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Abstract. Two groups of retrieval algorithms, physics-based and the other 34 

machine-learning (ML) based, each consisting of two independent approaches, have 35 

been developed to retrieve cloud base height (CBH) and its diurnal cycle from 36 

Himawari-8 geostationary satellite observations. Validations have been conducted 37 

using the joint CloudSat/CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) 38 

CBH products in 2017, ensuring independent assessments. Results show that the two 39 

ML-based algorithms exhibit markedly superior performance (the optimal method is 40 

with a correlation coefficient of R > 0.91 and an absolute bias of approximately 0.8 41 

km) compared to the two physics-based algorithms. However, validations based on 42 

CBH data from the ground-based lidar at the Lijiang station in Yunnan province and 43 

the cloud radar at the Nanjiao station in Beijing, China, explicitly present 44 

contradictory outcomes (R < 0.60). An identifiable issue arises with significant 45 

underestimations in the retrieved CBH by both ML-based algorithms, leading to an 46 

inability to capture the diurnal cycle characteristics of CBH. The strong consistence 47 

observed between CBH derived from ML-based algorithms and the spaceborne active 48 

sensors of CloudSat/CALIOP may be attributed to utilizing the same dataset for 49 

training and validation, sourced from the CloudSat/CALIOP products. In contrast, the 50 

CBH derived from the optimal physics-based algorithm demonstrates the good 51 

agreement in diurnal variations of CBH with ground-based lidar/cloud radar 52 

observations during the daytime (with an R value of approximately 0.7). Therefore, 53 

the findings in this investigation from ground-based observations advocate for the 54 

more reliable and adaptable nature of physics-based algorithms in retrieving CBH 55 

from geostationary satellite measurements. Nevertheless, under ideal conditions, with 56 

an ample dataset of spaceborne cloud profiling radar observations encompassing the 57 

entire day for training purposes, the ML-based algorithms may hold promise in still 58 

delivering accurate CBH outputs. 59 

Key words: Geostationary meteorological satellite; cloud base height; physics-based 60 

algorithm; machine learning. 61 
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1 Introduction 63 

Clouds, comprising visible aggregates like atmospheric water droplets, 64 

supercooled water droplets, ice crystals, etc., cover roughly 70% of the Earth's surface 65 

(Stubenrauch et al., 2013). They play a pivotal role in global climate change, the 66 

hydrometeor cycle, aviation safety, and serve as a primary focus in weather 67 

forecasting and climate research, particularly storm clouds (Hansen, 2007; Hartmann 68 

and Larson, 2002). From advanced geostationary (GEO) and polar-orbiting (LEO, 69 

low earth orbit) satellite imagers, various measurable cloud properties, such as cloud 70 

fraction, cloud phase, cloud top height (CTH), and cloud optical thickness (DCOT), are 71 

routinely retrieved. However, the high-quality cloud geometric height (CGH) and 72 

cloud base height (CBH), a fundamental macro physical parameter delineating the 73 

vertical distribution of clouds, remains relatively understudied and underreported. 74 

Nonetheless, for boundary-layer clouds, the cloud base height stands as a critical 75 

parameter depending on other cloud-controlling variables. These variables encompass 76 

the cloud base temperature (Zhu et al., 2014), cloud base vertical velocity (Zheng et 77 

al., 2020), activation of CCN (Cloud Condensation Nuclei) at the cloud base 78 

(Rosenfeld et al., 2016; Miller et al., 2023), and the cloud-surface decoupling state 79 

(Su et al., 2022). These factors significantly impact convective cloud development 80 

and ultimately the climate.  81 

There are distinct diurnal cycle characteristics of clouds in different regions 82 

across the globe (Li et al., 2022). These diurnal cycle characteristics primarily stem 83 

from the daily solar energy cycle absorbed by both the atmosphere and Earth's surface. 84 

Besides, vertical atmospheric motions are shaped by imbalances in atmospheric 85 

heating and surface configurations, also leading to a range of cloud movements and 86 

structures (Miller et al., 2018). Cloud base plays a pivotal role in weather and climate 87 

processes. It is critical for predicting fog and cloud-related visibility issues important 88 

in aviation and weather forecasting. For instance, lower cloud bases often lead to 89 

more intense rainfall. In climate modeling, CBH is integral for accurate long-term 90 

weather predictions and understanding the radiative balance of the Earth, which 91 

influences global temperatures (Zheng and Rosenfeld, 2015). Hence, the accurate 92 

determination of CBH and its diurnal cycle with high spatiotemporal resolution 93 

becomes very important, necessitating comprehensive investigations (Viúdez-Mora et 94 

删除了: As well known, t95 



      4 

al., 2015; Wang et al., 2020). Such efforts can provide deeper insights into potential 96 

ramifications of clouds on radiation equilibrium and global climate systems. 97 

However, as one of the most crucial cloud physical parameters in atmospheric 98 

physics, the CBH poses challenges in terms of measurement or estimation from space. 99 

Presently, the primary methods for measuring CBH rely on ground-based 100 

observations, utilizing tools such as sounding balloons, Mie-scattering lidars, 101 

stereo-imaging cloud-height detection technologies, and cloud probe sensors 102 

(Forsythe et al., 2000; Hirsch et al., 2011; Seaman et al., 2017; Zhang et al., 2018; 103 

Zhou et al., 2019; Zhou et al., 2024). While in-situ ground-based observation methods 104 

offer highly accurate, reliable, and timely continuous CBH results, they are 105 

constrained by localized observation coverage and the sparse distribution of 106 

observation sites (Aydin and Singh, 2004). In recent decades, with the rapid 107 

advancement of meteorological satellite observation technology, spaceborne 108 

observing methods have emerged that provide global cloud observations with high 109 

spatiotemporal resolution compared to conventional ground-based remote sensing 110 

methods. In this realm, satellite remote sensing techniques for measuring CBH fall 111 

primarily into two categories: active and passive methods. Advanced active remote 112 

sensing technologies like CloudSat (Stephens et al., 2002) and Cloud-Aerosol Lidar 113 

and Infrared Pathfinder Satellite Observation (CALIPSO) (Winker et al., 2009) in the 114 

National Aeronautics and Space Administration (NASA) A-Train (Afternoon-Train) 115 

series (Stephens et al., 2002) can capture global cloud profiles, including CBH, with 116 

high quality by detecting unique return signals from cloud layers using onboard active 117 

millimeter wave radar or lidar. However, their viewing footprints are limited along the 118 

nadir of the orbit, implying that observation coverage remains confined primarily to a 119 

horizontal scale (Min et al., 2022; Lu et al., 2021). 120 

In addition to active remote sensing methods, satellite-based passive remote 121 

sensing technologies can also play an important role in estimating CBH (Meerkötter 122 

and Bugliaro, 2009; Lu et al., 2021). The physics-based principles and retrieval 123 

methods for CTH have reached maturity and are now widely employed in satellite 124 

passive remote sensing field (Heidinger and Pavolonis, 2009; Wang et al., 2022). 125 

However, the corresponding physical principles or methods for measuring CBH using 126 

satellite passive imager measurements are still not entirely clear and unified 127 

(Heidinger et al., 2019; Min et al., 2020). A recent study by Yang et al. (2021) utilized 128 

oxygen A-band data observed by the Orbiting Carbon Observatory 2 (OCO-2) to 129 
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retrieve single-layer marine liquid CBH. These passive space-based remote sensing 132 

methods aforementioned, such as satellite imagery, play a key role in retrieving CBH. 133 

In terms of detection principles, the first method involves the extrapolation technique 134 

for retrieving CBH for clouds of the same type. For instance, Wang et al. (2012) 135 

proposed a method to extrapolate CBH from CloudSat using spatiotemporally 136 

matched MODIS (Moderate Resolution Imaging Spectroradiometer) cloud 137 

classification data (Baum et al., 2012; Platnick et al., 2017). The second 138 

physics-based retrieval method first approximates the cloud geometric thickness using 139 

its optical thickness. It then employs the previously derived CTH product to compute 140 

the corresponding CBH using the respective NOAA (National Oceanic and 141 

Atmospheric Administration) SNPP/VIIRS (Suomi National Polar-orbiting 142 

Partnership/Visible Infrared Imaging Radiometer Suite) products (Noh et al., 2017). 143 

