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Abstract. Two groups of retrieval algorithms, physics-based and the other
machine-learning (ML) based, each consisting of two independent approaches, have
been developed to retrieve cloud base height (CBH) and its diurnal cycle from
Himawari-8 geostationary satellite observations. Validations have been conducted
using the joint CloudSat/CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization)
CBH products in 2017, ensuring independent assessments. Results show that the two
ML-based algorithms exhibit markedly superior performance (the optimal method is
with a correlation coefficient of R > 0.91 and an absolute bias of approximately 0.8
km) compared to the two physics-based algorithms. However, validations based on
CBH data from the ground-based lidar at the Lijiang station in Yunnan province and
the cloud radar at the Nanjiao station in Beijing, China, explicitly present
contradictory outcomes (R < 0.60). An identifiable issue arises with significant
underestimations in the retrieved CBH by both ML-based algorithms, leading to an
inability to capture the diurnal cycle characteristics of CBH. The strong consistence
observed between CBH derived from ML-based algorithms and the spaceborne active
sensors of CloudSat/CALIOP may be attributed to utilizing the same dataset for
training and validation, sourced from the CloudSat/CALIOP products. In contrast, the
CBH derived from the optimal physics-based algorithm demonstrates the good
agreement in diurnal variations of CBH with ground-based lidar/cloud radar
observations during the daytime (with an R value of approximately 0.7). Therefore,
the findings in this investigation from ground-based observations advocate for the
more reliable and adaptable nature of physics-based algorithms in retrieving CBH
from geostationary satellite measurements. Nevertheless, under ideal conditions, with
an ample dataset of spaceborne cloud profiling radar observations encompassing the
entire day for training purposes, the ML-based algorithms may hold promise in still
delivering accurate CBH outputs.

Key words: Geostationary meteorological satellite; cloud base height; physics-based

algorithm; machine learning.
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1 Introduction

Clouds, comprising visible aggregates like atmospheric water droplets,
supercooled water droplets, ice crystals, etc., cover roughly 70% of the Earth's surface
(Stubenrauch et al., 2013). They play a pivotal role in global climate change, the
hydrometeor cycle, aviation safety, and serve as a primary focus in weather
forecasting and climate research, particularly storm clouds (Hansen, 2007; Hartmann
and Larson, 2002). From advanced geostationary (GEO) and polar-orbiting (LEO,
low earth orbit) satellite imagers, various measurable cloud properties, such as cloud
fraction, cloud phase, cloud top height (CTH), and cloud optical thickness (Dcort), are
routinely retrieved. However, the high-quality cloud geometric height (CGH) and
cloud base height (CBH), a fundamental macro physical parameter delineating the
vertical distribution of clouds, remains relatively understudied and underreported.
Nonetheless, for boundary-layer clouds, the cloud base height stands as a critical
parameter depending on other cloud-controlling variables. These variables encompass
the cloud base temperature (Zhu et al., 2014), cloud base vertical velocity (Zheng et
al., 2020), activation of CCN (Cloud Condensation Nuclei) at the cloud base
(Rosenfeld et al., 2016; Miller et al., 2023), and the cloud-surface decoupling state
(Su et al., 2022). These factors significantly impact convective cloud development
and ultimately the climate. As well known, there are distinct diurnal cycle
characteristics of clouds in different regions across the globe (Li et al., 2022). These
diurnal cycle characteristics primarily stem from the daily solar energy cycle absorbed
by both the atmosphere and Earth's surface. Besides, vertical atmospheric motions are
shaped by imbalances in atmospheric heating and surface configurations, also leading
to a range of cloud movements and structures (Miller et al., 2018). Cloud base plays a
pivotal role in weather and climate processes. It is critical for predicting fog and
cloud-related visibility issues important in aviation and weather forecasting. For
instance, lower cloud bases often lead to more intense rainfall. In climate modeling,
CBH is integral for accurate long-term weather predictions and understanding the
radiative balance of the Earth, which influences global temperatures (Zheng and
Rosenfeld, 2015). Hence, the accurate determination of CBH and its diurnal cycle
with high spatiotemporal resolution becomes very important, necessitating

comprehensive investigations (Vitidez-Mora et al., 2015; Wang et al., 2020). Such
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efforts can provide deeper insights into potential ramifications of clouds on radiation
equilibrium and global climate systems.

However, as one of the most crucial cloud physical parameters in atmospheric
physics, the CBH poses challenges in terms of measurement or estimation from space.
Presently, the primary methods for measuring CBH rely on ground-based
observations, utilizing tools such as sounding balloons, Mie-scattering lidars,
stereo-imaging cloud-height detection technologies, and cloud probe sensors
(Forsythe et al., 2000; Hirsch et al., 2011; Seaman et al., 2017; Zhang et al., 2018;
Zhou et al., 2019; Zhou et al., 2024). While in-situ ground-based observation methods
offer highly accurate, reliable, and timely continuous CBH results, they are
constrained by localized observation coverage and the sparse distribution of
observation sites (Aydin and Singh, 2004). In recent decades, with the rapid
advancement of meteorological satellite observation technology, spaceborne
observing methods have emerged that provide global cloud observations with high
spatiotemporal resolution compared to conventional ground-based remote sensing
methods. In this realm, satellite remote sensing techniques for measuring CBH fall
primarily into two categories: active and passive methods. Advanced active remote
sensing technologies like CloudSat (Stephens et al., 2002) and Cloud-Aerosol Lidar
and Infrared Pathfinder Satellite Observation (CALIPSO) (Winker et al., 2009) in the
National Aeronautics and Space Administration (NASA) A-Train (Afternoon-Train)
series (Stephens et al., 2002) can capture global cloud profiles, including CBH, with
high quality by detecting unique return signals from cloud layers using onboard active
millimeter wave radar or lidar. However, their viewing footprints are limited along the
nadir of the orbit, implying that observation coverage remains confined primarily to a
horizontal scale (Min et al., 2022; Lu et al., 2021).

In addition to active remote sensing methods, satellite-based passive remote
sensing technologies can also play an important role in estimating CBH (Meerkotter
and Bugliaro, 2009; Lu et al.,, 2021). The physics-based principles and retrieval
methods for CTH have reached maturity and are now widely employed in satellite
passive remote sensing field (Heidinger and Pavolonis, 2009; Wang et al., 2022).
However, the corresponding physical principles or methods for measuring CBH using
satellite passive imager measurements are still not entirely clear and unified
(Heidinger et al., 2019; Min et al., 2020). A recent study by (Yang et al., 2021)
utilized oxygen A-band data observed by the Orbiting Carbon Observatory 2 (OCO-2)

4
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to retrieve single-layer marine liquid CBH. These passive space-based remote sensing
methods aforementioned, such as satellite imagery, play a key role in retrieving CBH.
In terms of detection principles, the first method involves the extrapolation technique
for retrieving CBH for clouds of the same type. For instance, (Wang et al., 2012)
proposed a method to extrapolate CBH from CloudSat using spatiotemporally
matched MODIS (Moderate Resolution Imaging Spectroradiometer) cloud
classification data (Baum et al., 2012; Platnick et al., 2017). The second
physics-based retrieval method first approximates the cloud geometric thickness using
its optical thickness. It then employs the previously derived CTH product to compute
the corresponding CBH using the respective NOAA (National Oceanic and
Atmospheric  Administration) SNPP/VIIRS (Suomi National Polar-orbiting
Partnership/Visible Infrared Imaging Radiometer Suite) products (Noh et al., 2017).
Hutchison et al. (2002 and 2006) also formulated an empirical algorithm that
estimates both cloud geometric thickness (CGT) and CBH. This algorithm relies on
statistical analyses derived from MODIS Dcor and cloud liquid water path products
(Hutchison et al., 2006; Hutchison, 2002).

