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Abstract. Two groups of retrieval algorithms, physics-based and the other 34 

machine-learning (ML) based, each consisting of two independent approaches, have 35 

been developed to retrieve cloud base height (CBH) and its diurnal cycle from 36 

Himawari-8 geostationary satellite observations. Validations have been conducted 37 

using the joint CloudSat/CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) 38 

CBH products in 2017, ensuring independent assessments. Results show that the two 39 

ML-based algorithms exhibit markedly superior performance (the optimal method is 40 

with a correlation coefficient of R > 0.91 and an absolute bias of approximately 0.8 41 

km) compared to the two physics-based algorithms. However, validations based on 42 

CBH data from the ground-based lidar at the Lijiang station in Yunnan province and 43 

the cloud radar at the Nanjiao station in Beijing, China, explicitly present 44 

contradictory outcomes (R < 0.60). An identifiable issue arises with significant 45 

underestimations in the retrieved CBH by both ML-based algorithms, leading to an 46 

inability to capture the diurnal cycle characteristics of CBH. The strong consistence 47 

observed between CBH derived from ML-based algorithms and the spaceborne active 48 

sensors of CloudSat/CALIOP may be attributed to utilizing the same dataset for 49 

training and validation, sourced from the CloudSat/CALIOP products. In contrast, the 50 

CBH derived from the optimal physics-based algorithm demonstrates the good 51 

agreement in diurnal variations of CBH with ground-based lidar/cloud radar 52 

observations during the daytime (with an R value of approximately 0.7). Therefore, 53 

the findings in this investigation from ground-based observations advocate for the 54 

more reliable and adaptable nature of physics-based algorithms in retrieving CBH 55 

from geostationary satellite measurements. Nevertheless, under ideal conditions, with 56 

an ample dataset of spaceborne cloud profiling radar observations encompassing the 57 

entire day for training purposes, the ML-based algorithms may hold promise in still 58 

delivering accurate CBH outputs. 59 

Key words: Geostationary meteorological satellite; cloud base height; physics-based 60 

algorithm; machine learning. 61 
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1 Introduction 63 

    Clouds, comprising visible aggregates like atmospheric water droplets, 64 

supercooled water droplets, ice crystals, etc., cover roughly 70% of the Earth's surface 65 

(Stubenrauch et al., 2013). They play a pivotal role in global climate change, the 66 

hydrometeor cycle, aviation safety, and serve as a primary focus in weather 67 

forecasting and climate research, particularly storm clouds (Hansen, 2007; Hartmann 68 

and Larson, 2002). From advanced geostationary (GEO) and polar-orbiting (LEO, 69 

low earth orbit) satellite imagers, various measurable cloud properties, such as cloud 70 

fraction, cloud phase, cloud top height (CTH), and cloud optical thickness (DCOT), are 71 

routinely retrieved. However, the high-quality cloud geometric height (CGH) and 72 

cloud base height (CBH), a fundamental macro physical parameter delineating the 73 

vertical distribution of clouds, remains relatively understudied and underreported. 74 

Nonetheless, for boundary-layer clouds, the cloud base height stands as a critical 75 

parameter depending on other cloud-controlling variables. These variables encompass 76 

the cloud base temperature (Zhu et al., 2014), cloud base vertical velocity (Zheng et 77 

al., 2020), activation of CCN (Cloud Condensation Nuclei) at the cloud base 78 

(Rosenfeld et al., 2016; Miller et al., 2023), and the cloud-surface decoupling state 79 

(Su et al., 2022). These factors significantly impact convective cloud development 80 

and ultimately the climate. As well known, there are distinct diurnal cycle 81 

characteristics of clouds in different regions across the globe (Li et al., 2022). These 82 

diurnal cycle characteristics primarily stem from the daily solar energy cycle absorbed 83 

by both the atmosphere and Earth's surface. Besides, vertical atmospheric motions are 84 

shaped by imbalances in atmospheric heating and surface configurations, also leading 85 

to a range of cloud movements and structures (Miller et al., 2018). Cloud base plays a 86 

pivotal role in weather and climate processes. It is critical for predicting fog and 87 

cloud-related visibility issues important in aviation and weather forecasting. For 88 

instance, lower cloud bases often lead to more intense rainfall. In climate modeling, 89 

CBH is integral for accurate long-term weather predictions and understanding the 90 

radiative balance of the Earth, which influences global temperatures (Zheng and 91 

Rosenfeld, 2015). Hence, the accurate determination of CBH and its diurnal cycle 92 

with high spatiotemporal resolution becomes very important, necessitating 93 

comprehensive investigations (Viúdez-Mora et al., 2015; Wang et al., 2020). Such 94 
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efforts can provide deeper insights into potential ramifications of clouds on radiation 95 

equilibrium and global climate systems. 96 

However, as one of the most crucial cloud physical parameters in atmospheric 97 

physics, the CBH poses challenges in terms of measurement or estimation from space. 98 

Presently, the primary methods for measuring CBH rely on ground-based 99 

observations, utilizing tools such as sounding balloons, Mie-scattering lidars, 100 

stereo-imaging cloud-height detection technologies, and cloud probe sensors 101 

(Forsythe et al., 2000; Hirsch et al., 2011; Seaman et al., 2017; Zhang et al., 2018; 102 

Zhou et al., 2019; Zhou et al., 2024). While in-situ ground-based observation methods 103 

offer highly accurate, reliable, and timely continuous CBH results, they are 104 

constrained by localized observation coverage and the sparse distribution of 105 

observation sites (Aydin and Singh, 2004). In recent decades, with the rapid 106 

advancement of meteorological satellite observation technology, spaceborne 107 

observing methods have emerged that provide global cloud observations with high 108 

spatiotemporal resolution compared to conventional ground-based remote sensing 109 

methods. In this realm, satellite remote sensing techniques for measuring CBH fall 110 

primarily into two categories: active and passive methods. Advanced active remote 111 

sensing technologies like CloudSat (Stephens et al., 2002) and Cloud-Aerosol Lidar 112 

and Infrared Pathfinder Satellite Observation (CALIPSO) (Winker et al., 2009) in the 113 

National Aeronautics and Space Administration (NASA) A-Train (Afternoon-Train) 114 

series (Stephens et al., 2002) can capture global cloud profiles, including CBH, with 115 

high quality by detecting unique return signals from cloud layers using onboard active 116 

millimeter wave radar or lidar. However, their viewing footprints are limited along the 117 

nadir of the orbit, implying that observation coverage remains confined primarily to a 118 

horizontal scale (Min et al., 2022; Lu et al., 2021). 119 

In addition to active remote sensing methods, satellite-based passive remote 120 

sensing technologies can also play an important role in estimating CBH (Meerkötter 121 

and Bugliaro, 2009; Lu et al., 2021). The physics-based principles and retrieval 122 

methods for CTH have reached maturity and are now widely employed in satellite 123 

passive remote sensing field (Heidinger and Pavolonis, 2009; Wang et al., 2022). 124 

However, the corresponding physical principles or methods for measuring CBH using 125 

satellite passive imager measurements are still not entirely clear and unified 126 

(Heidinger et al., 2019; Min et al., 2020). A recent study by (Yang et al., 2021) 127 

utilized oxygen A-band data observed by the Orbiting Carbon Observatory 2 (OCO-2) 128 
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to retrieve single-layer marine liquid CBH. These passive space-based remote sensing 129 

methods aforementioned, such as satellite imagery, play a key role in retrieving CBH. 130 

In terms of detection principles, the first method involves the extrapolation technique 131 

for retrieving CBH for clouds of the same type. For instance, (Wang et al., 2012) 132 

proposed a method to extrapolate CBH from CloudSat using spatiotemporally 133 

matched MODIS (Moderate Resolution Imaging Spectroradiometer) cloud 134 

classification data (Baum et al., 2012; Platnick et al., 2017). The second 135 

physics-based retrieval method first approximates the cloud geometric thickness using 136 

its optical thickness. It then employs the previously derived CTH product to compute 137 

the corresponding CBH using the respective NOAA (National Oceanic and 138 

Atmospheric Administration) SNPP/VIIRS (Suomi National Polar-orbiting 139 

Partnership/Visible Infrared Imaging Radiometer Suite) products (Noh et al., 2017). 140 

