off observations except the two soil variables. The two soil variables, Ksat, and SOM, are at soil depth of 0–5 cm 

obtained from Probabilistic Remapping of SSURGO (POLARIS) maps at 30‐m spatial resolution (Chaney et al., 2016; 2019). 265 

The soil maps were disaggregated to 1-m spatial resolution without employing interpolation methods to mitigate additional 

uncertainties. Vegetation cover type (field/forest) was manually delineated in geographic information system (GIS) software 

based on the image orthomosaics created during SfM processing. The forested area was further classified as coniferous or 

deciduous for the study region by applying the Green Leaf Index (GLI) (Louhaichi, Borman, and Johnson 2001) (Error! 

Reference source not found.)(Equation 1) to the optical three-band (red, green, and blue) orthomosaics derived from the 270 

snow-off DJI Phantom 4 RTK survey.   

GLI =
(Green−Red)+(Green−Blue)

(2∗Green)+Red+Blue
                               (1) 

The GLI algorithm delineated the dense vegetation (conifer trees) from the less dense vegetation (leaf-off deciduous trees;  

(Borman, and Johnson, 2001). The direct application of the GLI algorithm on the three-band orthomosaics was further filtered 

and refined as follows. The output was clustered using the k-means algorithm with the number of k classes equal to two: one 275 

class for coniferous trees (high GLI) and one class for deciduous trees (low GLI). Noise within the clustered GLI map was 

removed by convolution with a median filter. To establish continuous delineations of coniferous regions, morphological 

closing was applied to the map to fill in any interior holes within the delineated regions. Forest classifications for each of the 

magnaprobe sample locations was estimated for a 10 m x 10 m area centered at each sampling grid based on the percent 

coniferous pixels (< 40% = deciduous, 40 – 60% = mixed, > 60% = coniferous). Results from the binary forest classification 280 

and the coarsened 10 m x 10 m classification are shown in Figure S1.  

The slope and aspect are were derived from the UAS lidar 1 m snow-off DEM using Horn's method (Horn, 1981). The shadow 

hours represent the number of hours from 7 am to 5 pm local time that experience shadowing and waswere calculated using 

the unfiltered UAS lidar digital terrain model and the sun’s incidence angle. The shadow hours were calculated using the 

unfiltered UAS LiDAR digital terrain model and a static sun incidence angle based on the average of February 4 th and March 285 

7th. Given the minor variation in solar angles between these dates, any change in shadow hours was considered negligible for 
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this study.The two soil variables, Ksat and organic matter, are at soil depth of 0–5 cm obtained from Probabilistic Remapping 

of SSURGO (POLARIS) maps at 30‐m spatial resolution (Chaney et al., 2016; 2019). The soil maps were disaggregated to 1-

m spatial resolution without employing interpolation methods to mitigate additional uncertainties. 

3.4 Relative difference concept  290 

The relative difference concept, first introduced by Vachaud et al. (1985), has been widely used in the soil moisture remote 

sensing community to quantify spatio-temporal variability (or stability) of soil moisture at field or regional scales (Cho and 

Choi, 2014; Cosh et al., 2004; Jacobs et al., 2004; Mohanty & Skaggs, 2001; Starks et al., 2006). In this study, we apply this 

concept to the UAS-lidar snow depth measurements. The relative difference in the snow depth measurements can be expressed 

as  295 

𝑅𝐷𝑖,𝑡 =
𝑆𝑁𝐷𝑖,𝑡−𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑚𝑒𝑎𝑛(𝑆𝑁𝐷𝑡)

𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑚𝑒𝑎𝑛(𝑆𝑁𝐷𝑡)
                                                                  (2) 

where SNDi,t is individual snow depth measurement at grid i and date t, and spatial mean (SNDt) is the spatial mean value of 

snow depth at date t. For each grid i, the mean relative difference (MRDi) is the average relative difference from each of the N 

flights and can be calculated by 

𝑀𝑅𝐷𝑖 =
1

𝑁
∑ 𝑅𝐷𝑖,𝑡
𝑁
𝑡=1                                                                  (3) 300 

 

 

4 Results 

4.1 In-Situ vs UAS-measured Snow Depths 

Daily temperature, daily precipitation, cumulative precipitation, and measured snow depths in the field and forest for thisthe 305 

study period are shown in Figure . During the 2020/2021 winter, December and early January were characterized by two 

ephemeral snowpacks of less than 10 cm which melted within a week. Figure 2. Between December 15th, 2020 and March 

12th, 2021, the maximum average daily temperature was recorded by-2oC, the USCRN stationmaximum daily temperature was 

19°C on January 31st at 19° Celsius (C) and the minimum daily temperature was recorded-19°C on March 11th at -19° C. . 

Average wind speed was 1.4 m/s for the study period. The cumulative precipitation measured by the USCRN station for the 310 

winter seasonsame period was 20.4 cm. The largest precipitation event was 11 cm and occurred on January 16 th when 

temperatures were above freezing (2 – 9°C). December and early January had ephemeral snowpacks of less than 10 cm which 

melted within a week. A snowpack was continuously present from late January through the middle of March. The largest 

precipitation event captured by the USCRN station was 11 cm and occurred on January 16 th. The maximum snow depth 

measured by the field cameras occurred on February 10th with 21 cm in the field and 19.5, 21 cm in the deciduous forest. , and 315 

18 cm in the coniferous forest. A second peak snow depth occurred on February 20th with 20 cm in the field and 15.5, 12 cm 
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in the deciduous forest, and 19 cm in the coniferous forest. A sustained period of warm temperatures occurred in late February 

and early March and corresponded to a decrease in snow depth due to the warming temperatures and two rain-on-snow events. 

