

样式定义：标题 2：段落间距段前：12 磅，段后：12 磅，行距：单倍行距，孤行控制，与下段同页

1 **Technical note: Applicability of physics-based and machine-learning-based**
2 **algorithms of geostationary satellite in retrieving the diurnal cycle of cloud base**
3 **height**

4
5 Mengyuan Wang¹, Min Min^{1*}, Jun Li², Han Lin³, Yongen Liang¹, Binlong Chen²,
6 Zhigang Yao⁴, Na Xu², Miao Zhang²

7
8
9 ¹School of Atmospheric Sciences, Southern Marine Science and Engineering
10 Guangdong Laboratory (Zhuhai), and Guangdong Province Key Laboratory for
11 Climate Change and Natural Disaster Studies, Zhuhai 519082, China

12 ²Key Laboratory of Radiometric Calibration and Validation for Environmental
13 Satellites and Innovation Center for FengYun Meteorological Satellite (FYSIC),
14 National Satellite Meteorological Center (National Center for Space Weather), China
15 Meteorological Administration, Beijing 100081, China

16 ³Key Laboratory of Spatial Data Mining and Information Sharing of Ministry of
17 Education, National and Local Joint Engineering Research Center of Satellite
18 Geospatial Information Technology, Fuzhou University, Fuzhou 350108, China

19 ⁴Beijing Institute of Applied Meteorology, Beijing 100029, China

20
21
22
23 *Correspondence to:* Min Min (minm5@mail.sysu.edu.cn)

34

35 **Abstract.** Two groups of retrieval algorithms, one physics-based and the other
36 machine-learning (ML) based, each consisting of two independent approaches, have
37 been developed to retrieve cloud base height (CBH) and its diurnal cycle from
38 Himawari-8 geostationary satellite observations. Validations have been conducted
39 using the joint CloudSat/CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization)
40 CBH products in 2017, ensuring independent assessments. Results show that the two
41 ML-based algorithms exhibit markedly superior performance (the optimal method is
42 with a correlation coefficient of $R > 0.91$ and an absolute bias of approximately 0.8
43 km) compared to the two physics-based algorithms. However, validations based on
44 CBH data from the ground-based lidar at the Lijiang station in Yunnan province and
45 the cloud radar at the Nanjiao station in Beijing, China, explicitly present
46 contradictory outcomes ($R < 0.60$). An identifiable issue arises with significant
47 underestimations in the retrieved CBH by both ML-based algorithms, leading to an
48 inability to capture the diurnal cycle characteristics of CBH. The strong consistence
49 observed between CBH derived from ML-based algorithms and the spaceborne active
50 sensor may be attributed to utilizing the same dataset for training and validation,
51 sourced from the CloudSat/CALIOP products. In contrast, the CBH derived from the
52 optimal physics-based algorithm demonstrates the good agreement in diurnal
53 variations of CBH with ground-based lidar/cloud radar observations during the
54 daytime (with an R value of approximately 0.7). Therefore, the findings in this
55 investigation from ground-based observations advocate for the more reliable and
56 adaptable nature of physics-based algorithms in retrieving CBH from geostationary
57 satellite measurements. Nevertheless, under ideal conditions, with an ample dataset of
58 spaceborne cloud profiling radar observations encompassing the entire day for
59 training purposes, the ML-based algorithms may hold promise in still delivering
60 accurate CBH outputs.

61 **Key words:** Geostationary meteorological satellite; cloud base height; physics-based
62 algorithm; machine learning.

63

删除了: Four distinct

设置了格式: 字体: (默认) Times New Roman, (中文)
DengXian, 小四, 字体颜色: 文字 1

设置了格式: 字体: (默认) Times New Roman, (中文)
DengXian, 小四, 字体颜色: 文字 1

删除了: retrieval algorithms, comprising two physics-based
and two machine-learning (ML) approaches, have been
developed to retrieve cloud base height (CBH) and its diurnal
cycle from Himawari-8 geostationary satellite observations...

69 **1 Introduction**

70 Clouds, comprising visible aggregates like atmospheric water droplets,
71 supercooled water droplets, ice crystals, etc., cover roughly 70% of the Earth's surface
72 (Stubenrauch et al., 2013). They play a pivotal role in global climate change, the
73 hydrologic cycle, aviation safety, and serve as a primary focus in weather
74 forecasting and climate research, particularly storm clouds (Hansen, 2007; Hartmann
75 and Larson, 2002). From advanced geostationary (GEO) and polar-orbiting (LEO,
76 low earth orbit) satellite imagers, various measurable cloud properties, such as cloud
77 fraction, cloud phase, cloud top height (CTH), and cloud optical thickness (COT or
78 D_{cot}), are routinely retrieved. However, the high-quality cloud geometric height
79 (CGH) and cloud base height (CBH), a fundamental macro physical parameter
80 delineating the vertical distribution of clouds, remains relatively understudied and
81 underreported. Nonetheless, for boundary-layer clouds, the cloud base height stands
82 as a critical parameter depending on other cloud-controlling variables. These variables
83 encompass the cloud-base temperature (Zhu et al., 2014), cloud-base vertical velocity
84 (Zheng et al., 2020), activation of CCN (Cloud Condensation Nuclei) at the
85 cloud-base (Rosenfeld et al., 2016; Miller et al., 2023), and the cloud-surface
86 decoupling state (Su et al., 2022). These factors significantly impact convective cloud
87 development and ultimately the climate. As well known, there are distinct diurnal
88 cycle characteristics of clouds in different regions across the globe (Li et al., 2022).
89 These diurnal cycle characteristics primarily stem from the daily solar energy cycle
90 absorbed by both the atmosphere and Earth's surface. Besides, vertical atmospheric
91 motions are shaped by imbalances in atmospheric heating and surface configurations,
92 also leading to a range of cloud movements and structures (Miller et al., 2018). Cloud
93 base plays a pivotal role in weather and climate processes. It is critical for predicting
94 fog and cloud-related visibility issues important in aviation and weather forecasting.
95 For instance, lower cloud bases often lead to more intense rainfall. In climate
96 modeling, CBH is integral for accurate long-term weather predictions and
97 understanding the radiative balance of the Earth, which influences global
98 temperatures (Zheng and Rosenfeld, 2015). Hence, the accurate determination of
99 CBH and its diurnal cycle with high spatiotemporal resolution becomes very
100 important, necessitating comprehensive investigations (Viúdez-Mora et al., 2015;

删除了: depth

删除了: (Li et al., 2022)

删除了: spatial-temporal

104 Wang et al., 2020). Such efforts can provide deeper insights into potential
105 ramifications of clouds on radiation equilibrium and global climate systems.

106 However, as one of the most crucial cloud physical parameters in atmospheric
107 physics, the CBH poses challenges in terms of measurement or estimation from space.
108 Presently, the primary methods for measuring CBH rely on ground-based
109 observations, utilizing tools such as sounding balloons, Mie-scattering lidars,
110 stereo-imaging cloud-height detection technologies, and cloud probe sensors
111 (Forsythe et al., 2000; Hirsch et al., 2011; Seaman et al., 2017; Zhang et al., 2018;
112 Zhou et al., 2019; Zhou et al., 2024). While *in-situ* ground-based observation methods
113 offer highly accurate, reliable, and timely continuous CBH results, they are
114 constrained by localized observation coverage and the sparse distribution of
115 observation sites (Aydin and Singh, 2004). In recent decades, with the rapid
116 advancement of meteorological satellite observation technology, spaceborne
117 observing methods have emerged that provide global cloud observations with high
118 spatiotemporal resolution compared to conventional ground-based remote sensing
119 methods. In this realm, satellite remote sensing techniques for measuring CBH fall
120 primarily into two categories: active and passive methods. Advanced active remote
121 sensing technologies like CloudSat ([Stephens et al., 2002](#)) and Cloud-Aerosol Lidar
122 and Infrared Pathfinder Satellite Observation (CALIPSO) ([Winker et al., 2009](#)) in the
123 National Aeronautics and Space Administration (NASA) A-Train ([Afternoon-Train](#))
124 series ([Stephens et al., 2002](#)) can capture global cloud profiles, including CBH, with
125 high quality by detecting unique return signals from cloud layers using onboard active
126 millimeter wave radar or lidar. However, their viewing footprints are limited along the
127 nadir of the orbit, implying that observation coverage remains confined primarily to a
128 horizontal scale (Min et al., 2022; Lu et al., 2021).

129 In addition to active remote sensing methods, satellite-based passive remote
130 sensing technologies can also play an important role in estimating CBH (Meerkötter
131 and Bugliaro, 2009; Lu et al., 2021). As well known, the physics-based principles and
132 retrieval methods for CTH have reached maturity and are now widely employed in
133 satellite passive remote sensing field (Heidinger and Pavolonis, 2009; Wang et al.,
134 2022). However, the corresponding physical principles or methods for measuring
135 CBH using satellite passive imager measurements are still not entirely clear and
136 unified (Heidinger et al., 2019; Min et al., 2020). A recent study by Yang et al. ([2021](#))
137 utilized oxygen A-band data observed by the Orbiting Carbon Observatory 2 (OCO-2)

删除了: spatio-temporal

删除了: (Stephens et al., 2002)

删除了: (Winker et al., 2009)

删除了: (Stephens et al., 2002)

删除了: cloud top height (

删除了:)

删除了: (

删除了: ,

146 to retrieve single-layer marine liquid CBH. These methods aforementioned are
147 prominent in retrieving CBH through passive space-based remote sensing techniques.
148 The first method involves the extrapolation technique for retrieving CBH for clouds
149 of the same type. For instance, Wang et al. (2012) proposed a method to extrapolate
150 CBH from CloudSat using spatiotemporally matched MODIS (Moderate Resolution
151 Imaging Spectroradiometer) cloud classification data. The second physics-based
152 retrieval method first approximates the cloud geometric thickness using its optical
153 thickness. It then employs the previously derived CTH product to compute the
154 corresponding CBH using the respective NOAA (National Oceanic and Atmospheric
155 Administration) SNPP/VIIRS (Suomi National Polar-orbiting Partnership/Visible
156 Infrared Imaging Radiometer Suite) products (Noh et al., 2017). Hutchison et al.
157 (2002 and 2006) also formulated an empirical algorithm that estimates both cloud
158 geometric thickness (CGT) and CBH. This algorithm relies on statistical analyses
159 derived from MODIS COT and cloud liquid water path products (Hutchison et al.,
160 2006; Hutchison, 2002).

161 Machine learning (ML) has proven to be highly effective in addressing nonlinear
162 problems within remote sensing and meteorology fields, such as precipitation
163 estimation and CTH retrieval (Min et al., 2020; HåKansson et al., 2018; Kühnlein et
164 al., 2014). In recent years, several studies have leveraged ML-based algorithms to
165 retrieve CBH, establishing nonlinear connections between CBH and GEO satellite
166 observations. For instance, Tan et al. (2020) integrated CTH and cloud optical
167 properties products from Fengyun-4A (FY-4A) GEO satellite with spatiotemporally
168 matched CBH data from CALIPSO/CloudSat. They developed a random forest (RF)
169 model for CBH retrieval. Similarly, Lin et al. (2022) constructed a gradient boosted
170 regression tree (GBRT) model using U.S. new-generation Geostationary Operational
171 Environmental Satellites-R Series (GOES-R) Advanced Baseline Imager (ABI) level
172 1B radiance data and the ERA5 (the fifth generation ECMWF) reanalysis dataset
173 (<https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset>). They employed
174 CALIPSO CBH data as labels to achieve single-layer CBH retrievals. Notably, the
175 CBH quality of ML-based algorithms was found to surpass that of physics-based
176 algorithms (Lin et al., 2022). Moreover, Tana et al. (2023) utilized Himawari-8 data
177 and the random forest algorithm to develop a novel CBH algorithm, achieving a high
178 correlation coefficient (R) of 0.92 and a low root mean square error (RMSE) of 1.17
179 km.

删除了: wo primary

删除了:(

删除了:,

删除了: spatial-temporally

删除了: correlated

删除了: cloud optical thickness

删除了: previous

删除了: spatial-temporal

删除了: (Tan et al., 2020)

删除了: (Lin et al., 2022)

删除了: (Tana et al., 2023)

191 However, these former studies did not discuss whether both physics-based and
192 ML-based algorithms of GEO satellite could retrieve the diurnal cycle of CBH well.
193 This gap in research could be mainly attributed to potential influences from the fixed
194 LEO satellite (with active radar or lidar) passing time in the previous CBH retrieval
195 model (Lin et al., 2022). Hence, it is crucial to thoroughly investigate the diurnal
196 cycle features of CBH derived from GEO satellite measurements by comparing them
197 with ground-based radar and lidar observations (Min and Zhang, 2014; Warren and
198 Eastman, 2014). In this study, we aim to assess the applicability and feasibility of
199 both physics-based and ML-based algorithms of GEO satellites in capturing the
200 diurnal cycle characteristics of CBH.

201 The subsequent sections of this paper are structured as follows. Section 2
202 provides a concise overview of the data employed in this study. Following that,
203 section 3 introduces the four distinct physics/ML-based CBH retrieval algorithms. In
204 section 4, the CBH results obtained from these four algorithms are analyzed, and
205 comparisons are drawn with spatiotemporally matched CBHs from ground-based
206 cloud radar and lidar. Finally, section 5 encapsulates the primary conclusions and new
207 findings derived from this study.