Machine learning (ML) has proven to be highly effective in addressing nonlinear
problems within remote sensing and meteorology fields, such as precipitation
estimation and CTH retrieval (Min et al., 2020; HdKansson et al., 2018; Kiihnlein et
al., 2014). In recent years, several studies have leveraged ML-based algorithms to
retrieve CBH, establishing nonlinear connections between CBH and GEO satellite
observations. For instance, Tan et al. (2020) integrated CTH and cloud optical
properties products from Fengyun-4A (FY-4A) GEO satellite with spatiotemporally
matched CBH data from CALIPSO/CloudSat. They developed a random forest (RF)
model for CBH retrieval. Similarly, Lin et al. (2022) constructed a gradient boosted
regression tree (GBRT) model using U.S. new-generation Geostationary Operational
Environmental Satellites-R Series (GOES-R) Advanced Baseline Imager (ABI) level
1B radiance data and the ERAS (the fifth generation ECMWF) reanalysis dataset
(https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset). They employed
CALIPSO CBH data as labels to achieve single-layer CBH retrievals. Notably, the
CBH quality of ML-based algorithms was found to surpass that of physics-based
algorithms (Lin et al., 2022). Moreover, Tana et al. (2023) utilized Himawari-8 data
and the RF algorithm to develop a novel CBH algorithm, achieving a similar high

correlation coefficient (R) of 0.92 and a low root mean square error (RMSE) of 1.17

5



163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

km compared with CloudSat/CALISPO data.

However, these former studies did not discuss whether both physics-based and
ML-based algorithms of GEO satellite could retrieve the diurnal cycle of CBH well.
This gap in research could be mainly attributed to potential influences from the fixed
LEO satellite (with active radar or lidar) passing time in the previous CBH retrieval
model (Lin et al., 2022). The diurnal cycles of CBH have not been well investigated
in both GEO and LEO remote sensing research. Hence, it is crucial to thoroughly
investigate the diurnal cycle features of CBH derived from GEO satellite
measurements by comparing them with ground-based radar and lidar observations
(Min and Zhang, 2014; Warren and Eastman, 2014). In this study, we aim to assess
the applicability and feasibility of both physics-based and ML-based algorithms of
GEO satellites in capturing the diurnal cycle characteristics of CBH.

The subsequent sections of this paper are structured as follows. Section 2
provides a concise overview of the data employed in this study. Following that,
section 3 introduces the four distinct physics/ML-based CBH retrieval algorithms. In
section 4, the CBH results obtained from these four algorithms are analyzed, and
comparisons are drawn with spatiotemporally matched CBHs from ground-based
cloud radar and lidar. Finally, section 5 encapsulates the primary conclusions and new

findings derived from this study.

2 Data

In this study, observations from the Himawari-8 (H8) Advanced Himawari
Imager (AHI) are utilized for the retrieval of high spatiotemporal resolution CBH.
Launched successfully by the Japan Meteorological Administration on October 7,
2014, the H8 geostationary satellite is positioned at 140.7°E. The AHI onboard HS
encompasses 16 spectral bands ranging from 0.47 um to 13.3 pm, featuring spatial
resolutions of 0.5-2 km. This includes 3 visible (VIS) bands at 0.5-1 km, 3
near-infrared (NIR) bands at 1-2 km, and 10 infrared (IR) bands at 2 km. The
H8/AHI can scan a full disk area within 10 minutes, two specific areas within 2.5
minutes, a designated area within 2.5 minutes, and two landmark areas within 0.5
minutes (Iwabuchi et al., 2018). Its enhanced temporal resolution and observation
frequency facilitate the tracking of rapidly changing weather systems, enabling the

accurate determination of quantitative atmospheric parameters (Bessho et al., 2016).
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Operational H8/AHI Level-1B data, accessible from July 7, 2015, are freely
available on the satellite product homepage of the Japan Aerospace Exploration
Agency (Letu et al.,, 2019). The Level-2 cloud products utilized in this study,
including cloud mask (CLM), CTH, cloud effective particle radius (CER or Refr), and
Dcor, are generated by the Fengyun satellite science product algorithm testbed
(FYGAT) (Wang et al., 2019; Min et al., 2017) of the China Meteorological
Administration (CMA) for various applications. According to previous CALIPSO
validations (Min et al., 2020), the absolute bias of cloud top height retrieved by the
HS8 satellite is approximately 3 km, with an absolute bias of 1 to 2 km for samples
below 5 km. The accuracy of CTH is crucial for estimating CBH in the subsequent
algorithm. It is important to note that certain crucial preliminary cloud products, such
as CLM, have been validated in prior studies (Wang et al., 2019; Liang et al., 2023).
Nevertheless, before initiating CBH retrieval, it is imperative to validate the H8/AHI
cloud optical and microphysical products from the FYGAT retrieval system. This
validation has been carried out by using analogous MODIS Level-2 cloud products as
a reference. Additional details regarding the validation of cloud products are provided
in the Appendix A section.

In addition to the H8/AHI Level-1/2 data, the Global Forecast System (GFS)
numerical weather prediction (NWP) data are employed for CBH retrieval in this
study. The variables include land/sea surface temperature and the vertical profiles of
temperature, humidity, and pressure. Operated by the U.S. NOAA (Kalnay et al.,
1996), the GFS serves as a global and advanced NWP system. The operational GFS
system routinely delivers global high-quality and gridded NWP data at 3-hour
intervals, with four different initial forecast times per day (00:00, 06:00, 12:00, and
18:00 UTC). The three-dimensional NWP data cover the Earth in a 0.5°x0.5° grid
interval and resolve the atmosphere with 26 vertical levels from the surface (1000 hPa)
up to the top of the atmosphere (10 hPa).