Hutchison et al. (2002 and 2006) also formulated an empirical algorithm that 144 

estimates both cloud geometric thickness (CGT) and CBH. This algorithm relies on 145 

statistical analyses derived from MODIS DCOT and cloud liquid water path products 146 

(Hutchison et al., 2006; Hutchison, 2002). 147 

Machine learning (ML) has proven to be highly effective in addressing nonlinear 148 

problems within remote sensing and meteorology fields, such as precipitation 149 

estimation and CTH retrieval (Min et al., 2020; HåKansson et al., 2018; Kühnlein et 150 

al., 2014). In recent years, several studies have leveraged ML-based algorithms to 151 

retrieve CBH, establishing nonlinear connections between CBH and GEO satellite 152 

observations. For instance, Tan et al. (2020) integrated CTH and cloud optical 153 

properties products from Fengyun-4A (FY-4A) GEO satellite with spatiotemporally 154 

matched CBH data from CALIPSO/CloudSat. They developed a random forest (RF) 155 

model for CBH retrieval. Similarly, Lin et al. (2022) constructed a gradient boosted 156 

regression tree (GBRT) model using U.S. new-generation Geostationary Operational 157 

Environmental Satellites-R Series (GOES-R) Advanced Baseline Imager (ABI) level 158 

1B radiance data and the ERA5 (the fifth generation ECMWF) reanalysis dataset (Lin 159 

et al., 2022) (https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset). They 160 

employed CALIPSO CBH data as labels to achieve single-layer CBH retrievals. 161 

Notably, the CBH quality of ML-based algorithms was found to surpass that of 162 

physics-based algorithms (Lin et al., 2022). Moreover, Tana et al. (2023) utilized 163 

Himawari-8 data and the RF algorithm to develop a novel CBH algorithm, achieving 164 

a similar high correlation coefficient (R) of 0.92 and a low root mean square error 165 
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(RMSE) of 1.17 km compared with CloudSat/CALISPO data. 168 

    However, these former studies did not discuss whether both physics-based and 169 

ML-based algorithms of GEO satellite could retrieve the diurnal cycle of CBH well. 170 

This gap in research could be mainly attributed to potential influences from the fixed 171 

LEO satellite (with active radar or lidar) passing time in the previous CBH retrieval 172 

model (Lin et al., 2022). The diurnal cycles of CBH have not been well investigated 173 

in both GEO and LEO remote sensing research. Hence, it is crucial to thoroughly 174 

investigate the diurnal cycle features of CBH derived from GEO satellite 175 

measurements by comparing them with ground-based radar and lidar observations 176 

(Min and Zhang, 2014; Warren and Eastman, 2014). In this study, we aim to assess 177 

the applicability and feasibility of both physics-based and ML-based algorithms of 178 

GEO satellites in capturing the diurnal cycle characteristics of CBH. 179 

    The subsequent sections of this paper are structured as follows. Section 2 180 

provides a concise overview of the data employed in this study. Following that, 181 

section 3 introduces the four distinct physics/ML-based CBH retrieval algorithms. In 182 

section 4, the CBH results obtained from these four algorithms are analyzed, and 183 

comparisons are drawn with spatiotemporally matched CBHs from ground-based 184 

cloud radar and lidar. Finally, section 5 encapsulates the primary conclusions and new 185 

findings derived from this study. 186 

2 Data 187 

In this study, observations from the Himawari-8 (H8) Advanced Himawari 188 

Imager (AHI) are utilized for the retrieval of high spatiotemporal resolution CBH. 189 

Launched successfully by the Japan Meteorological Administration on October 7, 190 

2014, the H8 geostationary satellite is positioned at 140.7°E. The AHI onboard H8 191 

encompasses 16 spectral bands ranging from 0.47 μm to 13.3 μm, featuring spatial 192 

resolutions of 0.5–2 km. This includes 3 visible (VIS) bands at 0.5–1 km, 3 193 

near-infrared (NIR) bands at 1–2 km, and 10 infrared (IR) bands at 2 km. The 194 

H8/AHI can scan a full disk area within 10 minutes, two specific areas within 2.5 195 

minutes, a designated area within 2.5 minutes, and two landmark areas within 0.5 196 

minutes (Iwabuchi et al., 2018). Its enhanced temporal resolution and observation 197 

frequency facilitate the tracking of rapidly changing weather systems, enabling the 198 

accurate determination of quantitative atmospheric parameters (Bessho et al., 2016). 199 



      7 

Operational H8/AHI Level-1B data, accessible from July 7, 2015, are freely 200 

available on the satellite product homepage of the Japan Aerospace Exploration 201 

Agency (Letu et al., 2019). The Level-2 cloud products utilized in this study, 202 

including cloud mask (CLM), CTH, cloud effective particle radius (CER or Reff), and 203 

DCOT, are generated by the Fengyun satellite science product algorithm testbed 204 

(FYGAT) (Wang et al., 2019; Min et al., 2017) of the China Meteorological 205 

Administration (CMA) for various applications. According to previous CALIPSO 206 

validations (Min et al., 2020), the absolute bias of cloud top height retrieved by the 207 

H8 satellite is approximately 3 km, with an absolute bias of 1 to 2 km for samples 208 

below 5 km. The accuracy of CTH is crucial for estimating CBH in the subsequent 209 

algorithm. It is important to note that certain crucial preliminary cloud products, such 210 

as CLM, have been validated in prior studies (Wang et al., 2019; Liang et al., 2023). 211 

Nevertheless, before initiating CBH retrieval, it is imperative to validate the H8/AHI 212 

cloud optical and microphysical products from the FYGAT retrieval system. This 213 

validation has been carried out by using analogous MODIS Level-2 cloud products as 214 

a reference. Additional details regarding the validation of cloud products are provided 215 

in the Appendix A section. 216 

In addition to the H8/AHI Level-1/2 data, the Global Forecast System (GFS) 217 

numerical weather prediction (NWP) data are employed for CBH retrieval in this 218 

study. The variables include land/sea surface temperature and the vertical profiles of 219 

temperature, humidity, and pressure. Operated by the U.S. NOAA (Kalnay et al., 220 

1996), the GFS serves as a global and advanced NWP system. The operational GFS 221 

system routinely delivers global high-quality and gridded NWP data at 3-hour 222 

intervals, with four different initial forecast times per day (00:00, 06:00, 12:00, and 223 

18:00 UTC). The three-dimensional NWP data cover the Earth in a 0.5°×0.5° grid 224 

interval and resolve the atmosphere with 26 vertical levels from the surface (1000 hPa) 225 

up to the top of the atmosphere (10 hPa).  226 

As previously mentioned, the official MODIS Collection-6.1 Level-2 cloud 227 

product Climate Data Records (Platnick et al., 2017) are utilized in this study to 228 

validate the H8/AHI cloud products (CTH, CER, and DCOT) generated by the FYGAT 229 

system. High-quality, long-term series MODIS data is often used as a validation 230 

reference to evaluate the products of new satellites. MODIS sensors are onboard 231 

NASA Terra and Aqua polar-orbiting satellites. Terra functions as the morning 232 

satellite, passing through the equator from north to south at approximately 10:30 local 233 
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time, while Aqua serves as the afternoon satellite, traversing the equator from south to 234 

north at around 13:30 local time. As a successor to the NOAA Advanced Very High 235 

Resolution Radiometer (AVHRR), MODIS features 36 independent spectral bands 236 

and a broad spectral range from 0.4 μm (VIS) to 14.4 μm (IR), with a scanning width 237 

of 2330 km and spatial resolutions ranging from 0.25 to 1.0 km. Recent studies 238 

(Baum et al., 2012; Platnick et al., 2017) have highlighted significant improvements 239 

and collective changes in cloud top, optical, and microphysical properties from 240 

Collection-5 to Collection-6. 241 

In addition to the passive spaceborne imaging sensors mentioned above, the 242 

CloudSat satellite , equipped with a 94-GHz active cloud profiling radar (CPR), holds 243 

the distinction of being the first sun-synchronous orbit satellite specifically designed 244 

to observe global cloud vertical structures and properties. It is part of the A-Train 245 

series of satellites, akin to the Aqua satellite, launched and operated by NASA 246 