208 2 Data

209 In this study, observations from the Himawari-8 (H8) Advanced Himawari
210 Imager (AHI) are utilized for the retrieval of high spatiotemporal resolution CBH.
211 Launched successfully by the Japan Meteorological Administration on October 7,
212 2014, the H8 geostationary satellite is positioned at 140.7°E. The AHI onboard H8
213 encompasses 16 spectral bands ranging from 0.47 μm to 13.3 μm , featuring spatial
214 resolutions of 0.5–2 km. This includes 3 visible (VIS) bands at 0.5–1 km, 3
215 near-infrared (NIR) bands at 1–2 km, and 10 infrared (IR) bands at 2 km. The
216 H8/AHI can scan a full disk area within 10 minutes, two specific areas within 2.5
217 minutes, a designated area within 2.5 minutes, and two landmark areas within 0.5
218 minutes (Iwabuchi et al., 2018). Its enhanced temporal resolution and observation
219 frequency facilitate the tracking of rapidly changing weather systems, enabling the
220 accurate determination of quantitative atmospheric parameters (Bessho et al., 2016).

221 Operational H8/AHI Level-1B data, accessible from July 7, 2015, are freely
222 available on the satellite product homepage of the Japan Aerospace Exploration

删除了: As well known, there are distinct diurnal cycle characteristics of clouds in different regions across the globe (Li et al., 2022). These diurnal cycle characteristics primarily stem from the daily solar energy cycle absorbed by both the atmosphere and Earth's surface. Besides, vertical atmospheric motions are shaped by imbalances in atmospheric heating and surface configurations, also leading to a range of cloud movements and structures (Miller et al., 2018). Cloud base plays a pivotal role in weather and climate processes. It is critical for predicting fog and cloud-related visibility issues important in aviation and weather forecasting. For instance, lower cloud bases often lead to more intense rainfall. In climate modeling, CBH is integral for accurate long-term weather predictions and understanding the radiative balance of the Earth, which influences global temperatures (Zheng and Rosenfeld, 2015). ...

删除了: spatially and temporal

删除了: s

241 Agency (Letu et al., 2019). The Level-2 cloud products utilized in this study,
242 including cloud mask (CLM), CTH, cloud effective particle radius (CER or R_{eff}), and
243 COT, are generated by the Fengyun satellite science product algorithm testbed
244 (FYGAT) (Wang et al., 2019; Min et al., 2017) of the China Meteorological
245 Administration (CMA) for various applications. It is important to note that certain
246 crucial preliminary cloud products, such as CLM, have been validated in prior studies
247 (Wang et al., 2019; Liang et al., 2023). Nevertheless, before initiating CBH retrieval,
248 it is imperative to validate the H8/AHI cloud optical and microphysical products from
249 the FYGAT retrieval system. This validation is carried out by using analogous
250 MODIS Level-2 cloud products as a reference. Additional details regarding the
251 validation of cloud products are provided in the Appendix A section.

252 In addition to the H8/AHI Level-1/2 data, the Global Forecast System (GFS)
253 numerical weather prediction (NWP) data are employed for CBH retrieval in this
254 study. The variables include land/sea surface temperature and the vertical profiles of
255 temperature, humidity, and pressure. Operated by the U.S. NOAA (Kalnay et al.,
256 1996), the GFS serves as a global and advanced NWP system. The operational GFS
257 system routinely delivers global, high-quality and gridded NWP data at 3-hour
258 intervals, with four different initial forecast times per day (00:00, 06:00, 12:00, and
259 18:00 UTC). The three-dimensional NWP data cover the Earth in a $0.5^\circ \times 0.5^\circ$ grid
260 interval and resolve the atmosphere with 26 vertical levels from the surface (1000 hPa)
261 up to the top of the atmosphere (10 hPa).

262 As previously mentioned, the official MODIS Collection-6.1 Level-2 cloud
263 product Climate Data Records (Platnick et al., 2017) are utilized in this study to
264 validate the H8/AHI cloud products (CTH, CER, and COT) generated by the FYGAT
265 system. MODIS sensors are onboard NASA Terra and Aqua polar-orbiting satellites.
266 Terra functions as the morning satellite, passing through the equator from north to
267 south at approximately 10:30 local time, while Aqua serves as the afternoon satellite,
268 traversing the equator from south to north at around 13:30 local time. As a successor
269 to the NOAA Advanced Very High Resolution Radiometer (AVHRR), MODIS
270 features 36 independent spectral bands and a broad spectral range from 0.4 μm (VIS)
271 to 14.4 μm (IR), with a scanning width of 2330 km and spatial resolutions ranging
272 from 0.25 to 1.0 km. Recent studies (Baum et al., 2012; Platnick et al., 2017) have
273 highlighted significant improvements and collective changes in cloud top, optical, and
274 microphysical properties from Collection-5 to Collection-6.

删除了: cloud optical thickness (

删除了:)

删除了: the

删除了: cloud mask

删除了: ly

280 In addition to the passive spaceborne imaging sensors mentioned above, the
281 CloudSat satellite, equipped with a 94-GHz active cloud profiling radar (CPR), holds
282 the distinction of being the first sun-synchronous orbit satellite specifically designed
283 to observe global cloud vertical structures and properties. It is part of the A-Train
284 series of satellites, akin to the Aqua satellite, launched and operated by NASA
285 (Heymsfield et al., 2008). CALIPSO is another polar-orbiting satellite within the
286 A-Train constellation, sharing an orbit with CloudSat and trailing it by a mere 10–15
287 seconds. CALIPSO is the first satellite equipped with an active dual-channel CALIOP
288 at 532 and 1064 nm bands (Hunt et al., 2009). Both CloudSat and CALIPSO possess
289 notable advantages over passive spaceborne sensors due to the 94-GHz radar of
290 CloudSat and the joint return signals of lidar and radar on CALIPSO. These features
291 enhance their sensitivity to optically thin cloud layers and ensure strong penetration
292 capability, resulting in more accurate CTH and CBH detections compared to passive
293 spaceborne sensors (CAL_LID_L2_05kmCLay-Standard-V4-10). The joint cloud
294 type products of 2B-CLDCLASS-LIDAR, derived from both CloudSat and CALIPSO
295 measurements, offer a comprehensive description of cloud vertical structure
296 characteristics, cloud type, CTH, CBH, etc. The time interval between each profile in
297 this product is approximately 3.1 seconds, and the horizontal resolution is 2.5 km
298 (along track)×1.4 km (cross-track). Each profile is divided into 125 layers with a
299 240-m vertical interval. For more details on 2B-CLDCLASS-LIDAR products, please
300 refer to the CloudSat official product manual (Sassen and Wang, 2008). In this study,
301 we consider the lowest effective cloud base height from the joint CloudSat/CALIOP
302 data as the true values for training and validation. Please note that for this study, we
303 utilized one-year H8/AHI data and matched it with the joint CloudSat/CALIOP data
304 from January 1 to December 31 of 2017.

305 3 Physics/machine-learning based cloud-base height algorithms

306 3.1 GEO Cloud-base height retrieval algorithm from the interface data 307 processing segment of the Visible Infrared Imaging Radiometer Suite

308 The Joint Polar Satellite System (JPSS) program is a collaborative effort between
309 NASA and NOAA. The operational CBH retrieval algorithm, part of the 30
310 Environmental Data Records (EDR) of JPSS, can be implemented operationally
311 through the Interface Data Processing Segment (IDPS) (Baker, 2011). In this study,

删除了: (Afternoon-Train)

设置了格式: 字体: (默认) Times New Roman, (中文) DengXian, 小四, 字体颜色: 文字 1

设置了格式: 字体: (中文) DengXian

设置了格式: 字体: (默认) Times New Roman, (中文) DengXian, 小四, 字体颜色: 文字 1

313 our geostationary satellite CBH retrieval algorithm aligns with the IDPS CBH
314 algorithm developed by (Baker, 2011). Utilizing the geostationary H8/AHI cloud
315 products discussed earlier, this new GEO CBH retrieval algorithm is succinctly
316 outlined below. ▼

317 The new GEO IDPS CBH algorithm initiates the process by first retrieving the
318 CGT from bottom to top. Subsequently, CGT is subtracted from the corresponding
319 CTH to calculate CBH ($CBH = CTH - CGT$). The algorithm is divided into two
320 independent executable modules based on cloud phase, distinguishing between liquid
321 water and ice clouds. CBH of water cloud retrieval requires COT and CER as inputs.
322 For ice clouds, an empirical equation is employed for CBH retrieval. However, the
323 standard deviations of error in IDPS CBH for individual granules often exceed the
324 JPSS VIIRS minimum uncertainty requirement of $\pm 2\text{km}$ (Noh et al., 2017). The
325 accuracy of IDPS algorithm-derived CBHs can be directly affected by several factors,
326 including cloud optical thickness, cloud effective particle size, the presence of
327 multi-layered cloud systems, lack of solar illumination, and highly reflective surfaces
328 such as snow or ice surfaces. For a more comprehensive understanding of this CBH
329 algorithm, please refer to the IDPS algorithm documentation (Baker, 2011). Note that,
330 similar to previous studies on cloud retrieval (Noh et al., 2017; Platnick et al., 2017),
331 this investigation also assumes a single-layer cloud for all CBH algorithms, due to the
332 challenges associated with determining multilayer cloud structures.

333 3.2 GEO Cloud-base height retrieval algorithm implemented in the Clouds from 334 Advanced Very High Resolution Radiometer Extended system

335 As mentioned above, the accuracy of the GEO IDPS algorithm is highly
336 dependent on the initial input parameters such as cloud phase, D_{COT} and R_{eff} , which
337 may introduce some uncertainties in the final retrieval results. In contrast, a more
338 reliable statistically-based algorithm is proposed and implemented here, which is
339 named the GEO CLAVR-x (Clouds from AVHRR Extended, NOAA's operational
340 cloud processing system for the AVHRR) CBH algorithm (Noh et al., 2017), and it
341 mainly refers to NOAA AWG CBH algorithm (ACBA) (Noh et al., 2022). Previous
342 studies have also demonstrated a R of 0.569 and a RMSE of 2.3 km for the JPSS
343 VIIRS CLAVR-x CBH algorithm. It is anticipated that this algorithm will also be
344 employed for the NOAA GOES-R geostationary satellite imager (Noh et al., 2017;
345 Seaman et al., 2017).

删除了: ↓

删除了: cloud geometric thickness (

删除了:)

删除了: cloud top height (

删除了:)

删除了: Cloud Optical Thickness (

删除了: or D_{COT})

删除了: Effective Radius (

删除了: or R_{eff})

删除了: ple

设置了格式: 字体颜色: 文字 1

设置了格式: 字体颜色: 文字 1

设置了格式: 字体颜色: 文字 1

删除了: (Noh et al., 2017)

删除了: (Noh et al., 2022)

删除了: correlation coefficient

删除了: root mean square error (

删除了:)

删除了: R

362 Similar to the GEO IDPS CBH retrieval algorithm mentioned earlier, the GEO
363 CLAVR-x CBH retrieval algorithm also initially obtains CGT and CTH, subsequently
364 calculating CBH by subtracting CGT from CTH (CTH–CGT). However, the specific
365 calculation method for the CGT value differs. This algorithm is suitable for
366 single-layer and the topmost layer of multi-layer clouds, computing CBH using the
367 CTH at the top layer of the cloud. In comparison with the former GEO IDPS CBH
368 algorithm, the GEO CLAVR-x CBH algorithm considers two additional cloud types:
369 deep convection clouds and thin cirrus clouds. For more details on this CLAVR-x
370 CBH algorithm, please refer to the original algorithm documentation (Noh et al.,
371 2017).

删除了: This algorithm is suitable for both single-layer and
multi-layer clouds, computing CBH using the CTH at the top

372 3.3 Random-forest-based cloud-base height estimation algorithm

373 RF, one of the most significant ML algorithms, was initially proposed and
374 developed by (Breiman, 2001). It is widely employed to address classification and
375 regression problems based on the law of large numbers. The law of large numbers
376 states that when independent and identically distributed random experiments are
377 repeatedly conducted, the average of the results will converge to the expected value as
378 the number of trials increases. In RF algorithms, it primarily serves to increase
379 randomness and independence in model construction, thus enhancing the model's
380 stability and generalizability. Here, the RF method utilizes a forest of trees, serving as
381 an integrated algorithm that enhances overall model accuracy and generalization by
382 combining multiple weak classifiers. The final prediction is calculated through voting
383 or averaging. The RF method is well-suited for capturing complex or nonlinear
384 relationships between predictors and predictands. As mentioned earlier, this statistical
385 or ML-based algorithm has been already proven successful in retrieving CTH and
386 CBH (Min et al., 2020; Tan et al., 2020).

387 In this study, two distinct ML-based GEO CBH algorithms, namely VIS+IR and
388 IR-single (only uses observations of H8/AHI IR channels), are devised to retrieve or
389 predict the CBH using different sets of predictors. The RF training of the chosen
390 predictors is formulated as follows:

$$391 \text{CBH} = RF_{\text{reg}}[x_1, x_2, \dots, x_n], \quad (1)$$

392 where RF_{reg} denotes the regression Random Forest model, and x_i represents the i th
393 predictor. The selected predictors from H8/AHI for both the VIS+IR and IR RF
394 model training and prediction are detailed in Table 1, mainly referencing Min et al.

删除了: s

398 (2020) and Tan et al. (2020). The VIS+IR algorithm retrieves CBH based on NWP
399 data (atmospheric temperature and altitude profiles, total precipitable water (TPW),
400 surface temperature), surface elevation, air mass 1 (air mass 1=1/cos(view zenith
401 angle)), and air mass 2 (air mass 2=1/cos(solar zenith angle)). The rationale for
402 choosing air mass and TPW is their ability to account for the potential absorption
403 effect of water vapor along the satellite viewing angle. The predictors in CBH
404 retrieval also include the IR band Brightness Temperature (BT) and VIS band
405 reflectance. The IR-single algorithm selects the same Global Forecast System (GFS)
406 NWP data as the VIS+IR algorithm but employs different view zenith angles and
407 azimuth angles.

