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Abstract. There has been a proliferation of dense observing systems to monitor greenhouse gas (GHG) concentrations over the

past decade. Estimating emissions with these observations is often done using an atmospheric transport model to characterize

the source-receptor relationship, which is commonly termed measurement “footprint”. Computing and storing footprints us-15

ing full-physics models is becoming expensive due to the requirement of simulating atmospheric transport at high resolution.

We present the development of FootNet, a deep learning emulator of footprints at kilometer scale. We train and evaluate the

emulator using footprints simulated using a Lagrangian particle dispersion model (LPDM). FootNet predicts the magnitudes

and extents of footprints in near real-time with high fidelity. We identify the relative importance of input variables of FootNet

to improve the interpretability of the model. Surface winds and a precomputed Gaussian plume from the receptor are identi-20

fied to be the most important variables for footprint emulation. The FootNet emulator developed here may help address the

computational bottleneck of flux inversions using dense observations.

1 Introduction

Monitoring anthropogenic greenhouse gas (GHG) emissions is important for ensuring the success of the Paris Agreement’s

long-term goal on mitigating climate change (IPCC, 2022). To that end, there has been a proliferation of dense observing sys-25

tems over the past decade to better track GHG emissions. Substantial efforts have been made to expand observation networks
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to better quantify urban GHG emissions, as the majority of the world population lives in urban areas and the degree of urban-

ization is projected to increase in the future (United Nations Publications, 2019). For example, the Northeast Corridor GHG

observation network was established to quantify emissions of carbon dioxide and methane using tower-based in situ measure-

ments in urban regions in the northeastern United States (Karion et al., 2020). The BErkeley Atmospheric CO2 Observation30

Network (BEACO2N; Shusterman et al., 2016) utilizes low-cost sensors to increase the spatial density of measurements, which

could be used to estimate urban emissions on intra-city scales in the San Francisco (SF) Bay Area. The proliferation of urban

GHG observation networks allows for decadal analyses of GHG emissions and provides information to improve the efficiency

of GHG reduction policies (Mitchell et al., 2018; Lauvaux et al., 2020). There has been a coincident expansion in space-borne

GHG monitoring instruments, which provide similarly dense observations, such as NASA’s Orbiting Carbon Observatory-235

(OCO-2) and OCO-3, the TROPOspheric Monitoring Instrument (TROPOMI) onboard the Copernicus Sentinel-5 Precursor

(S5P) satellite (Veefkind et al., 2012), MethaneSat for methane, and a planned constellation of GHG monitoring satellites (e.g.,

GOSAT-GW).

The increased volume of observational data sets provide more constraints to estimate GHG emissions. However, current

methods do not scale well with the increasing number of observations. Inferring GHG emissions using atmospheric observa-40

tions is conventionally done via atmospheric flux inversions (e.g., Jiang et al., 2017; White et al., 2019; Turner et al., 2020).

The state of the art in atmospheric flux inversions relies on either Eulerian models or Lagrangian particle dispersion models

(LPDMs) to simulate atmospheric transport, which provides the means of relating observations to surface fluxes. For example,

the four-dimensional variational (4D-Var) method uses the adjoint of Eulerian models to calculate sensitivities of GHG con-

centrations to surface fluxes (Baker et al., 2006; Henze et al., 2007; Jiang et al., 2017; Qu et al., 2022). Kalman filters are also45

widely used in flux inversions, which calculate covariance matrices between prior fluxes and GHG concentrations simulated by

Eulerian models to estimate posterior fluxes (Feng et al., 2009; Kang et al., 2011; Miyazaki et al., 2017, 2020). Alternatively,

LPDMs can be used to calculate the sensitivity of each observation to its upwind sources by simulating the trajectories of an

ensemble of particles advected backward in time (Lin et al., 2004; Fasoli et al., 2018; Jones et al., 2007b; Pisso et al., 2019).

The sensitivity of each receptor to its upwind sources, termed as the receptor’s “footprint”, can then be used to estimate fluxes50

inversely (e.g., Stohl et al., 2003, 2009; Jones et al., 2007a; Lin et al., 2004, 2021; Stein et al., 2015; Turner et al., 2020).

