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 34 

Abstract. Four distinct retrieval algorithms, comprising two physics-based and two 35 

machine-learning (ML) approaches, have been developed to retrieve cloud base 36 

height (CBH) and its diurnal cycle from Himawari-8 geostationary satellite 37 

observations. Validations have been conducted using the joint CloudSat/CALIOP 38 

(Cloud-Aerosol Lidar with Orthogonal Polarization) CBH products in 2017, ensuring 39 

independent assessments. Results show that the two ML-based algorithms exhibit 40 

markedly superior performance (with a correlation coefficient of R > 0.91 and an 41 

absolute bias of approximately 0.8 km) compared to the two physics-based algorithms. 42 

However, validations based on CBH data from the ground-based lidar at the Lijiang 43 

station in Yunnan province and the cloud radar at the Nanjiao station in Beijing, 44 

China, explicitly present contradictory outcomes (R < 0.60). An identifiable issue 45 

arises with significant underestimations in the retrieved CBH by both ML-based 46 

algorithms, leading to an inability to capture the diurnal cycle characteristics of CBH. 47 

The strong consistence observed between CBH derived from ML-based algorithms 48 

and the spaceborne active sensor may be attributed to utilizing the same dataset for 49 

training and validation, sourced from the CloudSat/CALIOP products. In contrast, the 50 

CBH derived from the optimal physics-based algorithm demonstrates the good 51 

agreement in diurnal variations of CBH with ground-based lidar/cloud radar 52 

observations during the daytime (with an R value of approximately 0.7). Therefore, 53 

the findings in this investigation from ground-based observations advocate for the 54 

more reliable and adaptable nature of physics-based algorithms in retrieving CBH 55 

from geostationary satellite measurements. Nevertheless, under ideal conditions, with 56 

an ample dataset of spaceborne cloud profiling radar observations encompassing the 57 

entire day for training purposes, the ML-based algorithms may hold promise in still 58 

delivering accurate CBH outputs. 59 

Key words: Geostationary meteorological satellite; cloud base height; physics-based 60 

algorithm; machine learning. 61 
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1 Introduction 63 

    Clouds, comprising visible aggregates like atmospheric water droplets, 64 

supercooled water droplets, ice crystals, etc., cover roughly 70% of the Earth's surface 65 

(Stubenrauch et al., 2013). They play a pivotal role in global climate change, the 66 

hydrometeor cycle, aviation safety, and serve as a primary focus in weather 67 

forecasting and climate research, particularly storm clouds (Hansen, 2007; Hartmann 68 

and Larson, 2002). From advanced geostationary (GEO) and polar-orbiting (LEO, 69 

low earth orbit) satellite imagers, various measurable cloud properties, such as 70 

fraction, phase, top height, and optical depth, are routinely retrieved. However, the 71 

high-quality cloud geometric height (CGH) and CBH, a fundamental macro physical 72 

parameter delineating the vertical distribution of clouds, remains relatively 73 

understudied and underreported. Nonetheless, for boundary-layer clouds, the cloud 74 

base height stands as a critical parameter depending on other cloud-controlling 75 

variables. These variables encompass the cloud-base temperature (Zhu et al., 2014), 76 

cloud-base vertical velocity (Zheng et al., 2020), activation of CCN (Cloud 77 

Condensation Nuclei) at the cloud-base (Rosenfeld et al., 2016; Miller et al., 2023), 78 

and the cloud-surface decoupling state (Su et al., 2022). These factors significantly 79 

impact convective cloud development and ultimately the climate. Hence, the accurate 80 

determination of CBH and its diurnal cycle with high spatial-temporal resolution 81 

becomes very important, necessitating comprehensive investigations (Viúdez-Mora et 82 

al., 2015; Wang et al., 2020). Such efforts can provide deeper insights into potential 83 

ramifications of cloud on radiation equilibrium and global climate systems. 84 

However, as one of the most crucial cloud physical parameters in atmospheric 85 

physics, the CBH poses challenges in terms of measurement or estimation from space. 86 

Presently, the primary methods for measuring CBH rely on ground-based 87 

observations, utilizing tools such as sounding balloons, Mie-scattering lidars, 88 

stereo-imaging cloud-height detection technologies, and cloud probe sensors 89 

(Forsythe et al., 2000; Hirsch et al., 2011; Seaman et al., 2017; Zhang et al., 2018; 90 

Zhou et al., 2019; Zhou et al., 2024). While in-situ ground-based observation methods 91 

offer highly accurate, reliable, and timely continuous CBH results, they are 92 

constrained by localized observation coverage and the sparse distribution of 93 

observation sites (Aydin and Singh, 2004). In recent decades, with the rapid 94 
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advancement of meteorological satellite observation technology, spaceborne 95 

observing methods have emerged that provide global cloud observations with high 96 

spatio-temporal resolution compared to conventional ground-based remote sensing 97 

methods. In this realm, satellite remote sensing techniques for measuring CBH fall 98 

primarily into two categories: active and passive methods. Advanced active remote 99 

sensing technologies like CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder 100 

Satellite Observation (CALIPSO) in the National Aeronautics and Space 101 

Administration (NASA) A-Train series can capture global cloud profiles, including 102 

CBH, with high quality by detecting unique return signals from cloud layers using 103 

onboard active millimeter wave radar or lidar. However, their viewing footprints are 104 

limited along the nadir of the orbit, implying that observation coverage remains 105 

confined primarily to a horizontal scale (Min et al., 2022; Lu et al., 2021). 106 

In addition to active remote sensing methods, satellite-based passive remote 107 

sensing technologies can also play an important role in estimating CBH (Meerkötter 108 

and Bugliaro, 2009; Lu et al., 2021). As well known, the physics-based principles and 109 

retrieval methods for cloud top height (CTH) have reached maturity and are now 110 

widely employed in satellite passive remote sensing field (Heidinger and Pavolonis, 111 

2009; Wang et al., 2022). However, the corresponding physical principles or methods 112 

for measuring CBH using satellite passive imager measurements are still not entirely 113 

clear and unified (Heidinger et al., 2019; Min et al., 2020). A recent study by (Yang et 114 

al., 2021) utilized oxygen A-band data observed by the Orbiting Carbon Observatory 115 

2 (OCO-2) to retrieve single-layer marine liquid CBH. Two primary methods are 116 

prominent in retrieving CBH through passive space-based remote sensing techniques. 117 

The first method involves the extrapolation technique for retrieving CBH for clouds 118 

of the same type. For instance, (Wang et al., 2012) proposed a method to extrapolate 119 

CBH from CloudSat using spatial-temporally matched MODIS (Moderate Resolution 120 

Imaging Spectroradiometer) cloud classification data. The second physics-based 121 

retrieval method first approximates the cloud geometric thickness using its optical 122 

thickness. It then employs the previously derived CTH product to compute the 123 

correlated CBH using the respective NOAA (National Oceanic and Atmospheric 124 

Administration) SNPP/VIIRS (Suomi National Polar-orbiting Partnership/Visible 125 

Infrared Imaging Radiometer Suite) products (Noh et al., 2017). Hutchison et al. also 126 

formulated an empirical algorithm that estimates both cloud geometric thickness and 127 

CBH. This algorithm relies on statistical analyses derived from MODIS cloud optical 128 
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thickness and cloud liquid water path products (Hutchison et al., 2006; Hutchison, 129 

2002). 130 

Machine learning (ML) has proven to be highly effective in addressing nonlinear 131 

problems within remote sensing and meteorology fields, such as precipitation 132 

estimation and CTH retrieval (Min et al., 2020; HåKansson et al., 2018; Kühnlein et 133 

al., 2014). In recent years, several previous studies have leveraged ML-based 134 

algorithms to retrieve CBH, establishing nonlinear connections between CBH and 135 