(Heymsfield et al., 2008). CALIPSO is another polar-orbiting satellite within the 247 

A-Train constellation, sharing an orbit with CloudSat and trailing it by a mere 10–15 248 

seconds. CALIPSO is the first satellite equipped with an active dual-channel CALIOP 249 

at 532 and 1064 nm bands (Hunt et al., 2009). Both CloudSat and CALIPSO possess 250 

notable advantages over passive spaceborne sensors due to the 94-GHz radar of 251 

CloudSat and the joint return signals of lidar and radar on CALIPSO. These features 252 

enhance their sensitivity to optically thin cloud layers and ensure strong penetration 253 

capability, resulting in more accurate CTH and CBH detections compared to passive 254 

spaceborne sensors (CAL_LID_L2_05kmCLay-Standard-V4-10). The joint cloud 255 

type products of 2B-CLDCLASS-LIDAR, derived from both CloudSat and CALIPSO 256 

measurements, offer a comprehensive description of cloud vertical structure 257 

characteristics, cloud type, CTH, CBH, etc. The time interval between each profile in 258 

this product is approximately 3.1 seconds, and the horizontal resolution is 2.5 km 259 

(along track)×1.4 km (cross-track). Each profile is divided into 125 layers with a 260 

240-m vertical interval. For more details on 2B-CLDCLASS-LIDAR products, please 261 

refer to the CloudSat official product manual (Sassen and Wang, 2008). In this study, 262 

we consider the lowest effective cloud base height from the joint CloudSat/CALIOP 263 

data as the true values for training and validation. Please note that for this study, we 264 

utilized one-year H8/AHI data and matched it with the joint CloudSat/CALIOP data 265 

from January 1 to December 31 of 2017. 266 
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3 Physics and machine-learning based cloud base height algorithms 267 

3.1 GEO cloud base height retrieval algorithm from the interface data processing 268 
segment of the Visible Infrared Imaging Radiometer Suite 269 

    The Joint Polar Satellite System (JPSS) program is a collaborative effort between 270 

NASA and NOAA. The operational CBH retrieval algorithm, part of the 30 271 

Environmental Data Records (EDR) of JPSS, can be implemented operationally 272 

through the Interface Data Processing Segment (IDPS) (Baker, 2011). In this study, 273 

our geostationary satellite CBH retrieval algorithm aligns with the IDPS CBH 274 

algorithm developed by (Baker, 2011). Utilizing the geostationary H8/AHI cloud 275 

products discussed earlier, this new GEO CBH retrieval algorithm is succinctly 276 

outlined below. It is important to note that multilayer cloud scenes remain a challenge 277 

for retrieving both CTH and CBH, especially when considering the column-integrated 278 

cloud water path (CWP) used in physics-based algorithms (Noh et al., 2017). In this 279 

study, we will simplify the scenario by assuming a single-layer cloud for all 280 

algorithms. 281 

 The new GEO IDPS CBH algorithm initiates the process by first retrieving the 282 

CGT from bottom to top. Subsequently, CGT is subtracted from the corresponding 283 

CTH to calculate CBH (CBH = CTH − CGT). The algorithm is divided into two 284 

independent executable modules based on cloud phase, distinguishing between liquid 285 

water and ice clouds. CBH of water cloud retrieval requires DCOT and CER as inputs. 286 

For ice clouds, an empirical equation is employed for CBH retrieval. However, the 287 

standard deviations of error in IDPS CBH for individual granules often exceed the 288 

JPSS VIIRS minimum uncertainty requirement of ±2km (Noh et al., 2017). For a 289 

more comprehensive understanding of this CBH algorithm, please refer to the IDPS 290 

algorithm documentation (Baker, 2011). Note that, similar to previous studies on 291 

cloud retrieval (Noh et al., 2017; Platnick et al., 2017), this investigation also assumes 292 

a single-layer cloud for all CBH algorithms, due to the challenges associated with 293 

determining multilayer cloud structures. 294 

3.2 GEO cloud base height retrieval algorithm implemented in the Clouds from 295 
Advanced Very High Resolution Radiometer Extended system 296 

As mentioned above, the accuracy of the GEO IDPS algorithm is highly 297 

dependent on the initial input parameters such as cloud phase, DCOT and Reff, which 298 

删除了: /299 
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may introduce some uncertainties in the final retrieval results. In contrast, another 300 

statistically-based algorithm is proposed and implemented here, which is named the 301 

GEO CLAVR-x (Clouds from AVHRR Extended, NOAA's operational cloud 302 

processing system for the AVHRR) CBH algorithm (Noh et al., 2017), and it mainly 303 

refers to NOAA AWG CBH algorithm (ACBA) (Noh et al., 2022). Previous studies 304 

have also demonstrated a R of 0.569 and a RMSE of 2.3 km for the JPSS VIIRS 305 

CLAVR-x CBH algorithm. It is anticipated that this algorithm will also be employed 306 

for the NOAA GOES-R geostationary satellite imager (Noh et al., 2017; Seaman et al., 307 

2017). 308 

Similar to the GEO IDPS CBH retrieval algorithm mentioned earlier, the GEO 309 

CLAVR-x CBH retrieval algorithm also initially obtains CGT and CTH, subsequently 310 

calculating CBH by subtracting CGT from CTH (CTH−CGT). However, the specific 311 

calculation method for the CGT value differs. This algorithm is suitable for 312 

single-layer and the topmost layer of multi-layer clouds, computing CBH using the 313 

CTH at the top layer of the cloud. In comparison with the former GEO IDPS CBH 314 

algorithm, the GEO CLAVR-x CBH algorithm considers two additional cloud types: 315 

deep convection clouds and thin cirrus clouds (Baker, 2011). For more details on this 316 

CLAVR-x CBH algorithm, please refer to the original algorithm documentation (Noh 317 

et al., 2017). 318 

3.3 Random-forest-based cloud base height estimation algorithm 319 

RF, one of the most significant ML algorithms, was initially proposed and 320 

developed by (Breiman, 2001). It is widely employed to address classification and 321 

regression problems based on the law of large numbers. The RF method is well-suited 322 

for capturing complex or nonlinear relationships between predictors and predictands. 323 

In this study, two distinct ML-based GEO CBH algorithms, namely VIS+IR and 324 

IR-single (only uses observations of H8/AHI IR channels), are devised to retrieve or 325 

predict the CBH using different sets of predictors. The RF training of the chosen 326 

predictors is formulated as follows: 327 

CBH=RFreg[x1, x2, …, xn],                                              (1) 328 

where RFreg denotes the regression RF model, and xi represents the ith predictor. The 329 

selected predictors from H8/AHI for both the VIS+IR and IR RF model training and 330 

prediction are detailed in Table 1, mainly referencing Min et al. (2020) and Tan et al. 331 

(2020). The VIS+IR algorithm retrieves CBH using NWP data (atmospheric 332 
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temperature and altitude profiles, total precipitable water (TPW), surface temperature), 333 

surface elevation, air mass 1 (air mass 1=1/cos(view zenith angle)), and air mass 2 (air 334 

mass 2=1/cos(solar zenith angle)). The rationale for choosing air mass and TPW is 335 

their ability to account for the potential absorption effect of water vapor along the 336 

satellite viewing angle. The predictors in CBH retrieval also include the IR band 337 

Brightness Temperature (BT) and VIS band reflectance. The IR-single algorithm 338 

selects the same GFS NWP data as the VIS+IR algorithm but employs only view 339 

zenith angles and azimuth angles.  340 

To optimize the RF prediction model, the hyperparameters of the RF model are 341 

tuned individually. The parameters and their dynamic ranges involved in tuning the 342 

RF prediction models include the number of trees [100, 200, 300, 400, 500], the 343 

maximum depth of trees [10, 20, 30, 40, 50], the minimum number of samples 344 

required to split an internal node [2, 4, 6, 8, 10], and the minimum number of samples 345 

required to be at a leaf node [1, 3, 5, 7, 9]. In this study, we set the smallest number of 346 

trees in the forest to 100 and the maximum depth of the tree to 40. 347 

3.4 Evaluation method 348 

The performance of RF models and physics-based methods will be assessed using 349 

mean absolute error (MAE), mean bias error (MBE), RMSE, R, and standard 350 

deviation (STD) scores using the testing dataset. These scores mentioned above are 351 

used to understand different aspects of the predictive performance of model: MAE 352 

and RMSE provide insights into the average error magnitude, MBE indicates bias in 353 

the predictions, R evaluates the linear association between observed and predicted 354 

values, and STD assesses the variability of the predictions. In the RF IR-single 355 

algorithm, 581,783 matching points are selected from H8/AHI and CloudSat data for 356 