Hutchison et al. (2002 and 2006) also formulated an empirical algorithm that 141 

estimates both cloud geometric thickness (CGT) and CBH. This algorithm relies on 142 

statistical analyses derived from MODIS DCOT and cloud liquid water path products 143 

(Hutchison et al., 2006; Hutchison, 2002). 144 

Machine learning (ML) has proven to be highly effective in addressing nonlinear 145 

problems within remote sensing and meteorology fields, such as precipitation 146 

estimation and CTH retrieval (Min et al., 2020; HåKansson et al., 2018; Kühnlein et 147 

al., 2014). In recent years, several studies have leveraged ML-based algorithms to 148 

retrieve CBH, establishing nonlinear connections between CBH and GEO satellite 149 

observations. For instance, Tan et al. (2020) integrated CTH and cloud optical 150 

properties products from Fengyun-4A (FY-4A) GEO satellite with spatiotemporally 151 

matched CBH data from CALIPSO/CloudSat. They developed a random forest (RF) 152 

model for CBH retrieval. Similarly, Lin et al. (2022) constructed a gradient boosted 153 

regression tree (GBRT) model using U.S. new-generation Geostationary Operational 154 

Environmental Satellites-R Series (GOES-R) Advanced Baseline Imager (ABI) level 155 

1B radiance data and the ERA5 (the fifth generation ECMWF) reanalysis dataset 156 

(https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset). They employed 157 

CALIPSO CBH data as labels to achieve single-layer CBH retrievals. Notably, the 158 

CBH quality of ML-based algorithms was found to surpass that of physics-based 159 

algorithms (Lin et al., 2022). Moreover, Tana et al. (2023) utilized Himawari-8 data 160 

and the RF algorithm to develop a novel CBH algorithm, achieving a similar high 161 

correlation coefficient (R) of 0.92 and a low root mean square error (RMSE) of 1.17 162 
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km compared with CloudSat/CALISPO data. 163 

    However, these former studies did not discuss whether both physics-based and 164 

ML-based algorithms of GEO satellite could retrieve the diurnal cycle of CBH well. 165 

This gap in research could be mainly attributed to potential influences from the fixed 166 

LEO satellite (with active radar or lidar) passing time in the previous CBH retrieval 167 

model (Lin et al., 2022). The diurnal cycles of CBH have not been well investigated 168 

in both GEO and LEO remote sensing research. Hence, it is crucial to thoroughly 169 

investigate the diurnal cycle features of CBH derived from GEO satellite 170 

measurements by comparing them with ground-based radar and lidar observations 171 

(Min and Zhang, 2014; Warren and Eastman, 2014). In this study, we aim to assess 172 

the applicability and feasibility of both physics-based and ML-based algorithms of 173 

GEO satellites in capturing the diurnal cycle characteristics of CBH. 174 

    The subsequent sections of this paper are structured as follows. Section 2 175 

provides a concise overview of the data employed in this study. Following that, 176 

section 3 introduces the four distinct physics/ML-based CBH retrieval algorithms. In 177 

section 4, the CBH results obtained from these four algorithms are analyzed, and 178 

comparisons are drawn with spatiotemporally matched CBHs from ground-based 179 

cloud radar and lidar. Finally, section 5 encapsulates the primary conclusions and new 180 

findings derived from this study. 181 

2 Data 182 

In this study, observations from the Himawari-8 (H8) Advanced Himawari 183 

Imager (AHI) are utilized for the retrieval of high spatiotemporal resolution CBH. 184 

Launched successfully by the Japan Meteorological Administration on October 7, 185 

2014, the H8 geostationary satellite is positioned at 140.7°E. The AHI onboard H8 186 

encompasses 16 spectral bands ranging from 0.47 μm to 13.3 μm, featuring spatial 187 

resolutions of 0.5–2 km. This includes 3 visible (VIS) bands at 0.5–1 km, 3 188 

near-infrared (NIR) bands at 1–2 km, and 10 infrared (IR) bands at 2 km. The 189 

H8/AHI can scan a full disk area within 10 minutes, two specific areas within 2.5 190 

minutes, a designated area within 2.5 minutes, and two landmark areas within 0.5 191 

minutes (Iwabuchi et al., 2018). Its enhanced temporal resolution and observation 192 

frequency facilitate the tracking of rapidly changing weather systems, enabling the 193 

accurate determination of quantitative atmospheric parameters (Bessho et al., 2016). 194 
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Operational H8/AHI Level-1B data, accessible from July 7, 2015, are freely 195 

available on the satellite product homepage of the Japan Aerospace Exploration 196 

Agency (Letu et al., 2019). The Level-2 cloud products utilized in this study, 197 

including cloud mask (CLM), CTH, cloud effective particle radius (CER or Reff), and 198 

DCOT, are generated by the Fengyun satellite science product algorithm testbed 199 

(FYGAT) (Wang et al., 2019; Min et al., 2017) of the China Meteorological 200 

Administration (CMA) for various applications. According to previous CALIPSO 201 

validations (Min et al., 2020), the absolute bias of cloud top height retrieved by the 202 

H8 satellite is approximately 3 km, with an absolute bias of 1 to 2 km for samples 203 

below 5 km. The accuracy of CTH is crucial for estimating CBH in the subsequent 204 

algorithm. It is important to note that certain crucial preliminary cloud products, such 205 

as CLM, have been validated in prior studies (Wang et al., 2019; Liang et al., 2023). 206 

Nevertheless, before initiating CBH retrieval, it is imperative to validate the H8/AHI 207 

cloud optical and microphysical products from the FYGAT retrieval system. This 208 

validation has been carried out by using analogous MODIS Level-2 cloud products as 209 

a reference. Additional details regarding the validation of cloud products are provided 210 

in the Appendix A section. 211 

In addition to the H8/AHI Level-1/2 data, the Global Forecast System (GFS) 212 

numerical weather prediction (NWP) data are employed for CBH retrieval in this 213 

study. The variables include land/sea surface temperature and the vertical profiles of 214 

temperature, humidity, and pressure. Operated by the U.S. NOAA (Kalnay et al., 215 

1996), the GFS serves as a global and advanced NWP system. The operational GFS 216 

system routinely delivers global high-quality and gridded NWP data at 3-hour 217 

intervals, with four different initial forecast times per day (00:00, 06:00, 12:00, and 218 

18:00 UTC). The three-dimensional NWP data cover the Earth in a 0.5°×0.5° grid 219 

interval and resolve the atmosphere with 26 vertical levels from the surface (1000 hPa) 220 

up to the top of the atmosphere (10 hPa).  221 

As previously mentioned, the official MODIS Collection-6.1 Level-2 cloud 222 

product Climate Data Records (Platnick et al., 2017) are utilized in this study to 223 

validate the H8/AHI cloud products (CTH, CER, and DCOT) generated by the FYGAT 224 

system. High-quality, long-term series MODIS data is often used as a validation 225 

reference to evaluate the products of new satellites. MODIS sensors are onboard 226 

NASA Terra and Aqua polar-orbiting satellites. Terra functions as the morning 227 

satellite, passing through the equator from north to south at approximately 10:30 local 228 



      8 

time, while Aqua serves as the afternoon satellite, traversing the equator from south to 229 

north at around 13:30 local time. As a successor to the NOAA Advanced Very High 230 

Resolution Radiometer (AVHRR), MODIS features 36 independent spectral bands 231 

and a broad spectral range from 0.4 μm (VIS) to 14.4 μm (IR), with a scanning width 232 

of 2330 km and spatial resolutions ranging from 0.25 to 1.0 km. Recent studies 233 