The March 7th campaign captured the transition from a snow-cover-dominated field area on March 3rd to bare ground cover-

dominated.  320 

In the field, the overall evolution of snow depth among the different measurement types shows strong agreement for the study 

period (Figure ). The magnaprobe field sites typically measured deeper snow than the field camera, but otherwise, they 

followed a similar trend. The greatest differences in in-situ measured snow depths occurred at the beginning and end of the 

field season. On February 4th, the average snow depth at the magnaprobe sites was 17 cm, but the field camera only observed 

4 cm of snow. On the last sample date, the magnaprobe sites had 5 cm of snow, while there was negligible snow at the field 325 

camera site. The UAS-based SfM and lidar snow depth observations were able to capture snow depth changes on the order of 

5 cm or less. Neither UAS-based measurement technique consistently measured deeper or shallower snow depths than the 

other, regardless of The snowpack depth. However, SfM snow depths across the field sites were typically much more variable 

than the lidar snow depths. The largest SfM standard deviations exceeded 10 cm on two dates.was depleted from the entire 

study area by March 10th.    330 
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Figure 2 Timeseries of UAS-based and in-situ snow depth measurements in the field (top) and forest (bottom) for the 2021 

sample season. UAS-based measurements represent average of all samples at specified sampling location (i.e., field camera, 

magnaprobe site). 
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In the forest, the trends in snow accumulation

 

Figure 2 Time series of conditions at the Thompson Farm, Durham NH study area during the 2021 winter season including: hourly 

precipitation equivalent (mm) and temperature (°C) measured by a USCRN station (a) and daily camera snow depths and median 335 
UAS-measured snow depths in the field (b) and forest (c). Dates corresponding to the in situ and UAS sampling campaigns are 

marked by the dotted vertical lines. Periods where the temperature was colder than 0°C are indicated by the blue plot background 

and periods warmer than 0°C are indicated in pink in (a). Median SfM-measured snow depths in the forest on 2/4/21 and 2/28/21 

exceeded 35 cm and are not shown (172 cm and 86 cm, respectively). 

 Figures 2b and 2c show that the eight UAS-based SfM and lidar flights captured both the snow depth peaks and the ablation 340 

between in-situ measurement methods were similar for much of the study period, however, snow depths at the magnaprobe 

sites were typically much deeper than snow depths measured by the two forest cameras. following the last peak on February 

20th, referring to the phase in the seasonal snow patterns when the snowpack begins to melt and decrease in depth. During the 

ablation period, UAS-based measurements typically showed a decreasing snow depth that matched the progression from the 

in-situ measurements. However, the standard deviations for the SfM snow depths were anomalously highfield camera 345 
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measurements. The final UAS surveys on March 7th captured the transition from a snow-cover-dominated field area on March 

3rd to bare ground dominated. In the field, the UAS-based measurement techniques yielded similar snow depths throughout 

the winter and were able to capture snow depth changes on the order of 5 cm or less. However, the forest performance often 

differed between the two UAS methods. In the forest, the lidar snow depths tracked the camera observations within 5 cm. 

However, the SfM method had inconsistent performance. Notably, on February 4th and February 20th. SfM snow depths had 350 

much greater variability than lidar on most days. Compared to camera and magnaprobe measurements, UAS lidar tended to 

underestimate snow depths whereas UAS SfM overestimated them. The , the SfM snow depths closely tracked the magnaprobe 

measurements during the ablation period.exceeded the lidar depths by more than 50 cm.   

All snow observing methods were able to distinguish that the average snow depth was slightly deeper in the forest than the 

field. Sensor performance was also relatively consistent in both the field and forest. The magnaprobe recorded deeper mean 355 

snow depths than the cameras in both the field (Magnaprobe = 14.2 cm, Cameras = 9.4 cm) and forest (Magnaprobe = 14.8 

cm, Cameras = 9. 6 cm) (Table A1). In most cases, UAS-measured snow depths agreed well with in-situ measurements of 

snow depth regardless of the location (Figure 3). However, samples from the field indicated better agreement (i.e., fewer 

outliers) between UAS and in-situ measurements than the forest. Lidar measurements typically had less deviation from the 1:1 

line than SfM, indicating that lidar performed better than SfM UAS-based snow depth retrievals were compared to in-situ 360 

snow depths measured by the magnaprobe (Figure 3; Table S2). Field camera observations, especially in the forest. Most 

outliers were a result of SfM overestimating snow depth compared to in-situ measurements.  

 

Summary statistics (Table A1) indicate that the UAS lidar outperformed the UAS SfM in both the field and forest. SfM snow 

depths had higher mean absolute error (MAE) than the lidar  were not used for validation due to their limited spatial extent 365 

Figure 3 Comparison of UAV and in-situ based snow depth measurements for the field (left) and forest (right). 