2017. Seventy percent of these points are randomly assigned to the training dataset, 357 

and the remainder serves as the testing dataset. For the RF VIS+IR algorithm, a total 358 

of 418,241 matching points are chosen, with 70% randomly allocated to the training 359 

set. Note that the reduced data amount is because only daytime data can be used for 360 

the VIS+IR method training. It's important to note that the two training datasets in 361 

CloudSat will also be used to verify the CBHs obtained by cloud radar and lidar. The 362 

statistical formulas for evaluation are as follows: 363 

MAE = !
"∑ |𝑦# − 𝑥#|"

#$! ,                                               (2) 364 
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MBE = !
"∑ (𝑦# − 𝑥#)"

#$! ,                                               (3) 365 

RMSE = /
!
"∑ (𝑦# − 𝑥#)%"

#$! ,                                           (4) 366 

𝑅 = 	 ∑ ((!)(*)
"
!#$ (,!),̅)

.∑ ((!)(*)%"
!#$ .∑ (,!),̅)%"

!#$

,                                           (5) 367 

STD = /
!

")!∑ (𝑥# − �̅�)%"
#$! ,                                            (6) 368 

where n is the sample number, yi is the ith CBH retrieval result, and xi is the ith joint 369 

CloudSat/CALIOP CBH product. 370 

Since the two RF models (VIS+IR and IR-single) select 230 typical variables to 371 

fit CBHs, the importance scores of these predictors in the two ML-based algorithms 372 

are ranked for better optimization. In a RF model, feature importance indicates how 373 

much each input variable contributes to the model's predictive accuracy by measuring 374 

the decrease in impurity or error when the feature is used to split data (Gregorutti et 375 

al., 2017). In the VIS+IR model, the top-ranked predictors are CTH and cloud top 376 

temperature (CTT) from the H8/AHI Level-2 product (see Fig. B1 in Appendix B). It 377 

is important to note that DCOT is a crucial and sensitive factor for these ML-based 378 

algorithms. Retrieving CBH samples with relatively low DCOT remains challenging 379 

due to the low signal-to-noise ratio when DCOT is low (Lin et al., 2022). To address 380 

this issue, samples with DCOT less than 1.6 are filtered in the VIS+IR model, and 381 

samples with relatively large BTs at Channel-14 are filtered in the IR-single model. 382 

This filtering process significantly improves the R value from 0.869 to 0.922 in the 383 

VIS+IR model and from 0.868 to 0.911 in the IR-single model. For more details on 384 

the algorithm optimization, please refer to Appendix B. 385 

In this study, the H8/AHI satellite CBH data retrieved by the four algorithms 386 

mentioned before are matched spatiotemporally with the 2B-CLDCLASS-LIDAR 387 

cloud product from joint CloudSat/CALIPSO observations in 2017. In this process, 388 

the nearest distance matching method is employed, ensuring that collocating the 389 

closest points and the observation time difference between the CloudSat/CALIPSO 390 

observation point and the matched Himwari-8 data is less than 5 minutes (Noh et al., 391 

2017). As in earlier study (Min et al., 2020), we also used 70% of the matched data 392 

for training and 30% of an independent sample for validation. Figure 1 displays a 393 

comparison of CBH results over the full disk at 02:00 UTC on January 1, 2017, 394 

retrieved by the GEO IDPS algorithm, the GEO CLAVR-x algorithm, the RF VIS+IR 395 
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algorithm, and the RF IR-single algorithm for all cloud conditions including single 396 

and multilayer cloud scenes. A similar distribution pattern and magnitude of CBHs 397 

retrieved by these four independent algorithms can be observed in Figure 1. However, 398 

notable differences exist between physics-based and ML-based algorithms. Further 399 

comparisons are conducted and analyzed with spaceborne and ground-based lidar and 400 

radar observations in the subsequent sections of this study. 401 

 402 

4 Results and Discussions  403 

4.1 Comparisons with the joint CloudSat/CALIPSO cloud base height product 404 

4.1.1 Joint scatter plots 405 

Figure 2 presents the density scatter plot of the CBHs retrieved from the GEO 406 

IDPS and GEO CLAVR-x algorithms compared with the CBHs from the joint 407 

CloudSat/CALIPSO product, along with the related scores of MAE, MBE, RMSE, 408 

and R calculated and labeled in each panel. The calculated R exceeds the 95% 409 

significance level (p < 0.05). For the GEO IDPS algorithm, the R is 0.62, the MAE is 410 

1.83 km, and the MBE and RMSE are -0.23 and 2.64 km (Fig. 2a). In comparison, 411 

Seaman et al. (2017) compared the operational VIIRS CBH product retrieved by the 412 

similar SNPP/VIIRS IDPS algorithm with the CloudSat CBH results. In their results, 413 

the R is 0.57, and the RMSE is 2.3 km. For the new GEO CLAVR-x algorithm (Fig. 414 

2b), the R is 0.645, and the RMSE is 2.91 km. The larger RMSE from two 415 

independent physics-based CBH algorithms demonstrate a slightly poorer 416 

performance and precision of these retrieval algorithms for GEO satellites. 417 

Particularly, the larger RMSEs (2.64 and 2.91 km) indicate weaker stabilities of the 418 

GEO IDPS and CLAVR-x CBH algorithms, compared with VIIRS CBH product 419 

(Seaman et al., 2017). In this figure, more samples can be found near the 1:1 line, 420 

implying the good quality of retrieved CBHs. However, in stark contrast, quite a 421 

number of CBH samples retrieved by both GEO IDPS and GEO CLAVR-x 422 

algorithms (compared with the official VIIRS CBH product) fall below 1.0 km, 423 

indicating relatively large errors when compared with the joint CloudSat/CALIPSO 424 

CBH product. Moreover, Figure 2 reveals that relatively large errors are also found in 425 

the CBHs lower than 2 km for the four independent algorithms, primarily caused by 426 

the weak penetration ability of VIS or IR bands on thick and low clouds. 427 
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Referring to the joint CloudSat/CALIPSO CBH product, Figures 2c and 2d 436 

present the validations of the CBH results retrieved from two ML-based algorithms 437 

using the VIS+IR (only retrieving the CBH during the daytime) and IR-single models. 438 

Figure 2c demonstrates better consistency of CBH between the VIS+IR model and the 439 

joint CloudSat/CALIPSO product with R = 0.91, MAE = 0.82 km, MBE = 0.43 km, 440 

and RMSE = 1.71 km. Figure 2d also displays a relatively high R of 0.876 when 441 

validating the IR-single model, with MAE = 0.88, MBE = −0.45, and RMSE = 2.00. 442 

Therefore, both VIS+IR and IR-single models can obtain high-quality CBH retrieval 443 

results from geostationary imager measurements. In comparison, previous studies also 444 

proposed similar ML-based algorithms for estimating CBH using FY-4A satellite 445 

imager data. For example, Tan et al. (2020) used the variables of CTH, DCOT, Reff, 446 

cloud water path, longitude/latitude from FY-4A imager data to build the training and 447 

prediction model and obtained CBH with MAE=1.29 km and R=0.80. In this study, 448 

except CTH, the other Level-2 products and geolocation data (longitude/latitude) used 449 

in (Tan et al., 2020) are abandoned, while the matched atmospheric profile products 450 

(such as temperature and relative humidity) from NWP data are added. These changes 451 

in ML-based model training and prediction lead to more accurate CBH retrieval 452 

results. Note that, in accordance with the previous study conducted by Noh et al. 453 

(2017), we excluded CBH samples obtained from CloudSat/CALIPSO that were 454 

smaller than 1 km in our comparisons. This exclusion was primarily due to the 455 

presence of ground clutter contamination in the CloudSat CPR data (Noh et al., 2017). 456 

