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 34 

Abstract. Two groups of retrieval algorithms, one physics-based and the other 35 

machine-learning (ML) based, each consisting of two independent approaches, have 36 

been developed to retrieve cloud base height (CBH) and its diurnal cycle from 37 

Himawari-8 geostationary satellite observations. Validations have been conducted 38 

using the joint CloudSat/CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) 39 

CBH products in 2017, ensuring independent assessments. Results show that the two 40 

ML-based algorithms exhibit markedly superior performance (the optimal method is 41 

with a correlation coefficient of R > 0.91 and an absolute bias of approximately 0.8 42 

km) compared to the two physics-based algorithms. However, validations based on 43 

CBH data from the ground-based lidar at the Lijiang station in Yunnan province and 44 

the cloud radar at the Nanjiao station in Beijing, China, explicitly present 45 

contradictory outcomes (R < 0.60). An identifiable issue arises with significant 46 

underestimations in the retrieved CBH by both ML-based algorithms, leading to an 47 

inability to capture the diurnal cycle characteristics of CBH. The strong consistence 48 

observed between CBH derived from ML-based algorithms and the spaceborne active 49 

sensor may be attributed to utilizing the same dataset for training and validation, 50 

sourced from the CloudSat/CALIOP products. In contrast, the CBH derived from the 51 

optimal physics-based algorithm demonstrates the good agreement in diurnal 52 

variations of CBH with ground-based lidar/cloud radar observations during the 53 

daytime (with an R value of approximately 0.7). Therefore, the findings in this 54 

investigation from ground-based observations advocate for the more reliable and 55 

adaptable nature of physics-based algorithms in retrieving CBH from geostationary 56 

satellite measurements. Nevertheless, under ideal conditions, with an ample dataset of 57 

spaceborne cloud profiling radar observations encompassing the entire day for 58 

training purposes, the ML-based algorithms may hold promise in still delivering 59 

accurate CBH outputs. 60 

Key words: Geostationary meteorological satellite; cloud base height; physics-based 61 

algorithm; machine learning. 62 
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1 Introduction 69 

    Clouds, comprising visible aggregates like atmospheric water droplets, 70 

supercooled water droplets, ice crystals, etc., cover roughly 70% of the Earth's surface 71 

(Stubenrauch et al., 2013). They play a pivotal role in global climate change, the 72 

hydrometeor cycle, aviation safety, and serve as a primary focus in weather 73 

forecasting and climate research, particularly storm clouds (Hansen, 2007; Hartmann 74 

and Larson, 2002). From advanced geostationary (GEO) and polar-orbiting (LEO, 75 

low earth orbit) satellite imagers, various measurable cloud properties, such as cloud 76 

fraction, cloud phase, cloud top height (CTH), and cloud optical thickness (COT or 77 

DCOT), are routinely retrieved. However, the high-quality cloud geometric height 78 

(CGH) and cloud base height (CBH), a fundamental macro physical parameter 79 

delineating the vertical distribution of clouds, remains relatively understudied and 80 

underreported. Nonetheless, for boundary-layer clouds, the cloud base height stands 81 

as a critical parameter depending on other cloud-controlling variables. These variables 82 

encompass the cloud-base temperature (Zhu et al., 2014), cloud-base vertical velocity 83 

(Zheng et al., 2020), activation of CCN (Cloud Condensation Nuclei) at the 84 

cloud-base (Rosenfeld et al., 2016; Miller et al., 2023), and the cloud-surface 85 

decoupling state (Su et al., 2022). These factors significantly impact convective cloud 86 

development and ultimately the climate. As well known, there are distinct diurnal 87 

cycle characteristics of clouds in different regions across the globe (Li et al., 2022). 88 

These diurnal cycle characteristics primarily stem from the daily solar energy cycle 89 

absorbed by both the atmosphere and Earth's surface. Besides, vertical atmospheric 90 

motions are shaped by imbalances in atmospheric heating and surface configurations, 91 

also leading to a range of cloud movements and structures (Miller et al., 2018). Cloud 92 

base plays a pivotal role in weather and climate processes. It is critical for predicting 93 

fog and cloud-related visibility issues important in aviation and weather forecasting. 94 

For instance, lower cloud bases often lead to more intense rainfall. In climate 95 

modeling, CBH is integral for accurate long-term weather predictions and 96 

understanding the radiative balance of the Earth, which influences global 97 

temperatures (Zheng and Rosenfeld, 2015). Hence, the accurate determination of 98 

CBH and its diurnal cycle with high spatiotemporal resolution becomes very 99 

important, necessitating comprehensive investigations (Viúdez-Mora et al., 2015; 100 
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Wang et al., 2020). Such efforts can provide deeper insights into potential 104 

ramifications of clouds on radiation equilibrium and global climate systems. 105 

However, as one of the most crucial cloud physical parameters in atmospheric 106 

physics, the CBH poses challenges in terms of measurement or estimation from space. 107 

Presently, the primary methods for measuring CBH rely on ground-based 108 

observations, utilizing tools such as sounding balloons, Mie-scattering lidars, 109 

stereo-imaging cloud-height detection technologies, and cloud probe sensors 110 

(Forsythe et al., 2000; Hirsch et al., 2011; Seaman et al., 2017; Zhang et al., 2018; 111 

Zhou et al., 2019; Zhou et al., 2024). While in-situ ground-based observation methods 112 

offer highly accurate, reliable, and timely continuous CBH results, they are 113 

constrained by localized observation coverage and the sparse distribution of 114 

observation sites (Aydin and Singh, 2004). In recent decades, with the rapid 115 

advancement of meteorological satellite observation technology, spaceborne 116 

observing methods have emerged that provide global cloud observations with high 117 

spatiotemporal resolution compared to conventional ground-based remote sensing 118 

methods. In this realm, satellite remote sensing techniques for measuring CBH fall 119 

primarily into two categories: active and passive methods. Advanced active remote 120 

sensing technologies like CloudSat (Stephens et al., 2002) and Cloud-Aerosol Lidar 121 

and Infrared Pathfinder Satellite Observation (CALIPSO) (Winker et al., 2009) in the 122 