 

17 

 

compared to the magnaprobe sample locationsFigure 3. In the field, both UAS lidar and UAS SfM snow depths were 

approximately 1.5 cm deeper on average than the magnaprobe measurements. While both UAS methods tended to follow the 

1:1 line, SfM had several outliers in which the SfM snow depth overestimated the in-situ measurements. Overall, the UAS 

lidar performance was modestly better in the open field than the UAS SfM as compared to the magnaprobe (SfM = 

5.measurements based on the Mmean Aabsolute Ddifferences (MAD) (SfM = 4.0 cm, Lidar = 3.05 cm) and the field 370 

camerafitted linear regression line r2 values (SfM = 14.3 cm0.51, Lidar = 3.0 cm) in0.73). Samples from the field had better 

agreement between UAS and magnaprobe measurements than the forest. In the forest, the MAEMAD values increased 

modestly for the lidar, but sharply for the SfM snow depths when compared to both the magnaprobe observationsmeasurements 

(SfM = 32.031.4 cm, Lidar = 76.3 cm) and the two camera observations (SfM = 44.7 cm, Lidar = 2.7 cm). In addition, lidar 

measurements had a greatermuch higher r2  value than SfM at all the magnaprobe sites in the fieldforest (SfM = 0.33, Lidar = 375 

0.65) and02, Lidar = 0.70). The UAS-measured snow depths in the forest (SfM = 0.01, Lidar = 0.41) and all camera sites in 

the field (SfM = 0.06, Lidar = 0.71) andare also shifted to the right of the 1:1 line, indicating that they tended to measure 

shallower snow depths than the magnaprobe. This does not necessarily indicate an error in the UAV measurements because a 

previous study by Proulx et al. (2023) at this study site demonstrated that the magnaprobe tends to overprobe in the forest 

(SfM = 0.01, Lidar = 0.80)..  380 

 

 

Figure 3 UAV-based snow depth measurements compared to in-situ snow depth measurements from the magnaprobe. UAS-

measured snow depths are shown for pixels overlapping the magnaprobe sample locations. Measurements collected on all dates are 

shown for the field (a) and forest (b). N-values indicate the number of samples shown within the plot axes. UAV-measured snow 385 
depths which exceeded 50 cm are not shown (1 SfM field, 6 SfM forest). Magnaprobe sample locations corresponding to UAS pixels 

with missing snow depth values are not shown (1 SfM field, 6 SfM forest, 7 lidar forest). 

Formatted: Font color: Auto, Pattern: Clear



 

18 

 

4.2 Comparison between LiDARlidar and SfM Snow Depth 

AFigure 4 shows a direct comparison between the snow depths at individual 1 m x 1 m pixels measured by lidar and SfM was 

conducted over the entire study area, encompassing four segmented. The field was divided into three areas. The overlapping 390 

1 m x 1 m snow depth pixel values for the two UAS techniques were compared (Error! Reference source not found.). In both 

the field and forest, SfM snow depth frequently recorded much deeper snow than the lidar. Compared to the northwestern 

(NW) and eastern (E) portions of the field, the western (W) field area  based on an early study (Cho et al., 2021) showing 

distinct topographic and soil characteristics in each section. While there is considerable scatter for the individual pixels in all 

field areas, the SfM and lidar snow depths tend to agree fairly well based on MAD (east = 4.4 cm, west = 2.9 cm, northwest = 395 

4.3 cm). Compared to the northwest and east fields, the west field had the most similar snow depth values for SfM and lidar. 

In that field, both lidar and SfM techniques captured relatively deeper snow depths ranging from 50 to 100 cm. HoweverIn the 

northwest and east fields, SfM snow depths are frequently much deeper than the lidar snow depths. In contrast, there was no 

Figure 4 Comparison of SfM and lidar measurements for all sample dates by area. Top scatter plots compare snow depth 

for (a) the three field areas and (b) the forest area. Bottom probability density plots show the distribution of snow depth 

values for (c) the field and (d) the forest area by measurement type.   
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clear agreement between SfM and lidar snow depth at the 1 m resolution in the forest, (MAD = 55.7 cm), largely due to 

extensive regions in which SfM snow depths were anomalously high.  400 

 

A timeseries of snow depth maps for lidar and SfM over the entire sample area are shown in Error! Reference source not 

found.. The difference between the snow depths maps for each technique was calculated for each sample date to identify 

locations where the techniques had the greatest difference in measured snow depths. There was an overall trend of 

Figure 5 Time series of snow depths (SD) for Lidar and SfM in the field and forest. Difference is calculated as Lidar SD 

minus SfM SD. All values shown in cm. 
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decreasing snow depth over time in both the field and forest areas. The spatial difference between 405 
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Figure 4 Comparison of SfM and lidar was fairly consistent in the field on each day (approximately 0 cm) except formeasurements 

for all sample dates by location. Scatterplots (left) compare snow depth for the three field areas (a, c, e) and the forest (g). Probability 

density plots (right) show the distribution of snow depth values for the three field areas (b, d, f) and the forest (h) by UAS technique. 