4.1.2 Test case 457 

Figure 3 displays two cross-sections of CBH from various sources overlaid with 458 

CloudSat radar reflectivity (unit: dBZ) for spatiotemporally matched cases. The 459 

periods covered are from 03:16 to 04:55 UTC on January 13, 2017 (154.0°E–160.0°E; 460 

40.56°S–53.39°S) and from 05:38 to 07:17 UTC on January 14, 2017 (107.1°E–461 

107.8°E; 8.35°N–11.57°N). The CloudSat radar reflectivity and joint 462 

CloudSat/CALIPSO product provide insights into the vertical structure or distribution 463 

of clouds and their corresponding CBHs. The results from the four GEO CBH 464 

retrieval algorithms (GEO IDPS, GEO CLAVR-x, RF VIS+IR model, and RF 465 

IR-single model) mentioned earlier are individually marked with different markers in 466 

each panel. According to Figure 3a, the GEO IDPS algorithm faces challenges in 467 

accurately retrieving CBHs for geometrically thicker cloud samples near 157°E. 468 

Optically thick mid- and upper-level cloud layers may obscure lower-level cloud 469 
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layers. However, the CBH results retrieved by the GEO IDPS algorithm near 155°E 481 

(in Fig. 3a) and 107.4°E (in Fig. 3b) align with the joint CloudSat/CALIPSO CBH 482 

product. It is worth noting that the inconsistency observed between 107.2°E and 483 

107.3°E in Figure 3b, specifically regarding the CBHs around 1 km obtained from 484 

CloudSat/CALIPSO, can likely be attributed to ground clutter contamination in the 485 

CloudSat CPR data (Noh et al., 2017). The GEO CLAVR-x algorithm achieves 486 

improved CBH results compared to the GEO IDPS algorithm. It can even retrieve 487 

CBHs for some thick cloud samples that are invalid when using the GEO IDPS 488 

algorithm. However, the CBHs from the GEO CLAVR-x algorithm are noticeably 489 

higher than those from the joint CloudSat/CALIPSO product. In contrast, the CBHs 490 

from the two ML-based algorithms show substantially better results than those from 491 

the other two physics-based algorithms. Particularly, the ML-based VIS+IR model 492 

algorithm yields the best CBH results. However, compared with those from the two 493 

physics-based algorithms, the CBHs from the two ML-based algorithms still exhibit a 494 

significant error around 5 km. 495 

4.2 Comparisons with the ground-based lidar and cloud radar measurements 496 

Lidar actively emits laser pulses in different spectral bands into the air. When the 497 

laser signal encounters cloud particles during transmission, a highly noticeable 498 

backscattered signal is generated and received (Omar et al., 2009). The lidar return 499 

signal of cloud droplets is markedly distinct from atmospheric aerosol scattering 500 

signals and noise, making CBH easily obtainable from the signal difference or 501 

mutation (Sharma et al., 2016). In this study, continuous ground-based lidar data from 502 

the Twin Astronomy Manor in Lijiang City, Yunnan Province, China (26.454°N, 503 

100.0233°E, altitude = 3175 m) are used to evaluate the diurnal cycle characteristics 504 

of CBHs retrieved using GEO satellite algorithms (Young and Vaughan, 2009). The 505 

geographical location and photo of this station are shown in Figure 4. 506 

4.2.1 Comparison of CBH retrievals from ground and satellite data 507 

The ground-based lidar data at Lijiang station on December 6, 2018, and January 508 

8, 2019, are selected for validation. In fact, this lidar was primarily used for the 509 

calibration of ground-based lunar radiation instruments. During the two-month 510 

observation period (from December of 2018 to January of 2019), it was always 511 

operated only under clear sky conditions, resulting in the capture of cloud data on just 512 

two days. These two days have been cloudy, with stratiform clouds at an altitude of 513 
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around 5 km and no precipitation occurring. The number of available and 514 

spatiotemporally matched CBH sample points from ground-based lidar is 78 and 64 515 

on December 6, 2018, and January 8, 2019, respectively. Figure 5a and 5b show the 516 

point-to-point CBH comparisons between ground-based lidar and four GEO satellite 517 

CBH algorithms on December 6, 2018, and January 8, 2019. It is worth noting that 518 

the retrieved CBHs of the two physics-based algorithms on December 6, 2018, are in 519 

good agreement with the reference values from the lidar measurements, and, in 520 

particular, the GEO CLAVR-x algorithm can obtain better results. From the results on 521 

January 8, 2019, more accurate diurnal cycle characteristics of CBHs are revealed by 522 

the GEO CLAVR-x algorithm than by the GEO IDPS algorithm. 523 

Compared with the CBHs measured by ground-based lidar, the statistics of the 524 

results retrieved from the GEO IDPS algorithm are R = 0.67, MAE = 3.09 km, MBE 525 

= 0.86 km, and RMSE = 3.61 km (Fig. 5c). However, for cloud samples with CBH 526 

below 7.5 km, the GEO IDPS algorithm shows an obvious underestimation of CBH in 527 

Figure 5c. For the GEO CLAVR-x algorithm, it can also be seen that the matched 528 

samples mostly lie near the 1:1 line with R = 0.77 (the optimal CBH algorithm), MAE 529 

= 1.32 km, MBE = 0.22 km, and RMSE = 1.60 km. In addition, this figure also shows 530 

the CBH comparisons between the ML-based VIS+IR model/IR-single model 531 

algorithms and the lidar measurements, revealing that the retrieved CBH results from 532 

the ML-based VIS+IR model are better than those from the ML-based IR-single 533 

model algorithm. The comparison results between the CBHs of the ML-based VIS+IR 534 

model algorithm and the lidar measurements are around the 1:1 line, with smaller 535 

errors and R = 0.60. In contrast, the R between the CBHs of the ML-based IR-single 536 

model algorithm and the lidar measurements is only 0.50, with a relatively large error. 537 

By comparing the retrieved CBHs with the lidar measurements at Lijiang station, it 538 

indicates that CBH results from two physics-based algorithms are remarkably more 539 

accurate, particularly that the GEO CLAVR-x algorithm can well capture diurnal 540 

variation of CBH. 541 

To further assess the accuracy and quality of the diurnal cycle of CBHs retrieved 542 

with these algorithms, CBHs from another ground-based cloud radar dataset covering 543 

the entire year of 2017 are also collected and used in this study. The observational 544 

instrument is a Ka-band (35 GHz) Doppler millimeter-wave cloud radar (MMCR) 545 

located at the Beijing Nanjiao Weather Observatory (a typical urban observation site) 546 

(39.81°N, 116.47°E, altitude = 32 m; see Fig. 4), performing continuous and routine 547 
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observations. The MMCR provides a specific vertical resolution of 30 m and a 557 

temporal resolution of 1 minute for single profile detection, based on the radar 558 

reflectivity factor. In a previous study (Zhou et al., 2019), products retrieved by this 559 

MMCR were utilized to investigate the diurnal variations of CTH and CBH, and 560 

comparisons were made between MMCR-derived CBHs and those derived from a 561 

Vaisala CL51 ceilometer. The former study also found that the average R of CBHs 562 

from different instruments reached up to 0.65. It is worth noting that the basic physics 563 

principle for detecting cloud base height from both spaceborne cloud profiling radar 564 

and ground-based cloud radar and lidar measurements is the same. All these 565 

algorithms of detecting CBH are based on the manifest change of return signals 566 

between CBH and the clear sky atmosphere in the vertical direction (Huo et al., 2019; 567 

Ceccaldi et al., 2013). The diurnal variation of cloud base height over land is 568 

primarily influenced by solar heating, causing the cloud base to rise in the morning 569 

and reach its peak by midday. As the surface cools in the afternoon and evening, the 570 

cloud base lowers, playing a crucial role in weather patterns and forecasting (Zheng et 571 

al., 2020). Due to the density of points in the one-year time series, the point-to-point 572 

CBH comparison results for the entire year are not displayed here (monthly results are 573 

shown in the supplementary document), we only show 4 days results in the following 574 