These methods based on full-physics models are becoming prohibitively expensive due to the large computational burden of

running high-resolution atmospheric transport models for dense observing systems. The 4D-Var method runs the forward and

adjoint models iteratively to optimize the a posteriori emission, which is hard to parallelize. Kalman filters could benefit from

parallelism, however, they still require the forward model and the computational cost scales up with the number of processors55

used (e.g., Houtekamer and Mitchell, 2001).

Here we present a machine learning-based emulator, FootNet, to efficiently calculate footprints of ground-based receptors

with a high fidelity at kilometer-scale spatial resolution. The footprint emulator reduces the computational and storage cost

of Lagrangian model-based flux inversion systems by 2–3 orders of magnitude, which will better accommodate the increased

volume of GHG observations. We show the evaluation of the performance of FootNet using independent data sets. Finally, we60

assess the relative importance of the input variables of FootNet using the permute-and-prediction (PaP) method.
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2 Construction of the FootNet emulator

Training of the FootNet model is a supervised learning process, which requires ground truth to guide the optimization of the

model parameters. Here, we use a full-physics model to generate the ground truth. We simulate footprints using the Stochastic

Time-Inverted Lagrangian Transport (STILT) model (Lin et al., 2003; Fasoli et al., 2018), a Lagrangian particle dispersion65

model (LPDM). STILT simulations are conducted for two regions: the Barnett Shale region in Texas, and the SF Bay Area

in California (see Figure 1). These two regions are chosen because one has simple topography (the Barnett Shale) whereas

the other is topographically complex (SF Bay Area). As such, these regions represent limiting cases for the construction and

evaluation of the emulator. Further, the combination of two regions will help prevent from overfitting the model to a single

location. For the SF Bay Area, STILT simulations are run from 2018 to 2020 with receptors located at realistic sites deployed70

in the BEACO2N network (see http://beacon.berkeley.edu and Shusterman et al. (2016)). Footprints for the Barnett Shale

region are generated from a 1-week WRF-STILT simulation in 2013 (Turner et al., 2018). All STILT runs are conducted within

400×400 km2 domains at 1×1 km2 spatial resolution (see Figure 1). The footprints are integrated 72 hours backwards from

the measurement time, because of the 400 km × 400 km domain used by the FootNet model. The time integration period could

change depending on the spatial and time scales of inversion systems.75

Figure 1. Location of receptors for simulations of measurement footprints using the STILT model. Receptors in the SF Bay Area are located

at sites in the BEACO2N network (Shusterman et al., 2016). Receptors in the Barnett Shale region are at locations used in Turner et al.

(2018).
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Table 1. Information about input variables of FootNet.

Variable (Unit) Description Time steps Scaling factor

Gaussian plume Idealized plumes calculated t0, t0-6h 1

using reversed winds

U10M (m/s) 10-meter U-component of wind t0, t0-6h 10

V10M (m/s) 10-meter V-component of wind t0, t0-6h 10

PBLH (m) PBL height t0, t0-6h 1e-3

PRSS (hPa) Surface pressure t0, t0-6h 1e-3
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The calculation of measurement footprints is independent of the observed gas concentrations and could be constructed using80

meteorological variables only. As shown in Table 1, we use 4 physical parameters from the NOAA High-Resolution Rapid

Refresh (HRRR; Benjamin et al. (2016)) model as the input variables, including the 10-meter zonal wind speed (U10M), 10-

meter meridional wind speed (V10M), planetary boundary layer height (PBLH) and surface pressure (PRSS). The FootNet

model receives input variables at the measurement time (t0) and 6 hours before the measurement time (t0-6h) to predict

footprints at t0. The choice of 6 hours backwards was determined by a series of sensitivity tests on the amount of history85

information in the input data (see Supplemental Section S1). We found that including history information from more than

6 hours could not further improve the performance of FootNet in the emulation (see Figures S1-3). However, we note that

the results from the sensitivity tests could depend on the spatial and temporal scale and resolution of the specific inversion

problems. Evaluation of the necessary history information in other spatio-temporal regions is warranted.