408 To optimize the RF prediction model, the hyperparameters of the RF model are
409 tuned individually. The parameters and their dynamic ranges involved in tuning the
410 RF prediction models include the number of trees [100, 200, 300, 400, 500], the
411 maximum depth of trees [10, 20, 30, 40, 50], the minimum number of samples
412 required to split an internal node [2, 4, 6, 8, 10], and the minimum number of samples
413 required to be at a leaf node [1, 3, 5, 7, 9]. In this study, we set the smallest number of
414 trees in the forest to 100 and the maximum depth of the tree to 40.

415 3.4 Evaluation method

416 The performance of RF models and physics-based method will be assessed using
417 mean absolute error (MAE), mean bias error (MBE), RMSE, R, and standard
418 deviation (STD) scores based on the testing dataset. These scores mentioned above
419 are used to understand different aspects of the predictive performance of model: MAE
420 and RMSE provide insights into the average error magnitude, MBE indicates bias in
421 the predictions, R evaluates the linear association between observed and predicted
422 values, and STD assesses the variability of the predictions. In the RF IR-single
423 algorithm, 581,783 matching points are selected from H8/AHI and CloudSat data for
424 2017. Seventy percent of these points are randomly assigned to the training dataset,
425 and the remainder serves as the testing dataset. For the RF VIS+IR algorithm, a total
426 of 418,241 matching points are chosen, with 70% randomly allocated to the training
427 set. Note that the reduced data amount is because only daytime data can be used for
428 the VIS+IR method training. It's important to note that the two training datasets in

删除了: 3

设置了格式: 英语(英国)

带格式的: 标题 2, 缩进: 首行缩进: 0 厘米

删除了: root mean square error (

删除了:)

删除了: correlation coefficient

删除了: (

删除了:)

设置了格式: 字体: 非倾斜

435 CloudSat will also be used to verify the CBHs obtained by cloud radar and lidar. The
436 statistical formulas for evaluation are as follows:

437 $MAE = \frac{1}{n} \sum_{i=1}^n |y_i - x_i|$, (2)

438 $MBE = \frac{1}{n} \sum_{i=1}^n (y_i - x_i)$, (3)

439 $RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^n (y_i - x_i)^2}$, (4)

440 $R = \frac{\sum_{i=1}^n (y_i - \bar{y})(x_i - \bar{x})}{\sqrt{\sum_{i=1}^n (y_i - \bar{y})^2} \sqrt{\sum_{i=1}^n (x_i - \bar{x})^2}}$, (5)

441 $STD = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2}$, (6)

442 where n is the sample number, y_i is the i th CBH retrieval result, and x_i is the i th joint
443 CloudSat/CALIOP CBH product.

444 Since the two RF models (VIS+IR and IR-single) select 230 typical variables to
445 fit CBHs, the importance scores of these predictors in the two ML-based algorithms
446 are ranked for better optimization. In a Random Forest model, feature importance
447 indicates how much each input variable contributes to the model's predictive accuracy
448 by measuring the decrease in impurity or error when the feature is used to split data
449 (Gregorutti et al., 2017). In the VIS+IR model, the top-ranked predictors are CTH and
450 cloud top temperature (CTT) from the H8/AHI Level-2 product (see Fig. B1 in
451 Appendix B). It is important to note that D_{COT} is a crucial and sensitive factor for
452 these ML-based algorithms. Retrieving CBH samples with relatively low D_{COT}
453 remains challenging due to the low signal-to-noise ratio when D_{COT} is low (Lin et al.,
454 2022). To address this issue, samples with D_{COT} less than 1.6 are filtered in the
455 VIS+IR model, and samples with relatively large BTs at Channel-14 are filtered in the
456 IR-single model. This filtering process significantly improves the R value from 0.869
457 to 0.922 in the VIS+IR model and from 0.868 to 0.911 in the IR-single model. For
458 more details on the algorithm optimization, please refer to Appendix B.

459 4 Results and Discussions

460 4.1 Comparisons with the joint CloudSat/CALIPSO cloud-base height product

461 The H8/AHI satellite CBH data retrieved by the four algorithms are matched
462 spatiotemporally with the 2B-CLDCLASS-LIDAR cloud product from joint

带格式的：缩进：首行缩进： 0.74 厘米

设置了格式：字体：(默认) Times New Roman, (中文) DengXian, 小四, 字体颜色：文字 1

设置了格式：字体：(默认) Times New Roman, (中文) DengXian, 小四, 字体颜色：文字 1

删除了：'

设置了格式：字体：倾斜

删除了：

删除了：s

删除了：patially and temporal

467 CloudSat/CALIPSO observations in 2017. In this process, the nearest distance
468 matching method is employed, ensuring that the observation time difference between
469 the CloudSat/CALIPSO observation point and the matched Himwari-8 data is less
470 than 5 minutes (Noh et al., 2017). As in earlier study (Min et al., 2020), we also used
471 70% of the matched data for training and 30% of an independent sample for
472 validation. Figure 1 displays a comparison of CBH results over the full disk at 02:00
473 UTC on January 1, 2017, retrieved by the GEO IDPS algorithm, the GEO CLAVR-x
474 algorithm, the RF VIS+IR algorithm, and the RF IR-single algorithm. A similar
475 distribution pattern and magnitude of CBHs retrieved by these four independent
476 algorithms can be observed in Figure 1. However, notable differences exist between
477 physics-based and ML-based algorithms. Further comparisons are conducted and
478 analyzed with spaceborne and ground-based lidar and radar observations in the
479 subsequent sections of this study.

480 4.1.1 Joint scatter plots

481 Figure 2 presents the density scatter plot of the CBHs retrieved from the GEO
482 IDPS and GEO CLAVR-x algorithms compared with the CBHs from the joint
483 CloudSat/CALIPSO product, along with the related scores of MAE, MBE, RMSE,
484 and R calculated and labeled in each panel. The calculated R exceeds the 95%
485 significance level ($p < 0.05$). For the GEO IDPS algorithm, the R is 0.62, the MAE is
486 1.826 km, and the MBE and RMSE are -0.232 and 2.642 km (Fig. 2a). In comparison,
487 Seaman et al. (2017) compared the operational VIIRS CBH product retrieved by the
488 similar SNPP/VIIRS IDPS algorithm with the CloudSat CBH results. In their results,
489 the R is 0.569, and the RMSE is 2.3 km. For the new GEO CLAVR-x algorithm (Fig.
490 2b), the R is 0.647, and the RMSE is 2.91 km. The larger RMSE from two
491 independent physics-based CBH algorithms demonstrate a slightly poorer
492 performance and precision of these retrieval algorithms for GEO satellites.
493 Particularly, the larger RMSEs (2.642 and 2.91 km) indicate weaker stabilities of the
494 GEO IDPS and CLAVR-x CBH algorithms, compared with VIIRS CBH product
495 (Seaman et al., 2017). In this figure, more samples can be found near the 1:1 line,
496 implying the good quality of retrieved CBHs. However, in stark contrast, quite a
497 number of CBH samples retrieved by both GEO IDPS and GEO CLAVR-x
498 algorithms (compared with the official VIIRS CBH product) fall below 1.0 km,
499 indicating relatively large errors when compared with the joint CloudSat/CALIPSO
500 CBH product. Moreover, Figure 2 reveals that relatively large errors are also found in

设置了格式: 字体: (默认) Times New Roman, (中文) DengXian, 小四, 字体颜色: 文字 1

设置了格式: 字体: (默认) Times New Roman, (中文) DengXian, 小四, 字体颜色: 文字 1

设置了格式: 字体: (默认) Times New Roman, (中文) DengXian, 小四, 字体颜色: 文字 1

设置了格式: 字体: (默认) Times New Roman, (中文) DengXian, 小四, 字体颜色: 文字 1

设置了格式: 字体: (默认) Times New Roman, (中文) DengXian, 小四, 字体颜色: 文字 1

设置了格式: 字体: (默认) Times New Roman, (中文) DengXian, 小四, 字体颜色: 文字 1

设置了格式: 字体: (默认) Times New Roman, (中文) DengXian, 小四, 字体颜色: 文字 1

删除了: ..

删除了: ..

带格式的: 缩进: 首行缩进: 0 厘米

删除了: Fig. 2

删除了: (

删除了: ,

删除了: The poor predictive performance of physics-based
algorithm for samples with a CBH lower than 1 km is likely
due to insufficient cloud base information in the visible band
observation data.

删除了: ..

511 the CBHs lower than 2 km for the four independent algorithms, primarily caused by
512 the weak penetration ability of VIS or IR bands on thick and low clouds.

513 Referring to the joint CloudSat/CALIPSO CBH product, [Figures 2c and 2d](#) 删除了:..
514 present the validations of the CBH results retrieved from two ML-based algorithms
515 using the VIS+IR (only retrieving the CBH during the daytime) and IR-single models.
516 [Figure 2c](#) demonstrates better consistency of CBH between the VIS+IR model and the 删除了:..
517 joint CloudSat/CALIPSO product with $R = 0.905$, $MAE = 0.817$ km, $MBE = 0.425$ 删除了:..
518 km, and $RMSE = 1.706$ km. [Figure 2d](#) also displays a relatively high R of 0.876 when 删除了:..
519 validating the IR-single model, with $MAE = 0.882$, $MBE = -0.445$, and $RMSE =$
520 1.995. Therefore, both VIS+IR and IR-single models can obtain high-quality CBH
521 retrieval results from geostationary imager measurements. In comparison, previous
522 studies also proposed similar ML-based algorithms for estimating CBH using FY-4A
523 satellite imager data. For example, (Tan et al., 2020) used the variables of CTH, D_{COT} ,
524 R_{eff} , cloud water path, longitude/latitude from FY-4A imager data to build the training
525 and prediction model and obtained CBH with $MAE = 1.29$ km and $R = 0.80$. In this
526 study, except CTH, the other Level-2 products and geolocation data
527 (longitude/latitude) used in (Tan et al., 2020) are abandoned, while the matched
528 atmospheric profile products (such as temperature and relative humidity) from NWP
529 data are added. These changes in ML-based model training and prediction lead to
530 more accurate CBH retrieval results. Note that, in accordance with the previous study
531 conducted by (Noh et al., 2017), we excluded CBH samples obtained from
532 CloudSat/CALIPSO that were smaller than 1 km in our comparisons. This exclusion
533 was primarily due to the presence of ground clutter contamination in the CloudSat
534 CPR data (Noh et al., 2017).

535 [4.1.2 Test case](#)

536 [Figure 3](#) displays two cross-sections of CBH from various sources overlaid with 删除了:..
537 CloudSat radar reflectivity (unit: dBZ) for [spatiotemporally](#) matched cases. The 删除了:..
538 periods covered are from 03:16 to 04:55 UTC on January 13, 2017 (154.0°E–160.0°E; 删除了:..
539 40.56°S–53.39°S) and from 05:38 to 07:17 UTC on January 14, 2017 (107.1°E–
540 107.8°E; 8.35°N–11.57°N). The CloudSat radar reflectivity and joint 删除了:..
541 CloudSat/CALIPSO product provide insights into the vertical structure or distribution 删除了:..
542 of clouds and their corresponding CBHs. The results from the four GEO CBH 删除了:..
543 retrieval algorithms (GEO IDPS, GEO CLAVR-x, RF VIS+IR model, and RF 删除了:..
544 IR-single model) mentioned earlier are individually marked with different markers in 删除了:..

550 each panel. According to Figure 3a, the GEO IDPS algorithm faces challenges in
 551 accurately retrieving CBHs for geometrically thicker cloud samples near 157°E.
 552 Optically thick mid- and upper-level cloud layers may obscure lower-level cloud
 553 layers. However, the CBH results retrieved by the GEO IDPS algorithm near 155°E
 554 (in Fig. 3a) and 107.4°E (in Fig. 3b) align with the joint CloudSat/CALIPSO CBH
 555 product. It is worth noting that the inconsistency observed between 107.2°E and
 556 107.3°E in Figure 3b, specifically regarding the CBHs around 1 km obtained from
 557 CloudSat/CALIPSO, can likely be attributed to ground clutter contamination in the
 558 CloudSat CPR data (Noh et al., 2017). The GEO CLAVR-x algorithm achieves
 559 improved CBH results compared to the GEO IDPS algorithm. It can even retrieve
 560 CBHs for some thick cloud samples that are invalid when using the GEO IDPS
 561 algorithm. However, the CBHs from the GEO CLAVR-x algorithm are noticeably
 562 higher than those from the joint CloudSat/CALIPSO product. In contrast, the CBHs
 563 from the two ML-based algorithms show substantially better results than those from
 564 the other two physics-based algorithms. Particularly, the ML-based VIS+IR model
 565 algorithm yields the best CBH results. However, compared with those from the two
 566 physics-based algorithms, the CBHs from the two ML-based algorithms still exhibit a
 567 significant error around 5 km.