Measured snow depths exceeding 50 cm are not shown. 410 

A time series of lidar and SfM snow depth maps over the entire study area are shown in Figure 5Error! Reference source not 

found.. While the previous section found that individual locations may have differences, these maps show that both techniques 

capture the differences in snow depth between flights in both the field and forest areas. The difference between the snow depth 

maps by sample date shows where the UAS snow depths tend to agree and disagree. The difference between SfM and lidar 

snow depths was fairly consistent in the field and close to 0 cm on most dates. However, on February 20th and 24th where the 415 

southeastern field showed a negative difference compared to other sample dates. It was clear that areas of indicating that the 

SfM snow depths were considerably deeper than the lidar snow depths in parts of the field. On other dates including February 

4th, the SfM snow depth map was missing data (such as that on February 4th) had a significant impact on results.from extended 

areas in the field. In the forest, missing or patchy SfM data were foundoccurred on many days (e.g., February 4th, 20th, and 

28th). Lidar and SfM ground return point count statistics by land cover type are summarized in Tables S3 through S6. Despite 420 

the limited overlap in the forest, there is limited agreement between the two methods. Most maps show that the SfM snow 

depths were much deeper than the lidar snow depth through most of the forest except at the forest and field edge.  
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Figure 5 Time series of snow depths for UAV Lidar and SfM in the field and forest. Difference is calculated as Lidar snow depth 

minus SfM snow depth. All values are shown in cm.    425 

4.3 Spatial Structure Distribution of Snowpack and its Temporal Changes 

To investigate the spatial distribution of snow depth over time, the MRD values were mapped (Figure 6). The average spatial 

distribution of snow depth across the study domain based on UAS lidar-derived maps from eight survey dates shows spatially 

distinct patterns. The field had relatively deeper snow by up to 70% greater than the spatial mean. Within the field, the snow 

in northern areas was generally deeper than that in the southern areas, except for near the northern edges where it was shallower. 430 

In forested areas, the snow was shallower by up to -70% relative to the spatial mean. Snow in northeastern forest areas was 

generally shallower than that in other forest areas. Distinct differences in the transition zones between field and forest show 

edge effects. Immediately south of the tree line at the northeastern extent of the field, the snowpack is noticeably shallower. 

Moving away from the forest edge, there is a transition zone where snow becomes progressively deeper. In contrast, the 

southern portion of the northwest field exhibits deep snow. 435 
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To explore the spatial structure of snow depth over time, daily  

Figure 6 Relative difference (RD) maps generated from the UAS lidar-based SD maps from February 4th to March 7th. 
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Figure 6 The snow depth mean relative difference (MRD) map generated by averaging the eight relative difference maps from the 

UAS lidar-based snow depth maps from February 4th to March 7th. 

The relative difference snow depth maps for each date show that the spatial patterns of relative differences were fairly 440 

consistent throughout the study period (Figure 7). Generally, there was deeper snow in the northern part of the field (about 

50% larger than the spatial mean), and shallower snow was found in forested areas as well as the central part of the field. Also, 

there was shallower snow  along the northeastern boundaries of the field. relative difference of snow depth maps were 

generated from the UAS lidar-based snow depth maps (Figure 6).). The spatial patterns of relative differences were fairly 

consistent throughout the period. Generally, there was relatively deeper snow depth in the northern part of the field (about 445 

50% larger than the spatial mean), and shallower snow depth was found in forested areas as well as the central part of the field. 

Also, there were shallower snow depth measurements along the northeastern boundaries of the field. These patterns were very 

clear during the accumulation period before the peak snow depth around February 22 nd. During the ablation period, the 

consistent spatial patterns of the relative difference were still consistent even though there were observed despite the presence 

of patchy snow cover in some areas. These gaps emerged primarily due to differential melting, leading to sections with no 450 

snow present because of patchy snow. This indicates that there are minimal changes in spatial structure of snow depth over the 

season in this environmentremaining snow.  
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Figure 67 Relative difference (RD) maps generated from the UAS lidar-based snow depth maps from February 4th to March 7th. 

The MRD map in Figure 7 show the average spatial structure of snow depth formed in the study domain over the time periodfor 455 

all survey dates. The field had relatively deeper snow depths by up to 70% relative to the spatial mean. Within the field, the 

snow depth in northern areas was generally deeper than that in the southern areas, except for near the northern edges where i t 

was generally shallower. In forested areas, the snow depth was shallower by up to -70% relative to the spatial mean. Distinct 

differences in the transition zones between field and forest show edge effects. A shallower snowpack is evident immediately 

south of the foresttree line at the northernnortheastern extent of the field. There is a transition zone with deepening snow with 460 
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increasing distance from the forest edge. In the westernsouthern portion of the northwest field, there is markedly deeper snow 

is found north of the forest.. 

 

Figure 7 The snow depth Mean Relative difference (MRD) map generated by averaging the eight RD maps from the UAS 

lidar-based snow depth maps from February 4th to March 7th. 
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Figure 7 The snow depth Mean Relative difference (MRD) map generated by averaging the eight RD maps from the UAS lidar-465 
based snow depth maps from February 4th to March 7th. 