As previously mentioned, the official MODIS Collection-6.1 Level-2 cloud
product Climate Data Records (Platnick et al., 2017) are utilized in this study to
validate the H8/AHI cloud products (CTH, CER, and Dcor) generated by the FYGAT
system. High-quality, long-term series MODIS data is often used as a validation
reference to evaluate the products of new satellites. MODIS sensors are onboard
NASA Terra and Aqua polar-orbiting satellites. Terra functions as the morning

satellite, passing through the equator from north to south at approximately 10:30 local
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time, while Aqua serves as the afternoon satellite, traversing the equator from south to
north at around 13:30 local time. As a successor to the NOAA Advanced Very High
Resolution Radiometer (AVHRR), MODIS features 36 independent spectral bands
and a broad spectral range from 0.4 um (VIS) to 14.4 pm (IR), with a scanning width
of 2330 km and spatial resolutions ranging from 0.25 to 1.0 km. Recent studies
(Baum et al., 2012; Platnick et al., 2017) have highlighted significant improvements
and collective changes in cloud top, optical, and microphysical properties from
Collection-5 to Collection-6.

In addition to the passive spaceborne imaging sensors mentioned above, the
CloudSat satellite , equipped with a 94-GHz active cloud profiling radar (CPR), holds
the distinction of being the first sun-synchronous orbit satellite specifically designed
to observe global cloud vertical structures and properties. It is part of the A-Train
series of satellites, akin to the Aqua satellite, launched and operated by NASA
(Heymsfield et al., 2008). CALIPSO is another polar-orbiting satellite within the
A-Train constellation, sharing an orbit with CloudSat and trailing it by a mere 10-15
seconds. CALIPSO is the first satellite equipped with an active dual-channel CALIOP
at 532 and 1064 nm bands (Hunt et al., 2009). Both CloudSat and CALIPSO possess
notable advantages over passive spaceborne sensors due to the 94-GHz radar of
CloudSat and the joint return signals of lidar and radar on CALIPSO. These features
enhance their sensitivity to optically thin cloud layers and ensure strong penetration
capability, resulting in more accurate CTH and CBH detections compared to passive
spaceborne sensors (CAL LID L2 05kmCLay-Standard-V4-10). The joint cloud
type products of 2B-CLDCLASS-LIDAR, derived from both CloudSat and CALIPSO
measurements, offer a comprehensive description of cloud vertical structure
characteristics, cloud type, CTH, CBH, etc. The time interval between each profile in
this product is approximately 3.1 seconds, and the horizontal resolution is 2.5 km
(along track)x1.4 km (cross-track). Each profile is divided into 125 layers with a
240-m vertical interval. For more details on 2B-CLDCLASS-LIDAR products, please
refer to the CloudSat official product manual (Sassen and Wang, 2008). In this study,
we consider the lowest effective cloud base height from the joint CloudSat/CALIOP
data as the true values for training and validation. Please note that for this study, we
utilized one-year H8/AHI data and matched it with the joint CloudSat/CALIOP data
from January 1 to December 31 of 2017.
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3 Physics/machine-learning based cloud base height algorithms

3.1 GEO cloud base height retrieval algorithm from the interface data processing
segment of the Visible Infrared Imaging Radiometer Suite

The Joint Polar Satellite System (JPSS) program is a collaborative effort between
NASA and NOAA. The operational CBH retrieval algorithm, part of the 30
Environmental Data Records (EDR) of JPSS, can be implemented operationally
through the Interface Data Processing Segment (IDPS) (Baker, 2011). In this study,
our geostationary satellite CBH retrieval algorithm aligns with the IDPS CBH
algorithm developed by (Baker, 2011). Utilizing the geostationary H8/AHI cloud
products discussed earlier, this new GEO CBH retrieval algorithm is succinctly
outlined below. It is important to note that multilayer cloud scenes remain a challenge
for retrieving both CTH and CBH, especially when considering the column-integrated
cloud water path (CWP) used in physics-based algorithms (Noh et al., 2017). In this
study, we will simplify the scenario by assuming a single-layer cloud for all
algorithms.

The new GEO IDPS CBH algorithm initiates the process by first retrieving the
CGT from bottom to top. Subsequently, CGT is subtracted from the corresponding
CTH to calculate CBH (CBH = CTH — CGT). The algorithm is divided into two
independent executable modules based on cloud phase, distinguishing between liquid
water and ice clouds. CBH of water cloud retrieval requires Dcor and CER as inputs.
For ice clouds, an empirical equation is employed for CBH retrieval. However, the
standard deviations of error in IDPS CBH for individual granules often exceed the
JPSS VIIRS minimum uncertainty requirement of +2km (Noh et al., 2017). For a
more comprehensive understanding of this CBH algorithm, please refer to the IDPS
algorithm documentation (Baker, 2011). Note that, similar to previous studies on
cloud retrieval (Noh et al., 2017; Platnick et al., 2017), this investigation also assumes
a single-layer cloud for all CBH algorithms, due to the challenges associated with

determining multilayer cloud structures.

3.2 GEO cloud base height retrieval algorithm implemented in the Clouds from
Advanced Very High Resolution Radiometer Extended system

As mentioned above, the accuracy of the GEO IDPS algorithm is highly

dependent on the initial input parameters such as cloud phase, Dcor and Refr, which
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may introduce some uncertainties in the final retrieval results. In contrast, another
statistically-based algorithm is proposed and implemented here, which is named the
GEO CLAVR-x (Clouds from AVHRR Extended, NOAA's operational cloud
processing system for the AVHRR) CBH algorithm (Noh et al., 2017), and it mainly
refers to NOAA AWG CBH algorithm (ACBA) (Noh et al., 2022). Previous studies
have also demonstrated a R of 0.569 and a RMSE of 2.3 km for the JPSS VIIRS
CLAVR-x CBH algorithm. It is anticipated that this algorithm will also be employed
for the NOAA GOES-R geostationary satellite imager (Noh et al., 2017; Seaman et al.,
2017).

Similar to the GEO IDPS CBH retrieval algorithm mentioned earlier, the GEO
CLAVR-x CBH retrieval algorithm also initially obtains CGT and CTH, subsequently
calculating CBH by subtracting CGT from CTH (CTH—CGT). However, the specific
calculation method for the CGT wvalue differs. This algorithm is suitable for
single-layer and the topmost layer of multi-layer clouds, computing CBH using the
CTH at the top layer of the cloud. In comparison with the former GEO IDPS CBH
algorithm, the GEO CLAVR-x CBH algorithm considers two additional cloud types:
deep convection clouds and thin cirrus clouds. For more details on this CLAVR-x
CBH algorithm, please refer to the original algorithm documentation (Noh et al.,

2017).

3.3 Random-forest-based cloud base height estimation algorithm

RF, one of the most significant ML algorithms, was initially proposed and
developed by (Breiman, 2001). It is widely employed to address classification and
regression problems based on the law of large numbers. The RF method is well-suited
for capturing complex or nonlinear relationships between predictors and predictands.

In this study, two distinct ML-based GEO CBH algorithms, namely VIS+IR and
IR-single (only uses observations of H8/AHI IR channels), are devised to retrieve or
predict the CBH using different sets of predictors. The RF training of the chosen
predictors is formulated as follows:

CBH=RFeg[X1, X2, ..., Xu], (1)
where RFre; denotes the regression RF model, and x; represents the ith predictor. The
selected predictors from H8/AHI for both the VIS+IR and IR RF model training and
prediction are detailed in Table 1, mainly referencing Min et al. (2020) and Tan et al.