GEO satellite observations. For instance, Tan et al. (2020) integrated CTH and cloud 136 

optical properties products from Fengyun-4A (FY-4A) GEO satellite with 137 

spatial-temporally matched CBH data from CALIPSO/CloudSat (Tan et al., 2020). 138 

They developed a random forest (RF) model for CBH retrieval. Similarly, Lin et al. 139 

(2022) constructed a gradient boosted regression tree (GBRT) model using U.S. 140 

new-generation Geostationary Operational Environmental Satellites-R Series 141 

(GOES-R) Advanced Baseline Imager (ABI) level 1B radiance data and the ERA5 142 

(the fifth generation ECMWF) reanalysis dataset (Lin et al., 2022). They employed 143 

CALIPSO CBH data as labels to achieve single-layer CBH retrievals. Notably, the 144 

CBH quality of ML-based algorithms was found to surpass that of physics-based 145 

algorithms (Lin et al., 2022). Moreover, Tana et al. (2023) utilized Himawari-8 data 146 

and the random forest algorithm to develop a novel CBH algorithm, achieving a high 147 

correlation coefficient of 0.92 and a low root mean square error (RMSE) of 1.17 km 148 

(Tana et al., 2023). 149 

    However, these former studies did not discuss whether both physics-based and 150 

ML-based algorithms of GEO satellite could retrieve the diurnal cycle of CBH well. 151 

This gap in research could be mainly attributed to potential influences from the fixed 152 

LEO satellite (with active radar or lidar) passing time in the previous CBH retrieval 153 

model (Lin et al., 2022). As well known, there are distinct diurnal cycle 154 

characteristics of clouds in different regions across the globe (Li et al., 2022). These 155 

diurnal cycle characteristics primarily stem from the daily solar energy cycle absorbed 156 

by both the atmosphere and Earth's surface. Besides, vertical atmospheric motions are 157 

shaped by imbalances in atmospheric heating and surface configurations, also leading 158 

to a range of cloud movements and structures (Miller et al., 2018). Cloud base plays a 159 

pivotal role in weather and climate processes. It is critical for predicting fog and 160 

cloud-related visibility issues important in aviation and weather forecasting. For 161 

instance, lower cloud bases often lead to more intense rainfall. In climate modeling, 162 
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CBH is integral for accurate long-term weather predictions and understanding the 163 

radiative balance of the Earth, which influences global temperatures (Zheng and 164 

Rosenfeld, 2015). Hence, it is crucial to thoroughly investigate the diurnal cycle 165 

features of CBH derived from GEO satellite measurements by comparing them with 166 

ground-based radar and lidar observations (Min and Zhang, 2014; Warren and 167 

Eastman, 2014). In this study, we aim to assess the applicability and feasibility of 168 

both physics-based and ML-based algorithms of GEO satellites in capturing the 169 

diurnal cycle characteristics of CBH. 170 

    The subsequent sections of this paper are structured as follows. Section 2 171 

provides a concise overview of the data employed in this study. Following that, 172 

section 3 introduces the four distinct physics/ML-based CBH retrieval algorithms. In 173 

section 4, the CBH results obtained from these four algorithms are analyzed, and 174 

comparisons are drawn with spatially and temporally matched CBHs from 175 

ground-based cloud radar and lidar. Finally, section 5 encapsulates the primary 176 

conclusions and new findings derived from this study. 177 

2 Data 178 

In this study, observations from the Himawari-8 (H8) Advanced Himawari 179 

Imager (AHI) are utilized for the retrieval of high spatiotemporal resolution CBH. 180 

Launched successfully by the Japan Meteorological Administration on October 7, 181 

2014, the H8 geostationary satellite is positioned at 140.7°E. The AHI onboard H8 182 

encompasses 16 spectral bands ranging from 0.47 μm to 13.3 μm, featuring spatial 183 

resolutions of 0.5–2 km. This includes 3 visible (VIS) bands at 0.5–1 km, 3 184 

near-infrared (NIR) bands at 1–2 km, and 10 infrared (IR) bands at 2 km. The 185 

H8/AHI can scan a full disk area within 10 minutes, two specific areas within 2.5 186 

minutes, a designated area within 2.5 minutes, and two landmark areas within 0.5 187 

minutes (Iwabuchi et al., 2018). Its enhanced temporal resolution and observation 188 

frequency facilitates the tracking of rapidly changing weather systems, enabling the 189 

accurate determination of quantitative atmospheric parameters (Bessho et al., 2016). 190 

Operational H8/AHI Level-1B data, accessible from July 7, 2015, are freely 191 

available on the satellite product homepage of the Japan Aerospace Exploration 192 

Agency (Letu et al., 2019). The Level-2 cloud products utilized in this study, 193 

including cloud mask (CLM), CTH, cloud effective particle radius (CER), and cloud 194 
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optical thickness (COT), are generated by the Fengyun satellite science product 195 

algorithm testbed (FYGAT) (Wang et al., 2019; Min et al., 2017) of the China 196 

Meteorological Administration (CMA) for various applications. It is important to note 197 

that certain crucial preliminary cloud products, such as the cloud mask, have been 198 

validated in prior studies (Wang et al., 2019; Liang et al., 2023). Nevertheless, before 199 

initiating CBH retrieval, it is imperative to validate the H8/AHI cloud optical and 200 

microphysical products from the FYGAT retrieval system. This validation is carried 201 

out by using analogous MODIS Level-2 cloud products as a reference. Additional 202 

details regarding the validation of cloud products are provided in the Appendix A 203 

section. 204 

In addition to the H8/AHI Level-1/2 data, the Global Forecast System (GFS) 205 

numerical weather prediction (NWP) data are employed for CBH retrieval in this 206 

study. The variables include land/sea surface temperature and the vertical profiles of 207 

temperature, humidity, and pressure. Operated by the U.S. NOAA (Kalnay et al., 208 

1996), the GFS serves as a global and advanced NWP system. The operational GFS 209 

system routinely delivers globally high-quality and gridded NWP data at 3-hour 210 

intervals, with four different initial forecast times per day (00:00, 06:00, 12:00, and 211 

18:00 UTC). The three-dimensional NWP data cover the Earth in a 0.5°×0.5° grid 212 

interval and resolve the atmosphere with 26 vertical levels from the surface (1000 hPa) 213 

up to the top of the atmosphere (10 hPa).  214 

As previously mentioned, the official MODIS Collection-6.1 Level-2 cloud 215 

product Climate Data Records are utilized in this study to validate the H8/AHI cloud 216 

products (CTH, CER, and COT) generated by the FYGAT system. MODIS sensors 217 

are onboard NASA Terra and Aqua polar-orbiting satellites. Terra functions as the 218 

morning satellite, passing through the equator from north to south at approximately 219 

10:30 local time, while Aqua serves as the afternoon satellite, traversing the equator 220 

from south to north at around 13:30 local time. As a successor to the NOAA 221 

Advanced Very High Resolution Radiometer (AVHRR), MODIS features 36 222 

independent spectral bands and a broad spectral range from 0.4 μm (VIS) to 14.4 μm 223 

(IR), with a scanning width of 2330 km and spatial resolutions ranging from 0.25 to 224 

1.0 km. Recent studies (Baum et al., 2012; Platnick et al., 2017) have highlighted 225 

significant improvements and collective changes in cloud top, optical, and 226 

microphysical properties from Collection-5 to Collection-6. 227 
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In addition to the passive spaceborne imaging sensors mentioned above, the 228 