568 4.2 Comparisons with the ground-based lidar and cloud radar measurements

569 Lidar actively emits lasers in different spectral bands into the air. When the laser
 570 signal encounters cloud particles during transmission, a highly noticeable
 571 backscattered signal is generated and received (Omar et al., 2009). When lidar
 572 measures clouds, the intensity of the echo signal from the cloud to the laser satisfies
 573 the lidar equation as follows:

$$574 P(r) = C * \beta(r) * r^{-2} * \exp[-2 \int_0^r \sigma(z) dz], \quad (7)$$

575 where $P(r)$ is the intensity of the atmospheric backscattered signal received by the
 576 laser telescope from the emission point in distance r (unit: Watt or W); C is the lidar
 577 system instrumentation constant (unit: $\text{W} \cdot \text{km}^3 \cdot \text{sr}$); r is the detection distance (unit:
 578 km); $\beta(r)$ is the backscattering coefficient at the emission point in distance r (unit:
 579 $\text{km}^{-1} \cdot \text{sr}^{-1}$); $\sigma(z)$ is the extinction coefficient at the distance emission point in distance
 580 z (unit: km^{-1}). This return signal is markedly distinct from atmospheric aerosol
 581 scattering signals and noise, making CBH easily obtainable from the signal difference

删除了: .

删除了: .

删除了: Since the two RF models (VIS+IR and IR-single) select 230 typical variables to fit CBHs, the importance scores of these predictors in the two ML-based algorithms are ranked for better optimization. In the VIS+IR model, the top-ranked predictors are CTH and cloud top temperature (CTT) from the H8/AHI Level-2 product (see Fig. B1 in Appendix B). It's important to note that D_{COT} is a crucial and sensitive factor for these ML-based algorithms. Retrieving CBH samples with relatively low D_{COT} remains challenging due to the low signal-to-noise ratio when D_{COT} is low (Lin et al., 2022). To address this issue, samples with D_{COT} less than 1.6 are filtered in the VIS+IR model, and samples with relatively large BTs at Channel-14 are filtered in the IR-single model. This filtering process significantly improves the R value from 0.869 to 0.922 in the VIS+IR model and from 0.868 to 0.911 in the IR-single model. For more details on the algorithm optimization, please refer to Appendix B.

602 or mutation (Sharma et al., 2016). In this study, continuous ground-based lidar data
603 from the Twin Astronomy Manor in Lijiang City, Yunnan Province, China (26.454°N,
604 100.0233°E, altitude = 3175 m) are used to evaluate the diurnal cycle characteristics
605 of CBHs retrieved using GEO satellite algorithms (Young and Vaughan, 2009). The
606 geographical location and photo of this station are shown in [Figure 4](#).

607 [4.2.1 Comparison of CBH retrievals from ground and satellite data](#)

608 The ground-based lidar data at Lijiang station on December 6, 2018, and January
609 8, 2019, are selected for validation. [In fact, this lidar was primarily used for the](#)
610 [calibration of ground-based lunar radiation instruments. During the two-month](#)
611 [observation period \(from December of 2018 to January of 2019\), it was always](#)
612 [operated only under clear sky conditions, resulting in the capture of cloud data on just](#)
613 [two days.](#) The number of available and [spatiotemporally](#) matched CBH sample points
614 from ground-based lidar is 78 and 64 on December 6, 2018, and January 8, 2019,
615 respectively. Fig 5a and 5b show the point-to-point CBH comparisons between
616 ground-based lidar and four GEO satellite CBH algorithms on December 6, 2018, and
617 January 8, 2019. It is worth noting that the retrieved CBHs of the two physics-based
618 algorithms on December 6, 2018, are in good agreement with the reference values
619 from the lidar measurements, and, in particular, the GEO CLAVR-x algorithm can
620 obtain better results. From the results on January 8, 2019, more accurate diurnal cycle
621 characteristics of CBHs are revealed by the GEO CLAVR-x algorithm than by the
622 GEO IDPS algorithm.

623 Compared with the CBHs measured by ground-based lidar, the statistics of the
624 results retrieved from the GEO IDPS algorithm are $R = 0.67$, $MAE = 3.093$ km, MBE
625 = 0.856 km, and $RMSE = 3.609$ km (Fig. 5c). However, for cloud samples with CBH
626 below 7.5 km, the GEO IDPS algorithm shows an obvious underestimation of CBH in
627 [Figure 5c](#). For the GEO CLAVR-x algorithm, it can also be seen that the matched
628 samples mostly lie near the 1:1 line with $R = 0.773$ (the optimal CBH algorithm),
629 $MAE = 1.319$ km, $MBE = 0.222$ km, and $RMSE = 1.598$ km. In addition, this figure
630 also shows the CBH comparisons between the ML-based VIS+IR model/IR-single
631 model algorithms and the lidar measurements, revealing that the retrieved CBH
632 results from the ML-based VIS+IR model are better than those from the ML-based
633 IR-single model algorithm. The comparison results between the CBHs of the
634 ML-based VIS+IR model algorithm and the lidar measurements are around the 1:1
635 line, with smaller errors and $R = 0.599$. In contrast, the R between the CBHs of the

删除了: Fig.

设置了格式: 字体: (默认) Times New Roman, (中文) DengXian, 小四, 字体颜色: 文字 1

设置了格式: 字体: (默认) Times New Roman, (中文) DengXian, 小四, 字体颜色: 文字 1

设置了格式: 字体: (默认) Times New Roman, (中文) DengXian, 小四, 字体颜色: 文字 1

删除了: spatial-temporal

删除了: Fig.

639 ML-based IR-single model algorithm and the lidar measurements is only 0.494, with a
640 relatively large error. By comparing the retrieved CBHs with the lidar measurements
641 at Lijiang station, it indicates that CBH results from two physics-based algorithms are
642 remarkably more accurate, particularly that the GEO CLAVR-x algorithm can well
643 capture diurnal variation of CBH.

644 To further assess the accuracy and quality of the diurnal cycle of CBHs retrieved
645 with these algorithms, CBHs from another ground-based cloud radar dataset covering
646 the entire year of 2017 are also collected and used in this study. Due to the density of
points in the one-year time series, the point-to-point CBH comparison results for the
entire year are not displayed here (monthly results are shown in the supplementary
document), we only show 4 days results in the following Figure 6. As well known, the
diurnal variation of cloud base height is primarily influenced by solar heating, causing
the cloud base to rise in the morning and reach its peak by midday. As the surface
cools in the afternoon and evening, the cloud base lowers, playing a crucial role in
weather patterns and forecasting (Zheng et al., 2020). Therefore, it is essential to
rigorously compare the ML-based algorithm with ground-based observations to
determine its ability to adapt to the daily variations in cloud base height caused by
natural factors. The observational instrument is a Ka-band (35 GHz) Doppler
657 millimeter-wave cloud radar (MMCR) located at the Beijing Nanjiao Weather
658 Observatory (a typical urban observation site) (39.81°N, 116.47°E, altitude = 32 m;
659 see Fig. 4), performing continuous and routine observations. The MMCR provides a
660 specific vertical resolution of 30 m and a temporal resolution of 1 minute for single
661 profile detection, based on the radar reflectivity factor. In a previous study (Zhou et
662 al., 2019), products retrieved by this MMCR were utilized to investigate the diurnal
663 variations of CTH and CBH, and comparisons were made between MMCR-derived
664 CBHs and those derived from a Vaisala CL51 ceilometer. The former study also
665 found that the average R of CBHs from different instruments reached up to 0.65. It is
666 worth noting that the basic physics principle for detecting cloud base height from both
667 spaceborne cloud profiling radar and ground-based cloud radar and lidar
668 measurements is the same. All these algorithms of detecting CBH are based on the
669 manifest change of return signals between CBH and the clear sky atmosphere in the
670 vertical direction (Huo et al., 2019; Ceccaldi et al., 2013). The joint spaceborne
671 CloudSat/CALIPSO detection might face limitations in penetrating extremely dense,
672 optically thick, or areas with heavy precipitation clouds. Hence, in comparison, the

设置了格式: 字体: (默认) Times New Roman, (中文) DengXian, 小四, 字体颜色: 文字 1

设置了格式: 字体: (默认) Times New Roman, (中文) DengXian, 小四, 字体颜色: 文字 1

设置了格式: 字体: (默认) Times New Roman, (中文) DengXian, 小四, 字体颜色: 文字 1

删除了: correlation coefficient (

删除了:)

675 CBH values gathered from ground-based lidar and cloud radar measurements are
676 expected to be more accurate than the data derived from spaceborne
677 CloudSat/CALIPSO detection.

678 Similar to [Figure 5](#), [Figure 6](#) presents two sample groups of CBH results from the
679 cloud radar at Beijing Nanjiao station relative to the matched CBHs from the four
680 retrieval algorithms (GEO IDPS, GEO CLAVR-x, ML-based IR-single, ML-based
681 VIS+IR) on April 9–10 and July 26–28, 2017. Similar to the results at Lijiang station
682 discussed in [Figure 5](#), we observe better and more robust performances in retrieving
683 diurnal cycle characteristics of CBH from the two physics-based CBH retrieval
684 algorithms. In contrast, more underestimated CBH samples are retrieved by the two
685 ML-based algorithms.

686 [4.2.2 Diurnal cycle analysis of CBH retrieval accuracy](#)

687 To further investigate the diurnal cycle characteristics of retrieved CBH from
688 GEO satellite imager measurements, [Figure 7](#) presents box plots of the hourly CBH
689 errors (relative to the results of cloud radar at Beijing Nanjiao station) in 2017 from
690 the four different CBH retrieval algorithms. Remarkably, there are significant
691 underestimations of the CBHs retrieved from the two ML-based algorithms. The
692 ML-based VIS+IR method achieves relatively better results than the ML-based
693 IR-single method during the daytime. Comparing the two ML-based algorithms, the
694 errors of the IR-single model algorithm have a similar standard deviation (2.80 km) to
695 those of the VIS+IR model algorithm (2.69 km) during the daytime. For the IR-single
696 model algorithm, it can be applied during both daytime and nighttime, its nighttime
697 performance degrades slightly, with an averaged RMSE (3.88 km) higher than that of
698 daytime (3.56 km). The nighttime CBH of the IR-single model algorithm is the only
699 choice that should be used with discretion.

700 [Figure 8](#) shows the comparisons of hourly MAE, MBE, RMSE, and R relative to
701 the CBHs from the cloud radar at Beijing Nanjiao station during daytime between
702 four retrieval algorithms in 2017. The RMSE of the two ML-based algorithms shows
703 stable diurnal variation. It is noted that all algorithms have lower R at sunrise, around
704 07:00 local time, which improve as the day progresses. However, the GEO CLAVR-x
705 algorithm stands out for its relatively higher and more stable in R and RMSE during
706 daytime.

707 [Figure 9a](#) displays scatter plots and relevant statistics of the CBHs retrieved from
708 the GEO IDPS algorithm against the CBHs from cloud radar. The CBHs from the

删除了: Fig. 5, Fig. 6

删除了: Due to the density of points in the one-year time series, the point-to-point CBH comparison results for the entire year are not displayed here (monthly results are shown in the supplementary document). Similar to the results at

删除了: Fig. 5

带格式的: 缩进: 首行缩进: 0 厘米

删除了: Fig. 7

删除了: To the best of our knowledge, there is no alternative nighttime CBH product for geostationary satellite imagers right now. The nighttime CBH of the IR-single model

删除了: Fig. 8

删除了: correlation coefficients (

删除了:)

删除了: Fig.

723 GEO IDPS algorithm align well with the matched CBHs from cloud radar at Beijing
724 Nanjiao station, with $R = 0.515$, $MAE = 2.078$ km, $MBE = 1.168$ km, and $RMSE =$
725 2.669 km. In Figure 9b, the GEO CLAVR-x algorithm shows better results with $R =$
726 0.573, $MAE = 2.059$ km, $MBE = -0.204$ km, and $RMSE = 2.601$ km. It is not
727 surprising that Figs. 8c and 8d reveal obvious underestimated CBH results from the
728 two ML-based CBH algorithms. Particularly, the CBH results from the ML-based
729 VIS+IR model algorithm concentrate in the range of 2.5 km to 5 km. Therefore,
730 Figure 5 to Figure 9 further substantiates the weak diurnal variations captured by
731 ML-based techniques, primarily attributed to the scarcity of comprehensive CBH
732 training samples throughout the entire day. Besides, although the two robust
733 physics-based algorithms of GEO IDPS and GEO CLAVR-x (the optimal one) can
734 retrieve high-quality CBHs from H8/AHI data, especially the diurnal cycle of CBH
735 during the daytime, they still struggle to retrieve CBHs below 1 km.

736 5. Conclusions and discussion

737 To explore and argue the optimal and most robust CBH retrieval algorithm from
738 geostationary satellite imager measurements, particularly focusing on capturing the
739 typical diurnal cycle characteristics of CBH, this study employs four different
740 retrieval algorithms (two physics-based and two ML-based algorithms). High
741 spatiotemporal resolution CBHs are retrieved using the H8/AHI data from 2017 to
742 2019. To assess the accuracies of the retrieved CBHs, point-to-point validations are
743 conducted based on spatiotemporally matched CBHs from the joint
744 CloudSat/CALIOP product, as well as ground-based lidar and cloud radar
745 observations in China. The main findings and conclusions are outlined below.

746 Four independent CBH retrieval algorithms, namely physics-based GEO IDPS,
747 GEO CLAVR-x, ML-based VIS+IR, and ML-based IR-single, have been developed
748 and utilized to retrieve CBHs from GEO H8/AHI data. The two physics-based
749 algorithms utilize cloud top and optical property products from AHI as input
750 parameters to retrieve high spatiotemporal resolution CBHs, with operations limited
751 to daytime. In contrast, the ML-based VIS+IR model and IR-single model algorithms
752 use the matched joint CloudSat/CALIOP CBH product as true values for building RF
753 prediction models. Notably, the ML-based IR-single algorithm, which relies solely on
754 infrared band measurements, can retrieve CBH during both day and night.