We scale the input variables to a similar magnitude for the stabilization of the training process (see Table 1).
:::
The

::::::
output90

::
of

:::::::
FootNet

::
is

:::::::::::
measurement

:::::::::
footprints

::::
and

::
is

::::::::::
transformed

:::
by

:::
the

::::::
natural

:::::::::
logarithm

:::::::
function

:::
to

::::::
reduce

:::
the

::::::::
skewness

:::
of

:::
the

:::::::::
distribution

:::
of

:::::::
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:::::::
values. We find that including Gaussian plumes (see Figure 2) as one of the input variables could

significantly improve the performance of FootNet. The Gaussian plumes are calculated using the Gaussian plume model (e.g.,

Stern, 1976; Dobbins, 1979; Zannetti, 1990, among others) with reversed wind fields starting from the measurement site,

which are used as the initial guess of the upwind areas and the measurement footprints. The Gaussian plumes can be efficiently95

calculated as a Hadamard product from inputs listed above and, as such, adds minimal computational expense. The Gaussian

plumes also provide a localization for FootNet in that it contains the information about measurement location and provides an

initial guess for the spatial structure of the footprint. The FootNet model is trained to learn the nonlinear transformation from
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the idealized Gaussian plumes to measurement footprints using the meteorological fields. The input variables are interpolated

to the 400×400 km2 domain and the 1×1 km2 spatial resolution of footprints.100
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Figure 2. Top row shows the schematic diagram of the FootNet model. Detailed structure of FootNet is shown at the bottom. The orange boxes

indicate 3×3 convolutional layers. The red boxes represent 2×2 max-pooling layers. The light blue boxes are 2×2 transposed convolutional

layers. The dark blue boxes represent the latent vectors concatenated from previous layers (shown as parallel arrows on top).

The model structure underlying the footprint emulator is the U-net model (Ronneberger et al., 2015), which is now broadly

applied in the field of Earth Science (Ghorbanzadeh et al., 2021; He et al., 2022a, b; Zemskova et al., 2022; Tucker et al., 2023;

He et al., 2024). A schematic diagram of the model architecture is shown in Figure 2. The model consists of 4 convolutional

blocks and 4 up-convolutional blocks. Each convolutional block is a sequence of two convolutional layers with 3× 3 kernels

and one 2× 2 max-pooling layer. In each convolutional layer, the input images will be performed the convolution calculation105

with 3× 3 kernels that will scan the whole images to generate output images. In max-pooling layers, the input images will
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be down-sampled by taking maximum values in each 2× 2 region in the images. Similarly, each up-convolutional layer has

one 2× 2 up-convolutional layer followed by two 3× 3 convolutional layers. Up-convolutional layers perform transposed

convolution operation with 2× 2 kernels scanning input images. The outputs from convolutional layers are all transformed by

the Rectified Linear Unit (ReLU) function to increase non-linearity in predictions. In the training process, the entries of 3× 3110

convolutional kernels and 2×2 up-convolutional kernels will be optimized along the partial gradients of a loss function , which

:::
that

:
measures the difference between the truth and FootNet predictions. More details about deep learning architectures could

be found in Goodfellow et al. (2016).
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measurement footprints because their values are often highly skewed, which could be challenging for the FootNet model to
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learning models to make accurately localized predictions. We also compute Pearson correlation coefficients (r) for footprints

in the intersection areas between the truth, as simulated by STILT, and the corresponding FootNet predictions to help assess

the performance.130

Ultimately, we are interested in better understanding what drives the predictions from the FootNet model. As such, we use

the permute-and-prediction (PaP) method to calculate the importance of input variables for footprint emulation, which provides

some interpretability of the FootNet model (Fisher et al., 2019). The PaP method estimates variable importance by permuting

each input variable with different data samples, and the subsequent performance change represents FootNet’s sensitivity to the

permuted variable. We estimate variable importance by calculating performance changes in correlation, the IoU, and the root135

mean square error (RMSE) of the predicted footprints.
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3 Evaluating performance of the FootNet emulator

Figure 3 demonstrates the evolution of FootNet predictions during the training process and the overall performance of FootNet

after the training converges. Figure 3D shows a footprint simulated by the STILT model from the test data set, where the

footprint is highly nonlinear with a change in direction near the receptor. The corresponding FootNet predictions are shown in140

Figures 3 (A-C). After iteration A (shortly after the training starts), the FootNet predicts measurement footprints around the

E F
r = 0.58

A B C D

Figure 3. Convergence of the training process and evaluation of the model performance on the independent test data set.
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:::::
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from the test data set.
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receptor with a large negative bias and low correlation coefficient of 0.49. Iteration B is about halfway of the training process,

after which the FootNet prediction better captures the general shape of the footprint and the correlation is improved to 0.61. The

training stops after iteration C. The final FootNet prediction has enriched details and attains a correlation coefficient of 0.75.