National Aeronautics and Space Administration (NASA) A-Train (Afternoon-Train) 123 

series (Stephens et al., 2002) can capture global cloud profiles, including CBH, with 124 

high quality by detecting unique return signals from cloud layers using onboard active 125 

millimeter wave radar or lidar. However, their viewing footprints are limited along the 126 

nadir of the orbit, implying that observation coverage remains confined primarily to a 127 

horizontal scale (Min et al., 2022; Lu et al., 2021). 128 

In addition to active remote sensing methods, satellite-based passive remote 129 

sensing technologies can also play an important role in estimating CBH (Meerkötter 130 

and Bugliaro, 2009; Lu et al., 2021). As well known, the physics-based principles and 131 

retrieval methods for CTH have reached maturity and are now widely employed in 132 

satellite passive remote sensing field (Heidinger and Pavolonis, 2009; Wang et al., 133 

2022). However, the corresponding physical principles or methods for measuring 134 

CBH using satellite passive imager measurements are still not entirely clear and 135 

unified (Heidinger et al., 2019; Min et al., 2020). A recent study by Yang et al. (2021) 136 

utilized oxygen A-band data observed by the Orbiting Carbon Observatory 2 (OCO-2) 137 
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to retrieve single-layer marine liquid CBH. These methods aforementioned are 146 

prominent in retrieving CBH through passive space-based remote sensing techniques. 147 

The first method involves the extrapolation technique for retrieving CBH for clouds 148 

of the same type. For instance, Wang et al. (2012) proposed a method to extrapolate 149 

CBH from CloudSat using spatiotemporally matched MODIS (Moderate Resolution 150 

Imaging Spectroradiometer) cloud classification data. The second physics-based 151 

retrieval method first approximates the cloud geometric thickness using its optical 152 

thickness. It then employs the previously derived CTH product to compute the 153 

corresponding CBH using the respective NOAA (National Oceanic and Atmospheric 154 

Administration) SNPP/VIIRS (Suomi National Polar-orbiting Partnership/Visible 155 

Infrared Imaging Radiometer Suite) products (Noh et al., 2017). Hutchison et al. 156 

(2002 and 2006) also formulated an empirical algorithm that estimates both cloud 157 

geometric thickness (CGT) and CBH. This algorithm relies on statistical analyses 158 

derived from MODIS COT and cloud liquid water path products (Hutchison et al., 159 

2006; Hutchison, 2002). 160 

Machine learning (ML) has proven to be highly effective in addressing nonlinear 161 

problems within remote sensing and meteorology fields, such as precipitation 162 

estimation and CTH retrieval (Min et al., 2020; HåKansson et al., 2018; Kühnlein et 163 

al., 2014). In recent years, several studies have leveraged ML-based algorithms to 164 

retrieve CBH, establishing nonlinear connections between CBH and GEO satellite 165 

observations. For instance, Tan et al. (2020) integrated CTH and cloud optical 166 

properties products from Fengyun-4A (FY-4A) GEO satellite with spatiotemporally 167 

matched CBH data from CALIPSO/CloudSat. They developed a random forest (RF) 168 

model for CBH retrieval. Similarly, Lin et al. (2022) constructed a gradient boosted 169 

regression tree (GBRT) model using U.S. new-generation Geostationary Operational 170 

Environmental Satellites-R Series (GOES-R) Advanced Baseline Imager (ABI) level 171 

1B radiance data and the ERA5 (the fifth generation ECMWF) reanalysis dataset 172 

(https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset). They employed 173 

CALIPSO CBH data as labels to achieve single-layer CBH retrievals. Notably, the 174 

CBH quality of ML-based algorithms was found to surpass that of physics-based 175 

algorithms (Lin et al., 2022). Moreover, Tana et al. (2023) utilized Himawari-8 data 176 

and the random forest algorithm to develop a novel CBH algorithm, achieving a high 177 

correlation coefficient (R) of 0.92 and a low root mean square error (RMSE) of 1.17 178 

km. 179 
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    However, these former studies did not discuss whether both physics-based and 191 

ML-based algorithms of GEO satellite could retrieve the diurnal cycle of CBH well. 192 

This gap in research could be mainly attributed to potential influences from the fixed 193 

LEO satellite (with active radar or lidar) passing time in the previous CBH retrieval 194 

model (Lin et al., 2022). Hence, it is crucial to thoroughly investigate the diurnal 195 

cycle features of CBH derived from GEO satellite measurements by comparing them 196 

with ground-based radar and lidar observations (Min and Zhang, 2014; Warren and 197 

Eastman, 2014). In this study, we aim to assess the applicability and feasibility of 198 

both physics-based and ML-based algorithms of GEO satellites in capturing the 199 

diurnal cycle characteristics of CBH. 200 

    The subsequent sections of this paper are structured as follows. Section 2 201 

provides a concise overview of the data employed in this study. Following that, 202 

section 3 introduces the four distinct physics/ML-based CBH retrieval algorithms. In 203 

section 4, the CBH results obtained from these four algorithms are analyzed, and 204 

comparisons are drawn with spatiotemporally matched CBHs from ground-based 205 

cloud radar and lidar. Finally, section 5 encapsulates the primary conclusions and new 206 

findings derived from this study. 207 

2 Data 208 

In this study, observations from the Himawari-8 (H8) Advanced Himawari 209 

Imager (AHI) are utilized for the retrieval of high spatiotemporal resolution CBH. 210 