763 The accuracy of CBHs retrieved from the four independent algorithms is verified
764 using the joint CloudSat/CALIOP CBH products for the year 2017. The GEO IDPS
765 algorithm shows an R of 0.62 and an RMSE of 2.642 km. The GEO CLAVR-x
766 algorithm provides more accurate CBHs with an R of 0.647 and RMSE of 2.91 km.
767 After filtering samples with optical thickness less than 1.6 and brightness temperature
768 (at 11 μ m band) greater than 281 K, the ML-based VIS+IR and ML-based IR-single
769 algorithms achieve higher accuracy with an R(RMSE) of 0.922(1.214 km) and
770 0.911(1.415 km), respectively. This indicates strong agreement between the two
771 ML-based CBH algorithms and the CloudSat/CALIOP CBH product.

772 However, in stark contrast, the results from the physics-based algorithms ([with R](#)
773 [and RMSE of 0.592/2.86 km](#)) are superior to those from the ML-based algorithms
774 ([with R and RMSE of 0.385/3.88 km](#)) when compared with ground-based CBH
775 observations such as lidar and cloud radar. In the comparison with the cloud radar at
776 Beijing Nanjiao station in 2017, the R of the GEO CLAVR-x algorithm is 0.573,
777 while the R of the GEO IDPS algorithm is 0.515. Meanwhile, notable differences are
778 observed in the CBHs [between](#) both ML-based algorithms. Similar conclusions are
779 also evident in the 2-day comparisons at Yunnan Lijiang station.

780 The CBH results from the two ML-based algorithms ($R > 0.91$) can likely be
781 attributed to the use of the same training and validation dataset source as the joint
782 CloudSat/CALIOP product. However, this dataset has limited spatial coverage and
783 small temporal variation, potentially limiting the representativeness of the training
784 data. In contrast, the GEO CLAVR-x algorithm demonstrates the best performance
785 and highest accuracy in retrieving CBH from geostationary satellite data. Notably, its
786 results align well with those from ground-based lidar and cloud radar during the
787 daytime. However, both physics-based methods, utilizing CloudSat CPR data for
788 regression, struggle to accurately retrieve CBHs below 1 km, as the lowest 1 km
789 above ground level of this data is affected by ground clutter.

790 Additionally, despite utilizing the same physics principles in spaceborne and
791 ground-based lidar/radar CBH algorithms, the previous study (Thorsen et al., 2011)
792 has highlighted differences in profiles between them. Therefore, this factor could
793 contribute to the relatively poorer results in CBH retrieval by ML-based algorithms
794 compared to ground-based lidar and radar. The analysis and discussion above suggest
795 that ML-based algorithms are constrained by the size and representativeness of their

删除了: (with R and RMSE of 0.592/2.86 km)

删除了: and

删除了: , respectively

删除了: from

800 datasets. Therefore, in scenarios involving a large time scope, such as climate
801 research, it is more reasonable to opt for physics-based cloud base height algorithms.

802 Ideally, if more spaceborne cloud profiling radars with different passing times
803 (covering all day) can be included in the training dataset, the promising ML technique
804 will certainly generate a higher quality CBH product with more comprehensive
805 observations. The CBH product using ML-based algorithms should continue to be
806 improved in future work. Particularly, exploring the joint ML-physics-based method
807 presents a promising direction, which can address the complexities and challenges in
808 retrieving cloud properties. By integrating established physical relationships into ML
809 models, we can potentially enhance the accuracy and reliability of predictions. This
810 approach not only leverages the strengths of both physics-based models and
811 data-driven techniques but also offers a pathway to more robust and interpretable
812 solutions in atmospheric sciences. At present, we will focus on developing
813 physics-based algorithms for cloud base height for the next generation of
814 geostationary meteorological satellites, to support the application of these products in
815 weather and climate domains.

816 Besides, at night, current GEO satellite imaging instruments encounter
817 challenges in accurately determining CBH due to limited or absent solar illumination.
818 Because it is unable to retrieve cloud optical depth in the visible band, the current
819 method faces limitations. However, there is potential for enhanced accuracy in
820 deriving cloud optical and microphysical properties, as well as CBH, by incorporating
821 the Day/Night Band (DNB) observations during nighttime in the future (Walther et al.,
822 2013).

823

824

825 *Data availability.* The authors would like to acknowledge NASA, JMA, Colorado
826 State University, and NOAA for freely providing the MODIS
827 (<https://ladsweb.modaps.eosdis.nasa.gov/search>), CloudSat/CALIOP
828 (<https://www.cloudsat.cira.colostate.edu/>), Himawari-8 (<ftp://ptree.jaxa.jp>), and GFS
829 NWP (<ftp://nomads.ncdc.noaa.gov/GFS/Grid4>) data online, respectively.

830

831

832 *Author contributions.* MM proposed the essential research idea. MW, MM, JL, HL,

删除了: ↵

删除了: University of Colorado

835 BC, and YL performed the analysis and drafted the manuscript. ZY and NX provided
836 useful comments. All the authors contributed to the interpretation and discussion of
837 results and the revision of the manuscript.

838

839

840 *Competing interests.* The authors declare that they have no conflict of interest.

841

842

843 *Acknowledgements.* The authors would like to acknowledge NASA, JMA, University
844 of Colorado, and NOAA for freely providing satellite data online, respectively. The
845 authors thank NOAA, NASA, and their VIIRS algorithm working groups (AWG) for
846 freely providing the VIIRS cloud base height algorithm theoretical basic
847 documentations (ATBD). In addition, the authors appreciate the power computer tools
848 developed by the Python and scikit-learn groups (<http://scikit-learn.org>). Besides the
849 authors also thank Rundong Zhou and Pan Xia for drawing some pictures of this
850 manuscript. Last but not the least, the authors sincerely thank Prof. Yong Zhang and
851 Prof. Jianping Guo for freely providing cloud base height results retrieved by
852 ground-based cloud radar at Beijing Nanjiao station. This work was supported partly
853 by the Guangdong Major Project of Basic and Applied Basic Research (Grant
854 2020B0301030004), National Natural Science Foundation of China under Grants
855 42175086 and U2142201, FengYun Meteorological Satellite Innovation Foundation
856 under Grant FY-APP-ZX-2022.0207, the Innovation Group Project of Southern
857 Marine Science and Engineering Guangdong Laboratory (Zhuhai) (No.
858 SML2023SP208), and the Science and Technology Planning Project of Guangdong
859 Province (2023B1212060019). We would like to thank the editor and anonymous
860 reviewers for their thoughtful suggestions and comments.

861

862

863 **Appendix A**

864 Based on the previously discussed description of two physics-based cloud base

删除了: the Natural Science Foundation of Shanghai (No. 21ZR1419800), the Guangdong Major Project of Basic and

删除了: Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (No. 311022006),

870 height (CBH) retrieval algorithms (GEO IDPS and GEO CLAVR-x retrieval
871 algorithms), cloud products such as cloud top height (CTH), effective particle radius
872 (R_{eff}), and cloud optical thickness (D_{COT}) will be utilized in both algorithms. To
873 validate the reliability of these cloud products derived from the Advanced Himawari
874 Imager (AHI) aboard the Himawari-8 (H8), a pixel-by-pixel comparison is conducted
875 with analogous MODIS Collection-6.1 Level-2 cloud products. Both Aqua and Terra
876 MODIS Level-2 cloud products (MOD06 and MYD06) are accessible for free
877 download from the MODIS official website. For verification purposes, the
878 corresponding Level-2 cloud products from January, April, July, and October of 2018
879 are chosen to assess CTH, D_{COT} , and R_{eff} retrieved by H8/AHI.

880 [Figure S2](#) (in the supplementary document) shows the spatiotemporally matched
881 case comparisons of CTH, D_{COT} and R_{eff} from H8/AHI and Terra/MODIS (MYD06)
882 at 03:30 UTC on January 15, 2018. It can be seen that the CTH, D_{COT} and R_{eff} from
883 H8/AHI are in good agreement with the matched MODIS cloud products. However,
884 there are still some differences in R_{eff} at the regions near 35°N, 110°E in [Figures S2d](#)
885 and S2c. The underestimated R_{eff} values from H8/AHI relative to MODIS have been
886 reported in previous studies. (Letu et al., 2019) compared the ice cloud products
887 retrieved from AHI and MODIS, and concluded that the R_{eff} from both products differ
888 remarkably in the ice cloud region and the D_{COT} from them are roughly similar.
889 However, the D_{COT} from AHI data is higher in some areas. Looking again at the cloud
890 optical thickness that at the same time, the slight underestimation of H8/AHI D_{COT}
891 can be found in [Figures S2e](#) and S2f. [Figure S3](#) (in the supplementary document)
892 shows another case at 02:10 UTC on January 15, 2018. Despite of the good
893 consistence between H8/AHI and MODIS cloud products, there are slight differences
894 in CTH in the area around 40°S–40.5°S, 100°E–110°E in Figs. S3a and S3b. Besides,
895 as shown in [Figure S2](#), there are still underestimations in the R_{eff} of H8/AHI.

896 To further compare and validate these three H8/AHI cloud products, the
897 spatiotemporally matched samples from H8/AHI and Aqua/Terra MODIS in four
898 months of 2018 are counted within the three intervals of 0.1 km (CTH), 1.0 μm (R_{eff}),
899 and 1 (D_{COT}) in [Figure S4](#) (in the supplementary document). The corresponding mean
900 absolute error, mean bias error, [RMSE](#) and R values are also calculated and marked in
901 each subfigure. As can be seen, the R of CTH is around 0.75 in all four months and is
902 close to 0.8 in August. The results of D_{COT} show the highest R , reaching above 0.8. In
903 contrast, the underestimation trend in R_{eff} is also shown in this figure. These different

删除了:..

删除了: spatially-temporal

删除了:..

删除了:..

删除了:..

删除了:..

删除了: spatially-temporally

删除了:..

删除了: root mean square error

删除了: correlation coefficient (

删除了:)

915 consistencies between two satellite-retrieved cloud products may be attributed to: (1)
916 different spatiotemporal resolutions between H8/AHI and MODIS; (2) different
917 wavelength bands, bulk scattering model, and specific algorithm used for retrieving
918 cloud products; (3) different view zenith angle between GEO and low-earth-orbit
919 satellite platforms (Letu et al., 2019). In addition, other external factors such as
920 surface type also can affect the retrieval of cloud product. However, according to
921 Figure S4, the bulk of the analyzed samples are still around the 1:1 line, indicating the
922 good quality of H8/AHI cloud products.

删除了: spatial-temporal

923

924 Appendix B

925 The ML-based visible (VIS)+infrared (IR) model algorithm mentioned above
926 uses 230 typical variables (see Table 1) as model predictors, and the importance
927 scores of top-30 predictors are ranked in Figure S5 (in the supplementary document).
928 It can be seen that the most important variables are CTH and CTT, and Dcot is an
929 important or sensitive factor affecting these two quantities. A sensitivity test is also
930 performed to further investigate the potential influence of Dcot on the CBH retrieval
931 by the VIS+IR model (see Table S1 in the supplementary document). From Figure
932 S7a, we find that the samples with Dcot lower than 5 cause the relatively large CBH
933 errors compared with the matched CBHs from the joint CALIPSO (Cloud-Aerosol
934 Lidar and Infrared Pathfinder Satellite Observation)/CloudSat product.

935 According to the results in this Figure S7b, we may filter the samples with
936 relatively small Dcot to further improve the accuracy of CBH retrieval by the VIS+IR
937 model (see Table S1). Figure S7b shows that after filtering the samples with the Dcot
938 less than 1.6, the R increases from 0.895 to 0.922, implying a better performance of
939 CBH retrieval. According to the ranking of predictor importance (see Fig. S6 in the
940 supplementary document), we also conduct another sensitivity test on the BT
941 observed by H8/AHI IR Channel-14 (Cha14) at 11 μ m, which plays an important role
942 in the IR-single model. Figure S7c shows that the BT values of H8/AHI Channel-14
943 ranges from 160 K to 316 K, and the samples with BT higher than 300 K show large
944 CBH errors. Similarly, by filtering the samples with BT higher than 281 K, we can get
945 a better IR-single model algorithm for retrieving high-quality CBH (see Table S2 in
946 the supplementary document). Figure S7d also proves that the R value increases from
947 0.868 to 0.911.

948

删除了: ..

删除了: cloud top temperature

删除了: ..

删除了: ..

删除了: ..

删除了: B3

删除了: ..

删除了: ..

959 **Reference**

960 Aydin, K. and Singh, J.: Cloud Ice Crystal Classification Using a 95-GHz Polarimetric Radar, *Journal of*
961 *Atmospheric and Oceanic Technology*, 21, 1679–1688, <https://doi.org/10.1175/JTECH1671.1>, 2004.

962 Baker, N.: Joint Polar Satellite System (JPSS) VIIRS Cloud Base Height Algorithm Theoretical Basis
963 Document (ATBD), 2011.

964 Baum, B., Menzel, W. P., Frey, R., Tobin, D., Holz, R., and Ackerman, S.: MODIS cloud top property
965 refinements for Collection 6, *Journal of Applied Meteorology and Climatology*, 51, 1145-1163,
966 10.1175/JAMC-D-11-0203.1, 2012.

967 Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Kumagai, Y., Miyakawa, T., Murata, H.,
968 Ohno, T., Okuyama, A., Oyama, R., Sasaki, Y., Shimazu, Y., Shimoji, K., Sumida, Y., Suzuki, M., Taniguchi,
969 H., Tsuchiyama, H., Uesawa, D., Yokota, H., and Yoshida, R.: An introduction to Himawari-8/9—Japan's
970 new-generation geostationary meteorological satellites, *Journal of the Meteorological Society of*
971 *Japan*, 94, 151-183, 10.2151/jmsj.2016-009, 2016.