4.4 Physical Variables Characterizing Spatial Distribution Structures of Snow Depth 

To evaluate the effect of physical land characteristics on the spatial distribution structure of snow depth, the MRD values were 

analyzedanalysed with respect to five land and soil characteristic values (e.g., vegetation type, slope, shadow hours, K sat, and 

soil organic matterSOM) over the study domain (Figure 8). . Boxplots of MRD by physical feature are shown for the combined 470 

forest and field areas (Figure 8a),  and field only, and forest only (Figure 8) (Figure 8b). Statistical significance results among 

groups, based on Kruskal-Wallis and Tukey tests summarized in Tables S7 and S8. In the combined areas (i.e., forest + field), 

therelative snow spatial structure is primarily controlleddepth clearlysignificantly differs by vegetation type. . Coniferous 

forests have low MRDs (mean: -0.36) which indicates that means snow in those areas is shallower relative to the spatial mean 

of snow depth by around 36%. For the deciduous forest, the mean MRD is -0.2 with a wide quantileinterquartile range from –475 

0.23 to 0.19. MRD values in the field are higher compared to the two forest types which ranged from –0.11 to 0.22 (mean: 

0.08). For both cases, the combined areas as well as field and forest onlyand field only, slope contributes to snowpack spatial 

patterns, even though the study area has a gentle slope (less than 20%). High MRDs are found in flat areas (0 – 5% slope) and 

gradually decrease with increasing slope. The effect of slope for the forest only area is relatively modest. The shadow hours 

show a clear but contradictory contribution to snow depth patterns in the field and forest only areas as compared to the 480 
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combined area. When the field and forest are separated outThe shadow hours show a clear but contradictory contribution to 

snow depth patterns in the field area and the combined area. In field, low MRDs are found in areas where shadow hours are 

short (e.g., less than 2 hours), and the MRDs gradually increase with increasing shadow hours. For the combined area, the 

highest shadow had the lowest snow depth, but this is likely the result of a mixed effect due to the dense shading in the 

coniferous forest. Ksat shows little evidence of contributing to the spatial distribution of snow depth in the field, but there are 485 

distinct differences in MRDs among lower Ksat groups in the forest. In the combined areas, MRDs tend to decrease with 

increasing the Ksat values, except for the highest Ksat group. Compared to Ksat, SOM exhibits a clearer pattern with MRD 

decreasing as SOM increases in both the combined areas and field analysis. The forest area does not display consistent MRD 

patterns with changes in SOM.Ksat shows little evidence of contributing to the spatial structure of snow depth in the field. In 

the combined areas, the MRDs seem to decrease with increasing the Ksat values, except for the highest Ksat group, there are no 490 
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significant patterns of MRDs when field areas are analyzed only. Compared to Ksat, soil organic matter (SOM) has a clearer 

relationship showing that snow depth decreases with increasing SOM in both the combined areas and field analysis.   

Figure 8 Boxplots of the snow depth Mean Relative difference (MRD) by each physical feature (vegetation type, slope, 

shadow hours, Ksat, and soil organic matter) for the combined areas (forest and field) and field only.  
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Figure 68 Boxplots of the snow depth mMean rRelative difference (MRD) by each physical feature (vegetation type, slope, shadow 

hours, Ksat, and soil organic matter) for (a) the combined areas (forest and field), (b) field, and (c) forest only. The 1-5 for each 495 
boxplot except for vegetation type represents the relative range of each physical variable in each area (For example, for slope in the 

combined areas, 1: 0-5 %, 2: 5-10%, 3: 10-15%, 4: 15-20%, and 5:20-25%). 
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5 Discussion 

5.1 Comparison with previous findings: UAS SfM and LiDARlidar snow depths 500 

The value of lidar datasets for capturing the horizontal and vertical structure of forests and snow cover depth is well 

established. (Harder et al., 2020; Jacobs et al., 2021; Donager et al., 2021; Dharmadasa, Kinnard, and Baraër, 2022). 

However, the technology remains expensive, and data processing is complex. UAV SfM provides a low-cost alternative to 

lidar for creating point clouds using photogrammetry. However, its accuracy for measuring forest snow depths is still being 

explored (Donager et al. 2021). The lower cost of SfM techniques compared to lidar make them a valuable tool for 505 

conducting surveys of snowpack change over time. (Fernades et al., 2018). Post-processing of RGB imagery is often less 

complex than lidar data processing, and a variety of SfM software is now available, including some open-source options. 

While it is apparent that the accuracy of SfM-derived snow depth estimates cannot match that of lidar, the results of this 

study indicate that they can provide sufficient accuracy for investigation of flat, unforested land cover types. However, 

specific conditions which influence the relative performance of SfM for measuring snow depths in these areas, such as that 510 

observed in the western field, were still unclear. One potential reason for this could be overcast skies and features that 

present challenges for SfM processing, whereas lidar is less impacted by these challenges. However, our study concurs with 

early findings that SfM its accuracy for measuring forest snow depths still cannot match that of lidar (Donager et al. 2021).  