(2020). The VISHIR algorithm retrieves CBH using NWP data (atmospheric
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temperature and altitude profiles, total precipitable water (TPW), surface temperature),
surface elevation, air mass 1 (air mass 1=1/cos(view zenith angle)), and air mass 2 (air
mass 2=1/cos(solar zenith angle)). The rationale for choosing air mass and TPW is
their ability to account for the potential absorption effect of water vapor along the
satellite viewing angle. The predictors in CBH retrieval also include the IR band
Brightness Temperature (BT) and VIS band reflectance. The IR-single algorithm
selects the same GFS NWP data as the VIS+IR algorithm but employs only view
zenith angles and azimuth angles.

To optimize the RF prediction model, the hyperparameters of the RF model are
tuned individually. The parameters and their dynamic ranges involved in tuning the
RF prediction models include the number of trees [100, 200, 300, 400, 500], the
maximum depth of trees [10, 20, 30, 40, 50], the minimum number of samples
required to split an internal node [2, 4, 6, 8, 10], and the minimum number of samples
required to be at a leaf node [1, 3, 5, 7, 9]. In this study, we set the smallest number of

trees in the forest to 100 and the maximum depth of the tree to 40.

3.4 Evaluation method

The performance of RF models and physics-based methods will be assessed using
mean absolute error (MAE), mean bias error (MBE), RMSE, R, and standard
deviation (STD) scores using the testing dataset. These scores mentioned above are
used to understand different aspects of the predictive performance of model: MAE
and RMSE provide insights into the average error magnitude, MBE indicates bias in
the predictions, R evaluates the linear association between observed and predicted
values, and STD assesses the variability of the predictions. In the RF IR-single
algorithm, 581,783 matching points are selected from H8/AHI and CloudSat data for
2017. Seventy percent of these points are randomly assigned to the training dataset,
and the remainder serves as the testing dataset. For the RF VIS+IR algorithm, a total
of 418,241 matching points are chosen, with 70% randomly allocated to the training
set. Note that the reduced data amount is because only daytime data can be used for
the VIS+IR method training. It's important to note that the two training datasets in
CloudSat will also be used to verify the CBHs obtained by cloud radar and lidar. The

statistical formulas for evaluation are as follows:

1
MAE = =37, [y; — %, @)
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MBE =~ YL, (y; — %), (3)

RMSE = \/%Z}Ll(yi —x)2, (4)

R = iz, (Vi—¥) (x;—%) ’ 5
JZ?=1(3’i—37)2J2?=1(xi—92)2

STD=\/ﬁ (N CTEE) L (6)

where 7 is the sample number, y; is the ith CBH retrieval result, and x; is the ith joint
CloudSat/CALIOP CBH product.

Since the two RF models (VIS+IR and IR-single) select 230 typical variables to
fit CBHs, the importance scores of these predictors in the two ML-based algorithms
are ranked for better optimization. In a RF model, feature importance indicates how
much each input variable contributes to the model's predictive accuracy by measuring
the decrease in impurity or error when the feature is used to split data (Gregorutti et
al., 2017). In the VIS+IR model, the top-ranked predictors are CTH and cloud top
temperature (CTT) from the H8/AHI Level-2 product (see Fig. Bl in Appendix B). It
is important to note that Dcor is a crucial and sensitive factor for these ML-based
algorithms. Retrieving CBH samples with relatively low Dcor remains challenging
due to the low signal-to-noise ratio when Dcoris low (Lin et al., 2022). To address
this issue, samples with Dcor less than 1.6 are filtered in the VIS+IR model, and
samples with relatively large BTs at Channel-14 are filtered in the IR-single model.
This filtering process significantly improves the R value from 0.869 to 0.922 in the
VIS+IR model and from 0.868 to 0.911 in the IR-single model. For more details on
the algorithm optimization, please refer to Appendix B.

In this study, the H8/AHI satellite CBH data retrieved by the four algorithms
mentioned before are matched spatiotemporally with the 2B-CLDCLASS-LIDAR
cloud product from joint CloudSat/CALIPSO observations in 2017. In this process,
the nearest distance matching method is employed, ensuring that collocating the
closest points and the observation time difference between the CloudSat/CALIPSO
observation point and the matched Himwari-8 data is less than 5 minutes (Noh et al.,
2017). As in earlier study (Min et al., 2020), we also used 70% of the matched data
for training and 30% of an independent sample for validation. Figure 1 displays a
comparison of CBH results over the full disk at 02:00 UTC on January 1, 2017,
retrieved by the GEO IDPS algorithm, the GEO CLAVR-x algorithm, the RF VIS+IR
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algorithm, and the RF IR-single algorithm for all cloud conditions including single
and multilayer cloud scenes. A similar distribution pattern and magnitude of CBHs
retrieved by these four independent algorithms can be observed in Figure 1. However,
notable differences exist between physics-based and ML-based algorithms. Further
comparisons are conducted and analyzed with spaceborne and ground-based lidar and

radar observations in the subsequent sections of this study.

4 Results and Discussions
4.1 Comparisons with the joint CloudSat/CALIPSO cloud base height product

4.1.1 Joint scatter plots

Figure 2 presents the density scatter plot of the CBHs retrieved from the GEO
IDPS and GEO CLAVR-x algorithms compared with the CBHs from the joint
CloudSat/CALIPSO product, along with the related scores of MAE, MBE, RMSE,
and R calculated and labeled in each panel. The calculated R exceeds the 95%
significance level (p < 0.05). For the GEO IDPS algorithm, the R is 0.62, the MAE is
1.826 km, and the MBE and RMSE are -0.232 and 2.642 km (Fig. 2a). In comparison,
(Seaman et al., 2017) compared the operational VIIRS CBH product retrieved by the
similar SNPP/VIIRS IDPS algorithm with the CloudSat CBH results. In their results,
the R is 0.569, and the RMSE is 2.3 km. For the new GEO CLAVR-x algorithm (Fig.
2b), the R is 0.647, and the RMSE is 2.91 km. The larger RMSE from two
independent physics-based CBH algorithms demonstrate a slightly poorer
performance and precision of these retrieval algorithms for GEO satellites.
Particularly, the larger RMSEs (2.642 and 2.91 km) indicate weaker stabilities of the
GEO IDPS and CLAVR-x CBH algorithms, compared with VIIRS CBH product
(Seaman et al., 2017). In this figure, more samples can be found near the 1:1 line,
implying the good quality of retrieved CBHs. However, in stark contrast, quite a
number of CBH samples retrieved by both GEO IDPS and GEO CLAVR-x
algorithms (compared with the official VIIRS CBH product) fall below 1.0 km,
indicating relatively large errors when compared with the joint CloudSat/CALIPSO
CBH product. Moreover, Figure 2 reveals that relatively large errors are also found in
the CBHs lower than 2 km for the four independent algorithms, primarily caused by
the weak penetration ability of VIS or IR bands on thick and low clouds.
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Referring to the joint CloudSat/CALIPSO CBH product, Figures 2c and 2d
present the validations of the CBH results retrieved from two ML-based algorithms
using the VIS+IR (only retrieving the CBH during the daytime) and IR-single models.
Figure 2c demonstrates better consistency of CBH between the VIS+IR model and the
joint CloudSat/CALIPSO product with R = 0.905, MAE = 0.817 km, MBE = 0.425
km, and RMSE = 1.706 km. Figure2d also displays a relatively high R of 0.876 when
validating the IR-single model, with MAE = 0.882, MBE = —0.445, and RMSE =
1.995. Therefore, both VIS+IR and IR-single models can obtain high-quality CBH
retrieval results from geostationary imager measurements. In comparison, previous
studies also proposed similar ML-based algorithms for estimating CBH using FY-4A
satellite imager data. For example, (Tan et al., 2020) used the variables of CTH, Dcor,
Resr, cloud water path, longitude/latitude from FY-4A imager data to build the training
and prediction model and obtained CBH with MAE=1.29 km and R=0.80. In this
study, except CTH, the other Level-2 products and geolocation data
(longitude/latitude) used in (Tan et al., 2020) are abandoned, while the matched
atmospheric profile products (such as temperature and relative humidity) from NWP
data are added. These changes in ML-based model training and prediction lead to
more accurate CBH retrieval results. Note that, in accordance with the previous study
conducted by (Noh et al.,, 2017), we excluded CBH samples obtained from
CloudSat/CALIPSO that were smaller than 1 km in our comparisons. This exclusion
was primarily due to the presence of ground clutter contamination in the CloudSat
CPR data (Noh et al., 2017).