(Baum et al., 2012; Platnick et al., 2017) have highlighted significant improvements 234 

and collective changes in cloud top, optical, and microphysical properties from 235 

Collection-5 to Collection-6. 236 

In addition to the passive spaceborne imaging sensors mentioned above, the 237 

CloudSat satellite , equipped with a 94-GHz active cloud profiling radar (CPR), holds 238 

the distinction of being the first sun-synchronous orbit satellite specifically designed 239 

to observe global cloud vertical structures and properties. It is part of the A-Train 240 

series of satellites, akin to the Aqua satellite, launched and operated by NASA 241 

(Heymsfield et al., 2008). CALIPSO is another polar-orbiting satellite within the 242 

A-Train constellation, sharing an orbit with CloudSat and trailing it by a mere 10–15 243 

seconds. CALIPSO is the first satellite equipped with an active dual-channel CALIOP 244 

at 532 and 1064 nm bands (Hunt et al., 2009). Both CloudSat and CALIPSO possess 245 

notable advantages over passive spaceborne sensors due to the 94-GHz radar of 246 

CloudSat and the joint return signals of lidar and radar on CALIPSO. These features 247 

enhance their sensitivity to optically thin cloud layers and ensure strong penetration 248 

capability, resulting in more accurate CTH and CBH detections compared to passive 249 

spaceborne sensors (CAL_LID_L2_05kmCLay-Standard-V4-10). The joint cloud 250 

type products of 2B-CLDCLASS-LIDAR, derived from both CloudSat and CALIPSO 251 

measurements, offer a comprehensive description of cloud vertical structure 252 

characteristics, cloud type, CTH, CBH, etc. The time interval between each profile in 253 

this product is approximately 3.1 seconds, and the horizontal resolution is 2.5 km 254 

(along track)×1.4 km (cross-track). Each profile is divided into 125 layers with a 255 

240-m vertical interval. For more details on 2B-CLDCLASS-LIDAR products, please 256 

refer to the CloudSat official product manual (Sassen and Wang, 2008). In this study, 257 

we consider the lowest effective cloud base height from the joint CloudSat/CALIOP 258 

data as the true values for training and validation. Please note that for this study, we 259 

utilized one-year H8/AHI data and matched it with the joint CloudSat/CALIOP data 260 

from January 1 to December 31 of 2017. 261 
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3 Physics/machine-learning based cloud base height algorithms 262 

3.1 GEO cloud base height retrieval algorithm from the interface data processing 263 
segment of the Visible Infrared Imaging Radiometer Suite 264 

    The Joint Polar Satellite System (JPSS) program is a collaborative effort between 265 

NASA and NOAA. The operational CBH retrieval algorithm, part of the 30 266 

Environmental Data Records (EDR) of JPSS, can be implemented operationally 267 

through the Interface Data Processing Segment (IDPS) (Baker, 2011). In this study, 268 

our geostationary satellite CBH retrieval algorithm aligns with the IDPS CBH 269 

algorithm developed by (Baker, 2011). Utilizing the geostationary H8/AHI cloud 270 

products discussed earlier, this new GEO CBH retrieval algorithm is succinctly 271 

outlined below. It is important to note that multilayer cloud scenes remain a challenge 272 

for retrieving both CTH and CBH, especially when considering the column-integrated 273 

cloud water path (CWP) used in physics-based algorithms (Noh et al., 2017). In this 274 

study, we will simplify the scenario by assuming a single-layer cloud for all 275 

algorithms. 276 

 The new GEO IDPS CBH algorithm initiates the process by first retrieving the 277 

CGT from bottom to top. Subsequently, CGT is subtracted from the corresponding 278 

CTH to calculate CBH (CBH = CTH − CGT). The algorithm is divided into two 279 

independent executable modules based on cloud phase, distinguishing between liquid 280 

water and ice clouds. CBH of water cloud retrieval requires DCOT and CER as inputs. 281 

For ice clouds, an empirical equation is employed for CBH retrieval. However, the 282 

standard deviations of error in IDPS CBH for individual granules often exceed the 283 

JPSS VIIRS minimum uncertainty requirement of ±2km (Noh et al., 2017). For a 284 

more comprehensive understanding of this CBH algorithm, please refer to the IDPS 285 

algorithm documentation (Baker, 2011). Note that, similar to previous studies on 286 

cloud retrieval (Noh et al., 2017; Platnick et al., 2017), this investigation also assumes 287 

a single-layer cloud for all CBH algorithms, due to the challenges associated with 288 

determining multilayer cloud structures. 289 

3.2 GEO cloud base height retrieval algorithm implemented in the Clouds from 290 
Advanced Very High Resolution Radiometer Extended system 291 

As mentioned above, the accuracy of the GEO IDPS algorithm is highly 292 

dependent on the initial input parameters such as cloud phase, DCOT and Reff, which 293 



      10 

may introduce some uncertainties in the final retrieval results. In contrast, another 294 

statistically-based algorithm is proposed and implemented here, which is named the 295 

GEO CLAVR-x (Clouds from AVHRR Extended, NOAA's operational cloud 296 

processing system for the AVHRR) CBH algorithm (Noh et al., 2017), and it mainly 297 

refers to NOAA AWG CBH algorithm (ACBA) (Noh et al., 2022). Previous studies 298 

have also demonstrated a R of 0.569 and a RMSE of 2.3 km for the JPSS VIIRS 299 

CLAVR-x CBH algorithm. It is anticipated that this algorithm will also be employed 300 

for the NOAA GOES-R geostationary satellite imager (Noh et al., 2017; Seaman et al., 301 

2017). 302 

Similar to the GEO IDPS CBH retrieval algorithm mentioned earlier, the GEO 303 

CLAVR-x CBH retrieval algorithm also initially obtains CGT and CTH, subsequently 304 

calculating CBH by subtracting CGT from CTH (CTH−CGT). However, the specific 305 

calculation method for the CGT value differs. This algorithm is suitable for 306 

single-layer and the topmost layer of multi-layer clouds, computing CBH using the 307 

CTH at the top layer of the cloud. In comparison with the former GEO IDPS CBH 308 

algorithm, the GEO CLAVR-x CBH algorithm considers two additional cloud types: 309 

deep convection clouds and thin cirrus clouds. For more details on this CLAVR-x 310 

CBH algorithm, please refer to the original algorithm documentation (Noh et al., 311 

2017). 312 

3.3 Random-forest-based cloud base height estimation algorithm 313 

RF, one of the most significant ML algorithms, was initially proposed and 314 

developed by (Breiman, 2001). It is widely employed to address classification and 315 

regression problems based on the law of large numbers. The RF method is well-suited 316 

for capturing complex or nonlinear relationships between predictors and predictands. 317 

In this study, two distinct ML-based GEO CBH algorithms, namely VIS+IR and 318 

IR-single (only uses observations of H8/AHI IR channels), are devised to retrieve or 319 

predict the CBH using different sets of predictors. The RF training of the chosen 320 

predictors is formulated as follows: 321 

CBH=RFreg[x1, x2, …, xn],                                              (1) 322 

where RFreg denotes the regression RF model, and xi represents the ith predictor. The 323 

selected predictors from H8/AHI for both the VIS+IR and IR RF model training and 324 

prediction are detailed in Table 1, mainly referencing Min et al. (2020) and Tan et al. 325 

(2020). The VIS+IR algorithm retrieves CBH using NWP data (atmospheric 326 
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temperature and altitude profiles, total precipitable water (TPW), surface temperature), 327 

surface elevation, air mass 1 (air mass 1=1/cos(view zenith angle)), and air mass 2 (air 328 

mass 2=1/cos(solar zenith angle)). The rationale for choosing air mass and TPW is 329 

their ability to account for the potential absorption effect of water vapor along the 330 

satellite viewing angle. The predictors in CBH retrieval also include the IR band 331 