Compared to in-situ measurements, SfM experienced modestly higher error in the field and notably higher errors in the 

forest than lidar. In SfM processing, an insufficient number of point clouds in the field valid tie points, used to stitch together 515 

overlapping images, may degrade the accuracy of SfM SDsnow depth data (Harder et al., 2016). The direct comparison of 

SfM and lidar measurements revealed that, despite SfM typically measuring deeper snow depths than lidar, both SfM and 

lidar had Due to its reliance on RGB optical imagery, overcast skies and poor lighting over relatively homogeneous 

snowpacks (e.g., fresh snow) make it difficult for SfM post processing software to identify a sufficient number of valid tie 

points (Bühler et al., 2016; Bühler et al., 2017; Harder et al., 2020; Revuelto et al., 2021b; Miller et al., 2022). A lower 520 

number of valid tie points and higher point uncertainty results in large data gaps and poor estimation of surface elevations. In 

this study, when there was relatively fresh snow and few features there were gaps in the SfM snow maps that are evident in 

the eastern field on February 4th, 20th, and 24th. Areas in the field with a sufficient number of unique tie points showed better 

agreement between SfM and lidar-measured ground surface elevations than those with fewer tie points (Figure S2). 

SfM performance is also lower in areas with dense vegetation where the field than theground surface is blocked by tree 525 

branches and canopies (Harder et al., 2020). Poor penetration of the forest canopy results in fewer overall ground returns and 

sparser point clouds. In Thompson Farm’s mixed forest. However,  with dense underbrush, SfM post processing also 

experienced numerous tie point errors due to the techniques did not have consistent agreement over lack of unique tie points. 
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This is likely due to a plethora of thin tree branches and brush that appear as repetitive forest features. The features in these 

forests differ from forests with distinct trees and limited vegetation such as Harder et al.’s (2020) mixed lodgepole pine and 530 

subalpine fir forests. On all dates in the entire field, with forest, the best agreement occurringresampled 1 m x 1 m lidar data 

had fewer pixels with missing data than SfM (lidar = 0.4 – 1.6% NA , SfM = 3.7 – 70.5% NA). This error is apparent in the 

western portionprofile views of the field. Theseground surface returns for SfM and lidar from February 10th (Figure S2) 

where SfM-measured ground elevations had greater variability compared to lidar in the forest. Methods for reducing the 

errors associated with SfM in the forest are limited. Adjustments to survey techniques, such as changing the camera angle 535 

and flying at lower altitudes and speeds, and post processing workflows, such as making selection criteria less restrictive, 

may improve the number of points somewhat (Leendzioch et al., Langhammer, and Jenicek, 2019). However, active remote 

sensing techniques, including lidar, have better penetration of the forest canopy than those which rely on passive sensing 

(Harder et al., 2020; Bühler et al., 2016). 

 The findings from our work are similar to previous studies which compared UAS SfM and snow probe measurements 540 

whereand found that the RMSE for snow depths is typically less than 31 cm in sparsely vegetated and alpine land cover 

types and increases to as much as 37 cm in areas with bushes, high grass, or forests (De Michele et al., 2016, Bühler et al., 

2016, Avanzi et al., 2018, Belmonte et al., 2021). Studies using UAS SfM alongside rulers and snow stakes measured a 

smallerhad an RMSE (less than 14 cm) in both forested and prairie land cover types (Fernandes et al., 2018; Harder et al., 

2016). Findings were also similar for studies comparing UAS lidar to rulers or snow stakes which measured a RMSE less 545 

than 17 cm, with even lower RMSE values in shallow snow and in sunny areas (Harder et al., 2020; Feng et al., 2023; 

Koutantou et al., 2022). Lidar RMSE also tends to increase in vegetated areas regardless of the vegetation class or type 

(Harder et al.., 2020). Much like the erroneousHarder et al.’s (2016) observations of erroneously high SfM snow depth 

measurements observed by Harder et al. (2016) several meters above the snow surface, we observed SfM measured snow 

depths were greater than 150 cm in some forest locations. Conversely, our lidar measured snow depths never exceeded 25 550 

cm, indicating a more consistent performance in forested areas. We also found that the SfM snow depths did not consistently 

agree with the lidar snow depths over the entire field and on all dates. On most dates, the difference in UAS-measured snow 

depths was close to 0 cm in the field. The best agreement occurred in the western portion of the field while the southeast and 

northwest portions had a larger amount of variability in measured values.  The shadow hours and land cover type in the east 

and west fields are similar, however, the eastern field has a more gentle and less variable slope and fewer unique features 555 

(e.g., access road, USCRN station, pond, dirt piles, footprints) than the western field. The relatively homogenous features in 

the eastern field indicate that the difference between techniques is likely due to a lack of sufficient valid tie points for SfM. It 

is not clear what caused the differences between SfM and Lidar in the NW field that were not present in the other field areas. 

Unique features in the NW field are prevalent drainage patterns and shadowing that could be investigated further in the 

future. 560 
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While it is apparent that the accuracy of SfM-derived snow depth estimates cannot match that of lidar, the results of this 

study indicate that both techniques provide sufficient accuracy for monitoring the median change in shallow snow depths 

over time in flat, unforested land covers when there are a sufficient number of unique characteristics for SfM post 

processing. It is clear from the results of this study and previous ones that compared to in situ data, UAS lidar techniques 

produce lower errors and fewer data gaps than SfM, especially in forested land cover and over homogeneous snowpacks 565 