Launched successfully by the Japan Meteorological Administration on October 7, 211 

2014, the H8 geostationary satellite is positioned at 140.7°E. The AHI onboard H8 212 

encompasses 16 spectral bands ranging from 0.47 μm to 13.3 μm, featuring spatial 213 

resolutions of 0.5–2 km. This includes 3 visible (VIS) bands at 0.5–1 km, 3 214 

near-infrared (NIR) bands at 1–2 km, and 10 infrared (IR) bands at 2 km. The 215 

H8/AHI can scan a full disk area within 10 minutes, two specific areas within 2.5 216 

minutes, a designated area within 2.5 minutes, and two landmark areas within 0.5 217 

minutes (Iwabuchi et al., 2018). Its enhanced temporal resolution and observation 218 

frequency facilitate the tracking of rapidly changing weather systems, enabling the 219 

accurate determination of quantitative atmospheric parameters (Bessho et al., 2016). 220 

Operational H8/AHI Level-1B data, accessible from July 7, 2015, are freely 221 

available on the satellite product homepage of the Japan Aerospace Exploration 222 

删除了: As well known, there are distinct diurnal cycle 223 
characteristics of clouds in different regions across the globe 224 
(Li et al., 2022). These diurnal cycle characteristics primarily 225 
stem from the daily solar energy cycle absorbed by both the 226 
atmosphere and Earth's surface. Besides, vertical atmospheric 227 
motions are shaped by imbalances in atmospheric heating and 228 
surface configurations, also leading to a range of cloud 229 
movements and structures (Miller et al., 2018). Cloud base 230 
plays a pivotal role in weather and climate processes. It is 231 
critical for predicting fog and cloud-related visibility issues 232 
important in aviation and weather forecasting. For instance, 233 
lower cloud bases often lead to more intense rainfall. In 234 
climate modeling, CBH is integral for accurate long-term 235 
weather predictions and understanding the radiative balance 236 
of the Earth, which influences global temperatures (Zheng 237 
and Rosenfeld, 2015). …238 

删除了: spatially and temporal239 

删除了: s240 



      7 

Agency (Letu et al., 2019). The Level-2 cloud products utilized in this study, 241 

including cloud mask (CLM), CTH, cloud effective particle radius (CER or Reff), and 242 

COT, are generated by the Fengyun satellite science product algorithm testbed 243 

(FYGAT) (Wang et al., 2019; Min et al., 2017) of the China Meteorological 244 

Administration (CMA) for various applications. It is important to note that certain 245 

crucial preliminary cloud products, such as CLM, have been validated in prior studies 246 

(Wang et al., 2019; Liang et al., 2023). Nevertheless, before initiating CBH retrieval, 247 

it is imperative to validate the H8/AHI cloud optical and microphysical products from 248 

the FYGAT retrieval system. This validation is carried out by using analogous 249 

MODIS Level-2 cloud products as a reference. Additional details regarding the 250 

validation of cloud products are provided in the Appendix A section. 251 

In addition to the H8/AHI Level-1/2 data, the Global Forecast System (GFS) 252 

numerical weather prediction (NWP) data are employed for CBH retrieval in this 253 

study. The variables include land/sea surface temperature and the vertical profiles of 254 

temperature, humidity, and pressure. Operated by the U.S. NOAA (Kalnay et al., 255 

1996), the GFS serves as a global and advanced NWP system. The operational GFS 256 

system routinely delivers global high-quality and gridded NWP data at 3-hour 257 

intervals, with four different initial forecast times per day (00:00, 06:00, 12:00, and 258 

18:00 UTC). The three-dimensional NWP data cover the Earth in a 0.5°×0.5° grid 259 

interval and resolve the atmosphere with 26 vertical levels from the surface (1000 hPa) 260 

up to the top of the atmosphere (10 hPa).  261 

As previously mentioned, the official MODIS Collection-6.1 Level-2 cloud 262 

product Climate Data Records (Platnick et al., 2017) are utilized in this study to 263 

validate the H8/AHI cloud products (CTH, CER, and COT) generated by the FYGAT 264 

system. MODIS sensors are onboard NASA Terra and Aqua polar-orbiting satellites. 265 

Terra functions as the morning satellite, passing through the equator from north to 266 

south at approximately 10:30 local time, while Aqua serves as the afternoon satellite, 267 

traversing the equator from south to north at around 13:30 local time. As a successor 268 

to the NOAA Advanced Very High Resolution Radiometer (AVHRR), MODIS 269 

features 36 independent spectral bands and a broad spectral range from 0.4 μm (VIS) 270 

to 14.4 μm (IR), with a scanning width of 2330 km and spatial resolutions ranging 271 

from 0.25 to 1.0 km. Recent studies (Baum et al., 2012; Platnick et al., 2017) have 272 

highlighted significant improvements and collective changes in cloud top, optical, and 273 

microphysical properties from Collection-5 to Collection-6. 274 
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In addition to the passive spaceborne imaging sensors mentioned above, the 280 

CloudSat satellite , equipped with a 94-GHz active cloud profiling radar (CPR), holds 281 

the distinction of being the first sun-synchronous orbit satellite specifically designed 282 

to observe global cloud vertical structures and properties. It is part of the A-Train 283 

series of satellites, akin to the Aqua satellite, launched and operated by NASA 284 

(Heymsfield et al., 2008). CALIPSO is another polar-orbiting satellite within the 285 

A-Train constellation, sharing an orbit with CloudSat and trailing it by a mere 10–15 286 

seconds. CALIPSO is the first satellite equipped with an active dual-channel CALIOP 287 

at 532 and 1064 nm bands (Hunt et al., 2009). Both CloudSat and CALIPSO possess 288 

notable advantages over passive spaceborne sensors due to the 94-GHz radar of 289 