4.1.2 Test case

Figure 3 displays two cross-sections of CBH from various sources overlaid with
CloudSat radar reflectivity (unit: dBZ) for spatiotemporally matched cases. The
periods covered are from 03:16 to 04:55 UTC on January 13, 2017 (154.0°E-160.0°E;
40.56°5-53.39°S) and from 05:38 to 07:17 UTC on January 14, 2017 (107.1°E—
107.8°E;  8.35°N-11.57°N). The CloudSat radar reflectivity and joint
CloudSat/CALIPSO product provide insights into the vertical structure or distribution
of clouds and their corresponding CBHs. The results from the four GEO CBH
retrieval algorithms (GEO IDPS, GEO CLAVR-x, RF VIS+IR model, and RF
IR-single model) mentioned earlier are individually marked with different markers in
each panel. According to Figure 3a, the GEO IDPS algorithm faces challenges in

accurately retrieving CBHs for geometrically thicker cloud samples near 157°E.
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Optically thick mid- and upper-level cloud layers may obscure lower-level cloud
layers. However, the CBH results retrieved by the GEO IDPS algorithm near 155°E
(in Fig. 3a) and 107.4°E (in Fig. 3b) align with the joint CloudSat/CALIPSO CBH
product. It is worth noting that the inconsistency observed between 107.2°E and
107.3°E in Figure 3b, specifically regarding the CBHs around 1 km obtained from
CloudSat/CALIPSO, can likely be attributed to ground clutter contamination in the
CloudSat CPR data (Noh et al., 2017). The GEO CLAVR-x algorithm achieves
improved CBH results compared to the GEO IDPS algorithm. It can even retrieve
CBHs for some thick cloud samples that are invalid when using the GEO IDPS
algorithm. However, the CBHs from the GEO CLAVR-x algorithm are noticeably
higher than those from the joint CloudSat/CALIPSO product. In contrast, the CBHs
from the two ML-based algorithms show substantially better results than those from
the other two physics-based algorithms. Particularly, the ML-based VIS+IR model
algorithm yields the best CBH results. However, compared with those from the two
physics-based algorithms, the CBHs from the two ML-based algorithms still exhibit a

significant error around 5 km.

4.2 Comparisons with the ground-based lidar and cloud radar measurements

Lidar actively emits lasers in different spectral bands into the air. When the laser
signal encounters cloud particles during transmission, a highly noticeable
backscattered signal is generated and received (Omar et al., 2009). The lidar return
signal is markedly distinct from atmospheric aerosol scattering signals and noise,
making CBH easily obtainable from the signal difference or mutation (Sharma et al.,
2016). In this study, continuous ground-based lidar data from the Twin Astronomy
Manor in Lijiang City, Yunnan Province, China (26.454°N, 100.0233°E, altitude =
3175 m) are used to evaluate the diurnal cycle characteristics of CBHs retrieved using
GEO satellite algorithms (Young and Vaughan, 2009). The geographical location and
photo of this station are shown in Figure 4.

4.2.1 Comparison of CBH retrievals from ground and satellite data

The ground-based lidar data at Lijiang station on December 6, 2018, and January
8, 2019, are selected for validation. In fact, this lidar was primarily used for the
calibration of ground-based lunar radiation instruments. During the two-month
observation period (from December of 2018 to January of 2019), it was always

operated only under clear sky conditions, resulting in the capture of cloud data on just
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two days. These two days have been cloudy, with stratiform clouds at an altitude of
around 5 km and no precipitation occurring. The number of available and
spatiotemporally matched CBH sample points from ground-based lidar is 78 and 64
on December 6, 2018, and January 8, 2019, respectively. Figure 5a and 5b show the
point-to-point CBH comparisons between ground-based lidar and four GEO satellite
CBH algorithms on December 6, 2018, and January 8, 2019. It is worth noting that
the retrieved CBHs of the two physics-based algorithms on December 6, 2018, are in
good agreement with the reference values from the lidar measurements, and, in
particular, the GEO CLAVR-x algorithm can obtain better results. From the results on
January 8, 2019, more accurate diurnal cycle characteristics of CBHs are revealed by
the GEO CLAVR-x algorithm than by the GEO IDPS algorithm.

Compared with the CBHs measured by ground-based lidar, the statistics of the
results retrieved from the GEO IDPS algorithm are R = 0.67, MAE = 3.093 km, MBE
= 0.856 km, and RMSE = 3.609 km (Fig. 5c). However, for cloud samples with CBH
below 7.5 km, the GEO IDPS algorithm shows an obvious underestimation of CBH in
Figure 5c. For the GEO CLAVR-x algorithm, it can also be seen that the matched
samples mostly lie near the 1:1 line with R = 0.773 (the optimal CBH algorithm),
MAE = 1.319 km, MBE = 0.222 km, and RMSE = 1.598 km. In addition, this figure
also shows the CBH comparisons between the ML-based VIS+IR model/IR-single
model algorithms and the lidar measurements, revealing that the retrieved CBH
results from the ML-based VIS+IR model are better than those from the ML-based
IR-single model algorithm. The comparison results between the CBHs of the
ML-based VIS+IR model algorithm and the lidar measurements are around the 1:1
line, with smaller errors and R = 0.599. In contrast, the R between the CBHs of the
ML-based IR-single model algorithm and the lidar measurements is only 0.494, with a
relatively large error. By comparing the retrieved CBHs with the lidar measurements
at Lijiang station, it indicates that CBH results from two physics-based algorithms are
remarkably more accurate, particularly that the GEO CLAVR-x algorithm can well
capture diurnal variation of CBH.