CloudSat satellite, equipped with a 94-GHz active cloud profiling radar (CPR), holds 229 

the distinction of being the first sun-synchronous orbit satellite specifically designed 230 

to observe global cloud vertical structures and properties. It is part of the A-Train 231 

(Afternoon-Train) series of satellites, akin to the Aqua satellite, launched and 232 

operated by NASA (Heymsfield et al., 2008). CALIPSO is another polar-orbiting 233 

satellite within the A-Train constellation, sharing an orbit with CloudSat and trailing 234 

it by a mere 10–15 seconds. CALIPSO is the first satellite equipped with an active 235 

dual-channel CALIOP at 532 and 1064 nm bands (Hunt et al., 2009). Both CloudSat 236 

and CALIPSO possess notable advantages over passive spaceborne sensors due to the 237 

94-GHz radar of CloudSat and the joint return signals of lidar and radar on CALIPSO. 238 

These features enhance their sensitivity to optically thin cloud layers and ensure 239 

strong penetration capability, resulting in more accurate CTH and CBH detections 240 

compared to passive spaceborne sensors (CAL_LID_L2_05kmCLay-Standard-V4-10). 241 

The joint cloud type products of 2B-CLDCLASS-LIDAR, derived from both 242 

CloudSat and CALIPSO measurements, offer a comprehensive description of cloud 243 

vertical structure characteristics, cloud type, CTH, CBH, etc. The time interval 244 

between each profile in this product is approximately 3.1 seconds, and the horizontal 245 

resolution is 2.5 km (along track)×1.4 km (cross-track). Each profile is divided into 246 

125 layers with a 240-m vertical interval. For more details on 247 

2B-CLDCLASS-LIDAR products, please refer to the CloudSat official product 248 

manual (Sassen and Wang, 2008). Please note that for this study, we utilized one-year 249 

H8/AHI data and matched it with the joint CloudSat/CALIOP data from January 1 to 250 

December 31 of 2017. 251 

3 Physics/machine-learning based cloud-base height algorithms 252 

3.1 GEO Cloud-base height retrieval algorithm from the interface data processing 253 
segment of the Visible Infrared Imaging Radiometer Suite 254 

    The Joint Polar Satellite System (JPSS) program is a collaborative effort between 255 

NASA and NOAA. The operational CBH retrieval algorithm, part of the 30 256 

Environmental Data Records (EDR) of JPSS, can be implemented operationally 257 

through the Interface Data Processing Segment (IDPS) (Baker, 2011). In this study, 258 

our geostationary satellite CBH retrieval algorithm aligns with the IDPS CBH 259 
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algorithm developed by (Baker, 2011). Utilizing the geostationary H8/AHI cloud 260 

products discussed earlier, this new GEO CBH retrieval algorithm is succinctly 261 

outlined below.  262 

 The new GEO IDPS CBH algorithm initiates the process by first retrieving the 263 

cloud geometric thickness (CGT) from bottom to top. Subsequently, CGT is 264 

subtracted from the corresponding cloud top height (CTH) to calculate CBH (CBH = 265 

CTH − CGT). The algorithm is divided into two independent executable modules 266 

based on cloud phase, distinguishing between liquid water and ice clouds. CBH of 267 

water cloud retrieval requires Cloud Optical Thickness (COT or DCOT) and Effective 268 

Radius (CER or Reff) as inputs. For ice clouds, an empirical equation is employed for 269 

CBH retrieval. However, the standard deviations of error in IDPS CBH for individual 270 

granules often exceed the JPSS VIIRS minimum uncertainty requirement of ±2km 271 

(Noh et al., 2017). The accuracy of IDPS algorithm-derived CBHs can be directly 272 

affected by several factors, including cloud optical thickness, cloud effective particle 273 

size, the presence of multiple-layered cloud systems, lack of solar illumination, and 274 

highly reflective surfaces such as snow or ice surfaces. For a more comprehensive 275 

understanding of this CBH algorithm, please refer to the IDPS algorithm 276 

documentation (Baker, 2011). 277 

3.2 GEO Cloud-base height retrieval algorithm implemented in the Clouds from 278 
Advanced Very High Resolution Radiometer Extended system 279 

As mentioned above, the accuracy of the GEO IDPS algorithm is highly 280 

dependent on the initial input parameters such as cloud phase, DCOT and Reff, which 281 

may introduce some uncertainties in the final retrieval results. In contrast, a more 282 

reliable statistically-based algorithm is proposed and implemented here, which is 283 

named the GEO CLAVR-x (Clouds from AVHRR Extended, NOAA's operational 284 

cloud processing system for the AVHRR) CBH algorithm, and it mainly refers to 285 

NOAA AWG CBH algorithm (ACBA). Previous studies have also demonstrated a 286 

correlation coefficient of 0.569 and a root mean square error (RMSE) of 2.3 km for 287 

the JPSS VIIRS CLAVR-x CBH algorithm. It is anticipated that this algorithm will 288 

also be employed for the NOAA GORS-R geostationary satellite imager (Noh et al., 289 

2017; Seaman et al., 2017). 290 

Similar to the GEO IDPS CBH retrieval algorithm mentioned earlier, the GEO 291 

CLAVR-x CBH retrieval algorithm also initially obtains CGT and CTH, subsequently 292 

https://doi.org/10.5194/egusphere-2024-1516
Preprint. Discussion started: 17 June 2024
c© Author(s) 2024. CC BY 4.0 License.



      10 

calculating CBH by subtracting CGT from CTH (CTH−CGT). However, the specific 293 

calculation method for the CGT value differs. This algorithm is suitable for both 294 

single-layer and multi-layer clouds, computing CBH using the CTH at the top layer of 295 

the cloud. In comparison with the former GEO IDPS CBH algorithm, the GEO 296 

CLAVR-x CBH algorithm considers two additional cloud types: deep convection 297 

clouds and thin cirrus clouds. For more details on this CLAVR-x CBH algorithm, 298 

please refer to the original algorithm documentation (Noh et al., 2017). 299 

3.3 Random-forest-based cloud-base height estimation algorithm 300 

RF, one of the most significant ML algorithms, was initially proposed and 301 

developed by (Breiman, 2001). It is widely employed to address classification and 302 

regression problems based on the law of large numbers. The law of large numbers 303 

states that when independent and identically distributed random experiments are 304 

repeatedly conducted, the average of the results will converge to the expected value as 305 

the number of trials increases. In RF algorithms, it primarily serves to increase 306 

randomness and independence in model construction, thus enhancing the model's 307 

stability and generalizability. Here, the RF method utilizes a forest of trees, serving as 308 

an integrated algorithm that enhances overall model accuracy and generalization by 309 

combining multiple weak classifiers. The final prediction is calculated through voting 310 

or averaging. The RF method is well-suited for capturing complex or nonlinear 311 

relationships between predictors and predictands. As mentioned earlier, this statistical 312 

or ML-based algorithm has been already proven successful in retrieving CTH and 313 

CBH (Min et al., 2020; Tan et al., 2020). 314 

In this study, two distinct ML-based GEO CBH algorithms, namely VIS+IR and 315 

IR-single (only uses observations of H8/AHI IR channels), are devised to retrieve or 316 

predict the CBH using different sets of predictors. The RF training of the chosen 317 

predictors is formulated as follows: 318 

CBH=RFreg[x1, x2, …, xn],                                              (1) 319 

where RFreg denotes the regression Random Forests model, and xi represents the ith 320 

predictor. The selected predictors from H8/AHI for both the VIS+IR and IR RF 321 

model training and prediction are detailed in Table 1, mainly referencing Min et al. 322 