Brightness Temperature (BT) and VIS band reflectance. The IR-single algorithm 332 

selects the same GFS NWP data as the VIS+IR algorithm but employs only view 333 

zenith angles and azimuth angles.  334 

To optimize the RF prediction model, the hyperparameters of the RF model are 335 

tuned individually. The parameters and their dynamic ranges involved in tuning the 336 

RF prediction models include the number of trees [100, 200, 300, 400, 500], the 337 

maximum depth of trees [10, 20, 30, 40, 50], the minimum number of samples 338 

required to split an internal node [2, 4, 6, 8, 10], and the minimum number of samples 339 

required to be at a leaf node [1, 3, 5, 7, 9]. In this study, we set the smallest number of 340 

trees in the forest to 100 and the maximum depth of the tree to 40. 341 

3.4 Evaluation method 342 

The performance of RF models and physics-based methods will be assessed using 343 

mean absolute error (MAE), mean bias error (MBE), RMSE, R, and standard 344 

deviation (STD) scores using the testing dataset. These scores mentioned above are 345 

used to understand different aspects of the predictive performance of model: MAE 346 

and RMSE provide insights into the average error magnitude, MBE indicates bias in 347 

the predictions, R evaluates the linear association between observed and predicted 348 

values, and STD assesses the variability of the predictions. In the RF IR-single 349 

algorithm, 581,783 matching points are selected from H8/AHI and CloudSat data for 350 

2017. Seventy percent of these points are randomly assigned to the training dataset, 351 

and the remainder serves as the testing dataset. For the RF VIS+IR algorithm, a total 352 

of 418,241 matching points are chosen, with 70% randomly allocated to the training 353 

set. Note that the reduced data amount is because only daytime data can be used for 354 

the VIS+IR method training. It's important to note that the two training datasets in 355 

CloudSat will also be used to verify the CBHs obtained by cloud radar and lidar. The 356 

statistical formulas for evaluation are as follows: 357 

MAE = !
"
∑ |𝑦# − 𝑥#|"
#$! ,                                               (2) 358 
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MBE = !
"
∑ (𝑦# − 𝑥#)"
#$! ,                                               (3) 359 

RMSE = /!
"
∑ (𝑦# − 𝑥#)%"
#$! ,                                           (4) 360 

𝑅 = 	 ∑ ((!)(*)
"
!#$ (,!),̅)

.∑ ((!)(*)%"
!#$ .∑ (,!),̅)%"

!#$

,                                           (5) 361 

STD = / !
")!

∑ (𝑥# − 𝑥̅)%"
#$! ,                                            (6) 362 

where n is the sample number, yi is the ith CBH retrieval result, and xi is the ith joint 363 

CloudSat/CALIOP CBH product. 364 

Since the two RF models (VIS+IR and IR-single) select 230 typical variables to 365 

fit CBHs, the importance scores of these predictors in the two ML-based algorithms 366 

are ranked for better optimization. In a RF model, feature importance indicates how 367 

much each input variable contributes to the model's predictive accuracy by measuring 368 

the decrease in impurity or error when the feature is used to split data (Gregorutti et 369 

al., 2017). In the VIS+IR model, the top-ranked predictors are CTH and cloud top 370 

temperature (CTT) from the H8/AHI Level-2 product (see Fig. B1 in Appendix B). It 371 

is important to note that DCOT is a crucial and sensitive factor for these ML-based 372 

algorithms. Retrieving CBH samples with relatively low DCOT remains challenging 373 

due to the low signal-to-noise ratio when DCOT is low (Lin et al., 2022). To address 374 

this issue, samples with DCOT less than 1.6 are filtered in the VIS+IR model, and 375 

samples with relatively large BTs at Channel-14 are filtered in the IR-single model. 376 

This filtering process significantly improves the R value from 0.869 to 0.922 in the 377 

VIS+IR model and from 0.868 to 0.911 in the IR-single model. For more details on 378 

the algorithm optimization, please refer to Appendix B. 379 

In this study, the H8/AHI satellite CBH data retrieved by the four algorithms 380 

mentioned before are matched spatiotemporally with the 2B-CLDCLASS-LIDAR 381 

cloud product from joint CloudSat/CALIPSO observations in 2017. In this process, 382 

the nearest distance matching method is employed, ensuring that collocating the 383 

closest points and the observation time difference between the CloudSat/CALIPSO 384 

observation point and the matched Himwari-8 data is less than 5 minutes (Noh et al., 385 

2017). As in earlier study (Min et al., 2020), we also used 70% of the matched data 386 

for training and 30% of an independent sample for validation. Figure 1 displays a 387 

comparison of CBH results over the full disk at 02:00 UTC on January 1, 2017, 388 

retrieved by the GEO IDPS algorithm, the GEO CLAVR-x algorithm, the RF VIS+IR 389 
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algorithm, and the RF IR-single algorithm for all cloud conditions including single 390 

and multilayer cloud scenes. A similar distribution pattern and magnitude of CBHs 391 

retrieved by these four independent algorithms can be observed in Figure 1. However, 392 

notable differences exist between physics-based and ML-based algorithms. Further 393 

comparisons are conducted and analyzed with spaceborne and ground-based lidar and 394 

radar observations in the subsequent sections of this study. 395 

 396 

4 Results and Discussions  397 

4.1 Comparisons with the joint CloudSat/CALIPSO cloud base height product 398 

4.1.1 Joint scatter plots 399 

Figure 2 presents the density scatter plot of the CBHs retrieved from the GEO 400 

IDPS and GEO CLAVR-x algorithms compared with the CBHs from the joint 401 

CloudSat/CALIPSO product, along with the related scores of MAE, MBE, RMSE, 402 

and R calculated and labeled in each panel. The calculated R exceeds the 95% 403 

significance level (p < 0.05). For the GEO IDPS algorithm, the R is 0.62, the MAE is 404 

1.826 km, and the MBE and RMSE are -0.232 and 2.642 km (Fig. 2a). In comparison, 405 

(Seaman et al., 2017) compared the operational VIIRS CBH product retrieved by the 406 

similar SNPP/VIIRS IDPS algorithm with the CloudSat CBH results. In their results, 407 

the R is 0.569, and the RMSE is 2.3 km. For the new GEO CLAVR-x algorithm (Fig. 408 

2b), the R is 0.647, and the RMSE is 2.91 km. The larger RMSE from two 409 

independent physics-based CBH algorithms demonstrate a slightly poorer 410 

performance and precision of these retrieval algorithms for GEO satellites. 411 

Particularly, the larger RMSEs (2.642 and 2.91 km) indicate weaker stabilities of the 412 

GEO IDPS and CLAVR-x CBH algorithms, compared with VIIRS CBH product 413 

(Seaman et al., 2017). In this figure, more samples can be found near the 1:1 line, 414 

implying the good quality of retrieved CBHs. However, in stark contrast, quite a 415 

number of CBH samples retrieved by both GEO IDPS and GEO CLAVR-x 416 

algorithms (compared with the official VIIRS CBH product) fall below 1.0 km, 417 

indicating relatively large errors when compared with the joint CloudSat/CALIPSO 418 

CBH product. Moreover, Figure 2 reveals that relatively large errors are also found in 419 

the CBHs lower than 2 km for the four independent algorithms, primarily caused by 420 

the weak penetration ability of VIS or IR bands on thick and low clouds. 421 
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Referring to the joint CloudSat/CALIPSO CBH product, Figures 2c and 2d 422 

present the validations of the CBH results retrieved from two ML-based algorithms 423 

using the VIS+IR (only retrieving the CBH during the daytime) and IR-single models. 424 

Figure 2c demonstrates better consistency of CBH between the VIS+IR model and the 425 

joint CloudSat/CALIPSO product with R = 0.905, MAE = 0.817 km, MBE = 0.425 426 

km, and RMSE = 1.706 km. Figure2d also displays a relatively high R of 0.876 when 427 

validating the IR-single model, with MAE = 0.882, MBE = −0.445, and RMSE = 428 

1.995. Therefore, both VIS+IR and IR-single models can obtain high-quality CBH 429 

retrieval results from geostationary imager measurements. In comparison, previous 430 

studies also proposed similar ML-based algorithms for estimating CBH using FY-4A 431 

satellite imager data. For example, (Tan et al., 2020) used the variables of CTH, DCOT, 432 