To further assess the accuracy and quality of the diurnal cycle of CBHs retrieved
with these algorithms, CBHs from another ground-based cloud radar dataset covering
the entire year of 2017 are also collected and used in this study. The observational
instrument is a Ka-band (35 GHz) Doppler millimeter-wave cloud radar (MMCR)

located at the Beijing Nanjiao Weather Observatory (a typical urban observation site)
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(39.81°N, 116.47°E, altitude = 32 m; see Fig. 4), performing continuous and routine
observations. The MMCR provides a specific vertical resolution of 30 m and a
temporal resolution of 1 minute for single profile detection, based on the radar
reflectivity factor. In a previous study (Zhou et al., 2019), products retrieved by this
MMCR were utilized to investigate the diurnal variations of CTH and CBH, and
comparisons were made between MMCR-derived CBHs and those derived from a
Vaisala CL51 ceilometer. The former study also found that the average R of CBHs
from different instruments reached up to 0.65. It is worth noting that the basic physics
principle for detecting cloud base height from both spaceborne cloud profiling radar
and ground-based cloud radar and lidar measurements is the same. All these
algorithms of detecting CBH are based on the manifest change of return signals
between CBH and the clear sky atmosphere in the vertical direction (Huo et al., 2019;
Ceccaldi et al., 2013). As well known, the diurnal variation of cloud base height is
primarily influenced by solar heating, causing the cloud base to rise in the morning
and reach its peak by midday. As the surface cools in the afternoon and evening, the
cloud base lowers, playing a crucial role in weather patterns and forecasting (Zheng et
al., 2020). Due to the density of points in the one-year time series, the point-to-point
CBH comparison results for the entire year are not displayed here (monthly results are
shown in the supplementary document), we only show 4 days results in the following
Figure 6. Therefore, it is essential to rigorously compare the ML-based algorithm with
ground-based observations to determine its ability to adapt to the daily variations in
cloud base height caused by natural factors. The joint spaceborne CloudSat/CALIPSO
detection might face limitations in penetrating extremely dense, optically thick, or
areas with heavy precipitation clouds. Hence, in comparison, the CBH values
gathered from ground-based lidar and cloud radar measurements are expected to be
more accurate than the data derived from spaceborne CloudSat/CALIPSO detection.
Similar to Figure 5, Figure 6 presents two sample groups of CBH results from the
cloud radar at Beijing Nanjiao station relative to the matched CBHs from the four
retrieval algorithms (GEO IDPS, GEO CLAVR-x, ML-based IR-single, ML-based
VIS+IR) on April 9-10 and July 26-28, 2017. Similar to the results at Lijiang station
discussed in Figure 5, we observe better and more robust performances in retrieving
diurnal cycle characteristics of CBH from the two physics-based CBH retrieval
algorithms. In contrast, more underestimated CBH samples are retrieved by the two

ML-based algorithms.
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4.2.2 Diurnal cycle analysis of CBH retrieval accuracy

To further investigate the diurnal cycle characteristics of retrieved CBH from
GEO satellite imager measurements, Figure 7 presents box plots of the hourly CBH
errors (relative to the results of cloud radar at Beijing Nanjiao station) in 2017 from
the four different CBH retrieval algorithms. Remarkably, there are significant
underestimations of the CBHs retrieved from the two ML-based algorithms. The
ML-based VIS+IR method achieves relatively better results than the ML-based
IR-single method during the daytime. Comparing the two ML-based algorithms, the
errors of the IR-single model algorithm have a similar standard deviation (2.80 km) to
those of the VIS+IR model algorithm (2.69 km) during the daytime. For the IR-single
model algorithm, it can be applied during both daytime and nighttime, its nighttime
performance degrades slightly, with an averaged RMSE (3.88 km) higher than that of
daytime (3.56 km). The nighttime CBH of the IR-single model algorithm is the only
choice that should be used with discretion.

Figure 8 shows the comparisons of hourly MAE, MBE, RMSE, and R relative to
the CBHs from the cloud radar at Beijing Nanjiao station during daytime between
four retrieval algorithms in 2017. The RMSE of the two ML-based algorithms shows
stable diurnal variation. It is noted that all algorithms have lower R at sunrise, around
07:00 local time, which improve as the day progresses. However, the GEO CLAVR-x
algorithm stands out for its relatively higher and more stable in R and RMSE during
daytime.

Figure 9a displays scatter plots and relevant statistics of the CBHs retrieved from
the GEO IDPS algorithm against the CBHs from cloud radar. The CBHs from the
GEO IDPS algorithm align well with the matched CBHs from cloud radar at Beijing
Nanjiao station, with R = 0.515, MAE = 2.078 km, MBE = 1.168 km, and RMSE =
2.669 km. In Figure 9b, the GEO CLAVR-x algorithm shows better results with R =
0.573, MAE = 2.059 km, MBE = —0.204 km, and RMSE = 2.601 km. It is not
surprising that Figs. 8c and 8d reveal obvious underestimated CBH results from the
two ML-based CBH algorithms. Particularly, the CBH results from the ML-based
VIS+IR model algorithm concentrate in the range of 2.5 km to 5 km. Therefore,
Figure 5 to Figure 9 further substantiates the weak diurnal variations captured by
ML-based techniques, primarily attributed to the scarcity of comprehensive CBH
training samples throughout the entire day. Besides, although the two robust

physics-based algorithms of GEO IDPS and GEO CLAVR-x (the optimal one) can
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retrieve high-quality CBHs from H8/AHI data, especially the diurnal cycle of CBH
during the daytime, they still struggle to retrieve CBHs below 1 km.

5. Conclusions and discussion

To explore and argue the optimal and most robust CBH retrieval algorithm from
geostationary satellite imager measurements, particularly focusing on capturing the
typical diurnal cycle characteristics of CBH, this study employs four different
retrieval algorithms (two physics-based and two ML-based algorithms). High
spatiotemporal resolution CBHs are retrieved using the H8/AHI data from 2017 and
2019. To assess the accuracies of the retrieved CBHs, point-to-point validations are
conducted using spatiotemporally matched CBHs from the joint CloudSat/CALIOP
product, as well as ground-based lidar and cloud radar observations in China. The
main findings and conclusions are outlined below.

Four independent CBH retrieval algorithms, namely physics-based GEO IDPS,
GEO CLAVR-x, ML-based VIS+IR, and ML-based IR-single, have been developed
and utilized to retrieve CBHs from GEO H8/AHI data under the assumption of single
layer cloud. The two physics-based algorithms utilize cloud top and optical property
products from AHI as input parameters to retrieve high spatiotemporal resolution
CBHs, with operations limited to daytime. In contrast, the ML-based VIS+IR model
and IR-single model algorithms use the matched joint CloudSat/CALIOP CBH
product as true values for building RF prediction models. Notably, the ML-based
IR-single algorithm, which relies solely on infrared band measurements, can retrieve
CBH during both day and night.