Figure 6. Therefore, it is essential to rigorously compare the ML-based algorithm with 575 

ground-based observations to determine its ability to adapt to the daily variations in 576 

cloud base height caused by natural factors. The joint spaceborne CloudSat/CALIPSO 577 

detection might face limitations in penetrating extremely dense, optically thick, or 578 

areas with heavy precipitation clouds. Hence, in comparison, the CBH values 579 

gathered from ground-based lidar and cloud radar measurements are expected to be 580 

more accurate than the data derived from spaceborne CloudSat/CALIPSO detection. 581 

Similar to Figure 5, Figure 6 presents two sample groups of CBH results from the 582 

cloud radar at Beijing Nanjiao station relative to the matched CBHs from the four 583 

retrieval algorithms (GEO IDPS, GEO CLAVR-x, ML-based IR-single, ML-based 584 

VIS+IR) on April 9–10 and July 26–28, 2017. Similar to the results at Lijiang station 585 

discussed in Figure 5, we observe better and more robust performances in retrieving 586 

diurnal cycle characteristics of CBH from the two physics-based CBH retrieval 587 

algorithms. In contrast, more underestimated CBH samples are retrieved by the two 588 

ML-based algorithms. 589 

4.2.2 Diurnal cycle analysis of CBH retrieval accuracy 590 
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To further investigate the diurnal cycle characteristics of retrieved CBH from 593 

GEO satellite imager measurements, Figure 7 presents box plots of the hourly CBH 594 

errors (relative to the results of cloud radar at Beijing Nanjiao station) in 2017 from 595 

the four different CBH retrieval algorithms. Remarkably, there are significant 596 

underestimations of the CBHs retrieved from the two ML-based algorithms. The 597 

ML-based VIS+IR method achieves relatively better results than the ML-based 598 

IR-single method during the daytime. Comparing the two ML-based algorithms, the 599 

errors of the IR-single model algorithm have a similar standard deviation (2.80 km) to 600 

those of the VIS+IR model algorithm (2.69 km) during the daytime. For the IR-single 601 

model algorithm, it can be applied during both daytime and nighttime, its nighttime 602 

performance degrades slightly, with an averaged RMSE (3.88 km) higher than that of 603 

daytime (3.56 km). The nighttime CBH of the IR-single model algorithm is the only 604 

choice that should be used with discretion. 605 

Figure 8 shows the comparisons of hourly MAE, MBE, RMSE, and R relative to 606 

the CBHs from the cloud radar at Beijing Nanjiao station during daytime between 607 

four retrieval algorithms in 2017. The RMSE of the two ML-based algorithms shows 608 

stable diurnal variation. It is noted that all algorithms have lower R at sunrise, around 609 

07:00 local time, which improve as the day progresses. However, the GEO CLAVR-x 610 

algorithm stands out for its relatively higher and more stable in R and RMSE during 611 

daytime. 612 

Figure 9a displays scatter plots and relevant statistics of the CBHs retrieved from 613 

the GEO IDPS algorithm against the CBHs from cloud radar. The CBHs from the 614 

GEO IDPS algorithm align well with the matched CBHs from cloud radar at Beijing 615 

Nanjiao station, with R = 0.52, MAE = 2.08 km, MBE = 1.17 km, and RMSE = 2.67 616 

km. In Figure 9b, the GEO CLAVR-x algorithm shows better results with R = 0.57, 617 

MAE = 2.06 km, MBE = −0.20 km, and RMSE = 2.60 km. It is not surprising that 618 

Figs. 8c and 8d reveal obvious underestimated CBH results from the two ML-based 619 

CBH algorithms. Particularly, the CBH results from the ML-based VIS+IR model 620 

algorithm concentrate in the range of 2.5 km to 5 km. Therefore, Figure 5 to Figure 9 621 

further substantiates the weak diurnal variations captured by ML-based techniques, 622 

primarily attributed to the scarcity of comprehensive CBH training samples 623 

throughout the entire day. Besides, although the two robust physics-based algorithms 624 

of GEO IDPS and GEO CLAVR-x (the optimal one) can retrieve high-quality CBHs 625 

from H8/AHI data, especially the diurnal cycle of CBH during the daytime, they still 626 
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struggle to retrieve CBHs below 1 km. 635 

5. Conclusions and discussion 636 

To explore and argue the optimal and most robust CBH retrieval algorithm from 637 

geostationary satellite imager measurements, particularly focusing on capturing the 638 

typical diurnal cycle characteristics of CBH over land, this study employs four 639 

different retrieval algorithms (two physics-based and two ML-based algorithms). 640 

High spatiotemporal resolution CBHs are retrieved using the H8/AHI data from 2017 641 

and 2019. To assess the accuracies of the retrieved CBHs, point-to-point validations 642 

are conducted using spatiotemporally matched CBHs from the joint 643 

CloudSat/CALIOP product, ground-based lidar and cloud radar observations in China. 644 

The main findings and conclusions are outlined below. 645 

Four independent CBH retrieval algorithms, namely physics-based GEO IDPS, 646 

GEO CLAVR-x, ML-based VIS+IR, and ML-based IR-single, have been developed 647 

and utilized to retrieve CBHs from GEO H8/AHI data under the assumption of single 648 

layer cloud. The two physics-based algorithms utilize cloud top and optical property 649 

products from AHI as input parameters to retrieve high spatiotemporal resolution 650 

CBHs, with operations limited to daytime. In contrast, the ML-based VIS+IR model 651 

and IR-single model algorithms use the matched joint CloudSat/CALIOP CBH 652 

product as true values for building RF prediction models. Notably, the ML-based 653 

IR-single algorithm, which relies solely on infrared band measurements, can retrieve 654 

CBH during both day and night. 655 

The accuracy of CBHs retrieved from the four independent algorithms is verified 656 

using the joint CloudSat/CALIOP CBH products for the year 2017. The GEO IDPS 657 

algorithm shows an R of 0.62 and an RMSE of 2.64 km. The GEO CLAVR-x 658 

algorithm provides more accurate CBHs with an R of 0.65 and RMSE of 2.91 km. 659 

After filtering samples with optical thickness less than 1.6 and brightness temperature 660 

(at 11 μm band) greater than 281 K, the ML-based VIS+IR and ML-based IR-single 661 

algorithms achieve higher accuracy with an R(RMSE) of 0.92(1.21 km) and 0.91(1.42 662 

km), respectively. This indicates strong agreement between the two ML-based CBH 663 

algorithms and the CloudSat/CALIOP CBH product. 664 

However, in stark contrast, the results from the physics-based algorithms (with R 665 

and RMSE of 0.59/2.86 km) are superior to those from the ML-based algorithms  666 
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(with R and RMSE of 0.39/3.88 km) when compared with ground-based CBH 675 

observations such as lidar and cloud radar. In the comparison with the cloud radar at 676 

Beijing Nanjiao station in 2017, the R of the GEO CLAVR-x algorithm is 0.57, while 677 

the R of the GEO IDPS algorithm is 0.52. Meanwhile, notable differences are 678 

observed in the CBHs between both ML-based algorithms. Similar conclusions are 679 

also evident in the 2-day comparisons at Yunnan Lijiang station. 680 

The CBH results from the two ML-based algorithms (R > 0.91) can likely be 681 

attributed to the use of the same training and validation dataset source as the joint 682 

CloudSat/CALIOP product. However, this dataset has limited spatial coverage and 683 

small temporal variation, potentially limiting the representativeness of the training 684 

data. In contrast, the GEO CLAVR-x algorithm demonstrates the best performance 685 

and highest accuracy in retrieving CBH from geostationary satellite data. Notably, its 686 

results align well with those from ground-based lidar and cloud radar during the 687 

daytime. However, both physics-based methods, utilizing CloudSat CPR data for 688 

regression, struggle to accurately retrieve CBHs below 1 km, as the lowest 1 km 689 

above ground level of this data is affected by ground clutter. 690 

Additionally, despite utilizing the same physics principles in spaceborne and 691 

ground-based lidar/radar CBH algorithms, the previous study (Thorsen et al., 2011) 692 

has highlighted differences in profiles between them. Therefore, this factor induced 693 

by detection principle could contribute to the relatively poorer results in CBH 694 

retrieval by ML-based algorithms compared to ground-based lidar and radar. The 695 

analysis and discussion above suggest that ML-based algorithms are constrained by 696 

the size and representativeness of their datasets.  697 

Ideally, we guess that including more spaceborne cloud profiling radars with 698 

varying passing times (covering the entire day) in the training dataset could improve 699 

the machine learning technique, potentially leading to a higher-quality CBH product 700 

with more comprehensive observations. The CBH product using ML-based 701 

algorithms should continue to be improved in future work. Particularly, exploring the 702 

joint ML-physics-based method presents a promising direction, which can address the 703 

complexities and challenges in retrieving cloud properties. By integrating established 704 

physical relationships into ML models, we can potentially enhance the accuracy and 705 

reliability of predictions. This approach not only leverages the strengths of both 706 

physics-based models and data-driven techniques but also offers a pathway to more 707 

robust and interpretable solutions in atmospheric sciences. At present, we will focus 708 