Reff, cloud water path, longitude/latitude from FY-4A imager data to build the training 433 

and prediction model and obtained CBH with MAE=1.29 km and R=0.80. In this 434 

study, except CTH, the other Level-2 products and geolocation data 435 

(longitude/latitude) used in (Tan et al., 2020) are abandoned, while the matched 436 

atmospheric profile products (such as temperature and relative humidity) from NWP 437 

data are added. These changes in ML-based model training and prediction lead to 438 

more accurate CBH retrieval results. Note that, in accordance with the previous study 439 

conducted by (Noh et al., 2017), we excluded CBH samples obtained from 440 

CloudSat/CALIPSO that were smaller than 1 km in our comparisons. This exclusion 441 

was primarily due to the presence of ground clutter contamination in the CloudSat 442 

CPR data (Noh et al., 2017). 443 

4.1.2 Test case 444 

Figure 3 displays two cross-sections of CBH from various sources overlaid with 445 

CloudSat radar reflectivity (unit: dBZ) for spatiotemporally matched cases. The 446 

periods covered are from 03:16 to 04:55 UTC on January 13, 2017 (154.0°E–160.0°E; 447 

40.56°S–53.39°S) and from 05:38 to 07:17 UTC on January 14, 2017 (107.1°E–448 

107.8°E; 8.35°N–11.57°N). The CloudSat radar reflectivity and joint 449 

CloudSat/CALIPSO product provide insights into the vertical structure or distribution 450 

of clouds and their corresponding CBHs. The results from the four GEO CBH 451 

retrieval algorithms (GEO IDPS, GEO CLAVR-x, RF VIS+IR model, and RF 452 

IR-single model) mentioned earlier are individually marked with different markers in 453 

each panel. According to Figure 3a, the GEO IDPS algorithm faces challenges in 454 

accurately retrieving CBHs for geometrically thicker cloud samples near 157°E. 455 
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Optically thick mid- and upper-level cloud layers may obscure lower-level cloud 456 

layers. However, the CBH results retrieved by the GEO IDPS algorithm near 155°E 457 

(in Fig. 3a) and 107.4°E (in Fig. 3b) align with the joint CloudSat/CALIPSO CBH 458 

product. It is worth noting that the inconsistency observed between 107.2°E and 459 

107.3°E in Figure 3b, specifically regarding the CBHs around 1 km obtained from 460 

CloudSat/CALIPSO, can likely be attributed to ground clutter contamination in the 461 

CloudSat CPR data (Noh et al., 2017). The GEO CLAVR-x algorithm achieves 462 

improved CBH results compared to the GEO IDPS algorithm. It can even retrieve 463 

CBHs for some thick cloud samples that are invalid when using the GEO IDPS 464 

algorithm. However, the CBHs from the GEO CLAVR-x algorithm are noticeably 465 

higher than those from the joint CloudSat/CALIPSO product. In contrast, the CBHs 466 

from the two ML-based algorithms show substantially better results than those from 467 

the other two physics-based algorithms. Particularly, the ML-based VIS+IR model 468 

algorithm yields the best CBH results. However, compared with those from the two 469 

physics-based algorithms, the CBHs from the two ML-based algorithms still exhibit a 470 

significant error around 5 km. 471 

4.2 Comparisons with the ground-based lidar and cloud radar measurements 472 

Lidar actively emits lasers in different spectral bands into the air. When the laser 473 

signal encounters cloud particles during transmission, a highly noticeable 474 

backscattered signal is generated and received (Omar et al., 2009). The lidar return 475 

signal is markedly distinct from atmospheric aerosol scattering signals and noise, 476 

making CBH easily obtainable from the signal difference or mutation (Sharma et al., 477 

2016). In this study, continuous ground-based lidar data from the Twin Astronomy 478 

Manor in Lijiang City, Yunnan Province, China (26.454°N, 100.0233°E, altitude = 479 

3175 m) are used to evaluate the diurnal cycle characteristics of CBHs retrieved using 480 

GEO satellite algorithms (Young and Vaughan, 2009). The geographical location and 481 

photo of this station are shown in Figure 4. 482 

4.2.1 Comparison of CBH retrievals from ground and satellite data 483 

The ground-based lidar data at Lijiang station on December 6, 2018, and January 484 

8, 2019, are selected for validation. In fact, this lidar was primarily used for the 485 

calibration of ground-based lunar radiation instruments. During the two-month 486 

observation period (from December of 2018 to January of 2019), it was always 487 

operated only under clear sky conditions, resulting in the capture of cloud data on just 488 
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two days. These two days have been cloudy, with stratiform clouds at an altitude of 489 

around 5 km and no precipitation occurring. The number of available and 490 

spatiotemporally matched CBH sample points from ground-based lidar is 78 and 64 491 

on December 6, 2018, and January 8, 2019, respectively. Figure 5a and 5b show the 492 

point-to-point CBH comparisons between ground-based lidar and four GEO satellite 493 

CBH algorithms on December 6, 2018, and January 8, 2019. It is worth noting that 494 

the retrieved CBHs of the two physics-based algorithms on December 6, 2018, are in 495 

good agreement with the reference values from the lidar measurements, and, in 496 

particular, the GEO CLAVR-x algorithm can obtain better results. From the results on 497 

January 8, 2019, more accurate diurnal cycle characteristics of CBHs are revealed by 498 

the GEO CLAVR-x algorithm than by the GEO IDPS algorithm. 499 

Compared with the CBHs measured by ground-based lidar, the statistics of the 500 

results retrieved from the GEO IDPS algorithm are R = 0.67, MAE = 3.093 km, MBE 501 

= 0.856 km, and RMSE = 3.609 km (Fig. 5c). However, for cloud samples with CBH 502 

below 7.5 km, the GEO IDPS algorithm shows an obvious underestimation of CBH in 503 

Figure 5c. For the GEO CLAVR-x algorithm, it can also be seen that the matched 504 

samples mostly lie near the 1:1 line with R = 0.773 (the optimal CBH algorithm), 505 

MAE = 1.319 km, MBE = 0.222 km, and RMSE = 1.598 km. In addition, this figure 506 

also shows the CBH comparisons between the ML-based VIS+IR model/IR-single 507 

model algorithms and the lidar measurements, revealing that the retrieved CBH 508 

results from the ML-based VIS+IR model are better than those from the ML-based 509 

IR-single model algorithm. The comparison results between the CBHs of the 510 

ML-based VIS+IR model algorithm and the lidar measurements are around the 1:1 511 

line, with smaller errors and R = 0.599. In contrast, the R between the CBHs of the 512 

ML-based IR-single model algorithm and the lidar measurements is only 0.494, with a 513 

relatively large error. By comparing the retrieved CBHs with the lidar measurements 514 

at Lijiang station, it indicates that CBH results from two physics-based algorithms are 515 

remarkably more accurate, particularly that the GEO CLAVR-x algorithm can well 516 

capture diurnal variation of CBH. 517 

To further assess the accuracy and quality of the diurnal cycle of CBHs retrieved 518 

with these algorithms, CBHs from another ground-based cloud radar dataset covering 519 

the entire year of 2017 are also collected and used in this study. The observational 520 

instrument is a Ka-band (35 GHz) Doppler millimeter-wave cloud radar (MMCR) 521 

located at the Beijing Nanjiao Weather Observatory (a typical urban observation site) 522 
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(39.81°N, 116.47°E, altitude = 32 m; see Fig. 4), performing continuous and routine 523 

observations. The MMCR provides a specific vertical resolution of 30 m and a 524 

temporal resolution of 1 minute for single profile detection, based on the radar 525 

reflectivity factor. In a previous study (Zhou et al., 2019), products retrieved by this 526 