(2020) and Tan et al. (2020). The VIS+IR algorithm retrieves CBH based on NWP 323 

data (atmospheric temperature and altitude profiles, total precipitable water (TPW), 324 

surface temperature), surface elevation, air mass 1 (air mass 1=1/cos(view zenith 325 
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angle)), and air mass 2 (air mass 2=1/cos(solar zenith angle)). The rationale for 326 

choosing air mass and TPW is their ability to account for the potential absorption 327 

effect of water vapor along the satellite viewing angle. The predictors in CBH 328 

retrieval also include the IR band Brightness Temperature (BT) and VIS band 329 

reflectance. The IR-single algorithm selects the same Global Forecast System (GFS) 330 

NWP data as the VIS+IR algorithm but employs different view zenith angles and 331 

azimuth angles.  332 

To optimize the RF prediction model, the hyperparameters of the RF model are 333 

tuned individually. The parameters and their dynamic ranges involved in tuning the 334 

RF prediction models include the number of trees [100, 200, 300, 400, 500], the 335 

maximum depth of trees [10, 20, 30, 40, 50], the minimum number of samples 336 

required to split an internal node [2, 4, 6, 8, 10], and the minimum number of samples 337 

required to be at a leaf node [1, 3, 5, 7, 9]. In this study, we set the smallest number of 338 

trees in the forest to 100 and the maximum depth of the tree to 40. 339 

The performance of RF models will be assessed using mean absolute error 340 

(MAE), mean bias error (MBE), root mean square error (RMSE), correlation 341 

coefficient (R), and standard deviation (STD) scores based on the testing dataset. 342 

These scores mentioned above are used to understand different aspects of the 343 

predictive performance of model: MAE and RMSE provide insights into the average 344 

error magnitude, MBE indicates bias in the predictions, R evaluates the linear 345 

association between observed and predicted values, and STD assesses the variability 346 

of the predictions. In the RF IR-single algorithm, 581,783 matching points are 347 

selected from H8/AHI and CloudSat data for 2017. Seventy percent of these points 348 

are randomly assigned to the training dataset, and the remainder serves as the testing 349 

dataset. For the RF VIS+IR algorithm, a total of 418,241 matching points are chosen, 350 

with 70% randomly allocated to the training set. It's important to note that the two 351 

training datasets in CloudSat will also be used to verify the CBHs obtained by cloud 352 

radar and lidar. The statistical formulas for evaluation are as follows: 353 

MAE = !
"
∑ |𝑦# − 𝑥#|"
#$! ,                                               (2) 354 

MBE = !
"
∑ (𝑦# − 𝑥#)"
#$! ,                                               (3) 355 

RMSE = /!
"
∑ (𝑦# − 𝑥#)%"
#$! ,                                           (4) 356 
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𝑅 = 	 ∑ ((!)(*)
"
!#$ (,!),̅)

.∑ ((!)(*)%"
!#$ .∑ (,!),̅)%"

!#$

,                                           (5) 357 

STD = / !
")!

∑ (𝑥# − 𝑥̅)%"
#$! ,                                            (6) 358 

where n is the sample number, yi is the ith CBH retrieval result, and xi is the ith joint 359 

CloudSat/CALIOP CBH product. 360 

4 Results and Discussions  361 

4.1 Comparisons with the joint CloudSat/CALIPSO cloud-base height product 362 

The H8/AHI satellite CBH data retrieved by the four algorithms are matched 363 

spatially and temporally with the 2B-CLDCLASS-LIDAR cloud product from joint 364 

CloudSat/CALIPSO observations in 2017. Fig. 1 displays a comparison of CBH 365 

results over the full disk at 02:00 UTC on January 1, 2017, retrieved by the GEO 366 

IDPS algorithm, the GEO CLAVR-x algorithm, the RF VIS+IR algorithm, and the RF 367 

IR-single algorithm. A similar distribution pattern and magnitude of CBHs retrieved 368 

by these four independent algorithms can be observed in Fig. 1. However, notable 369 

differences exist between physics-based and ML-based algorithms. Further 370 

comparisons are conducted and analyzed with spaceborne and ground-based lidar and 371 

radar observations in the subsequent sections of this study. 372 

Fig. 2 presents the density scatter plot of the CBHs retrieved from the GEO IDPS 373 

and GEO CLAVR-x algorithms compared with the CBHs from the joint 374 

CloudSat/CALIPSO product, along with the related scores of MAE, MBE, RMSE, 375 

and R calculated and labeled in each panel. The calculated R exceeds the 95% 376 

significance level (p < 0.05). For the GEO IDPS algorithm, the R is 0.62, the MAE is 377 

1.826 km, and the MBE and RMSE are -0.232 and 2.642 km (Fig. 2a). In comparison, 378 

(Seaman et al., 2017) compared the operational VIIRS CBH product retrieved by the 379 

similar SNPP/VIIRS IDPS algorithm with the CloudSat CBH results. In their results, 380 

the R is 0.569, and the RMSE is 2.3 km. For the new GEO CLAVR-x algorithm (Fig. 381 

2b), the R is 0.647, and the RMSE is 2.91 km. The larger RMSE from two 382 

independent physics-based CBH algorithms demonstrate a slightly poorer 383 

performance and precision of these retrieval algorithms for GEO satellites. 384 

Particularly, the larger RMSEs (2.642 and 2.91 km) indicate weaker stabilities of the 385 

GEO IDPS and CLAVR-x CBH algorithms. In this figure, more samples can be found 386 
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near the 1:1 line, implying the good quality of retrieved CBHs. However, in stark 387 

contrast, quite a number of CBH samples retrieved by both GEO IDPS and GEO 388 

CLAVR-x algorithms (compared with the official VIIRS CBH product) fall below 1.0 389 

km, indicating relatively large errors when compared with the joint 390 

CloudSat/CALIPSO CBH product. The poor predictive performance of physics-based 391 

algorithm for samples with a CBH lower than 1 km is likely due to insufficient cloud 392 

base information in the visible band observation data. Moreover, Fig. 2 reveals that 393 

relatively large errors are also found in the CBHs lower than 2 km for the four 394 

independent algorithms, primarily caused by the weak penetration ability of VIS or IR 395 

bands on thick and low clouds. 396 

Referring to the joint CloudSat/CALIPSO CBH product, Fig. 2c and 2d present 397 

the validations of the CBH results retrieved from two ML-based algorithms using the 398 

VIS+IR (only retrieving the CBH during the daytime) and IR-single models. Fig. 2c 399 

demonstrates better consistency of CBH between the VIS+IR model and the joint 400 

CloudSat/CALIPSO product with R = 0.905, MAE = 0.817 km, MBE = 0.425 km, 401 

and RMSE = 1.706 km. Fig. 2d also displays a relatively high R of 0.876 when 402 

validating the IR-single model, with MAE = 0.882, MBE = −0.445, and RMSE = 403 

1.995. Therefore, both VIS+IR and IR-single models can obtain high-quality CBH 404 

retrieval results from geostationary imager measurements. In comparison, previous 405 

studies also proposed similar ML-based algorithms for estimating CBH using FY-4A 406 

satellite imager data. For example, (Tan et al., 2020) used the variables of CTH, DCOT, 407 

Reff, cloud water path, longitude/latitude from FY-4A imager data to build the training 408 

and prediction model and obtained CBH with MAE=1.29 km and R=0.80. In this 409 

study, except CTH, the other Level-2 products and geolocation data 410 

(longitude/latitude) used in (Tan et al., 2020) are abandoned, while the matched 411 

atmospheric profile products (such as temperature and relative humidity) from NWP 412 

data are added. These changes in ML-based model training and prediction lead to 413 

more accurate CBH retrieval results. Note that, in accordance with the previous study 414 

conducted by (Noh et al., 2017), we excluded CBH samples obtained from 415 

CloudSat/CALIPSO that were smaller than 1 km in our comparisons. This exclusion 416 

was primarily due to the presence of ground clutter contamination in the CloudSat 417 