删除了: 85709 

删除了: 3710 

删除了: 15711 



      21 

on developing physics-based algorithms for cloud base height for the next generation 712 

of geostationary meteorological satellites, to support the application of these products 713 

in weather and climate domains.  714 

Besides, at night, current GEO satellite imaging instruments encounter 715 

challenges in accurately determining CBH due to limited or absent solar illumination. 716 

Because it is unable to retrieve cloud optical depth in the visible band, the current 717 

method faces limitations. However, there is potential for enhanced accuracy in 718 

deriving cloud optical and microphysical properties, as well as CBH, by incorporating 719 

the Day/Night Band (DNB) observations during nighttime in the future (Walther et al., 720 

2013). 721 

 722 

 723 

Data availability. The authors would like to acknowledge NASA, JMA, Colorado 724 

State University, and NOAA for freely providing the MODIS 725 

(https://ladsweb.modaps.eosdis.nasa.gov/search), CloudSat/CALIOP 726 

(https://www.cloudsat.cira.colostate.edu/), Himawari-8 (ftp.ptree.jaxa.jp), and GFS 727 

NWP (ftp://nomads.ncdc.noaa.gov/GFS/Grid4) data online, respectively.  728 

 729 

 730 

Author contributions. MM proposed the essential research idea. MW, MM, JL, HL, 731 

BC, and YL performed the analysis and drafted the manuscript. ZY and NX provided 732 

useful comments. All the authors contributed to the interpretation and discussion of 733 

results and the revision of the manuscript. 734 

 735 

 736 

Competing interests. The authors declare that they have no conflict of interest. 737 

 738 

 739 

Acknowledgements. The authors would like to acknowledge NASA, JMA, University 740 

of Colorado, and NOAA for freely providing satellite data online, respectively. The 741 

authors thank NOAA, NASA, and their VIIRS algorithm working groups (AWG) for 742 

freely providing the VIIRS cloud base height algorithm theoretical basic 743 



      22 

documentations (ATBD). In addition, the authors appreciate the power computer tools 744 

developed by the Python and scikit-learn groups (http://scikit-learn.org). Besides the 745 

authors also thank Rundong Zhou and Pan Xia for drawing some pictures of this 746 

manuscript. Last but not the least, the authors sincerely thank Prof. Yong Zhang and 747 

Prof. Jianping Guo for freely providing cloud base height results retrieved by 748 

ground-based cloud radar at Beijing Nanjiao station. This work was supported partly 749 

by the Guangdong Major Project of Basic and Applied Basic Research (Grant 750 

2020B0301030004), National Natural Science Foundation of China under Grants 751 

42175086 and U2142201, FengYun Meteorological Satellite Innovation Foundation 752 

under Grant FY-APP-ZX-2022.0207, the Innovation Group Project of Southern 753 

Marine Science and Engineering Guangdong Laboratory (Zhuhai) (No. 754 

SML2023SP208), and the Science and Technology Planning Project of Guangdong 755 

Province (2023B1212060019). We would like to thank the editor and anonymous 756 

reviewers for their thoughtful suggestions and comments.  757 

 758 

 759 

Appendix A 760 

Based on the previously discussed description of two physics-based cloud base 761 

height (CBH) retrieval algorithms (GEO IDPS and GEO CLAVR-x retrieval 762 

algorithms), cloud products such as cloud top height (CTH), effective particle radius 763 

(Reff), and cloud optical thickness (DCOT) will be utilized in both algorithms. To 764 

validate the reliability of these cloud products derived from the Advanced Himawari 765 

Imager (AHI) aboard the Himawari-8 (H8), a pixel-by-pixel comparison is conducted 766 

with analogous MODIS Collection-6.1 Level-2 cloud products. Both Aqua and Terra 767 

MODIS Level-2 cloud products (MOD06 and MYD06) are accessible for free 768 

download from the MODIS official website. For verification purposes, the 769 

corresponding Level-2 cloud products from January, April, July, and October of 2018 770 

are chosen to assess CTH, DCOT, and Reff retrieved by H8/AHI. 771 

Figure S2 (in the supplementary document) shows the spatiotemporally matched 772 

case comparisons of CTH, DCOT and Reff from H8/AHI and Terra/MODIS (MYD06) 773 

at 03:30 UTC on January 15, 2018. It can be seen that the CTH, DCOT and Reff from 774 



      23 

H8/AHI are in good agreement with the matched MODIS cloud products. However, 775 

there are still some differences in Reff at the regions near 35°N, 110°E in Figures S2d 776 

and S2c. The underestimated Reff values from H8/AHI relative to MODIS have been 777 

reported in previous studies. Letu et al. (2019) compared the ice cloud products 778 

retrieved from AHI and MODIS, and concluded that the Reff from both products differ 779 

remarkably in the ice cloud region and the DCOT from them are roughly similar. 780 

However, the DCOT from AHI data is higher in some areas. Looking again at the cloud 781 

optical thickness that at the same time, the slight underestimation of H8/AHI DCOT 782 

can be found in Figures S2e and S2f. Figure S3 (in the supplementary document) 783 

shows another case at 02:10 UTC on January 15, 2018. Despite of the good 784 

consistence between H8/AHI and MODIS cloud products, there are slight differences 785 

in CTH in the area around 40°S–40.5°S, 100°E–110°E in Figs. S3a and S3b. Besides, 786 

as shown in Figure S2, there are still underestimations in the Reff of H8/AHI.  787 

To further compare and validate these three H8/AHI cloud products, the 788 

spatiotemporally matched samples from H8/AHI and Aqua/Terra MODIS in four 789 

months of 2018 are counted within the three intervals of 0.1 km (CTH), 1.0 μm (Reff), 790 

and 1 (DCOT) in Figure S4 (in the supplementary document). The corresponding mean 791 

absolute error, mean bias error, RMSE and R values are also calculated and marked in 792 

each subfigure. As can be seen, the R of CTH is around 0.75 in all four months and is 793 

close to 0.8 in August. The results of DCOT show the highest R, reaching above 0.8. In 794 

contrast, the underestimation trend in Reff is also shown in this figure. These different 795 

consistencies between two satellite-retrieved cloud products may be attributed to: (1) 796 

different spatiotemporal resolutions between H8/AHI and MODIS; (2) different 797 

wavelength bands, bulk scattering model, and specific algorithm used for retrieving 798 

cloud products; (3) different view zenith angle between GEO and low-earth-orbit 799 

satellite platforms (Letu et al., 2019). In addition, other external factors such as 800 

surface type also can affect the retrieval of cloud product. However, according to 801 

Figure S4, the bulk of the analyzed samples are still around the 1:1 line, indicating the 802 

good quality of H8/AHI cloud products. 803 

 804 

Appendix B 805 

 The ML-based visible (VIS)+infrared (IR) model algorithm mentioned above 806 

uses 230 typical variables (see Table 1) as model predictors, and the importance 807 

scores of top-30 predictors are ranked in Figure S5 (in the supplementary document). 808 
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It can be seen that the most important variables are CTH and CTT, and DCOT is an 811 

important or sensitive factor affecting these two quantities. A sensitivity test is also 812 

performed to further investigate the potential influence of DCOT on the CBH retrieval 813 

by the VIS+IR model (see Table S1 in the supplementary document). From Figure 814 

S7a, we find that the samples with DCOT lower than 5 cause the relatively large CBH 815 

errors compared with the matched CBHs from the joint CALIPSO (Cloud-Aerosol 816 

Lidar and Infrared Pathfinder Satellite Observation)/CloudSat product.  817 

According to the results in this Figure S7b, we may filter the samples with 818 

relatively small DCOT to further improve the accuracy of CBH retrieval by the VIS+IR 819 

model (see Table S1). Figure S7b shows that after filtering the samples with the DCOT 820 

less than 1.6, the R increases from 0.895 to 0.922, implying a better performance of 821 