CloudSat and the joint return signals of lidar and radar on CALIPSO. These features 290 

enhance their sensitivity to optically thin cloud layers and ensure strong penetration 291 

capability, resulting in more accurate CTH and CBH detections compared to passive 292 

spaceborne sensors (CAL_LID_L2_05kmCLay-Standard-V4-10). The joint cloud 293 

type products of 2B-CLDCLASS-LIDAR, derived from both CloudSat and CALIPSO 294 

measurements, offer a comprehensive description of cloud vertical structure 295 

characteristics, cloud type, CTH, CBH, etc. The time interval between each profile in 296 

this product is approximately 3.1 seconds, and the horizontal resolution is 2.5 km 297 

(along track)×1.4 km (cross-track). Each profile is divided into 125 layers with a 298 

240-m vertical interval. For more details on 2B-CLDCLASS-LIDAR products, please 299 

refer to the CloudSat official product manual (Sassen and Wang, 2008). In this study, 300 

we consider the lowest effective cloud base height from the joint CloudSat/CALIOP 301 

data as the true values for training and validation. Please note that for this study, we 302 

utilized one-year H8/AHI data and matched it with the joint CloudSat/CALIOP data 303 

from January 1 to December 31 of 2017. 304 

3 Physics/machine-learning based cloud-base height algorithms 305 

3.1 GEO Cloud-base height retrieval algorithm from the interface data 306 
processing segment of the Visible Infrared Imaging Radiometer Suite 307 

    The Joint Polar Satellite System (JPSS) program is a collaborative effort between 308 

NASA and NOAA. The operational CBH retrieval algorithm, part of the 30 309 

Environmental Data Records (EDR) of JPSS, can be implemented operationally 310 

through the Interface Data Processing Segment (IDPS) (Baker, 2011). In this study, 311 
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our geostationary satellite CBH retrieval algorithm aligns with the IDPS CBH 313 

algorithm developed by (Baker, 2011). Utilizing the geostationary H8/AHI cloud 314 

products discussed earlier, this new GEO CBH retrieval algorithm is succinctly 315 

outlined below.  316 

 The new GEO IDPS CBH algorithm initiates the process by first retrieving the 317 

CGT from bottom to top. Subsequently, CGT is subtracted from the corresponding 318 

CTH to calculate CBH (CBH = CTH − CGT). The algorithm is divided into two 319 

independent executable modules based on cloud phase, distinguishing between liquid 320 

water and ice clouds. CBH of water cloud retrieval requires COT and CER as inputs. 321 

For ice clouds, an empirical equation is employed for CBH retrieval. However, the 322 

standard deviations of error in IDPS CBH for individual granules often exceed the 323 

JPSS VIIRS minimum uncertainty requirement of ±2km (Noh et al., 2017). The 324 

accuracy of IDPS algorithm-derived CBHs can be directly affected by several factors, 325 

including cloud optical thickness, cloud effective particle size, the presence of 326 

multi-layered cloud systems, lack of solar illumination, and highly reflective surfaces 327 

such as snow or ice surfaces. For a more comprehensive understanding of this CBH 328 

algorithm, please refer to the IDPS algorithm documentation (Baker, 2011). Note that, 329 

similar to previous studies on cloud retrieval (Noh et al., 2017; Platnick et al., 2017), 330 

this investigation also assumes a single-layer cloud for all CBH algorithms, due to the 331 

challenges associated with determining multilayer cloud structures. 332 

3.2 GEO Cloud-base height retrieval algorithm implemented in the Clouds from 333 
Advanced Very High Resolution Radiometer Extended system 334 

As mentioned above, the accuracy of the GEO IDPS algorithm is highly 335 

dependent on the initial input parameters such as cloud phase, DCOT and Reff, which 336 

may introduce some uncertainties in the final retrieval results. In contrast, a more 337 

reliable statistically-based algorithm is proposed and implemented here, which is 338 

named the GEO CLAVR-x (Clouds from AVHRR Extended, NOAA's operational 339 

cloud processing system for the AVHRR) CBH algorithm (Noh et al., 2017), and it 340 

mainly refers to NOAA AWG CBH algorithm (ACBA) (Noh et al., 2022). Previous 341 

studies have also demonstrated a R of 0.569 and a RMSE of 2.3 km for the JPSS 342 

VIIRS CLAVR-x CBH algorithm. It is anticipated that this algorithm will also be 343 

employed for the NOAA GOES-R geostationary satellite imager (Noh et al., 2017; 344 

Seaman et al., 2017). 345 
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Similar to the GEO IDPS CBH retrieval algorithm mentioned earlier, the GEO 362 

CLAVR-x CBH retrieval algorithm also initially obtains CGT and CTH, subsequently 363 

calculating CBH by subtracting CGT from CTH (CTH−CGT). However, the specific 364 

calculation method for the CGT value differs. This algorithm is suitable for 365 

single-layer and the topmost layer of multi-layer clouds, computing CBH using the 366 

CTH at the top layer of the cloud. In comparison with the former GEO IDPS CBH 367 

algorithm, the GEO CLAVR-x CBH algorithm considers two additional cloud types: 368 

deep convection clouds and thin cirrus clouds. For more details on this CLAVR-x 369 

CBH algorithm, please refer to the original algorithm documentation (Noh et al., 370 

2017). 371 

3.3 Random-forest-based cloud-base height estimation algorithm 372 

RF, one of the most significant ML algorithms, was initially proposed and 373 

developed by (Breiman, 2001). It is widely employed to address classification and 374 

regression problems based on the law of large numbers. The law of large numbers 375 

states that when independent and identically distributed random experiments are 376 

repeatedly conducted, the average of the results will converge to the expected value as 377 

the number of trials increases. In RF algorithms, it primarily serves to increase 378 

randomness and independence in model construction, thus enhancing the model's 379 

stability and generalizability. Here, the RF method utilizes a forest of trees, serving as 380 

an integrated algorithm that enhances overall model accuracy and generalization by 381 

combining multiple weak classifiers. The final prediction is calculated through voting 382 

or averaging. The RF method is well-suited for capturing complex or nonlinear 383 

relationships between predictors and predictands. As mentioned earlier, this statistical 384 

or ML-based algorithm has been already proven successful in retrieving CTH and 385 