Compared to the truth in Figure 3D, the IoU of FootNet predictions improves from 0.28 after iteration A to 0.51 after iteration145

B, and attains a final IoU of 0.76 (see Figure 3E). Figure 3F shows the comparison between the truth and FootNet predictions

for all footprints in the test data set. FootNet predictions show a slight negative bias compared to footprints simulated using the

full-physics STILT model. The overall Pearson correlation coefficient (r) between FootNet predictions and STILT simulations

is 0.58. We conclude that FootNet is able to emulate the source-receptor relationship in both simple (Barnett Shale, TX) and

complex (SF Bay Area, CA) meteorological conditions with high fidelity.150

We then evaluate the performance of FootNet in predicting individual footprints for the two regions. Figure 4 shows foot-

prints from STILT and FootNet for the two regions: the Barnett Shale and the SF Bay Area. Figures 4A and 4E show results

from the simple case (Barnett Shale, TX), where the footprint is similar to an idealized Gaussian plume with time-reversed

winds. FootNet well captures both the magnitudes and spatial patterns of the footprint, with an IoU of 0.73 and a correlation co-

efficient of 0.54. Figures 4B and 4F demonstrate a more complicated meteorological scenario in the Barnett Shale region. The155

IoU metric and correlation coefficient between the STILT footprint and the FootNet prediction are 0.71 and 0.61, respectively,

for this more complex scenario.

Atmospheric transport in the SF Bay Area is decisively more complex because the region includes steep topography, air-sea

interactions, and numerous valleys and deltas. Figures 4C and 4D show results from the full-physics model for the SF Bay

Area. Emulation of footprints in the Bay Area is more challenging and with an overall degraded fidelity as compared to the160

Barnett Shale region. Figures 4C and 4G show a receptor with the bulk of the footprint in the Northwest quadrant of the domain,

as a result of typical summertime meteorology in the SF Bay Area with westerly flow bringing air masses into the SF Bay Area

past the Golden Gate Bridge. The shape and the magnitude of the footprint is predicted by FootNet with an IoU of 0.53 and

the correlation coefficient to be 0.83. Figures 4D and 4H show a more complex meteorological scenario, where the FootNet

prediction has an IoU of 0.56 and the correlation is 0.78 as compared to STILT.165

There have been other methods developed to improve the efficiency of footprint calculations. For example, Roten et al. (2021)

uses nonlinear weighted averaging to interpolate footprints from locations near the receptors. Fillola et al. (2023) develops a

similar footprint emulator based on gradient-boosted regression trees (GBRTs), at a coarse spatial resolution (20–30 km in

mid-latitudes) and 10 grid cells around the measurement location. Compared to previous work, the FootNet model reproduces

the full-physics model with high fidelity at high-resolution. This is remarkable given the complex topography and meteorology170

of the regions studied here could complicate transport at kilometer scale and the emulation of footprints. Moreover, FootNet

only takes meteorological fields and the idealized Gaussian plume as its input. No additional LPDM simulations are needed to

generate footprint predictions after the training process.

Emulation of footprints using the FootNet model brings co-benefits for computational efficiency and storage cost, and better

facilitates the application of LPDM-based flux inversion systems with dense observing systems. To conduct kilometer-scale175

emission inversions using one day of observations made at the 40 BEACO2N sites in the SF Bay Area (approx. 650 observations
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per day), it takes the full-physics STILT model about 640 core-hours to generate the required footprints. The generation of each

footprint prediction takes ∼1 s on a 32-core compute node, which can be further reduced to 0.08 s on an NVIDIA A2 graphics

processing unit (GPU). Only 6 minutes are required for FootNet on an A2 GPU node to generate the required footprints for

one day of BEACO2N measurements. The storage requirement also makes it impractical to use full-physics models in high-180

resolution flux inversions with dense observations. Hourly footprints for one week of BEACO2N measurements would require

4-terabyte storage space for future re-use. With FootNet, footprints could be generated in near real-time and there is no need

to store the computed footprints.