972 Breiman, L.: Random forests, *Machine Learning*, 45, 5-32, 2001.

973 Ceccaldi, M., Delanoë, J., Hogan, R. J., Pounder, N. L., Protat, A., and Pelon, J.: From CloudSat-CALIPSO
974 to EarthCare: Evolution of the DARDAR cloud classification and its comparison to airborne radar-lidar
975 observations, *Journal of Geophysical Research: Atmospheres*, 118, 7962-7981, 10.1002/jgrd.50579,
976 2013.

977 Forsythe, J. M., Haar, T. H. V., and Reinke, D. L.: Cloud-Base height estimates using a combination of
978 Meteorological Satellite Imagery and Surface Reports, *Journal of Applied Meteorology and Climatology*,
979 39, 2336–2347, [https://doi.org/10.1175/1520-0450\(2000\)039<2336:CBHEUA>2.0.CO;2](https://doi.org/10.1175/1520-0450(2000)039<2336:CBHEUA>2.0.CO;2), 2000.

980 Gregorutti, B., Michel, B., and Saint-Pierre, P.: Correlation and variable importance in random forests,
981 *Statistics and Computing*, 27, 659-678, 10.1007/s11222-016-9646-1, 2017.

982 Håkansson, N., Adok, C., Thoss, A., Scheirer, R., and Hörnquist, S.: Neural network cloud top pressure
983 and height for MODIS, *Atmospheric Measurement Techniques*, 11, 3177–3196,
984 10.5194/amt-11-3177-2018, 2018.

985 Hansen, B.: A Fuzzy Logic-Based Analog Forecasting System for Ceiling and Visibility, *Weather and*
986 *Forecasting*, 22, 1319-1330, 10.1175/2007waf2006017.1, 2007.

987 Hartmann, D. L. and Larson, K.: An important constraint on tropical cloud - climate feedback, *Geophys*
988 *Res Lett*, 29, 12-11-12-14, 10.1029/2002gl015835, 2002.

989 Heidinger, A. and Pavolonis, M.: Gazing at cirrus clouds for 25 years through a split window, part 1:
990 Methodology, *Journal of Applied Meteorology and Climatology*, 48, 1110-1116,
991 10.1175/2008JAMC1882.1, 2009.

992 Heidinger, A. K., Bearson, N., Foster, M. J., Li, Y., Wanzong, S., Ackerman, S., Holz, R. E., Platnick, S., and
993 Meyer, K.: Using sounder data to improve cirrus cloud height estimation from satellite imagers,
994 *Journal of Atmospheric and Oceanic Technology*, 36, 1331-1342, 10.1175/jtech-d-18-0079.1, 2019.

995 Heymsfield, A. J., Bansemer, A., Matrosov, S., and Tian, L.: The 94-GHz radar dim band: Relevance to
996 ice cloud properties and CloudSat, *Geophys. Res. Lett.*, 35, 10.1029/2007GL031361, 2008.

997 Hirsch, E., Agassi, E., and Koren, I.: A novel technique for extracting clouds base height using ground
998 based imaging, *Atmospheric Measurement Techniques*, 4, 117-130, 10.5194/amt-4-117-2011, 2011.

999 Hunt, W. H., Winker, D. M., Vaughan, M. A., Powell, K. A., Lucker, P. L., and Weimer, C.: CALIPSO lidar
1000 description and performance assessment, *J. Atmos. Oceanic. Technol.*, 26, 2009.

1001 Huo, J., Bi, Y., Lü, D., and Duan, S.: Cloud Classification and Distribution of Cloud Types in Beijing Using
1002 Ka-Band Radar Data, *Advances in Atmospheric Sciences*, 36, 793-803, 10.1007/s00376-019-8272-1,

1003 2019.

1004 Hutchison, K., Wong, E., and Ou, S. C.: Cloud base heights retrieved during night-time conditions with
1005 MODIS data, *Int J Remote Sens*, 27, 2847-2862, 10.1080/01431160500296800, 2006.

1006 Hutchison, K. D.: The retrieval of cloud base heights from MODIS and three-dimensional cloud fields
1007 from NASA's EOS Aqua mission, *Int J Remote Sens*, 23, 5249-5265, 10.1080/01431160110117391,
1008 2002.

1009 Iwabuchi, H., Putri, N. S., Saito, M., Tokoro, Y., Sekiguchi, M., Yang, P., and Baum, B. A.: Cloud Property
1010 Retrieval from Multiband Infrared Measurements by Himawari-8, *Journal of the Meteorological
1011 Society of Japan. Ser. II*, 96B, 27-42, 10.2151/jmsj.2018-001, 2018.

1012 Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G.,
1013 Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, J., Mo,
1014 K. C., Ropelewski, C., and Wang, J.: The NCEP NCAR 40-Year Reanalysis Project, 1996.

1015 Kühnlein, M., Appelhans, T., Thies, B., and Nauß, T.: Precipitation Estimates from MSG SEVIRI Daytime,
1016 Nighttime, and Twilight Data with Random Forests, *Journal of Applied Meteorology and Climatology*,
1017 53, 2457-2480, 10.1175/jamc-d-14-0082.1, 2014.

1018 Letu, H., Nagao, T. M., Nakajima, T. Y., Riedi, J., Ishimoto, H., Baran, A. J., Shang, H., Sekiguchi, M., and
1019 Kikuchi, M.: Ice cloud properties from Himawari-8/AHI next-generation geostationary satellite:
1020 Capability of the AHI to monitor the DC cloud generation process, *IEEE Transactions on Geoscience
1021 and Remote Sensing*, 57, 3229-3239, 10.1109/tgrs.2018.2882803, 2019.

1022 Li, Y., Yi, B., and Min, M.: Diurnal variations of cloud optical properties during day-time over China
1023 based on Himawari-8 satellite retrievals, *Atmospheric Environment*, 277, 119065,
1024 10.1016/j.atmosenv.2022.119065, 2022.

1025 Liang, Y., Min, M., Yu, Y., Wang, X., and Xia, P.: Assessing diurnal cycle of cloud covers of Fengyun-4A
1026 geostationary satellite based on the manual observation data in China, *IEEE Transactions on
1027 Geoscience and Remote Sensing*, 61, 10.1109/TGRS.2023.3256365, 2023.

1028 Lin, H., Li, Z., Li, J., Zhang, F., Min, M., and Menzel, W. P.: Estimate of daytime single-layer cloud base
1029 height from Advanced Baseline Imager measurements, *Remote Sensing of Environment*, 274, 112970,
1030 10.1016/j.rse.2022.112970, 2022.

1031 Lu, X., Mao, F., Rosenfeld, D., Zhu, Y., Pan, Z., and Gong, W.: Satellite retrieval of cloud base height and
1032 geometric thickness of low-level cloud based on CALIPSO, *Atmospheric Chemistry and Physics*, 21,
1033 10.5194/acp-21-11979-2021, 2021.

1034 Meerkötter, R. and Bugliaro, L.: Diurnal evolution of cloud base heights in convective cloud fields from
1035 MSG/SEVIRI data *Atmospheric Chemistry and Physics*, 9, 1767-1778, 10.5194/acp-9-1767-2009,
1036 2009.

1037 Miller, R. M., Rauber, R. M., Girolamo, L. D., Rilloraza, M., Fu, D., McFarquhar, G. M., Nesbitt, S. W.,
1038 Ziembka, L. D., Woods, S., and Thornhill, K. L.: Influence of natural and anthropogenic aerosols on cloud
1039 base droplet size distributions in clouds over the South China Sea and West Pacific, *Atmospheric
1040 Chemistry and Physics*, 23, 8959-8977, 10.5194/acp-23-8959-2023, 2023.

1041 Miller, S. D., Rogers, M. A., Haynes, J. M., Sengupta, M., and Heidinger, A. K.: Short-term solar
1042 irradiance forecasting via satellite/model coupling, *Solar Energy*, 168, 102-117,
1043 10.1016/j.solener.2017.11.049, 2018.

1044 Min, M. and Zhang, Z.: On the influence of cloud fraction diurnal cycle and sub-grid cloud optical
1045 thickness variability on all-sky direct aerosol radiative forcing, *Journal of Quantitative Spectroscopy
1046 and Radiative Transfer*, 142, 25-36, 10.1016/j.jqsrt.2014.03.014, 2014.

1047 Min, M., Li, J., Wang, F., Liu, Z., and Menzel, W. P.: Retrieval of cloud top properties from advanced
1048 geostationary satellite imager measurements based on machine learning algorithms, *Remote Sensing*
1049 of Environment

1050 Min, M., Chen, B., Xu, N., He, X., Wei, X., and Wang, M.: Nonnegligible diurnal and long-term variation
1051 characteristics of the calibration biases in Fengyun-4A/AGRI infrared channels based on the oceanic
1052 drifter data, *IEEE Transactions on Geoscience and Remote Sensing*, 60, 1-15,
1053 10.1109/TGRS.2022.3160450, 2022.

1054 Min, M., Wu, C., Li, C., Liu, H., Xu, N., Wu, X., Chen, L., Wang, F., Sun, F., Qin, D., Wang, X., Li, B., Zheng,
1055 Z., Cao, G., and Dong, L.: Developing the science product algorithm testbed for Chinese
1056 next-generation geostationary meteorological satellites: FengYun-4 series, *Journal of Meteorological*
1057 *Research*, 31, 708-719, 10.1007/s13351-017-6161-z, 2017.

1058 Noh, Y.-J., Miller, S. D., Seaman, C. J., Haynes, J. M., Li, Y., Heidinger, A. K., and Kulie, M. S.: Enterprise
1059 AWG Cloud Base Algorithm (ACBA), 2022.

1060 Noh, Y.-J., Forsythe, J. M., Miller, S. D., Seaman, C. J., Li, Y., Heidinger, A. K., Lindsey, D. T., Rogers, M. A.,
1061 and Partain, P. T.: Cloud-base height estimation from VIIRS. Part II: A statistical algorithm based on
1062 A-Train satellite data, *Journal of Atmospheric and Oceanic Technology*, 34, 585-598,
1063 10.1175/JTECH-D-16-0110.1, 2017.

1064 Omar, A., Winker, D., Kittaka, C., Vaughan, M., Liu, Z., Hu, Y., Trepte, C., Rogers, R., Ferrare, R., Kuehn,
1065 R., and Hostetler, C.: The CALIPSO automated aerosol classification and lidar ratio selection algorithm,
1066 *J. Atmos. Oceanic. Technol.*, 26, 1994-2014, 10.1175/2009JTECHA1231, 2009.

1067 Platnick, S., Meyer, K. G., King, M. D., Wind, G., Amarasinghe, N., Marchant, B., Arnold, G. T., Zhang, Z.,
1068 Hubanks, P. A., Holz, R. E., Yang, P., Ridgway, W. L., and Riedi, J.: The MODIS cloud optical and
1069 microphysical products: Collection 6 updates and examples from Terra and Aqua, *IEEE Trans Geosci*
1070 *Remote Sens*, 55, 502-525, 10.1109/TGRS.2016.2610522, 2017.

1071 Rosenfeld, D., Zheng, Y., Hashimshoni, E., Pohlker, M. L., Jefferson, A., Pohlker, C., Yu, X., Zhu, Y., Liu, G.,
1072 Yue, Z., Fischman, B., Li, Z., Giguzin, D., Goren, T., Artaxo, P., Barbosa, H. M., Poschl, U., and Andreae,
1073 M. O.: Satellite retrieval of cloud condensation nuclei concentrations by using clouds as CCN chambers,
1074 *Proc. Natl. Acad. Sci.*, 113, 5828-5834, 10.1073/pnas.1514044113, 2016.

1075 Sassen, K. and Wang, Z.: Classifying clouds around the globe with the CloudSat radar: 1-year of results,
1076 *Geophys. Res. Lett.*, 35, 1-5, doi:10.1029/2007GL032591, 2008.

1077 Seaman, C. J., Noh, Y.-J., Miller, S. D., Heidinger, A. K., and Lindsey, D. T.: Cloud-base height estimation
1078 from VIIRS. Part I: Operational algorithm validation against CloudSat, *Journal of Atmospheric and*
1079 *Oceanic Technology*, 34, 567-583, 10.1175/jtech-d-16-0109.1, 2017.

1080 Sharma, S., Vaishnav, R., Shukla, M. V., Kumar, P., Kumar, P., Thapliyal, P. K., Lal, S., and Acharya, Y. B.:
1081 Evaluation of cloud base height measurements from Ceilometer CL31 and MODIS satellite over
1082 Ahmedabad, India, *Atmospheric Measurement Techniques*, 9, 711-719, 10.5194/amt-9-711-2016,
1083 2016.

1084 Stephens, G. L., Vane, D. G., Boain, R. J., Mace, G. G., and Sassen, K.: The CloudSat mission and the
1085 A-Train: A new dimension of space-based observations of clouds and precipitation, *Bull. Amer. Meteor.*
1086 *Soc.*, 83, 1771-1790, 2002.

1087 Stubenrauch, C. J., Rossow, W. B., Kinne, S., Ackerman, S., Cesana, G., Chepfer, H., Di Girolamo, L.,
1088 Getzewich, B., Guignard, A., Heidinger, A., Maddux, B. C., Menzel, W. P., Minnis, P., Pearl, C., Platnick,
1089 S., Poulsen, C., Riedi, J., Sun-Mack, S., Walther, A., Winker, D., Zeng, S., and Zhao, G.: Assessment of
1090 global cloud datasets from satellites: project and database initiated by the GEWEX radiation panel,

1091 Bulletin of the American Meteorological Society, 94, 1031-1049, 10.1175/bams-d-12-00117.1, 2013.

1092 Su, T., Zheng, Y., and Li, Z.: Methodology to determine the coupling of continental clouds with surface
1093 and boundary layer height under cloudy conditions from lidar and meteorological data, Atmospheric
1094 Chemistry and Physics, 22, 1453-1466, 10.5194/acp-22-1453-2022, 2022.