CBH (Min et al., 2020; Tan et al., 2020). 386 

In this study, two distinct ML-based GEO CBH algorithms, namely VIS+IR and 387 

IR-single (only uses observations of H8/AHI IR channels), are devised to retrieve or 388 

predict the CBH using different sets of predictors. The RF training of the chosen 389 

predictors is formulated as follows: 390 

CBH=RFreg[x1, x2, …, xn],                                              (1) 391 

where RFreg denotes the regression Random Forest model, and xi represents the ith 392 

predictor. The selected predictors from H8/AHI for both the VIS+IR and IR RF 393 

model training and prediction are detailed in Table 1, mainly referencing Min et al. 394 
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(2020) and Tan et al. (2020). The VIS+IR algorithm retrieves CBH based on NWP 398 

data (atmospheric temperature and altitude profiles, total precipitable water (TPW), 399 

surface temperature), surface elevation, air mass 1 (air mass 1=1/cos(view zenith 400 

angle)), and air mass 2 (air mass 2=1/cos(solar zenith angle)). The rationale for 401 

choosing air mass and TPW is their ability to account for the potential absorption 402 

effect of water vapor along the satellite viewing angle. The predictors in CBH 403 

retrieval also include the IR band Brightness Temperature (BT) and VIS band 404 

reflectance. The IR-single algorithm selects the same Global Forecast System (GFS) 405 

NWP data as the VIS+IR algorithm but employs different view zenith angles and 406 

azimuth angles.  407 

To optimize the RF prediction model, the hyperparameters of the RF model are 408 

tuned individually. The parameters and their dynamic ranges involved in tuning the 409 

RF prediction models include the number of trees [100, 200, 300, 400, 500], the 410 

maximum depth of trees [10, 20, 30, 40, 50], the minimum number of samples 411 

required to split an internal node [2, 4, 6, 8, 10], and the minimum number of samples 412 

required to be at a leaf node [1, 3, 5, 7, 9]. In this study, we set the smallest number of 413 

trees in the forest to 100 and the maximum depth of the tree to 40. 414 

3.4 Evaluation method 415 

The performance of RF models and physics-based method will be assessed using 416 

mean absolute error (MAE), mean bias error (MBE), RMSE, R, and standard 417 

deviation (STD) scores based on the testing dataset. These scores mentioned above 418 

are used to understand different aspects of the predictive performance of model: MAE 419 

and RMSE provide insights into the average error magnitude, MBE indicates bias in 420 

the predictions, R evaluates the linear association between observed and predicted 421 

values, and STD assesses the variability of the predictions. In the RF IR-single 422 

algorithm, 581,783 matching points are selected from H8/AHI and CloudSat data for 423 

2017. Seventy percent of these points are randomly assigned to the training dataset, 424 

and the remainder serves as the testing dataset. For the RF VIS+IR algorithm, a total 425 

of 418,241 matching points are chosen, with 70% randomly allocated to the training 426 

set. Note that the reduced data amount is because only daytime data can be used for 427 

the VIS+IR method training. It's important to note that the two training datasets in 428 
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CloudSat will also be used to verify the CBHs obtained by cloud radar and lidar. The 435 

statistical formulas for evaluation are as follows: 436 

MAE = !
"∑ |𝑦# − 𝑥#|"

#$! ,                                               (2) 437 

MBE = !
"∑ (𝑦# − 𝑥#)"

#$! ,                                               (3) 438 

RMSE = /
!
"∑ (𝑦# − 𝑥#)%"

#$! ,                                           (4) 439 

𝑅 = 	 ∑ ((!)(*)
"
!#$ (,!),̅)

.∑ ((!)(*)%"
!#$ .∑ (,!),̅)%"

!#$

,                                           (5) 440 

STD = /
!

")!∑ (𝑥# − 𝑥̅)%"
#$! ,                                            (6) 441 

where n is the sample number, yi is the ith CBH retrieval result, and xi is the ith joint 442 

CloudSat/CALIOP CBH product. 443 

Since the two RF models (VIS+IR and IR-single) select 230 typical variables to 444 

fit CBHs, the importance scores of these predictors in the two ML-based algorithms 445 

are ranked for better optimization. In a Random Forest model, feature importance 446 

indicates how much each input variable contributes to the model's predictive accuracy 447 

by measuring the decrease in impurity or error when the feature is used to split data 448 

(Gregorutti et al., 2017). In the VIS+IR model, the top-ranked predictors are CTH and 449 

cloud top temperature (CTT) from the H8/AHI Level-2 product (see Fig. B1 in 450 

Appendix B). It is important to note that DCOT is a crucial and sensitive factor for 451 

these ML-based algorithms. Retrieving CBH samples with relatively low DCOT 452 

remains challenging due to the low signal-to-noise ratio when DCOT is low (Lin et al., 453 

2022). To address this issue, samples with DCOT less than 1.6 are filtered in the 454 

VIS+IR model, and samples with relatively large BTs at Channel-14 are filtered in the 455 