MMCR were utilized to investigate the diurnal variations of CTH and CBH, and 527 

comparisons were made between MMCR-derived CBHs and those derived from a 528 

Vaisala CL51 ceilometer. The former study also found that the average R of CBHs 529 

from different instruments reached up to 0.65. It is worth noting that the basic physics 530 

principle for detecting cloud base height from both spaceborne cloud profiling radar 531 

and ground-based cloud radar and lidar measurements is the same. All these 532 

algorithms of detecting CBH are based on the manifest change of return signals 533 

between CBH and the clear sky atmosphere in the vertical direction (Huo et al., 2019; 534 

Ceccaldi et al., 2013). As well known, the diurnal variation of cloud base height is 535 

primarily influenced by solar heating, causing the cloud base to rise in the morning 536 

and reach its peak by midday. As the surface cools in the afternoon and evening, the 537 

cloud base lowers, playing a crucial role in weather patterns and forecasting (Zheng et 538 

al., 2020). Due to the density of points in the one-year time series, the point-to-point 539 

CBH comparison results for the entire year are not displayed here (monthly results are 540 

shown in the supplementary document), we only show 4 days results in the following 541 

Figure 6. Therefore, it is essential to rigorously compare the ML-based algorithm with 542 

ground-based observations to determine its ability to adapt to the daily variations in 543 

cloud base height caused by natural factors. The joint spaceborne CloudSat/CALIPSO 544 

detection might face limitations in penetrating extremely dense, optically thick, or 545 

areas with heavy precipitation clouds. Hence, in comparison, the CBH values 546 

gathered from ground-based lidar and cloud radar measurements are expected to be 547 

more accurate than the data derived from spaceborne CloudSat/CALIPSO detection. 548 

Similar to Figure 5, Figure 6 presents two sample groups of CBH results from the 549 

cloud radar at Beijing Nanjiao station relative to the matched CBHs from the four 550 

retrieval algorithms (GEO IDPS, GEO CLAVR-x, ML-based IR-single, ML-based 551 

VIS+IR) on April 9–10 and July 26–28, 2017. Similar to the results at Lijiang station 552 

discussed in Figure 5, we observe better and more robust performances in retrieving 553 

diurnal cycle characteristics of CBH from the two physics-based CBH retrieval 554 

algorithms. In contrast, more underestimated CBH samples are retrieved by the two 555 

ML-based algorithms. 556 
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4.2.2 Diurnal cycle analysis of CBH retrieval accuracy 557 

To further investigate the diurnal cycle characteristics of retrieved CBH from 558 

GEO satellite imager measurements, Figure 7 presents box plots of the hourly CBH 559 

errors (relative to the results of cloud radar at Beijing Nanjiao station) in 2017 from 560 

the four different CBH retrieval algorithms. Remarkably, there are significant 561 

underestimations of the CBHs retrieved from the two ML-based algorithms. The 562 

ML-based VIS+IR method achieves relatively better results than the ML-based 563 

IR-single method during the daytime. Comparing the two ML-based algorithms, the 564 

errors of the IR-single model algorithm have a similar standard deviation (2.80 km) to 565 

those of the VIS+IR model algorithm (2.69 km) during the daytime. For the IR-single 566 

model algorithm, it can be applied during both daytime and nighttime, its nighttime 567 

performance degrades slightly, with an averaged RMSE (3.88 km) higher than that of 568 

daytime (3.56 km). The nighttime CBH of the IR-single model algorithm is the only 569 

choice that should be used with discretion. 570 

Figure 8 shows the comparisons of hourly MAE, MBE, RMSE, and R relative to 571 

the CBHs from the cloud radar at Beijing Nanjiao station during daytime between 572 

four retrieval algorithms in 2017. The RMSE of the two ML-based algorithms shows 573 

stable diurnal variation. It is noted that all algorithms have lower R at sunrise, around 574 

07:00 local time, which improve as the day progresses. However, the GEO CLAVR-x 575 

algorithm stands out for its relatively higher and more stable in R and RMSE during 576 

daytime. 577 

Figure 9a displays scatter plots and relevant statistics of the CBHs retrieved from 578 

the GEO IDPS algorithm against the CBHs from cloud radar. The CBHs from the 579 

GEO IDPS algorithm align well with the matched CBHs from cloud radar at Beijing 580 

Nanjiao station, with R = 0.515, MAE = 2.078 km, MBE = 1.168 km, and RMSE = 581 

2.669 km. In Figure 9b, the GEO CLAVR-x algorithm shows better results with R = 582 

0.573, MAE = 2.059 km, MBE = −0.204 km, and RMSE = 2.601 km. It is not 583 

surprising that Figs. 8c and 8d reveal obvious underestimated CBH results from the 584 

two ML-based CBH algorithms. Particularly, the CBH results from the ML-based 585 

VIS+IR model algorithm concentrate in the range of 2.5 km to 5 km. Therefore, 586 

Figure 5 to Figure 9 further substantiates the weak diurnal variations captured by 587 

ML-based techniques, primarily attributed to the scarcity of comprehensive CBH 588 

training samples throughout the entire day. Besides, although the two robust 589 

physics-based algorithms of GEO IDPS and GEO CLAVR-x (the optimal one) can 590 



      19 

retrieve high-quality CBHs from H8/AHI data, especially the diurnal cycle of CBH 591 

during the daytime, they still struggle to retrieve CBHs below 1 km. 592 

5. Conclusions and discussion 593 

To explore and argue the optimal and most robust CBH retrieval algorithm from 594 

geostationary satellite imager measurements, particularly focusing on capturing the 595 

typical diurnal cycle characteristics of CBH, this study employs four different 596 

retrieval algorithms (two physics-based and two ML-based algorithms). High 597 

spatiotemporal resolution CBHs are retrieved using the H8/AHI data from 2017 and 598 

2019. To assess the accuracies of the retrieved CBHs, point-to-point validations are 599 

conducted using spatiotemporally matched CBHs from the joint CloudSat/CALIOP 600 

product, as well as ground-based lidar and cloud radar observations in China. The 601 

main findings and conclusions are outlined below. 602 

Four independent CBH retrieval algorithms, namely physics-based GEO IDPS, 603 

GEO CLAVR-x, ML-based VIS+IR, and ML-based IR-single, have been developed 604 

and utilized to retrieve CBHs from GEO H8/AHI data under the assumption of single 605 

layer cloud. The two physics-based algorithms utilize cloud top and optical property 606 

products from AHI as input parameters to retrieve high spatiotemporal resolution 607 

CBHs, with operations limited to daytime. In contrast, the ML-based VIS+IR model 608 

and IR-single model algorithms use the matched joint CloudSat/CALIOP CBH 609 

product as true values for building RF prediction models. Notably, the ML-based 610 

IR-single algorithm, which relies solely on infrared band measurements, can retrieve 611 

CBH during both day and night. 612 

The accuracy of CBHs retrieved from the four independent algorithms is verified 613 

using the joint CloudSat/CALIOP CBH products for the year 2017. The GEO IDPS 614 

algorithm shows an R of 0.62 and an RMSE of 2.642 km. The GEO CLAVR-x 615 

algorithm provides more accurate CBHs with an R of 0.647 and RMSE of 2.91 km. 616 

After filtering samples with optical thickness less than 1.6 and brightness temperature 617 

(at 11 μm band) greater than 281 K, the ML-based VIS+IR and ML-based IR-single 618 

algorithms achieve higher accuracy with an R(RMSE) of 0.922(1.214 km) and 619 

0.911(1.415 km), respectively. This indicates strong agreement between the two 620 

ML-based CBH algorithms and the CloudSat/CALIOP CBH product. 621 
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However, in stark contrast, the results from the physics-based algorithms (with R 622 

and RMSE of 0.592/2.86 km) are superior to those from the ML-based algorithms  623 