1095 Tan, Z., Huo, J., Ma, S., Han, D., Wang, X., Hu, S., and Yan, W.: Estimating cloud base height from
1096 Himawari-8 based on a random forest algorithm, Int J Remote Sens, 42, 2485-2501,
1097 10.1080/01431161.2020.1854891, 2020.

1098 Thorsen, T. J., Fu, Q., and Comstock, J.: Comparison of the CALIPSO satellite and ground-based
1099 observations of cirrus clouds at the ARM TWP sites, Journal of Geophysical Research: Atmospheres,
1100 116, 10.1029/2011jd015970, 2011.

1101 Viúdez-Mora, A., Costa-Surós, M., Calbó, J., and González, J. A.: Modeling atmospheric longwave
1102 radiation at the surface during overcast skies: The role of cloud base height, Journal of Geophysical
1103 Research: Atmospheres, 120, 199-214, 10.1002/2014jd022310, 2015.

1104 Wang, F., Min, M., Xu, N., Liu, C., Wang, Z., and Zhu, L.: Effects of linear calibration errors at low
1105 temperature end of thermal infrared band: Lesson from failures in cloud top property retrieval of
1106 FengYun-4A geostationary satellite, IEEE Transactions on Geoscience and Remote Sensing, 60,
1107 5001511, 10.1109/TGRS.2022.3140348, 2022.

1108 Wang, T., Shi, J., Ma, Y., Letu, H., and Li, X.: All-sky longwave downward radiation from satellite
1109 measurements: General parameterizations based on LST, column water vapor and cloud top
1110 temperature, ISPRS Journal of Photogrammetry and Remote Sensing, 161, 52-60,
1111 10.1016/j.isprsjprs.2020.01.011, 2020.

1112 Wang, X., Min, M., Wang, F., Guo, J., Li, B., and Tang, S.: Intercomparisons of cloud mask product
1113 among Fengyun-4A, Himawari-8 and MODIS, IEEE Transactions on Geoscience and Remote Sensing, 57,
1114 8827-8839, 10.1109/TGRS.2019.2923247 2019.

1115 Wang, Z., Vane, D., Stephens, G., Reinke, D., and TBD: Level 2 combined radar and lidar cloud scenario
1116 classification product process description and interface control document, 2012.

1117 Warren, S. G. and Eastman, R.: Diurnal Cycles of Cumulus, Cumulonimbus, Stratus, Stratocumulus, and
1118 Fog from Surface Observations over Land and Ocean, J Climate, 27, 2386-2404,
1119 10.1175/jcli-d-13-00352.1, 2014.

1120 Winker, D. M., Vaughan, M. A., Omar, A., Hu, Y., Powell, K. A., Liu, Z., Hunt, W. H., and Young, S. A.:
1121 Overview of the CALIPSO mission and CALIOP data processing algorithms, J. Atmos. Oceanic Technol.,
1122 26, 2310-2323, 10.1175/2009JTECHA1281.1, 2009.

1123 Yang, J., Li, S., Gong, W., Min, Q., Mao, F., and Pan, Z.: A fast cloud geometrical thickness retrieval
1124 algorithm for single-layer marine liquid clouds using OCO-2 oxygen A-band measurements, Remote
1125 Sensing of Environment, 256, 10.1016/j.rse.2021.112305, 2021.

1126 Young, S. A. and Vaughan, M. A.: The retrieval of profiles of particulate extinction from Cloud Aerosol
1127 Lidar Infrared Pathfinder Satellite Observations (CALIPSO) data: Algorithm description, J. Atmos.
1128 Oceanic. Technol., 26, 1105-1119, 10.1175/2008JTECHA1221.1, 2009.

1129 Zhang, Y., Zhang, L., Guo, J., Feng, J., Cao, L., Wang, Y., Zhou, Q., Li, L., Li, B., Xu, H., Liu, L., An, N., and
1130 Liu, H.: Climatology of cloud-base height from long-term radiosonde measurements in China,
1131 Advances in Atmospheric Sciences, 35, 158-168, 10.1007/s00376-017-7096-0, 2018.

1132 Zheng, Y. and Rosenfeld, D.: Linear relation between convective cloud base height and updrafts and
1133 application to satellite retrievals, Geophys Res Lett, 42, 6485-6491, 10.1002/2015gl064809, 2015.

1134 Zheng, Y., Sakradzija, M., Lee, S.-S., and Li, Z.: Theoretical Understanding of the Linear Relationship

1135 between Convective Updrafts and Cloud-Base Height for Shallow Cumulus Clouds. Part II: Continental
1136 Conditions, *J Atmos Sci*, 77, 1313-1328, 10.1175/jas-d-19-0301.1, 2020.
1137 Zhou, Q., Zhang, Y., Li, B., Li, L., Feng, J., Jia, S., Lv, S., Tao, F., and Guo, J.: Cloud-base and cloud-top
1138 heights determined from a ground-based cloud radar in Beijing, China, *Atmospheric Environment*, 201,
1139 381-390, 10.1016/j.atmosenv.2019.01.012, 2019.
1140 Zhou, R., Pan, X., Xiaohu, Z., Na, X., and Min, M.: Research progress and prospects of atmospheric
1141 motion vector based on meteorological satelliteimages, *Reviews of Geophysics and Planetary Physics*
1142 (In Chinese), 55, 184-194, 10.19975/j.dqyx.2022-077, 2024.
1143 Zhu, Y., Rosenfeld, D., Yu, X., Liu, G., Dai, J., and Xu, X.: Satellite retrieval of convective cloud base
1144 temperature based on the NPP/VIIRS Imager, *Geophys Res Lett*, 41, 1308-1313,
1145 10.1002/2013gl058970, 2014.
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170

1171

1172 **Tables and Figures**

1173

1174 **Table 1.** Predictand and predictor variables for both visible (VIS)+infrared (IR) model
1175 and IR-single regression model training, which are divided according to the different
1176 predictor variables from satellite and NWP data

<u>Predictand</u>	<u>IR-single model input</u>	<u>VIS+IR model input</u>
<u>Predictor</u>	<u>BT(3.9μm), BT(6.2μm), BT(6.9μm), BT(7.3μm), BT(8.6μm), BT(9.6μm), BT(10.4μm), BT(11.2μm), BT(12.4μm), BT(13.3μm), BTD(11.2–12.4μm), BTD(11.2– 13.3μm) [Unit = K], Air Mass (1/cos(VZA)), View azimuth angles [Unit = degree],</u>	<u>BT(3.9μm), BT(6.2μm), BT(6.9μm), BT(7.3μm), BT(8.6μm), BT(9.6μm), BT(10.4μm), BT(11.2μm), BT(12.4μm), BT(13.3μm), BTD(11.2–12.4μm), BTD(11.2– 13.3μm) [Unit = K], Air Mass(1/cos(VZA)), Air Mass(1/cos(SZA)),</u>
<u>[satellite measurements]</u>	<u>Cloud top height from H8/AHI [unit: m], Cloud top temperature from H8/AHI [unit: K]</u>	<u>View/Solar Azimuth angles [Unit = degree], Cloud top height from H8/AHI [unit: m], Cloud top temperature from H8/AHI [unit: K] Ref(0.47μm), Ref(0.51μm), Ref(0.64μm), Ref(0.86μm), Ref(1.64μm), Ref(2.25μm)</u>
<u>Predictor GFS NWP </u>	<u>Altitude profile (from surface to about 21 km, 67 layers) [unit: m], Temperature profile (from surface to about 21 km, 67 layers) [unit: K], Relative humidity profile (from surface to about 21 km, 67 layers) [unit: %], Total precipitable water, Surface temperature [unit: K]</u>	<u>Altitude profile (from surface to about 21 km, 67 layers) [unit: m], Temperature profile (from surface to about 21 km, 67 layers) [unit: K], Relative humidity profile (from surface to about 21 km, 67 layers) [unit: %], Total precipitable water, Surface temperature [unit: K]</u>
<u>Predictor [other]</u>	<u>Surface elevation [unit: m]</u>	<u>Surface elevation [unit: m]</u>

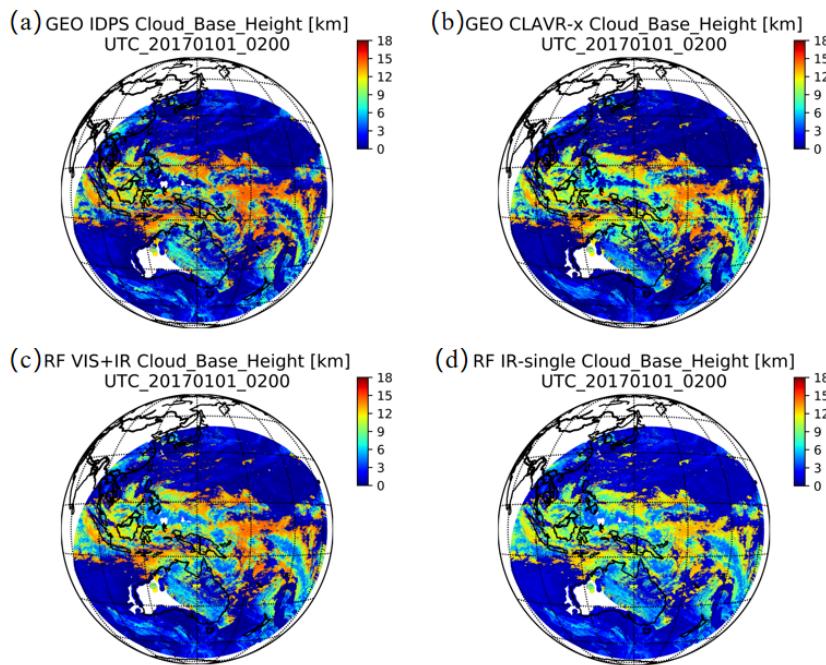
1177 Notes: VZA = view zenith angle [unit: degree]; SZA = solar zenith angle [unit:
1178 degree]

1179

1180

1181

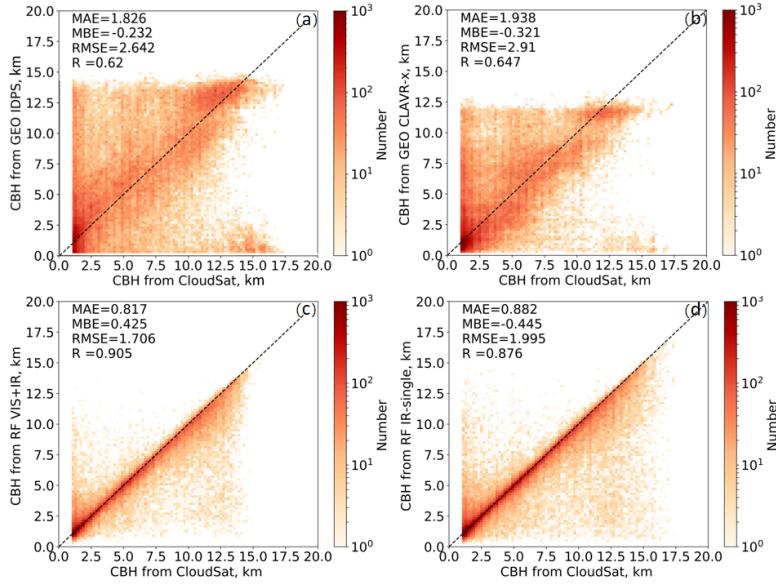
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191



1192
1193 **Figure 1.** Comparison of full disk CBH results retrieved by the four-independent
1194 algorithms at 02:00 UTC on January 1, 2017. (a) GEO IDPS algorithm, (b) GEO
1195 Clouds from AVHRR Extended (CLAVR-x) algorithm, (c) ML-based (RF, random
1196 forest) VIS+IR algorithm and (d) ML-based (RF) IR-single algorithm.

1197
1198
1199
1200
1201
1202
1203

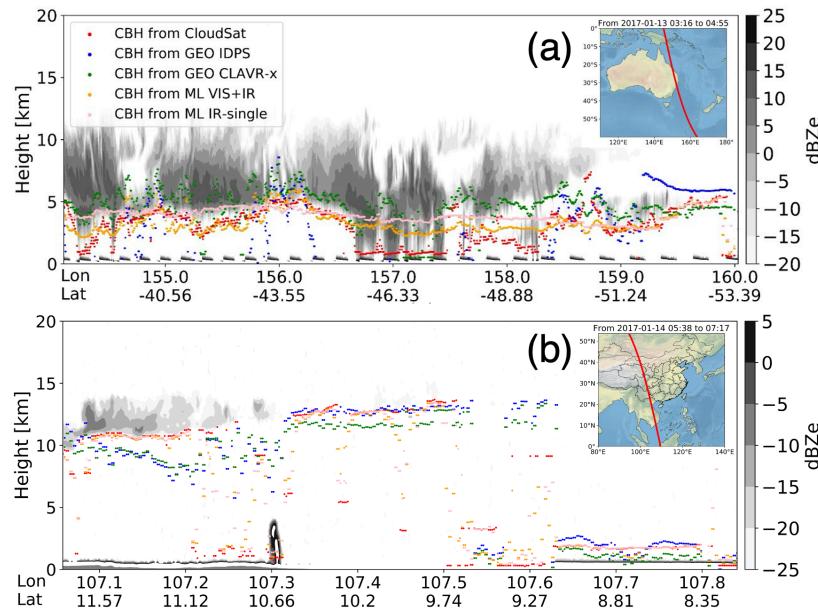
1204
1205
1206
1207



1208
1209 **Figure 2.** Density distributions of CBHs retrieved from (a) GEO
1210 CLAVR-x, (b) VIS+IR and (d) IR-single algorithms compared with the CBHs from
1211 the joint CloudSat/CALIPSO product (taken as true values) in 2017. The mean
1212 absolute error (MAE), mean bias error (MBE), root mean square error (RMSE) and R
1213 are listed in each subfigure where the difference exceeds the 95% significance level (p
1214 < 0.05) according to the Pearson's χ^2 test.