IR-single model. This filtering process significantly improves the R value from 0.869 456 

to 0.922 in the VIS+IR model and from 0.868 to 0.911 in the IR-single model. For 457 

more details on the algorithm optimization, please refer to Appendix B. 458 

4 Results and Discussions  459 

4.1 Comparisons with the joint CloudSat/CALIPSO cloud-base height product 460 

The H8/AHI satellite CBH data retrieved by the four algorithms are matched 461 

spatiotemporally with the 2B-CLDCLASS-LIDAR cloud product from joint 462 
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CloudSat/CALIPSO observations in 2017. In this process, the nearest distance 467 

matching method is employed, ensuring that the observation time difference between 468 

the CloudSat/CALIPSO observation point and the matched Himwari-8 data is less 469 

than 5 minutes (Noh et al., 2017). As in earlier study (Min et al., 2020), we also used 470 

70% of the matched data for training and 30% of an independent sample for 471 

validation. Figure 1 displays a comparison of CBH results over the full disk at 02:00 472 

UTC on January 1, 2017, retrieved by the GEO IDPS algorithm, the GEO CLAVR-x 473 

algorithm, the RF VIS+IR algorithm, and the RF IR-single algorithm. A similar 474 

distribution pattern and magnitude of CBHs retrieved by these four independent 475 

algorithms can be observed in Figure 1. However, notable differences exist between 476 

physics-based and ML-based algorithms. Further comparisons are conducted and 477 

analyzed with spaceborne and ground-based lidar and radar observations in the 478 

subsequent sections of this study. 479 

4.1.1 Joint scatter plots 480 

Figure 2 presents the density scatter plot of the CBHs retrieved from the GEO 481 

IDPS and GEO CLAVR-x algorithms compared with the CBHs from the joint 482 

CloudSat/CALIPSO product, along with the related scores of MAE, MBE, RMSE, 483 

and R calculated and labeled in each panel. The calculated R exceeds the 95% 484 

significance level (p < 0.05). For the GEO IDPS algorithm, the R is 0.62, the MAE is 485 

1.826 km, and the MBE and RMSE are -0.232 and 2.642 km (Fig. 2a). In comparison, 486 

Seaman et al. (2017) compared the operational VIIRS CBH product retrieved by the 487 

similar SNPP/VIIRS IDPS algorithm with the CloudSat CBH results. In their results, 488 

the R is 0.569, and the RMSE is 2.3 km. For the new GEO CLAVR-x algorithm (Fig. 489 

2b), the R is 0.647, and the RMSE is 2.91 km. The larger RMSE from two 490 

independent physics-based CBH algorithms demonstrate a slightly poorer 491 

performance and precision of these retrieval algorithms for GEO satellites. 492 

Particularly, the larger RMSEs (2.642 and 2.91 km) indicate weaker stabilities of the 493 

GEO IDPS and CLAVR-x CBH algorithms, compared with VIIRS CBH product 494 

(Seaman et al., 2017). In this figure, more samples can be found near the 1:1 line, 495 

implying the good quality of retrieved CBHs. However, in stark contrast, quite a 496 

number of CBH samples retrieved by both GEO IDPS and GEO CLAVR-x 497 

algorithms (compared with the official VIIRS CBH product) fall below 1.0 km, 498 

indicating relatively large errors when compared with the joint CloudSat/CALIPSO 499 

CBH product. Moreover, Figure 2 reveals that relatively large errors are also found in 500 
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the CBHs lower than 2 km for the four independent algorithms, primarily caused by 511 

the weak penetration ability of VIS or IR bands on thick and low clouds. 512 

Referring to the joint CloudSat/CALIPSO CBH product, Figures 2c and 2d 513 

present the validations of the CBH results retrieved from two ML-based algorithms 514 

using the VIS+IR (only retrieving the CBH during the daytime) and IR-single models. 515 

Figure 2c demonstrates better consistency of CBH between the VIS+IR model and the 516 

joint CloudSat/CALIPSO product with R = 0.905, MAE = 0.817 km, MBE = 0.425 517 

km, and RMSE = 1.706 km. Figure2d also displays a relatively high R of 0.876 when 518 

validating the IR-single model, with MAE = 0.882, MBE = −0.445, and RMSE = 519 

1.995. Therefore, both VIS+IR and IR-single models can obtain high-quality CBH 520 

retrieval results from geostationary imager measurements. In comparison, previous 521 

studies also proposed similar ML-based algorithms for estimating CBH using FY-4A 522 

satellite imager data. For example, (Tan et al., 2020) used the variables of CTH, DCOT, 523 

Reff, cloud water path, longitude/latitude from FY-4A imager data to build the training 524 

and prediction model and obtained CBH with MAE=1.29 km and R=0.80. In this 525 

study, except CTH, the other Level-2 products and geolocation data 526 

(longitude/latitude) used in (Tan et al., 2020) are abandoned, while the matched 527 

atmospheric profile products (such as temperature and relative humidity) from NWP 528 

data are added. These changes in ML-based model training and prediction lead to 529 

more accurate CBH retrieval results. Note that, in accordance with the previous study 530 

conducted by (Noh et al., 2017), we excluded CBH samples obtained from 531 

CloudSat/CALIPSO that were smaller than 1 km in our comparisons. This exclusion 532 

was primarily due to the presence of ground clutter contamination in the CloudSat 533 

CPR data (Noh et al., 2017). 534 

4.1.2 Test case 535 

Figure 3 displays two cross-sections of CBH from various sources overlaid with 536 

CloudSat radar reflectivity (unit: dBZ) for spatiotemporally matched cases. The 537 

periods covered are from 03:16 to 04:55 UTC on January 13, 2017 (154.0°E–160.0°E; 538 

40.56°S–53.39°S) and from 05:38 to 07:17 UTC on January 14, 2017 (107.1°E–539 

107.8°E; 8.35°N–11.57°N). The CloudSat radar reflectivity and joint 540 

CloudSat/CALIPSO product provide insights into the vertical structure or distribution 541 

of clouds and their corresponding CBHs. The results from the four GEO CBH 542 

retrieval algorithms (GEO IDPS, GEO CLAVR-x, RF VIS+IR model, and RF 543 

IR-single model) mentioned earlier are individually marked with different markers in 544 
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each panel. According to Figure 3a, the GEO IDPS algorithm faces challenges in 550 

accurately retrieving CBHs for geometrically thicker cloud samples near 157°E. 551 