The accuracy of CBHs retrieved from the four independent algorithms is verified
using the joint CloudSat/CALIOP CBH products for the year 2017. The GEO IDPS
algorithm shows an R of 0.62 and an RMSE of 2.642 km. The GEO CLAVR-x
algorithm provides more accurate CBHs with an R of 0.647 and RMSE of 2.91 km.
After filtering samples with optical thickness less than 1.6 and brightness temperature
(at 11 um band) greater than 281 K, the ML-based VIS+IR and ML-based IR-single
algorithms achieve higher accuracy with an R(RMSE) of 0.922(1.214 km) and
0.911(1.415 km), respectively. This indicates strong agreement between the two

ML-based CBH algorithms and the CloudSat/CALIOP CBH product.
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However, in stark contrast, the results from the physics-based algorithms (with R
and RMSE of 0.592/2.86 km) are superior to those from the ML-based algorithms
(with R and RMSE of 0.385/3.88 km) when compared with ground-based CBH
observations such as lidar and cloud radar. In the comparison with the cloud radar at
Beijing Nanjiao station in 2017, the R of the GEO CLAVR-x algorithm is 0.573,
while the R of the GEO IDPS algorithm is 0.515. Meanwhile, notable differences are
observed in the CBHs between both ML-based algorithms. Similar conclusions are
also evident in the 2-day comparisons at Yunnan Lijiang station.

The CBH results from the two ML-based algorithms (R > 0.91) can likely be
attributed to the use of the same training and validation dataset source as the joint
CloudSat/CALIOP product. However, this dataset has limited spatial coverage and
small temporal variation, potentially limiting the representativeness of the training
data. In contrast, the GEO CLAVR-x algorithm demonstrates the best performance
and highest accuracy in retrieving CBH from geostationary satellite data. Notably, its
results align well with those from ground-based lidar and cloud radar during the
daytime. However, both physics-based methods, utilizing CloudSat CPR data for
regression, struggle to accurately retrieve CBHs below 1 km, as the lowest 1 km
above ground level of this data is affected by ground clutter.

Additionally, despite utilizing the same physics principles in spaceborne and
ground-based lidar/radar CBH algorithms, the previous study (Thorsen et al., 2011)
has highlighted differences in profiles between them. Therefore, this factor induced
by detection principle could contribute to the relatively poorer results in CBH
retrieval by ML-based algorithms compared to ground-based lidar and radar. The
analysis and discussion above suggest that ML-based algorithms are constrained by
the size and representativeness of their datasets.

Ideally, we guess that including more spaceborne cloud profiling radars with
varying passing times (covering the entire day) in the training dataset could improve
the machine learning technique, potentially leading to a higher-quality CBH product
with more comprehensive observations. The CBH product using ML-based
algorithms should continue to be improved in future work. Particularly, exploring the
joint ML-physics-based method presents a promising direction, which can address the
complexities and challenges in retrieving cloud properties. By integrating established
physical relationships into ML models, we can potentially enhance the accuracy and

reliability of predictions. This approach not only leverages the strengths of both
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physics-based models and data-driven techniques but also offers a pathway to more
robust and interpretable solutions in atmospheric sciences. At present, we will focus
on developing physics-based algorithms for cloud base height for the next generation
of geostationary meteorological satellites, to support the application of these products
in weather and climate domains.

Besides, at night, current GEO satellite imaging instruments encounter
challenges in accurately determining CBH due to limited or absent solar illumination.
Because it is unable to retrieve cloud optical depth in the visible band, the current
method faces limitations. However, there is potential for enhanced accuracy in
deriving cloud optical and microphysical properties, as well as CBH, by incorporating
the Day/Night Band (DNB) observations during nighttime in the future (Walther et al.,
2013).
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Appendix A

Based on the previously discussed description of two physics-based cloud base
height (CBH) retrieval algorithms (GEO IDPS and GEO CLAVR-x retrieval
algorithms), cloud products such as cloud top height (CTH), effective particle radius
(Retr), and cloud optical thickness (Dcor) will be utilized in both algorithms. To
validate the reliability of these cloud products derived from the Advanced Himawari
Imager (AHI) aboard the Himawari-8 (HS), a pixel-by-pixel comparison is conducted
with analogous MODIS Collection-6.1 Level-2 cloud products. Both Aqua and Terra
MODIS Level-2 cloud products (MODO06 and MYDO06) are accessible for free
download from the MODIS official website. For wverification purposes, the
corresponding Level-2 cloud products from January, April, July, and October of 2018
are chosen to assess CTH, Dcor, and R.sr retrieved by H8/AHI.

Figure S2 (in the supplementary document) shows the spatiotemporally matched
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case comparisons of CTH, Dcor and Refr from H8/AHI and Terra/MODIS (MYDO06)
at 03:30 UTC on January 15, 2018. It can be seen that the CTH, Dcor and Resr from
H8/AHI are in good agreement with the matched MODIS cloud products. However,
there are still some differences in Retr at the regions near 35°N, 110°E in Figures S2d
and S2c. The underestimated Retr values from H8/AHI relative to MODIS have been
reported in previous studies. (Letu et al.,, 2019) compared the ice cloud products
retrieved from AHI and MODIS, and concluded that the Refr from both products differ
remarkably in the ice cloud region and the Dcor from them are roughly similar.
However, the Dcor from AHI data is higher in some areas. Looking again at the cloud
optical thickness that at the same time, the slight underestimation of H8/AHI Dcor
can be found in Figures S2e and S2f. Figure S3 (in the supplementary document)
shows another case at 02:10 UTC on January 15, 2018. Despite of the good
consistence between H8/AHI and MODIS cloud products, there are slight differences
in CTH in the area around 40°S—40.5°S, 100°E-110°E in Figs. S3a and S3b. Besides,
as shown in Figure S2, there are still underestimations in the Rerr of H8/AHI.

To further compare and validate these three H8/AHI cloud products, the
spatiotemporally matched samples from H8/AHI and Aqua/Terra MODIS in four
months of 2018 are counted within the three intervals of 0.1 km (CTH), 1.0 um (Resr),
and 1 (Dcor) in Figure S4 (in the supplementary document). The corresponding mean
absolute error, mean bias error, RMSE and R values are also calculated and marked in
each subfigure. As can be seen, the R of CTH is around 0.75 in all four months and is
close to 0.8 in August. The results of Dcor show the highest R, reaching above 0.8. In
contrast, the underestimation trend in Resr is also shown in this figure. These different
consistencies between two satellite-retrieved cloud products may be attributed to: (1)
different spatiotemporal resolutions between H8/AHI and MODIS; (2) different
wavelength bands, bulk scattering model, and specific algorithm used for retrieving
cloud products; (3) different view zenith angle between GEO and low-earth-orbit
satellite platforms (Letu et al., 2019). In addition, other external factors such as
surface type also can affect the retrieval of cloud product. However, according to
Figure S4, the bulk of the analyzed samples are still around the 1:1 line, indicating the
good quality of H8/AHI cloud products.