(with R and RMSE of 0.385/3.88 km) when compared with ground-based CBH 624 

observations such as lidar and cloud radar. In the comparison with the cloud radar at 625 

Beijing Nanjiao station in 2017, the R of the GEO CLAVR-x algorithm is 0.573, 626 

while the R of the GEO IDPS algorithm is 0.515. Meanwhile, notable differences are 627 

observed in the CBHs between both ML-based algorithms. Similar conclusions are 628 

also evident in the 2-day comparisons at Yunnan Lijiang station. 629 

The CBH results from the two ML-based algorithms (R > 0.91) can likely be 630 

attributed to the use of the same training and validation dataset source as the joint 631 

CloudSat/CALIOP product. However, this dataset has limited spatial coverage and 632 

small temporal variation, potentially limiting the representativeness of the training 633 

data. In contrast, the GEO CLAVR-x algorithm demonstrates the best performance 634 

and highest accuracy in retrieving CBH from geostationary satellite data. Notably, its 635 

results align well with those from ground-based lidar and cloud radar during the 636 

daytime. However, both physics-based methods, utilizing CloudSat CPR data for 637 

regression, struggle to accurately retrieve CBHs below 1 km, as the lowest 1 km 638 

above ground level of this data is affected by ground clutter. 639 

Additionally, despite utilizing the same physics principles in spaceborne and 640 

ground-based lidar/radar CBH algorithms, the previous study (Thorsen et al., 2011) 641 

has highlighted differences in profiles between them. Therefore, this factor induced 642 

by detection principle could contribute to the relatively poorer results in CBH 643 

retrieval by ML-based algorithms compared to ground-based lidar and radar. The 644 

analysis and discussion above suggest that ML-based algorithms are constrained by 645 

the size and representativeness of their datasets.  646 

Ideally, we guess that including more spaceborne cloud profiling radars with 647 

varying passing times (covering the entire day) in the training dataset could improve 648 

the machine learning technique, potentially leading to a higher-quality CBH product 649 

with more comprehensive observations. The CBH product using ML-based 650 

algorithms should continue to be improved in future work. Particularly, exploring the 651 

joint ML-physics-based method presents a promising direction, which can address the 652 

complexities and challenges in retrieving cloud properties. By integrating established 653 

physical relationships into ML models, we can potentially enhance the accuracy and 654 

reliability of predictions. This approach not only leverages the strengths of both 655 
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physics-based models and data-driven techniques but also offers a pathway to more 656 

robust and interpretable solutions in atmospheric sciences. At present, we will focus 657 

on developing physics-based algorithms for cloud base height for the next generation 658 

of geostationary meteorological satellites, to support the application of these products 659 

in weather and climate domains.  660 

Besides, at night, current GEO satellite imaging instruments encounter 661 

challenges in accurately determining CBH due to limited or absent solar illumination. 662 

Because it is unable to retrieve cloud optical depth in the visible band, the current 663 

method faces limitations. However, there is potential for enhanced accuracy in 664 

deriving cloud optical and microphysical properties, as well as CBH, by incorporating 665 

the Day/Night Band (DNB) observations during nighttime in the future (Walther et al., 666 

2013). 667 
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Appendix A 706 

Based on the previously discussed description of two physics-based cloud base 707 

height (CBH) retrieval algorithms (GEO IDPS and GEO CLAVR-x retrieval 708 

algorithms), cloud products such as cloud top height (CTH), effective particle radius 709 

(Reff), and cloud optical thickness (DCOT) will be utilized in both algorithms. To 710 

validate the reliability of these cloud products derived from the Advanced Himawari 711 

Imager (AHI) aboard the Himawari-8 (H8), a pixel-by-pixel comparison is conducted 712 

with analogous MODIS Collection-6.1 Level-2 cloud products. Both Aqua and Terra 713 

MODIS Level-2 cloud products (MOD06 and MYD06) are accessible for free 714 

download from the MODIS official website. For verification purposes, the 715 

corresponding Level-2 cloud products from January, April, July, and October of 2018 716 

are chosen to assess CTH, DCOT, and Reff retrieved by H8/AHI. 717 

Figure S2 (in the supplementary document) shows the spatiotemporally matched 718 
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case comparisons of CTH, DCOT and Reff from H8/AHI and Terra/MODIS (MYD06) 719 

at 03:30 UTC on January 15, 2018. It can be seen that the CTH, DCOT and Reff from 720 

H8/AHI are in good agreement with the matched MODIS cloud products. However, 721 

there are still some differences in Reff at the regions near 35°N, 110°E in Figures S2d 722 

and S2c. The underestimated Reff values from H8/AHI relative to MODIS have been 723 

reported in previous studies. (Letu et al., 2019) compared the ice cloud products 724 

retrieved from AHI and MODIS, and concluded that the Reff from both products differ 725 

remarkably in the ice cloud region and the DCOT from them are roughly similar. 726 

However, the DCOT from AHI data is higher in some areas. Looking again at the cloud 727 

optical thickness that at the same time, the slight underestimation of H8/AHI DCOT 728 

can be found in Figures S2e and S2f. Figure S3 (in the supplementary document) 729 

shows another case at 02:10 UTC on January 15, 2018. Despite of the good 730 

consistence between H8/AHI and MODIS cloud products, there are slight differences 731 

in CTH in the area around 40°S–40.5°S, 100°E–110°E in Figs. S3a and S3b. Besides, 732 

as shown in Figure S2, there are still underestimations in the Reff of H8/AHI.  733 

To further compare and validate these three H8/AHI cloud products, the 734 

spatiotemporally matched samples from H8/AHI and Aqua/Terra MODIS in four 735 

months of 2018 are counted within the three intervals of 0.1 km (CTH), 1.0 μm (Reff), 736 

and 1 (DCOT) in Figure S4 (in the supplementary document). The corresponding mean 737 

absolute error, mean bias error, RMSE and R values are also calculated and marked in 738 

each subfigure. As can be seen, the R of CTH is around 0.75 in all four months and is 739 

close to 0.8 in August. The results of DCOT show the highest R, reaching above 0.8. In 740 

contrast, the underestimation trend in Reff is also shown in this figure. These different 741 

consistencies between two satellite-retrieved cloud products may be attributed to: (1) 742 

different spatiotemporal resolutions between H8/AHI and MODIS; (2) different 743 

wavelength bands, bulk scattering model, and specific algorithm used for retrieving 744 

cloud products; (3) different view zenith angle between GEO and low-earth-orbit 745 

satellite platforms (Letu et al., 2019). In addition, other external factors such as 746 

surface type also can affect the retrieval of cloud product. However, according to 747 

Figure S4, the bulk of the analyzed samples are still around the 1:1 line, indicating the 748 

good quality of H8/AHI cloud products. 749 

 750 

Appendix B 751 

 The ML-based visible (VIS)+infrared (IR) model algorithm mentioned above 752 
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uses 230 typical variables (see Table 1) as model predictors, and the importance 753 

scores of top-30 predictors are ranked in Figure S5 (in the supplementary document). 754 

It can be seen that the most important variables are CTH and CTT, and DCOT is an 755 

important or sensitive factor affecting these two quantities. A sensitivity test is also 756 

performed to further investigate the potential influence of DCOT on the CBH retrieval 757 

by the VIS+IR model (see Table S1 in the supplementary document). From Figure 758 

S7a, we find that the samples with DCOT lower than 5 cause the relatively large CBH 759 

errors compared with the matched CBHs from the joint CALIPSO (Cloud-Aerosol 760 

Lidar and Infrared Pathfinder Satellite Observation)/CloudSat product.  761 

According to the results in this Figure S7b, we may filter the samples with 762 

relatively small DCOT to further improve the accuracy of CBH retrieval by the VIS+IR 763 

model (see Table S1). Figure S7b shows that after filtering the samples with the DCOT 764 

less than 1.6, the R increases from 0.895 to 0.922, implying a better performance of 765 