CPR data (Noh et al., 2017). 418 

Fig. 3 displays two cross-sections of CBH from various sources overlaid with 419 

CloudSat radar reflectivity (unit: dBZ) for spatially and temporally matched cases. 420 
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The periods covered are from 03:16 to 04:55 UTC on January 13, 2017 (154.0°E–421 

160.0°E; 40.56°S–53.39°S) and from 05:38 to 07:17 UTC on January 14, 2017 422 

(107.1°E–107.8°E; 8.35°N–11.57°N). The CloudSat radar reflectivity and joint 423 

CloudSat/CALIPSO product provide insights into the vertical structure or distribution 424 

of clouds and their corresponding CBHs. The results from the four GEO CBH 425 

retrieval algorithms (GEO IDPS, GEO CLAVR-x, RF VIS+IR model, and RF 426 

IR-single model) mentioned earlier are individually marked with different markers in 427 

each panel. According to Fig. 3a, the GEO IDPS algorithm faces challenges in 428 

accurately retrieving CBHs for geometrically thicker cloud samples near 157°E. 429 

Optically thick mid- and upper-level cloud layers may obscure lower-level cloud 430 

layers. However, the CBH results retrieved by the GEO IDPS algorithm near 155°E 431 

(in Fig. 3a) and 107.4°E (in Fig. 3b) align with the joint CloudSat/CALIPSO CBH 432 

product. It is worth noting that the inconsistency observed between 107.2°E and 433 

107.3°E in Fig. 3b, specifically regarding the CBHs around 1 km obtained from 434 

CloudSat/CALIPSO, can likely be attributed to ground clutter contamination in the 435 

CloudSat CPR data (Noh et al., 2017). The GEO CLAVR-x algorithm achieves 436 

improved CBH results compared to the GEO IDPS algorithm. It can even retrieve 437 

CBHs for some thick cloud samples that are invalid when using the GEO IDPS 438 

algorithm. However, the CBHs from the GEO CLAVR-x algorithm are noticeably 439 

higher than those from the joint CloudSat/CALIPSO product. In contrast, the CBHs 440 

from the two ML-based algorithms show substantially better results than those from 441 

the other two physics-based algorithms. Particularly, the ML-based VIS+IR model 442 

algorithm yields the best CBH results. However, compared with those from the two 443 

physics-based algorithms, the CBHs from the two ML-based algorithms still exhibit a 444 

significant error around 5 km. 445 

Since the two RF models (VIS+IR and IR-single) select 230 typical variables to 446 

fit CBHs, the important scores of these predictors in the two ML-based algorithms are 447 

ranked for better optimization. In the VIS+IR model, the top-ranked predictors are 448 

CTH and CTT from the H8/AHI Level-2 product (see Fig. B1 in Appendix B). It's 449 

important to note that DCOT is a crucial and sensitive factor for these ML-based 450 

algorithms. Retrieving CBH samples with relatively low DCOT remains challenging 451 

due to the low signal-to-noise ratio when DCOT is low (Lin et al., 2022). To address 452 

this issue, samples with DCOT less than 1.6 are filtered in the VIS+IR model, and 453 

samples with relatively large BTs at Channel-14 are filtered in the IR-single model. 454 
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This filtering process significantly improves the R value from 0.869 to 0.922 in the 455 

VIS+IR model and from 0.868 to 0.911 in the IR-single model. For more details on 456 

the algorithm optimization, please refer to Appendix B. 457 

4.2 Comparisons with the ground-based lidar and cloud radar measurements 458 

Lidar actively emits lasers in different spectral bands into the air. When the laser 459 

signal encounters cloud particles during transmission, a highly noticeable 460 

backscattered signal is generated and received (Omar et al., 2009). When lidar 461 

measures clouds, the intensity of the echo signal from the cloud to the laser satisfies 462 

the lidar equation as follows: 463 

𝑃(𝑟) = 𝐶 ∗ 𝛽(𝑟) ∗ 𝑟)% ∗ 𝑒𝑥𝑝<−2∫ 𝜎(𝑧)𝑑𝑧/
0 B,                              (7) 464 

where P (r) is the intensity of the atmospheric backscattered signal received by the 465 

laser telescope from the emission point in distance r (unit: Watt or W); C is the lidar 466 

system instrumentation constant (unit: W·km3·sr); r is the detection distance (unit: 467 

km); β(r) is the backscattering coefficient at the emission point in distance r (unit: 468 

km−1·sr−1); σ(z) is the extinction coefficient at the distance emission point in distance 469 

z (unit: km−1). This return signal is markedly distinct from atmospheric aerosol 470 

scattering signals and noise, making CBH easily obtainable from the signal difference 471 

or mutation (Sharma et al., 2016). In this study, continuous ground-based lidar data 472 

from the Twin Astronomy Manor in Lijiang City, Yunnan Province, China (26.454°N, 473 

100.0233°E, altitude = 3175 m) are used to evaluate the diurnal cycle characteristics 474 

of CBHs retrieved using GEO satellite algorithms (Young and Vaughan, 2009). The 475 

geographical location and photo of this station are shown in Fig. 4. 476 

The ground-based lidar data at Lijiang station on December 6, 2018, and January 477 

8, 2019, are selected for validation. The number of available and spatially-temporally 478 

matched CBH sample points from ground-based lidar is 78 and 64 on December 6, 479 

2018, and January 8, 2019, respectively. Fig 5a and 5b show the point-to-point CBH 480 

comparisons between ground-based lidar and four GEO satellite CBH algorithms on 481 

December 6, 2018, and January 8, 2019. It is worth noting that the retrieved CBHs of 482 

the two physics-based algorithms on December 6, 2018, are in good agreement with 483 

the reference values from the lidar measurements, and, in particular, the GEO 484 

CLAVR-x algorithm can obtain better results. From the results on January 8, 2019, 485 

more accurate diurnal cycle characteristics of CBHs are revealed by the GEO 486 
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CLAVR-x algorithm than by the GEO IDPS algorithm. 487 

Compared with the CBHs measured by ground-based lidar, the statistics of the 488 

results retrieved from the GEO IDPS algorithm are R = 0.67, MAE = 3.093 km, MBE 489 

= 0.856 km, and RMSE = 3.609 km (Fig. 5c). However, for cloud samples with CBH 490 

below 7.5 km, the GEO IDPS algorithm shows an obvious underestimation of CBH in 491 

Fig. 5c. For the GEO CLAVR-x algorithm, it can also be seen that the matched 492 

samples mostly lie near the 1:1 line with R = 0.773 (the optimal CBH algorithm), 493 

MAE = 1.319 km, MBE = 0.222 km, and RMSE = 1.598 km. In addition, this figure 494 

also shows the CBH comparisons between the ML-based VIS+IR model/IR-single 495 

model algorithms and the lidar measurements, revealing that the retrieved CBH 496 

results from the ML-based VIS+IR model are better than those from the ML-based 497 

IR-single model algorithm. The comparison results between the CBHs of the 498 

ML-based VIS+IR model algorithm and the lidar measurements are around the 1:1 499 

line, with smaller errors and R = 0.599. In contrast, the R between the CBHs of the 500 

ML-based IR-single model algorithm and the lidar measurements is only 0.494, with a 501 

relatively large error. By comparing the retrieved CBHs with the lidar measurements 502 

at Lijiang station, it indicates that CBH results from two physics-based algorithms are 503 

remarkably more accurate, particularly that the GEO CLAVR-x algorithm can well 504 

capture diurnal variation of CBH. 505 

To further assess the accuracy and quality of the diurnal cycle of CBHs retrieved 506 

with these algorithms, CBHs from another ground-based cloud radar dataset covering 507 

the entire year of 2017 are also collected and used in this study. The observational 508 

instrument is a Ka-band (35 GHz) Doppler millimeter-wave cloud radar (MMCR) 509 

located at the Beijing Nanjiao Weather Observatory (a typical urban observation site) 510 