CBH retrieval. According to the ranking of predictor importance (see Fig. S6 in the 822 

supplementary document), we also conduct another sensitivity test on the BT 823 

observed by H8/AHI IR Channel-14 (Cha14) at 11 μm, which plays an important role 824 

in the IR-single model. Figure S7c shows that the BT values of H8/AHI Channel-14 825 

ranges from 160 K to 316 K, and the samples with BT higher than 300 K show large 826 

CBH errors. Similarly, by filtering the samples with BT higher than 281 K, we can get 827 

a better IR-single model algorithm for retrieving high-quality CBH (see Table S2 in 828 

the supplementary document). Figure S7d also proves that the R value increases from 829 

0.868 to 0.911. 830 
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 1054 

Tables and Figures 1055 

 1056 
Table 1. Predictand and predictor variables for both visible (VIS)+infrared (IR) model 1057 

and IR-single regression model training, which are divided according to the different 1058 

predictor variables from satellite and NWP data 1059 

Predictand IR-single model input VIS+IR model input 

Predictor 

[satellite 

measurements] 

BT(3.9μm), BT(6.2μm), BT(6.9μm), 

BT(7.3μm), BT(8.6μm), BT(9.6μm), 

BT(10.4μm), BT(11.2μm),  

BT(12.4μm), BT (13.3μm),  

BTD(11.2–12.4μm), BTD(11.2–

13.3μm) [Unit = K], 

Air Mass (1/cos(VZA)), 

View azimuth angles [Unit = degree], 

Cloud top height from H8/AHI [unit: 

m], 

Cloud top temperature from H8/AHI 

[unit: K] 

BT(3.9μm), BT(6.2μm), BT(6.9μm), 

BT(7.3μm), BT(8.6μm), BT(9.6μm), 

BT(10.4μm), BT(11.2μm), 

BT(12.4μm), BT(13.3μm), 

BTD(11.2–12.4μm), BTD(11.2–

13.3μm) [Unit = K], 

Air Mass(1/cos(VZA)), 

Air Mass(1/cos(SZA)), 

View/Solar Azimuth angles [Unit = 

degree], 

Cloud top height from H8/AHI [unit: 

m],  

Cloud top temperature from H8/AHI 

[unit: K] 

Ref(0.47μm), Ref(0.51μm), 

Ref(0.64μm), Ref(0.86μm), 

Ref(1.64μm), Ref(2.25μm) 

Predictor [GFS 

NWP] 

Altitude profile (from surface to 
about 21 km, 67 layers) [unit: m], 
Temperature profile (from surface to 
about 21 km, 67 layers) [unit: K], 
Relative humidity profile (from 
surface to about 21 km, 67 layers) 
[unit: %], 
Total precipitable water, 
Surface temperature [unit: K] 

Altitude profile (from surface to about 
21 km, 67 layers) [unit: m], 
Temperature profile (from surface to 
about 21 km, 67 layers) [unit: K], 
Relative humidity profile (from 
surface to about 21 km, 67 layers) 
[unit: %], 
Total precipitable water, 
Surface temperature [unit: K] 

Predictor 

[other] 
Surface elevation [unit: m] Surface elevation [unit: m] 

Notes: VZA = view zenith angle [unit: degree]; SZA = solar zenith angle [unit: 1060 

degree] 1061 
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 1063 
 1064 
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 1066 
 1067 
 1068 
 1069 
 1070 
 1071 
 1072 
 1073 
 1074 

 1075 

Figure 1. Comparison of full disk CBH results retrieved by the four independent 1076 

algorithms at 02:00 UTC on January 1, 2017. (a) GEO IDPS algorithm, (b) GEO 1077 

Clouds from AVHRR Extended (CLAVR-x) algorithm, (c) ML-based (RF, random 1078 

forest) VIS+IR algorithm and (d) ML-based (RF) IR-single algorithm. 1079 
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 1086 
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 1087 

 1088 

 1089 

 1090 

 1091 
Figure 2. Density distributions of CBHs retrieved from (a) GEO IDPS, (b) GEO 1092 

CLAVR-x, (c) VIS+IR and (d) IR-single algorithms compared with the CBHs from 1093 

the joint CloudSat/CALIPSO product (taken as true values) in 2017 for both single 1094 

and multilayer clouds. The mean absolute error (MAE), mean bias error (MBE), root 1095 

mean square error (RMSE) and R are listed in each subfigure where the difference 1096 

exceeds the 95% significance level (p < 0.05) according to the Pearson’s χ2 test.  1097 
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 1107 

 1108 

 1109 

 1110 

 1111 

 1112 
Figure 3. Inter-comparisons of CBH products retrieved by CloudSat (red solid circle), 1113 

the GEO IDPS algorithm (blue solid circle), the GEO CLAVR-x (green solid circle), 1114 

the ML-based VIS+IR model algorithm (orange solid circle), and the ML-based 1115 

IR-single model algorithm (pink solid circle) at (a) 03:16–04:55 UTC on January 13, 1116 

2017 (a) and (b) 05:38–07:17 UTC on January 14, 2017. The black and gray colormap 1117 

represents the matched CloudSat radar reflectivity.  1118 

 1119 

 1120 

 1121 

 1122 

 1123 

 1124 

 1125 



      34 

 1126 

 1127 

 1128 

 1129 

 1130 

 1131 

 1132 

Figure 4. Geographical locations and photos of lidar and cloud radar at Yunnan 1133 

Lijiang and Beijing Nanjiao stations. 1134 
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 1154 

Figure 5. Comparisons of the CBHs from the ground-based lidar measurements 1155 

(black solid circle) at Yunnan Lijiang station and the four GEO satellite retrieval 1156 

algorithms, namely the GEO IDPS (red cross symbol), the GEO CLAVR-x (green 1157 

solid asterisk), the ML-based VIS+IR model (orange solid diamond) and the 1158 

ML-based IR-single model (blue plus sign) algorithms. Figure 5a and 5b show the 1159 

time series of CBHs from lidar and the four GEO satellite retrieval algorithms on 1160 

December 6, 2018 and January 8, 2019, respectively. Fig 5c shows the scatterplots of 1161 

CBH samples from the lidar measurements and the four retrieval algorithms. 1162 
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 1172 

Figure 6. Same as Figure 5, but for the CBH sample results from the cloud radar at 1173 

Beijing Nanjiao station (black solid circle) on April 9–10, 2017 (top panel) and July 1174 

26–28, 2017 (bottom panel). 1175 
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 1192 

 1193 
Figure 7. Box plots of the hourly CBH errors of four GEO satellite retrieval 1194 

algorithms (GEO IDPS, GEO CLAVR-x, ML-based VIS+IR and ML-based IR-single) 1195 

relative to the CBHs from the cloud radar at Beijing Nanjiao station in 2017. The box 1196 

symbols signify the 25th, 50th and 75th percentiles of errors. The most extreme 1197 

sample points between the 75th and outlier, and the 25th percentiles and outliers are 1198 

marked as whiskers and diamonds, respectively. Except for the period between 7 and 1199 

17 (local time), the three algorithms of GEO CLAVR-x, GEO IDPS, and ML VIS+IR 1200 

are unavailable due to the lack of reflected solar radiance measurements. 1201 
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 1213 
Figure 8. Comparisons of hourly (a) MAE, (b) MBE, (c) RMSE, and (d) R of CBH 1214 

(relative to the CBHs from the cloud radar at Beijing Nanjiao station) from 07 to 17 1215 

(local time) between four retrieval algorithms (GEO IDPS, GEO CLAVR-x, 1216 

ML-based VIS+IR and ML-based IR-single) in 2017. 1217 
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  1221 

 1222 

Figure 9. Comparisons between the CBHs from the cloud radar at Beijing Nanjiao 1223 

station and the matched CBHs from the four retrieval algorithms (GEO IDPS, GEO 1224 

CLAVR-x, ML-based VIS+IR and ML-based IR-single) in 2017. 1225 
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