CBH retrieval. According to the ranking of predictor importance (see Fig. S6 in the 766 

supplementary document), we also conduct another sensitivity test on the BT 767 

observed by H8/AHI IR Channel-14 (Cha14) at 11 μm, which plays an important role 768 

in the IR-single model. Figure S7c shows that the BT values of H8/AHI Channel-14 769 

ranges from 160 K to 316 K, and the samples with BT higher than 300 K show large 770 

CBH errors. Similarly, by filtering the samples with BT higher than 281 K, we can get 771 

a better IR-single model algorithm for retrieving high-quality CBH (see Table S2 in 772 

the supplementary document). Figure S7d also proves that the R value increases from 773 

0.868 to 0.911. 774 
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 998 

Tables and Figures 999 

 1000 
Table 1. Predictand and predictor variables for both visible (VIS)+infrared (IR) model 1001 

and IR-single regression model training, which are divided according to the different 1002 

predictor variables from satellite and NWP data 1003 

Predictand IR-single model input VIS+IR model input 

Predictor 

[satellite 

measurements] 

BT(3.9μm), BT(6.2μm), BT(6.9μm), 

BT(7.3μm), BT(8.6μm), BT(9.6μm), 

BT(10.4μm), BT(11.2μm),  

BT(12.4μm), BT (13.3μm),  

BTD(11.2–12.4μm), BTD(11.2–

13.3μm) [Unit = K], 

Air Mass (1/cos(VZA)), 

View azimuth angles [Unit = degree], 

Cloud top height from H8/AHI [unit: 

m], 

Cloud top temperature from H8/AHI 

[unit: K] 

BT(3.9μm), BT(6.2μm), BT(6.9μm), 

BT(7.3μm), BT(8.6μm), BT(9.6μm), 

BT(10.4μm), BT(11.2μm), 

BT(12.4μm), BT(13.3μm), 

BTD(11.2–12.4μm), BTD(11.2–

13.3μm) [Unit = K], 

Air Mass(1/cos(VZA)), 

Air Mass(1/cos(SZA)), 

View/Solar Azimuth angles [Unit = 

degree], 

Cloud top height from H8/AHI [unit: 

m],  

Cloud top temperature from H8/AHI 

[unit: K] 

Ref(0.47μm), Ref(0.51μm), 

Ref(0.64μm), Ref(0.86μm), 

Ref(1.64μm), Ref(2.25μm) 

Predictor [GFS 

NWP] 

Altitude profile (from surface to 
about 21 km, 67 layers) [unit: m], 
Temperature profile (from surface to 
about 21 km, 67 layers) [unit: K], 
Relative humidity profile (from 
surface to about 21 km, 67 layers) 
[unit: %], 
Total precipitable water, 
Surface temperature [unit: K] 

Altitude profile (from surface to about 
21 km, 67 layers) [unit: m], 
Temperature profile (from surface to 
about 21 km, 67 layers) [unit: K], 
Relative humidity profile (from 
surface to about 21 km, 67 layers) 
[unit: %], 
Total precipitable water, 
Surface temperature [unit: K] 

Predictor 

[other] 
Surface elevation [unit: m] Surface elevation [unit: m] 

Notes: VZA = view zenith angle [unit: degree]; SZA = solar zenith angle [unit: 1004 

degree] 1005 

 1006 
 1007 
 1008 
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 1019 

Figure 1. Comparison of full disk CBH results retrieved by the four independent 1020 

algorithms at 02:00 UTC on January 1, 2017. (a) GEO IDPS algorithm, (b) GEO 1021 

Clouds from AVHRR Extended (CLAVR-x) algorithm, (c) ML-based (RF, random 1022 

forest) VIS+IR algorithm and (d) ML-based (RF) IR-single algorithm. 1023 

 1024 

 1025 

 1026 

 1027 

 1028 

 1029 

 1030 
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 1031 

 1032 

 1033 

 1034 

 1035 
Figure 2. Density distributions of CBHs retrieved from (a) GEO IDPS, (b) GEO 1036 

CLAVR-x, (c) VIS+IR and (d) IR-single algorithms compared with the CBHs from 1037 

the joint CloudSat/CALIPSO product (taken as true values) in 2017 for both single 1038 

and multilayer clouds. The mean absolute error (MAE), mean bias error (MBE), root 1039 

mean square error (RMSE) and R are listed in each subfigure where the difference 1040 

exceeds the 95% significance level (p < 0.05) according to the Pearson’s χ2 test.  1041 
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 1051 

 1052 

 1053 

 1054 

 1055 

 1056 
Figure 3. Inter-comparisons of CBH products retrieved by CloudSat (red solid circle), 1057 

the GEO IDPS algorithm (blue solid circle), the GEO CLAVR-x (green solid circle), 1058 

the ML-based VIS+IR model algorithm (orange solid circle), and the ML-based 1059 

IR-single model algorithm (pink solid circle) at (a) 03:16–04:55 UTC on January 13, 1060 

2017 (a) and (b) 05:38–07:17 UTC on January 14, 2017. The black and gray colormap 1061 

represents the matched CloudSat radar reflectivity.  1062 
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 1074 

 1075 

 1076 

Figure 4. Geographical locations and photos of lidar and cloud radar at Yunnan 1077 

Lijiang and Beijing Nanjiao stations. 1078 
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 1095 

 1096 

 1097 

 1098 

Figure 5. Comparisons of the CBHs from the ground-based lidar measurements 1099 

(black solid circle) at Yunnan Lijiang station and the four GEO satellite retrieval 1100 

algorithms, namely the GEO IDPS (red cross symbol), the GEO CLAVR-x (green 1101 

solid asterisk), the ML-based VIS+IR model (orange solid diamond) and the 1102 

ML-based IR-single model (blue plus sign) algorithms. Figure 5a and 5b show the 1103 

time series of CBHs from lidar and the four GEO satellite retrieval algorithms on 1104 

December 6, 2018 and January 8, 2019, respectively. Fig 5c shows the scatterplots of 1105 

CBH samples from the lidar measurements and the four retrieval algorithms. 1106 

 1107 

 1108 

 1109 

（a） （b）
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 1110 

 1111 

 1112 

 1113 

 1114 

 1115 

 1116 

Figure 6. Same as Figure 5, but for the CBH sample results from the cloud radar at 1117 

Beijing Nanjiao station (black solid circle) on April 9–10, 2017 (top panel) and July 1118 

26–28, 2017 (bottom panel). 1119 
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 1130 
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 1134 

 1135 

 1136 

 1137 
Figure 7. Box plots of the hourly CBH errors of four GEO satellite retrieval 1138 

algorithms (GEO IDPS, GEO CLAVR-x, ML-based VIS+IR and ML-based IR-single) 1139 

relative to the CBHs from the cloud radar at Beijing Nanjiao station in 2017. The box 1140 

symbols signify the 25th, 50th and 75th percentiles of errors. The most extreme 1141 

sample points between the 75th and outlier, and the 25th percentiles and outliers are 1142 

marked as whiskers and diamonds, respectively. Except for the period between 7 and 1143 

17 (local time), the three algorithms of GEO CLAVR-x, GEO IDPS, and ML VIS+IR 1144 

are unavailable due to the lack of reflected solar radiance measurements. 1145 
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Figure 8. Comparisons of hourly (a) MAE, (b) MBE, (c) RMSE, and (d) R of CBH 1158 

(relative to the CBHs from the cloud radar at Beijing Nanjiao station) from 07 to 17 1159 

(local time) between four retrieval algorithms (GEO IDPS, GEO CLAVR-x, 1160 

ML-based VIS+IR and ML-based IR-single) in 2017. 1161 
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 1166 

Figure 9. Comparisons between the CBHs from the cloud radar at Beijing Nanjiao 1167 

station and the matched CBHs from the four retrieval algorithms (GEO IDPS, GEO 1168 

CLAVR-x, ML-based VIS+IR and ML-based IR-single) in 2017. 1169 
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