(Bühler et al., 2016; Bühler et al., 2017; Harder et al., 2020; Revuelto et al., 2021b; Miller et al., 2022). While UAS lidar 

may be the preferred technique in most cases, UAS SfM can still provide valuable information on changes in median 

snowpack depth across unforested areas at a relatively low cost and with less complex post-processing compared to UAS 

lidar. Regardless of the sampling technique used, the unique capability of UASs for measuring snowpack properties at the 

field- scale and at a high temporal- resolution makes them useful for observing snowpack evolution over time. (Fernandes et 570 

al., 2018; Harder et al., 2020). Collection of in-situ snow depth timeseriestime series data is often time and cost prohibitive 

and may be especially challenging in complex or avalanche-prone terrain. It is clear from the results of this study and 

previous ones that both UAS SfM and lidar techniques provide a viable method for monitoring snow depth change across 

many land cover types. (Bühler et al., 2016; Harder et al., 2020). Monitoring snow depth changes at the field scale provided 

insights into accumulation and ablation patterns across the entire study area, as well as between different land cover types 575 

(e.g., forest and field). By comparing maps of snow depth change with maps of physical variables at the site, specific factors 

influencing snowpack dynamics over the winter season were identified.Monitoring snow depth change over time at the field 

scale allowed for identification of accumulation and ablation patterns across the entire study area and between different land 

cover types (i.e., forest and field). Comparing maps of snow depth change to maps of the physical variables present at the 

site revealed the specific variables which may influence snowpack change over the winter season. Our findings highlighted 580 

that vegetation type is a dominant factor shaping snow depth patterns. In both combined and field-only areas, SOM showed a 

statistically significant relationship, with snow depth decreasing as SOM increased. Furthermore, shadow hours and slope 

were found to contribute to the spatial variability of snowpack, even though the study area features relatively gentle slopes. T 

hese results demonstrate that high-resolution UAS observations are a powerful tool for quantifying snow pattern evolution. 

UAS observations are expected to advance the resolution of complex snow modeling by accurately capturing the physical 585 

relationships between snowpack dynamics and various climatic and topographic factors. 

5.2 Physical variables at field scale  

With a limited wind redistribution, time stability shows that the relative differences of the snowpack over the study region 

were generally stable throughout the accumulation and melting ablation periods. In addition to the previous findings that 

snowpack patterns are relatively consistent from year to year (Pflug and Lundquist, 2020; Revuelto et al., 2014), this study 590 

showed that fixed physical variables including vegetation, topography, and soil characteristics sufficiently control the spatial 

variations of snowpack throughout a winter period. The findings regarding the influence of vegetation and topographical 

factors on the snowpack’s spatial variability align with previous studies conducted (Currier and Lundquist, 2018; Deems et 
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al., 2006; Trujillo et al., 2007). As compared to vegetation and terrain characteristics, few studies have examined the influence 

of soil characteristics on the snowpack. Our results found that snowpack depth decreases with increasing soil organic 595 

matterSOM. This finding aligns with our previous study, which utilized maximum entropy modeling to analyze spatial 

variations of shallow snowpack over the same domain but during different periods (Cho et al., 2021). Even though a clear 

relationship between Ksat saturated hydraulic conductivity and snowpack was not found in this study (Figure 8b), it is 

acknowledged that soil thermal properties, such as the thermal conductivity of the soil beneathunderneath the snowpack, 

generally influence the rate of heat transfer between the snow and soil layers (Kane et al., 2001; Zhang, 2005). Also, the 600 

moisture content of the soil can affect the distribution of soil frost (Bay et al., 1952) and snowpack because the energy transfer 

at the snow-soil interface is controlled by wetness of the soil (Bay et al., 1952; Fu et al., 2018). AlEven though spatial 

distribution of soil moisture contents is typically considered to be constant (frozen) during winter, intermediate rainfall events 

and freeze-thaw cycles can dramatically change the spatial patterns of soil moisture and freeze-thaw states in regions having 

ephemeral snowpacks. This can be critical important because the thermal conductivity in frozen state is more sensitive to soil 605 

type than non-frozen condition, because the thermal conductivity of ice is four times larger than that of liquid phase (Penner, 

1970). However, fewer studies have investigated how soil moisture patterns may control the spatial distribution structure of 

snowpack. This is likely because of the difficulty of measuring spatial distributions of soil moisture and freeze-thaw states 

beneath the snowpack. Even though this study did not focus on it, future investigations could measure spatial patterns of soil 

moisture and freeze-thaw states beneath the snowpack to quantify their interactions with the snowpack. A better understanding 610 

of the soil characteristics and their impact on the snowpack in various environments would help the snow community 

accurately predict and model snow distribution and snowmelt processes.  