(39.81°N, 116.47°E, altitude = 32 m; see Fig. 4), performing continuous and routine 511 

observations. The MMCR provides a specific vertical resolution of 30 m and a 512 

temporal resolution of 1 minute for single profile detection, based on the radar 513 

reflectivity factor. In a previous study (Zhou et al., 2019), products retrieved by this 514 

MMCR were utilized to investigate the diurnal variations of CTH and CBH, and 515 

comparisons were made between MMCR-derived CBHs and those derived from a 516 

Vaisala CL51 ceilometer. The former study also found that the average correlation 517 

coefficient (R) of CBHs from different instruments reached up to 0.65. It is worth 518 

noting that the basic physics principle for detecting cloud base height from both 519 

spaceborne cloud profiling radar and ground-based cloud radar and lidar 520 
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measurements is the same. All these algorithms of detecting CBH based on the 521 

manifest change of return signals between CBH and the clear sky atmosphere in the 522 

vertical direction (Huo et al., 2019; Ceccaldi et al., 2013). The joint spaceborne 523 

CloudSat/CALIPSO detection might face limitations in penetrating extremely dense, 524 

optically thick, or areas with heavy precipitation clouds. Hence, in comparison, the 525 

CBH values gathered from ground-based lidar and cloud radar measurements are 526 

expected to be more accurate than the data derived from spaceborne 527 

CloudSat/CALIPSO detection. 528 

Similar to Fig. 5, Fig. 6 presents two sample groups of CBH results from the 529 

cloud radar at Beijing Nanjiao station relative to the matched CBHs from the four 530 

retrieval algorithms (GEO IDPS, GEO CLAVR-x, ML-based IR-single, ML-based 531 

VIS+IR) on April 9–10 and July 26–28, 2017. Due to the density of points in the 532 

one-year time series, the point-to-point CBH comparison results for the entire year are 533 

not displayed here (monthly results are shown in the supplementary document). 534 

Similar to the results at Lijiang station discussed in Fig. 5, we observe better and more 535 

robust performances in retrieving diurnal cycle characteristics of CBH from the two 536 

physics-based CBH retrieval algorithms. In contrast, more underestimated CBH 537 

samples are retrieved by the two ML-based algorithms. 538 

To further investigate the diurnal cycle characteristics of retrieved CBH from 539 

GEO satellite imager measurements, Fig. 7 presents box plots of the hourly CBH 540 

errors (relative to the results of cloud radar at Beijing Nanjiao station) in 2017 from 541 

the four different CBH retrieval algorithms. Remarkably, there are significant 542 

underestimations of the CBHs retrieved from the two ML-based algorithms. The 543 

ML-based VIS+IR method achieves relatively better results than the ML-based 544 

IR-single method during the daytime. Comparing the two ML-based algorithms, the 545 

errors of the IR-single model algorithm have a similar standard deviation (2.80 km) to 546 

those of the VIS+IR model algorithm (2.69 km) during the daytime. For the IR-single 547 

model algorithm, it can be applied during both daytime and nighttime, its nighttime 548 

performance degrades slightly, with an averaged RMSE (3.88 km) higher than that of 549 

daytime (3.56 km). To the best of our knowledge, there is no alternative nighttime 550 

CBH product for geostationary satellite imagers right now. The nighttime CBH of the 551 

IR-single model algorithm is the only choice that should be used with discretion. 552 

Fig. 8 shows the comparisons of hourly MAE, MBE, RMSE, and R relative to the 553 

CBHs from the cloud radar at Beijing Nanjiao station during daytime between four 554 
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retrieval algorithms in 2017. The RMSE of the two ML-based algorithms shows 555 

stable diurnal variation. It is noted that all algorithms have lower correlation 556 

coefficients (R) at sunrise, around 07:00 local time, which improve as the day 557 

progresses. However, the GEO CLAVR-x algorithm stands out for its relatively higher 558 

and more stable in R and RMSE during daytime. 559 

Fig. 9a displays scatter plots and relevant statistics of the CBHs retrieved from 560 

the GEO IDPS algorithm against the CBHs from cloud radar. The CBHs from the 561 

GEO IDPS algorithm align well with the matched CBHs from cloud radar at Beijing 562 

Nanjiao station, with R = 0.515, MAE = 2.078 km, MBE = 1.168 km, and RMSE = 563 

2.669 km. In Fig. 9b, the GEO CLAVR-x algorithm shows better results with R = 564 

0.573, MAE = 2.059 km, MBE = −0.204 km, and RMSE = 2.601 km. It is not 565 

surprising that Figs. 8c and 8d reveal obvious underestimated CBH results from the 566 

two ML-based CBH algorithms. Particularly, the CBH results from the ML-based 567 

VIS+IR model algorithm concentrate in the range of 2.5 km to 5 km. Therefore, Fig. 5 568 

to Fig. 9 further substantiates the weak diurnal variations captured by ML-based 569 

techniques, primarily attributed to the scarcity of comprehensive CBH training 570 

samples throughout the entire day. Besides, although the two robust physics-based 571 

algorithms of GEO IDPS and GEO CLAVR-x (the optimal one) can retrieve 572 

high-quality CBHs from H8/AHI data, especially the diurnal cycle of CBH during the 573 

daytime, they still struggle to retrieve CBHs below 1 km. 574 

5. Conclusions and discussion 575 

To explore and argue the optimal and most robust CBH retrieval algorithm from 576 

geostationary satellite imager measurements, particularly focusing on capturing the 577 

typical diurnal cycle characteristics of CBH, this study employs four different 578 

retrieval algorithms (two physics-based and two ML-based algorithms). High 579 

spatial-temporal resolution CBHs are retrieved using the H8/AHI data from 2017 and 580 

2018. To assess the accuracies of the retrieved CBHs, point-to-point validations are 581 

conducted based on spatially-temporally matched CBHs from the joint 582 

CloudSat/CALIOP product, as well as ground-based lidar and cloud radar 583 

observations in China. The main findings and conclusions are outlined below. 584 

Four independent CBH retrieval algorithms, namely physics-based GEO IDPS, 585 

GEO CLAVR-x, ML-based VIS+IR, and ML-based IR-single, have been developed 586 
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and utilized to retrieve CBHs from GEO H8/AHI data. The two physics-based 587 

algorithms utilize cloud top and optical property products from AHI as input 588 

parameters to retrieve high spatial-temporal resolution CBHs, with operations limited 589 

to daytime. In contrast, the ML-based VIS+IR model and IR-single model algorithms 590 

use the matched joint CloudSat/CALIOP CBH product as true values for building RF 591 

prediction models. Notably, the ML-based IR-single algorithm, which relies solely on 592 

infrared band measurements, can retrieve CBH throughout the day. 593 

The accuracy of CBHs retrieved from the four independent algorithms is verified 594 

using the joint CloudSat/CALIOP CBH products for the year 2017. The GEO IDPS 595 

algorithm shows an R of 0.62 and an RMSE of 2.642 km. The GEO CLAVR-x 596 

algorithm provides more accurate CBHs with an R of 0.647 and RMSE of 2.91 km. 597 

After filtering samples with optical thickness less than 1.6 and brightness temperature 598 

(at 11 μm band) greater than 281 K, the ML-based VIS+IR and ML-based IR-single 599 

algorithms achieve higher accuracy with an R(RMSE) of 0.922(1.214 km) and 600 

0.911(1.415 km), respectively. This indicates strong agreement between the two 601 