1215
1216
1217
1218
1219
1220
1221
1222
1223

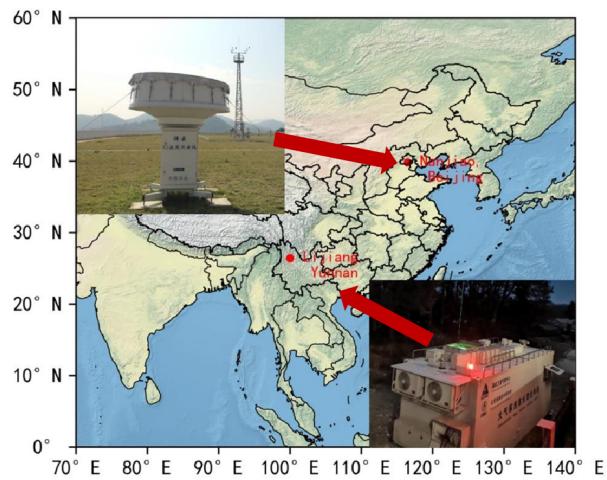
1224
1225
1226
1227



1229 **Figure 3.** Inter-comparisons of CBH products retrieved by CloudSat (red solid circle),
1230 the GEO IDPS algorithm (blue solid circle), the GEO CLAVR-x (green solid circle),
1231 the ML-based VIS+IR model algorithm (orange solid circle), and the ML-based
1232 IR-single model algorithm (pink solid circle) at (a) 03:16–04:55 UTC on January 13,
1233 2017 (a) and (b) 05:38–07:17 UTC on January 14, 2017. The black and gray colormap
1234 represents the matched CloudSat radar reflectivity.

1235
1236
1237
1238
1239
1240
1241
1242

1243
1244
1245
1246
1247



1248

1249 **Figure 4.** Geographical locations and photos of lidar and cloud radar at Yunnan
1250 Lijiang and Beijing Nanjiao stations.

1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265

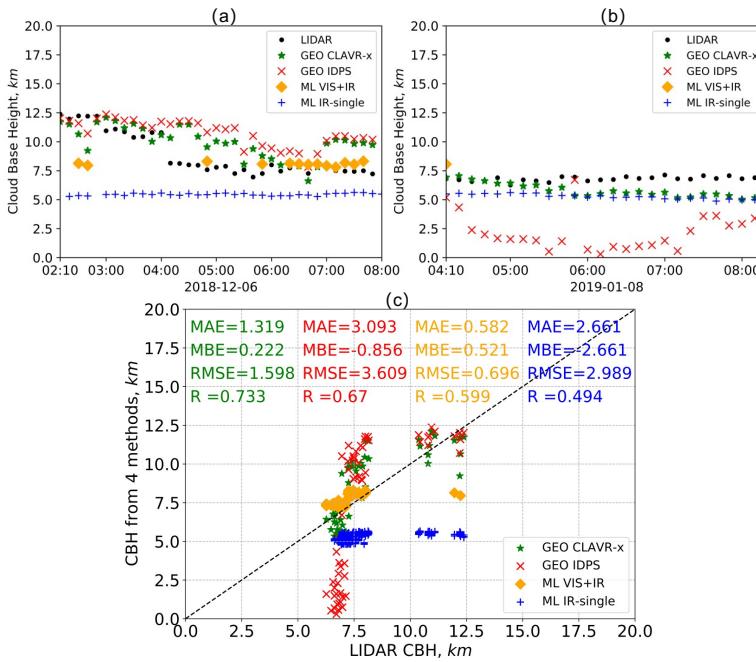


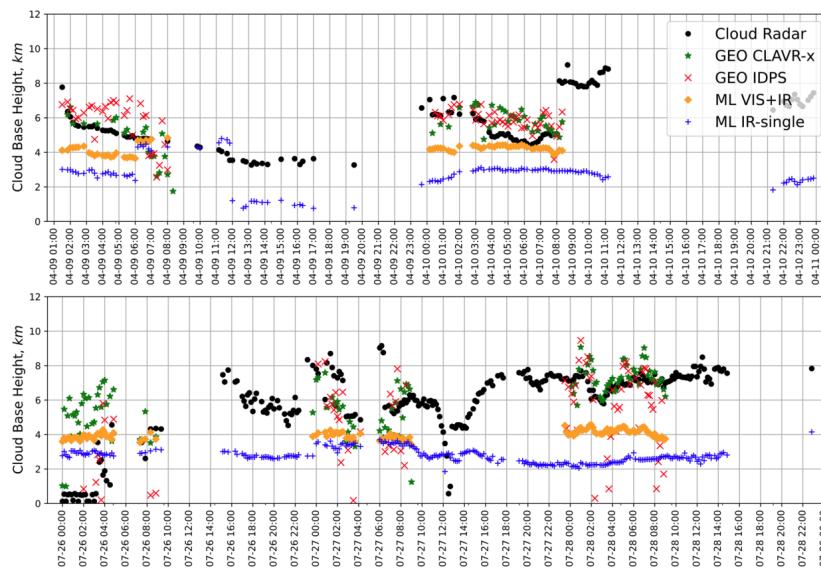
Figure 5. Comparisons of the CBHs from the ground-based lidar measurements (black solid circle) at Yunnan Lijiang station and the four GEO satellite retrieval algorithms, namely the GEO IDPS (red cross symbol), the GEO CLAVR-x (green solid asterisk), the ML-based VIS+IR model (orange solid diamond) and the ML-based IR-single model (blue plus sign) algorithms. Fig 5a and 5b show the time series of CBHs from lidar and the four GEO satellite retrieval algorithms on December 6, 2018 and January 8, 2019, respectively. Fig 5c shows the scatterplots of CBH samples from the lidar measurements and the four retrieval algorithms.

删除了: 6

删除了: 6

删除了: 6

1286
1287
1288
1289
1290

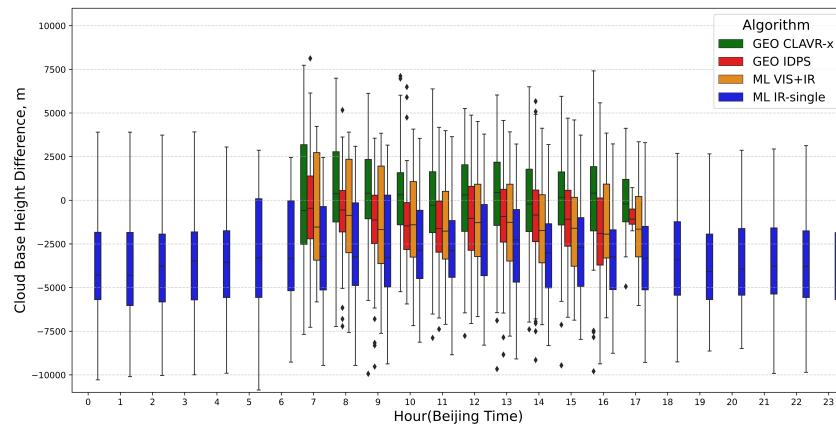


1291
1292 **Figure 6.** Same as Figure 5, but for the CBH sample results from the cloud radar at
1293 Beijing Nanjiao station (black solid circle) on April 9–10, 2017 (top panel) and July
1294 26–28, 2017 (bottom panel).

1295
1296
1297
1298
1299
1300
1301
1302
1303
1304

删除了：..

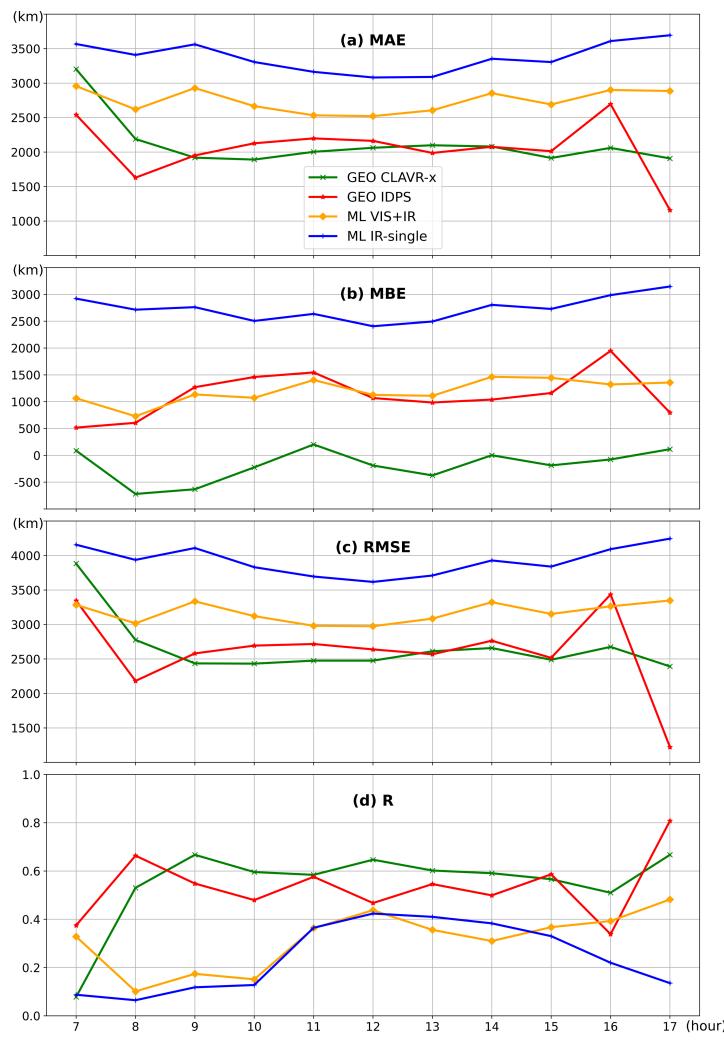
1306
1307
1308
1309
1310
1311
1312



1313
1314 **Figure 7.** Box plots of the hourly CBH errors of four GEO satellite retrieval
1315 algorithms (GEO IDPS, GEO CLAVR-x, ML-based VIS+IR and ML-based IR-single)
1316 relative to the CBHs from the cloud radar at Beijing Nanjiao station in 2017. The box
1317 symbols signify the 25th, 50th and 75th percentiles of errors. The most extreme
1318 sample points between the 75th and outlier, and the 25th percentiles and outliers are
1319 marked as whiskers and diamonds, respectively. Except for the period between 7 and
1320 17 UTC (local time), the three algorithms of GEO CLAVR-x, GEO IDPS, and ML
1321 VIS+IR are unavailable due to the lack of reflected solar radiance measurements.

1322
1323
1324
1325
1326
1327
1328
1329
1330
1331

1332
1333
1334
1335
1336
1337
1338



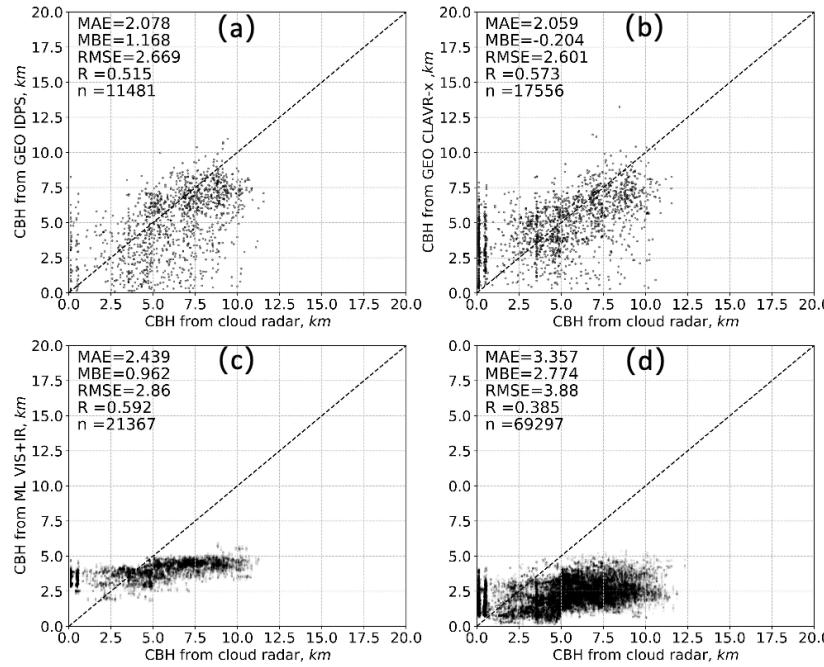
1339
1340 **Figure 8.** Comparisons of hourly (a) MAE, (b) MBE, (c) RMSE, and (d) R of CBH
1341 (relative to the CBHs from the cloud radar at Beijing Nanjiao station) from 07 to 17
1342 (local time) between four retrieval algorithms (GEO IDPS, GEO CLAVR-x,

1343 ML-based VIS+IR and ML-based IR-single) in 2017.

1344

1345

1346



1347

1348 **Figure 9.** Comparisons between the CBHs from the cloud radar at Beijing Nanjiao
1349 station and the matched CBHs from the four retrieval algorithms (GEO IDPS, GEO
1350 CLAVR-x, ML-based VIS+IR and ML-based IR-single) in 2017.

1351

1352

1353

1354

1355

1356