Optically thick mid- and upper-level cloud layers may obscure lower-level cloud 552 

layers. However, the CBH results retrieved by the GEO IDPS algorithm near 155°E 553 

(in Fig. 3a) and 107.4°E (in Fig. 3b) align with the joint CloudSat/CALIPSO CBH 554 

product. It is worth noting that the inconsistency observed between 107.2°E and 555 

107.3°E in Figure 3b, specifically regarding the CBHs around 1 km obtained from 556 

CloudSat/CALIPSO, can likely be attributed to ground clutter contamination in the 557 

CloudSat CPR data (Noh et al., 2017). The GEO CLAVR-x algorithm achieves 558 

improved CBH results compared to the GEO IDPS algorithm. It can even retrieve 559 

CBHs for some thick cloud samples that are invalid when using the GEO IDPS 560 

algorithm. However, the CBHs from the GEO CLAVR-x algorithm are noticeably 561 

higher than those from the joint CloudSat/CALIPSO product. In contrast, the CBHs 562 

from the two ML-based algorithms show substantially better results than those from 563 

the other two physics-based algorithms. Particularly, the ML-based VIS+IR model 564 

algorithm yields the best CBH results. However, compared with those from the two 565 

physics-based algorithms, the CBHs from the two ML-based algorithms still exhibit a 566 

significant error around 5 km. 567 

4.2 Comparisons with the ground-based lidar and cloud radar measurements 568 

Lidar actively emits lasers in different spectral bands into the air. When the laser 569 

signal encounters cloud particles during transmission, a highly noticeable 570 

backscattered signal is generated and received (Omar et al., 2009). When lidar 571 

measures clouds, the intensity of the echo signal from the cloud to the laser satisfies 572 

the lidar equation as follows: 573 

𝑃(𝑟) = 𝐶 ∗ 𝛽(𝑟) ∗ 𝑟)% ∗ 𝑒𝑥𝑝<−2∫ 𝜎(𝑧)𝑑𝑧
/
0 B,                              (7) 574 

where P (r) is the intensity of the atmospheric backscattered signal received by the 575 

laser telescope from the emission point in distance r (unit: Watt or W); C is the lidar 576 

system instrumentation constant (unit: W·km3·sr); r is the detection distance (unit: 577 

km); β(r) is the backscattering coefficient at the emission point in distance r (unit: 578 

km−1·sr−1); σ(z) is the extinction coefficient at the distance emission point in distance 579 

z (unit: km−1). This return signal is markedly distinct from atmospheric aerosol 580 

scattering signals and noise, making CBH easily obtainable from the signal difference 581 
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or mutation (Sharma et al., 2016). In this study, continuous ground-based lidar data 602 

from the Twin Astronomy Manor in Lijiang City, Yunnan Province, China (26.454°N, 603 

100.0233°E, altitude = 3175 m) are used to evaluate the diurnal cycle characteristics 604 

of CBHs retrieved using GEO satellite algorithms (Young and Vaughan, 2009). The 605 

geographical location and photo of this station are shown in Figure 4. 606 

4.2.1 Comparison of CBH retrievals from ground and satellite data 607 

The ground-based lidar data at Lijiang station on December 6, 2018, and January 608 

8, 2019, are selected for validation. In fact, this lidar was primarily used for the 609 

calibration of ground-based lunar radiation instruments. During the two-month 610 

observation period (from December of 2018 to January of 2019), it was always 611 

operated only under clear sky conditions, resulting in the capture of cloud data on just 612 

two days. The number of available and spatiotemporally matched CBH sample points 613 

from ground-based lidar is 78 and 64 on December 6, 2018, and January 8, 2019, 614 

respectively. Fig 5a and 5b show the point-to-point CBH comparisons between 615 

ground-based lidar and four GEO satellite CBH algorithms on December 6, 2018, and 616 

January 8, 2019. It is worth noting that the retrieved CBHs of the two physics-based 617 

algorithms on December 6, 2018, are in good agreement with the reference values 618 

from the lidar measurements, and, in particular, the GEO CLAVR-x algorithm can 619 

obtain better results. From the results on January 8, 2019, more accurate diurnal cycle 620 

characteristics of CBHs are revealed by the GEO CLAVR-x algorithm than by the 621 

GEO IDPS algorithm. 622 

Compared with the CBHs measured by ground-based lidar, the statistics of the 623 

results retrieved from the GEO IDPS algorithm are R = 0.67, MAE = 3.093 km, MBE 624 

= 0.856 km, and RMSE = 3.609 km (Fig. 5c). However, for cloud samples with CBH 625 

below 7.5 km, the GEO IDPS algorithm shows an obvious underestimation of CBH in 626 

Figure 5c. For the GEO CLAVR-x algorithm, it can also be seen that the matched 627 

samples mostly lie near the 1:1 line with R = 0.773 (the optimal CBH algorithm), 628 

MAE = 1.319 km, MBE = 0.222 km, and RMSE = 1.598 km. In addition, this figure 629 

also shows the CBH comparisons between the ML-based VIS+IR model/IR-single 630 

model algorithms and the lidar measurements, revealing that the retrieved CBH 631 

results from the ML-based VIS+IR model are better than those from the ML-based 632 