ML-based CBH algorithms and the CloudSat/CALIOP CBH product. 602 

However, in stark contrast, the results from the physics-based algorithms are 603 

superior to those from the ML-based algorithms (with R and RMSE of 0.592/2.86 km 604 

and 0.385/3.88 km, respectively) when compared with ground-based CBH 605 

observations such as lidar and cloud radar. In the comparison with the cloud radar at 606 

Beijing Nanjiao station in 2017, the R of the GEO CLAVR-x algorithm is 0.573, 607 

while the R of the GEO IDPS algorithm is 0.515. Meanwhile, notable differences are 608 

observed in the CBHs from both ML-based algorithms. Similar conclusions are also 609 

evident in the 2-day comparisons at Yunnan Lijiang station. 610 

The CBH results from the two ML-based algorithms (R > 0.91) can likely be 611 

attributed to the use of the same training and validation dataset source as the joint 612 

CloudSat/CALIOP product. However, this dataset has limited spatial coverage and 613 

small temporal variation, potentially limiting the representativeness of the training 614 

data. In contrast, the GEO CLAVR-x algorithm demonstrates the best performance 615 

and highest accuracy in retrieving CBH from geostationary satellite data. Notably, its 616 

results align well with those from ground-based lidar and cloud radar during the 617 

daytime. However, both physics-based methods, utilizing CloudSat CPR data for 618 

regression, struggle to accurately retrieve CBHs below 1 km, as the lowest 1 km 619 

above ground level of this data is affected by ground clutter. 620 
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Additionally, despite utilizing the same physics principles in spaceborne and 621 

ground-based lidar/radar CBH algorithms, the previous study (Thorsen et al., 2011) 622 

has highlighted differences in profiles between them. Therefore, this factor could 623 

contribute to the relatively poorer results in CBH retrieval by ML-based algorithms 624 

compared to ground-based lidar and radar. The analysis and discussion above suggest 625 

that ML-based algorithms are constrained by the size and representativeness of their 626 

datasets. Therefore, in scenarios involving a large time scope, such as climate 627 

research, it is more reasonable to opt for physics-based cloud base height algorithms. 628 

Ideally, if more spaceborne cloud profiling radars with different passing times 629 

(covering all day) can be included in the training dataset, the promising ML technique 630 

will certainly generate a higher quality CBH product with more comprehensive 631 

observations. The CBH product using ML-based algorithms should continue to be 632 

improved in future work. At present, we will focus on developing physics-based 633 

algorithms for cloud base height for the next generation of geostationary 634 

meteorological satellites, to support the application of these products in weather and 635 

climate domains. 636 

Besides, at night, current GEO satellite imaging instruments encounter 637 

challenges in accurately determining CBH due to limited or absent solar illumination. 638 

Because it is unable to retrieve cloud optical depth in the visible band, the current 639 

method faces limitations. However, there is potential for enhanced accuracy in 640 

deriving cloud optical and microphysical properties, as well as CBH, by incorporating 641 

the Day/Night Band (DNB) observations during nighttime in the future (Walther et al., 642 

2013). 643 
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Appendix A 683 

Based on the previously discussed description of two physics-based cloud base 684 

height (CBH) retrieval algorithms (GEO IDPS and GEO CLAVR-x retrieval 685 

algorithms), cloud products such as cloud top height (CTH), effective particle radius 686 

(Reff), and cloud optical thickness (DCOT) will be utilized in both algorithms. To 687 

validate the reliability of these cloud products derived from the Advanced Himawari 688 

Imager (AHI) aboard the Himawari-8 (H8), a pixel-by-pixel comparison is conducted 689 

with analogous MODIS Collection-6.1 Level-2 cloud products. Both Aqua and Terra 690 

MODIS Level-2 cloud products (MOD06 and MYD06) are accessible for free 691 

download from the MODIS official website. For verification purposes, the 692 

corresponding Level-2 cloud products from January, April, July, and October of 2018 693 

are chosen to assess CTH, DCOT, and Reff retrieved by H8/AHI. 694 

Fig. S2 (in the supplementary document) shows the spatially-temporally matched 695 

case comparisons of CTH, DCOT and Reff from H8/AHI and Terra/MODIS (MYD06) 696 

at 03:30 UTC on January 15, 2018. It can be seen that the CTH, DCOT and Reff from 697 

H8/AHI are in good agreement with the matched MODIS cloud products. However, 698 

there are still some differences in Reff at the regions near 35°N, 110°E in Figs. S2d 699 

and S2c. The underestimated Reff values from H8/AHI relative to MODIS have been 700 

reported in previous studies. (Letu et al., 2019) compared the ice cloud products 701 

retrieved from AHI and MODIS, and concluded that the Reff from both products differ 702 

remarkably in the ice cloud region and the DCOT from them are roughly similar. 703 

However, the DCOT from AHI data is higher in some areas. Looking again at the cloud 704 

optical thickness that at the same time, the slight underestimation of H8/AHI DCOT 705 

can be found in Figs. S2e and S2f. Fig. S3 (in the supplementary document) shows 706 

another case at 02:10 UTC on January 15, 2018. Despite of the good consistence 707 

between H8/AHI and MODIS cloud products, there are slight differences in CTH in 708 

the area around 40°S–40.5°S, 100°E–110°E in Figs. S3a and S3b. Besides, as shown 709 

in Fig. S2, there are still underestimations in the Reff of H8/AHI.  710 

To further compare and validate these three H8/AHI cloud products, the 711 

spatially-temporally matched samples from H8/AHI and Aqua/Terra MODIS in four 712 

months of 2018 are counted within the three intervals of 0.1 km (CTH), 1.0 μm (Reff), 713 

and 1 (DCOT) in Fig. S4 (in the supplementary document). The corresponding mean 714 

absolute error, mean bias error, root mean square error and correlation coefficient (R) 715 

values are also calculated and marked in each subfigure. As can be seen, the R of 716 
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CTH is around 0.75 in all four months and is close to 0.8 in August. The results of 717 

DCOT show the highest R, reaching above 0.8. In contrast, the underestimation trend in 718 

Reff is also shown in this figure. These different consistencies between two 719 

satellite-retrieved cloud products may be attributed to: (1) different spatial-temporal 720 

resolutions between H8/AHI and MODIS; (2) different wavelength bands, bulk 721 

scattering model, and specific algorithm used for retrieving cloud products; (3) 722 

different view zenith angle between GEO and low-earth-orbit satellite platforms (Letu 723 

et al., 2019). In addition, other external factors such as surface type also can affect the 724 

retrieval of cloud product. However, according to Fig. S4, the bulk of the analyzed 725 

samples are still around the 1:1 line, indicating the good quality of H8/AHI cloud 726 

products. 727 

 728 

Appendix B 729 

 The ML-based visible (VIS)+infrared (IR) model algorithm mentioned above 730 

uses 230 typical variables (see Table 1) as model predictors, and the importance 731 

scores of top-30 predictors are ranked in Fig. S5 (in the supplementary document). It 732 

can be seen that the most important variables are CTH and cloud top temperature, and 733 

DCOT is an important or sensitive factor affecting these two quantities. A sensitivity 734 

test is also performed to further investigate the potential influence of DCOT on the 735 

CBH retrieval by the VIS+IR model (see Table S1 in the supplementary document). 736 