Appendix B
The ML-based visible (VIS)+infrared (IR) model algorithm mentioned above
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uses 230 typical variables (see Table 1) as model predictors, and the importance
scores of top-30 predictors are ranked in Figure S5 (in the supplementary document).
It can be seen that the most important variables are CTH and CTT, and Dcor is an
important or sensitive factor affecting these two quantities. A sensitivity test is also
performed to further investigate the potential influence of Dcor on the CBH retrieval
by the VIS+IR model (see Table S1 in the supplementary document). From Figure
S7a, we find that the samples with Dcor lower than 5 cause the relatively large CBH
errors compared with the matched CBHs from the joint CALIPSO (Cloud-Aerosol
Lidar and Infrared Pathfinder Satellite Observation)/CloudSat product.

According to the results in this Figure S7b, we may filter the samples with
relatively small Dcor to further improve the accuracy of CBH retrieval by the VIS+IR
model (see Table S1). Figure S7b shows that after filtering the samples with the Dcor
less than 1.6, the R increases from 0.895 to 0.922, implying a better performance of
CBH retrieval. According to the ranking of predictor importance (see Fig. S6 in the
supplementary document), we also conduct another sensitivity test on the BT
observed by H8/AHI IR Channel-14 (Chal4) at 11 pm, which plays an important role
in the IR-single model. Figure S7c shows that the BT values of H8/AHI Channel-14
ranges from 160 K to 316 K, and the samples with BT higher than 300 K show large
CBH errors. Similarly, by filtering the samples with BT higher than 281 K, we can get
a better IR-single model algorithm for retrieving high-quality CBH (see Table S2 in
the supplementary document). Figure S7d also proves that the R value increases from

0.868 to 0.911.
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Tables and Figures

Table 1. Predictand and predictor variables for both visible (VIS)+infrared (IR) model

and IR-single regression model training, which are divided according to the different

predictor variables from satellite and NWP data

Predictand IR-single model input VIS+IR model input

BT(3.9um), BT(6.2pm), BT(6.9um), | BT(3.9um), BT(6.2um), BT(6.9um),
BT(7.3pm), BT(8.6um), BT(9.6pm), | BT(7.3um), BT(8.6pm), BT(9.6um),
BT(10.4pm), BT(11.2um), BT(10.4pm), BT(11.2um),
BT(12.4pm), BT (13.3um), BT(12.4um), BT(13.3um),
BTD(11.2-12.4pum), BTD(11.2— BTD(11.2-12.4pum), BTD(11.2—
13.3um) [Unit = K], 13.3um) [Unit = K],
Air Mass (1/cos(VZA)), Air Mass(1/cos(VZA)),

Predictor View azimuth angles [Unit = degree], | Air Mass(1/cos(SZA)),

[satellite Cloud top height from H8/AHI [unit: | View/Solar Azimuth angles [Unit =

measurements] | m], degree],

Cloud top temperature from H8/AHI
[unit: K]

Cloud top height from H8/AHI [unit:
m],

Cloud top temperature from H8/AHI
[unit: K]

Ref(0.47um), Ref(0.51um),
Ref(0.64um), Ref(0.86um),
Ref(1.64pm), Ref(2.25um)

Predictor [GFS

Altitude profile (from surface to
about 21 km, 67 layers) [unit: m],
Temperature profile (from surface to
about 21 km, 67 layers) [unit: K],
Relative humidity profile (from

Altitude profile (from surface to about
21 km, 67 layers) [unit: m],
Temperature profile (from surface to
about 21 km, 67 layers) [unit: K],
Relative humidity profile (from

NWP] surface to about 21 km, 67 layers) surface to about 21 km, 67 layers)
[unit: %], [unit: %],
Total precipitable water, Total precipitable water,
Surface temperature [unit: K] Surface temperature [unit: K]
Predictor ] )
Surface elevation [unit: m] Surface elevation [unit: m]
[other]

Notes: VZA = view zenith angle [unit: degree];

degree]
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SZA = solar zenith angle [unit:
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Figure 1. Comparison of full disk CBH results retrieved by the four independent
algorithms at 02:00 UTC on January 1, 2017. (a) GEO IDPS algorithm, (b) GEO
Clouds from AVHRR Extended (CLAVR-x) algorithm, (c) ML-based (RF, random
forest) VIS+IR algorithm and (d) ML-based (RF) IR-single algorithm.
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Figure 2. Density distributions of CBHs retrieved from (a) GEO IDPS, (b) GEO
CLAVR-x, (c) VISHIR and (d) IR-single algorithms compared with the CBHs from
the joint CloudSat/CALIPSO product (taken as true values) in 2017 for both single
and multilayer clouds. The mean absolute error (MAE), mean bias error (MBE), root

mean square error (RMSE) and R are listed in each subfigure where the difference
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1057  Figure 3. Inter-comparisons of CBH products retrieved by CloudSat (red solid circle),
1058  the GEO IDPS algorithm (blue solid circle), the GEO CLAVR-x (green solid circle),
1059  the ML-based VIS+IR model algorithm (orange solid circle), and the ML-based
1060  IR-single model algorithm (pink solid circle) at (a) 03:16—04:55 UTC on January 13,
1061 2017 (a) and (b) 05:38-07:17 UTC on January 14, 2017. The black and gray colormap
1062  represents the matched CloudSat radar reflectivity.
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1077  Figure 4. Geographical locations and photos of lidar and cloud radar at Yunnan
1078  Lijiang and Beijing Nanjiao stations.
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1099  Figure 5. Comparisons of the CBHs from the ground-based lidar measurements
1100  (black solid circle) at Yunnan Lijiang station and the four GEO satellite retrieval
1101 algorithms, namely the GEO IDPS (red cross symbol), the GEO CLAVR-x (green
1102  solid asterisk), the ML-based VIS+IR model (orange solid diamond) and the
1103  ML-based IR-single model (blue plus sign) algorithms. Figure 5a and 5b show the
1104  time series of CBHs from lidar and the four GEO satellite retrieval algorithms on
1105  December 6, 2018 and January 8, 2019, respectively. Fig 5¢ shows the scatterplots of

1106 ~ CBH samples from the lidar measurements and the four retrieval algorithms.
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Figure 6. Same as Figure 5, but for the CBH sample results from the cloud radar at

1117

Beijing Nanjiao station (black solid circle) on April 9-10, 2017 (top panel) and July

1118

26-28, 2017 (bottom panel).
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Figure 7. Box plots of the hourly CBH errors of four GEO satellite retrieval
algorithms (GEO IDPS, GEO CLAVR-x, ML-based VIS+IR and ML-based IR-single)
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Figure 9. Comparisons between the CBHs

station and the matched CBHs from the four retrieval algorithms (GEO IDPS, GEO
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from the cloud radar at Beijing Nanjiao

CLAVR-x, ML-based VIS+IR and ML-based IR-single) in 2017.
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