The concept of “time stability” (or “temporal stability”) implemented in this study has not been used in snow hydrology, 

though Although there are numerous studies using similar concepts tothat characterize temporal changes in the spatial 

distribution structure of snowpack across topographically uniform landscapes, encompassing both open field and forested 615 

environments (Hannula et al., 2016; Clark et al., 2011; Currier and Lundquist, 2018; Mazzotti et al., 2023), the concept of 

“time stability” (or “temporal stability”) using relative difference values, as implemented in this study, has not been previously 

applied in snow hydrology..  However, in the soil moisture community, numerous investigations that have examined temporal 

variability have been instrumental in developing robust validation sites and sampling strategies for satellite-based soil moisture 

assessments The numerous investigations in the soil moisture community that have examined temporal variability were 620 

valuable for developing robust validation sites and sampling strategies for satellite-based soil moisture assessments (Grayson 

and Western, 1998; Cosh et al., 2008; Brocca et al., 2009; Mohanty & Skagge, 2001; Jacobs et al., 2004). Similar to its utility 

in soil moisture studies, the integration of the time stability concept into snowpack analysis at the field scale could facilitate 

the identification of representative sampling locations and inform the design of sampling protocols for optimal spatial 

extrapolation. Extending this approach to diverse snow environments will contribute to quantifying spatio-temporal variability 625 

in snowpack, thereby enhancing the establishment of core validation sites for potential snow missions such as the Canadian 

Terrestrial Snow Mass Mission (TSMM; Derksen et al., 2019). 
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5.3 Limitations and future perspectives 

Given that our investigation was conducted in a relatively uniform landscape characterized by a shallow snowpack, it is 

imperative to extend the analysis to encompass diverse plant functional types, climatic zones, and/or snow classes (Johnston 630 

et al., 2024; Sturm and Liston, 2021) to ascertain the generalizability of the findings. This is essential as snow depth 

distributions are influenced by terrain attributes and snow regimes (Clark et al., 2011; Currier and Lundquist, 2018). In contrast 

to the present study area, where spatial heterogeneity in snowpack is predominantly influenced by static terrain characteristics 

and vegetation cover, alpine and prairie regions experience variability due to wind-driven processes (Elder et al., 1991). Further 

investigation incorporating additional analyses of energy fluxes and meteorological parameters, including solar radiation, soil 635 

temperature and wind speed/direction, would enhance the comprehensiveness of the findings concerning the primary 

determinants of snowpack spatial variability across both static and dynamic variables. 

Even though we analyzed spatial-temporal variability of the snowpack using a well-validated UAS-based snow depth, this 

may not guarantee similar that the current findings also capture results with snow water equivalent (SWE) variations that 

would be necessary for hydrologic applications. Snow density, needed to calculate SWE from snow depth, is affected by snow 640 

metamorphosis differently than snow depth . Snow density may change during snowmelt as water percolates into the snowpack 

and refreezes. Also, vegetation and soil characteristics strongly control turbulent and ground heat fluxes and impact snow 

properties including snow density (Pomeroy and Brun, 2001). Studies have used a snow modeling approach using physics-

based snow sophisticated models such as SnowModel (Liston and Elder, 2006),  and Crocus (Vionnet et al., 2012), and Flexible 

Snow Model (FSM2; Essery et al., 2024) to understand those SWE patterns with physical processes how that cause snowpack 645 

spatial variations of snowpack are formed. However, observational approaches focusing on spatial distribution structures of 

SWE are quite limited because only now are sensing techniques emerging that directly observe the spatial distribution of snow 

density with a UAS system (McGrath et al., 2022). A potential future direction is to develop reliable, high-resolution SWE 

maps by integrating emerging techniques such as lidar and gamma-ray spectrometry (Harder et al., 20243), enabling the 

quantification of SWE spatial distribution structures of SWE across diverse snow environments. Another direction could 650 

involve employing an integrative approach using physical models to maximize in-situ and UAS snow observations through 

data assimilation and/or novel interpolation methods, utilizing machine (or deep) learning approaches. 

6 Conclusion  

In this study, UAS lidar and SfM snow depth measurements were assessed using the ground-based magnaprobe and field 

camerasdata and then used to confirm that spatial patterns of snowpack depth are temporaltemporally stable. Differences 655 

between in-situ measurement techniques had only a modest impact on validation of lidar and SfM-based snow depth. Lidar 

demonstrated superior performance compared to SfM when evaluated against in-situ observations, exhibiting lower errors. 

Both UAS techniques exhibited lower errors in field settings (lidar MAD = 3.5 cm, SfM MAD = 4.0 cm) than in forested 

environments. (lidar MAD = 6.3 cm, SfM MAD = 31.4 cm). Though, aAs expected, differences between lidar and SfM snow 
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depths were more pronounced in forested regions, (MAD = 55.7 cm), with SfM often registering anomalously deep snow depth 660 

values. The spatial distribution structures of snow depth captured by lidar remained consistent throughout the study period and 

were primarily influenced by factors such as vegetation type, slope, shadow hour, and soil organic matter. . For the entire study 

area, deeper snow was found in the field, in locations having shallow slopes and lower soil organic matterSOM. Within the 

field, snow deepened with increasing shadow hours. When examining combined landscapes including forests and fields, we 

observed that the spatial distribution structure of snow depth was predominantly shaped by the type of vegetation present. 665 

Within the field, the spatial distribution of snow depth tracked with relatively modest local slope variations and shadowing 

effects at the forest-field edge. As ephemeral snow conditions expand in a warminger climate, these results are valuable for 

effectively comparing UAS and in-situ sampling techniques for ephemeral, shallow seasonal snowpacks. It is also expected 

that this study contributes to the enhancement of land surface and snow models by offering insights into parameterizing sub-

grid scale snow depths, downscaling coarse-scale remotely sensed snow observations, and comprehending snowpack evolution 670 

at the field scale, particularly in ephemeral snow environments. 
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