From Fig. S7a, we find that the samples with DCOT lower than 5 cause the relatively 737 

large CBH errors compared with the matched CBHs from the joint CALIPSO 738 

(Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation)/CloudSat 739 

product.  740 

According to the results in this Fig. S7b, we may filter the samples with 741 

relatively small DCOT to further improve the accuracy of CBH retrieval by the VIS+IR 742 

model (see Table S1). Fig. B3b shows that after filtering the samples with the DCOT 743 

less than 1.6, the R increases from 0.895 to 0.922, implying a better performance of 744 

CBH retrieval. According to the ranking of predictor importance (see Fig. S6 in the 745 

supplementary document), we also conduct another sensitivity test on the BT 746 

observed by H8/AHI IR Channel-14 (Cha14) at 11 μm, which plays an important role 747 

in the IR-single model. Fig. S7c shows that the BT values of H8/AHI Channel-14 748 

ranges from 160 K to 316 K, and the samples with BT higher than 300 K show large 749 

CBH errors. Similarly, by filtering the samples with BT higher than 281 K, we can get 750 
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a better IR-single model algorithm for retrieving high-quality CBH (see Table S2 in 751 

the supplementary document). Fig. S7d also proves that the R value increases from 752 

0.868 to 0.911. 753 
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 961 

 962 

Tables and Figures 963 

 964 
Table 1. Predictand and predictor variables for both visible (VIS)+infrared (IR) model 965 

and IR-single regression model training, which are divided according to the different 966 

predictor variables from satellite and NWP data 967 

Predictand Cloud base height from the joint CloudSat/CALIPSO product 

Predictor 
[satellite 

measurements] 

IR-single 

BT(3.9μm), BT(6.2μm), BT(6.9μm), BT(7.3μm), 
BT(8.6μm), BT(9.6μm), BT(10.4μm), BT(11.2μm), BT 
(12.4μm), BT (13.3μm),  
BTD(11.2–12.4μm), BTD(11.2–13.3μm) [Unit = K], 
Air Mass (1/cos(VZA)), 
View azimuth angles [Unit = degree], 
Cloud top height from H8/AHI [unit: m], 
Cloud top temperature from H8/AHI [unit: K] 

VIS+IR 

Ref(0.47μm), Ref(0.51μm), Ref(0.64μm), Ref(0.86μm), 
Ref(1.64μm), Ref(2.25μm), BT(3.9μm), BT(6.2μm), 
BT(6.9μm), BT(7.3μm), BT(8.6μm), BT(9.6μm), 
BT(10.4μm), BT(11.2μm), BT(12.4μm), BT(13.3μm), 
BTD(11.2–12.4μm), BTD(11.2–13.3μm) [Unit = K], 
Air Mass(1/cos(VZA)), 
Air Mass(1/cos(SZA)), 
View/Solar Azimuth angles [Unit = degree], 
Cloud top height from H8/AHI [unit: m], 
Cloud top temperature from H8/AHI [unit: K] 

Predictor [GFS 
NWP] 

IR-single/ 
VIS+IR 

Altitude profile (from surface to about 21 km, 67 layers) 
[unit: m], 
Temperature profile (from surface to about 21 km, 67 
layers) [unit: K], 
Relative humidity profile (from surface to about 21 km, 
67 layers) [unit: %], 
Total precipitable water, 
Surface temperature [unit: K] 

Predictor 
[other] 

IR-single/ 
VIS+IR Surface elevation [unit: m] 

Notes: VZA = view zenith angle [unit: degree]; SZA = solar zenith angle [unit: 968 

degree] 969 
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 975 
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 977 
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 978 
 979 
 980 
 981 
 982 

 983 

Figure 1. Comparison of full disk CBH results retrieved by the four-independent 984 

algorithms at 02:00 UTC on January 1, 2017. (a) GEO IDPS algorithm, (b) GEO 985 

Clouds from AVHRR Extended (CLAVR-x) algorithm, (c) ML-based (RF, random 986 

forest) VIS+IR algorithm and (d) ML-based (RF) IR-single algorithm. 987 
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 998 

 999 
Figure 2. Density distributions of CBHs retrieved from (a) GEO IDPS, (b) GEO 1000 

CLAVR-x, (c) VIS+IR and (d) IR-single algorithms compared with the CBHs from 1001 

the joint CloudSat/CALIPSO product (taken as true values) in 2017. The mean 1002 

absolute error (MAE), mean bias error (MBE), root mean square error (RMSE) and R 1003 

are listed in each subfigure where the difference exceeds the 95% significance level (p 1004 

< 0.05) according to the Pearson’s χ2 test.  1005 
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 1018 

 1019 

Figure 3. Inter-comparisons of CBH products retrieved by CloudSat (red solid circle), 1020 

the GEO IDPS algorithm (blue solid circle), the GEO CLAVR-x (green solid circle), 1021 

the ML-based VIS+IR model algorithm (orange solid circle), and the ML-based 1022 

IR-single model algorithm (pink solid circle) at (a) 03:16–04:55 UTC on January 13, 1023 

2017 (a) and (b) 05:38–07:17 UTC on January 14, 2017. The black and gray colormap 1024 

represents the matched CloudSat radar reflectivity.  1025 
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 1037 

 1038 

 1039 

Figure 4. Geographical locations and photos of lidar and cloud radar at Yunnan 1040 

Lijiang and Beijing Nanjiao stations. 1041 
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 1060 

 1061 

Figure 5. Comparisons of the CBHs from the ground-based lidar measurements 1062 

(black solid circle) at Yunnan Lijiang station and the four GEO satellite retrieval 1063 

algorithms, namely the GEO IDPS (red cross symbol), the GEO CLAVR-x (green 1064 

solid asterisk), the ML-based VIS+IR model (orange solid diamond) and the 1065 

ML-based IR-single model (blue plus sign) algorithms. Fig 6a and 6b show the time 1066 

series of CBHs from lidar and the four GEO satellite retrieval algorithms on 1067 

December 6, 2018 and January 8, 2019, respectively. Fig 6c shows the scatterplots of 1068 

CBH samples from the lidar measurements and the four retrieval algorithms. 1069 
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 1077 

 1078 

 1079 

Figure 6. Same as Fig. 5, but for the CBH sample results from the cloud radar at 1080 

Beijing Nanjiao station (black solid circle) on April 9–10, 2017 (top panel) and July 1081 

26–28, 2017 (bottom panel). 1082 
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 1097 

 1098 

 1099 

 1100 
Figure 7. Box plots of the hourly CBH errors of four GEO satellite retrieval 1101 

algorithms (GEO IDPS, GEO CLAVR-x, ML-based VIS+IR and ML-based IR-single) 1102 

relative to the CBHs from the cloud radar at Beijing Nanjiao station in 2017. The box 1103 

symbols signify the 25th, 50th and 75th percentiles of errors. The most extreme 1104 

sample points between the 75th and outlier, and the 25th percentiles and outliers are 1105 

marked as whiskers and diamonds, respectively. Except for the period between 7 and 1106 

17 UTC (local time), the three algorithms of GEO CLAVR-x, GEO IDPS, and ML 1107 

VIS+IR are unavailable due to the lack of reflected solar radiance measurements. 1108 
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 1125 

 1126 
Figure 8. Comparisons of hourly (a) MAE, (b) MBE, (c) RMSE, and (d) R of CBH 1127 

(relative to the CBHs from the cloud radar at Beijing Nanjiao station) from 07 to 17 1128 

(local time) between four retrieval algorithms (GEO IDPS, GEO CLAVR-x, 1129 

ML-based VIS+IR and ML-based IR-single) in 2017. 1130 
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 1134 

Figure 9. Comparisons between the CBHs from the cloud radar at Beijing Nanjiao 1135 

station and the matched CBHs from the four retrieval algorithms (GEO IDPS, GEO 1136 

CLAVR-x, ML-based VIS+IR and ML-based IR-single) in 2017. 1137 
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