Figure 5 shows the ranking of variable importance for FootNet calculated using the PaP method on 1000 randomly selected

data samples. Overall, the most important meteorological variables are the 10-meter wind speeds, which lead to a 0.2∼0.3 de-185

crease in correlation and the IoU drops by 0.1∼0.2 after being permuted. Permuting Gaussian plumes degrades the correlation

and the IoU of FootNet predictions by 0.1 and 0.03, respectively. We find less sensitivity of FootNet predictions to surface

pressure and planetary boundary layer height than other input variables. This is because we only have training data from two

locations in the current version of the model, and these two meteorological fields show much less variability than the wind

fields in the training data set. We still include surface pressure and PBL height as input variables because they are essential190

information for the generation of measurement footprints. We expect to see greater importance for surface pressure and PBL

height for a general version of FootNet trained using footprints from more locations in the future. Figure 5 also shows that

input variables from t0-6h have consistently greater importance than t0.

The PaP method only provides a rough estimate of variable importance, and the inter-correlation between input variables

can lead to an inflation of the feature importance (Hooker et al., 2021). Nevertheless, the estimated variable importance for195

FootNet is in alignment with with our understanding about the calculation of footprints in a full-physics model, which relies

on the advection of particles driven by precomputed wind fields. The Gaussian plume is also identified as highly important,

because it is the only input field providing information about the location of receptors.

4 Conclusions

We described the development of a machine learning-based emulator of surface measurement footprints, FootNet. The footprint200

emulator can be used to improve the computational efficiency of estimating high-resolution GHG fluxes using measurements

made by dense observing systems. The FootNet model was trained and evaluated using footprints simulated by the STILT

full-physics model for the SF Bay Area and the Barnett Shale region. We showed the convergence of FootNet predictions to

the STILT truth as the training iterates. The overall correlation between FootNet predictions and the STILT truth in the test data

set reaches 0.58 after full convergence. The emulator well predicts both the extents and magnitudes of footprints with a high205

fidelity. We estimated importance of input variables using the PaP method to improve the interpretability of the FootNet model.

We found 10-meter wind speeds and Gaussian plumes have the greatest importance for the emulation of footprints. Emulation

of footprints using FootNet brings co-benefits for computationally efficient and reducing storage cost, which makes it feasible

to deliver high-resolution estimates of GHG fluxes in near real-time using proliferated dense observing systems in the future.
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Due to the computational cost required by the generation of high-resolution footprints, we only included footprints generated210

from previous studies for the two locations in training version 1.0 of FootNet. We are actively generating new footprints at 1

km from a broader region to further improve the emulator’
:
’s performance, especially in regions with different meteorological

conditions from the two locations used in this study (Dadheech et al., 2024). With
:::::::::::
Generalizing

:::
this

:::::::::::::
source-receptor

::::::::
emulator

::
to

::::
other

:::::::
regions

:
is
:::::
being

:::::::
tackled

::
in the next version of FootNettrained for more general use cases, the performance of FootNet

in an inversion system could be further assessed in the future.215

Code and data availability. We use the full-physics Stochastic Time-Inverted Lagrangian Transport Model (STILT) to simulation footprints

for the training of FootNet. The STILT model could be accessed from https://uataq.github.io/stilt/ (Fasoli et al., 2018). Footprints simulated

by the STILT model are available through Turner et al. (2018) and Turner et al. (2020). Examples of the footprints used in the train-

ing process could be downloaded from https://zenodo.org/records/12803617, https://zenodo.org/records/12803736, and https://zenodo.org/

records/12803855. The meteorological variables are from the High-Resolution Rapid Refresh (HRRR) data product, which is available at220

https://rapidrefresh.noaa.gov/hrrr/ (Dowell et al., 2022; James et al., 2022). The repository of the code used in the manuscript is publicly

available at https://zenodo.org/records/12752655.
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Figure 4. Evaluation of individual FootNet predictions from the test data set.
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:
(A-D) Footprints simulated by the full-physics STILT model for the Barnett

Shale region and the SF Bay Area. (E-H) Footprint predictions made by FootNet corresponding to (A-D). The blue arrows represent wind

vectors, and the green stars show the location of the receptors. (I-L) Comparison and correlation between the truth and predictions for the

four examples.
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Figure 5. Rankings of variable importance estimated using the permute-and-predict (PaP) method on 1000 data samples. (A-C) Variable

importance shown as drop in correlation, drop in the IoU, and increase in the RMSE after permuting the 10 input variables. Orange lines

show the medians. Boxes indicate ranges from the first quartiles to the third quartiles. Whiskers are the 1.5 interquartile ranges (IQRs) from

the boxes. Circles are outliers.
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