IR-single model algorithm. The comparison results between the CBHs of the 633 

ML-based VIS+IR model algorithm and the lidar measurements are around the 1:1 634 

line, with smaller errors and R = 0.599. In contrast, the R between the CBHs of the 635 
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ML-based IR-single model algorithm and the lidar measurements is only 0.494, with a 639 

relatively large error. By comparing the retrieved CBHs with the lidar measurements 640 

at Lijiang station, it indicates that CBH results from two physics-based algorithms are 641 

remarkably more accurate, particularly that the GEO CLAVR-x algorithm can well 642 

capture diurnal variation of CBH. 643 

To further assess the accuracy and quality of the diurnal cycle of CBHs retrieved 644 

with these algorithms, CBHs from another ground-based cloud radar dataset covering 645 

the entire year of 2017 are also collected and used in this study. Due to the density of 646 

points in the one-year time series, the point-to-point CBH comparison results for the 647 

entire year are not displayed here (monthly results are shown in the supplementary 648 

document), we only show 4 days results in the following Figure 6. As well known, the 649 

diurnal variation of cloud base height is primarily influenced by solar heating, causing 650 

the cloud base to rise in the morning and reach its peak by midday. As the surface 651 

cools in the afternoon and evening, the cloud base lowers, playing a crucial role in 652 

weather patterns and forecasting (Zheng et al., 2020). Therefore, it is essential to 653 

rigorously compare the ML-based algorithm with ground-based observations to 654 

determine its ability to adapt to the daily variations in cloud base height caused by 655 

natural factors. The observational instrument is a Ka-band (35 GHz) Doppler 656 

millimeter-wave cloud radar (MMCR) located at the Beijing Nanjiao Weather 657 

Observatory (a typical urban observation site) (39.81°N, 116.47°E, altitude = 32 m; 658 

see Fig. 4), performing continuous and routine observations. The MMCR provides a 659 

specific vertical resolution of 30 m and a temporal resolution of 1 minute for single 660 

profile detection, based on the radar reflectivity factor. In a previous study (Zhou et 661 

al., 2019), products retrieved by this MMCR were utilized to investigate the diurnal 662 

variations of CTH and CBH, and comparisons were made between MMCR-derived 663 

CBHs and those derived from a Vaisala CL51 ceilometer. The former study also 664 

found that the average R of CBHs from different instruments reached up to 0.65. It is 665 

worth noting that the basic physics principle for detecting cloud base height from both 666 

spaceborne cloud profiling radar and ground-based cloud radar and lidar 667 

measurements is the same. All these algorithms of detecting CBH are based on the 668 

manifest change of return signals between CBH and the clear sky atmosphere in the 669 

vertical direction (Huo et al., 2019; Ceccaldi et al., 2013). The joint spaceborne 670 

CloudSat/CALIPSO detection might face limitations in penetrating extremely dense, 671 

optically thick, or areas with heavy precipitation clouds. Hence, in comparison, the 672 
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CBH values gathered from ground-based lidar and cloud radar measurements are 675 

expected to be more accurate than the data derived from spaceborne 676 

CloudSat/CALIPSO detection. 677 

Similar to Figure 5, Figure 6 presents two sample groups of CBH results from the 678 

cloud radar at Beijing Nanjiao station relative to the matched CBHs from the four 679 

retrieval algorithms (GEO IDPS, GEO CLAVR-x, ML-based IR-single, ML-based 680 

VIS+IR) on April 9–10 and July 26–28, 2017. Similar to the results at Lijiang station 681 

discussed in Figure 5, we observe better and more robust performances in retrieving 682 

diurnal cycle characteristics of CBH from the two physics-based CBH retrieval 683 

algorithms. In contrast, more underestimated CBH samples are retrieved by the two 684 

ML-based algorithms. 685 

4.2.2 Diurnal cycle analysis of CBH retrieval accuracy 686 

To further investigate the diurnal cycle characteristics of retrieved CBH from 687 

GEO satellite imager measurements, Figure 7 presents box plots of the hourly CBH 688 

errors (relative to the results of cloud radar at Beijing Nanjiao station) in 2017 from 689 

the four different CBH retrieval algorithms. Remarkably, there are significant 690 

underestimations of the CBHs retrieved from the two ML-based algorithms. The 691 

ML-based VIS+IR method achieves relatively better results than the ML-based 692 

IR-single method during the daytime. Comparing the two ML-based algorithms, the 693 

errors of the IR-single model algorithm have a similar standard deviation (2.80 km) to 694 

those of the VIS+IR model algorithm (2.69 km) during the daytime. For the IR-single 695 

model algorithm, it can be applied during both daytime and nighttime, its nighttime 696 

performance degrades slightly, with an averaged RMSE (3.88 km) higher than that of 697 

daytime (3.56 km). The nighttime CBH of the IR-single model algorithm is the only 698 

choice that should be used with discretion. 699 

Figure 8 shows the comparisons of hourly MAE, MBE, RMSE, and R relative to 700 

the CBHs from the cloud radar at Beijing Nanjiao station during daytime between 701 

four retrieval algorithms in 2017. The RMSE of the two ML-based algorithms shows 702 

stable diurnal variation. It is noted that all algorithms have lower R at sunrise, around 703 

07:00 local time, which improve as the day progresses. However, the GEO CLAVR-x 704 

algorithm stands out for its relatively higher and more stable in R and RMSE during 705 

daytime. 706 

Figure 9a displays scatter plots and relevant statistics of the CBHs retrieved from 707 

the GEO IDPS algorithm against the CBHs from cloud radar. The CBHs from the 708 
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GEO IDPS algorithm align well with the matched CBHs from cloud radar at Beijing 723 

Nanjiao station, with R = 0.515, MAE = 2.078 km, MBE = 1.168 km, and RMSE = 724 

2.669 km. In Figure 9b, the GEO CLAVR-x algorithm shows better results with R = 725 

0.573, MAE = 2.059 km, MBE = −0.204 km, and RMSE = 2.601 km. It is not 726 

surprising that Figs. 8c and 8d reveal obvious underestimated CBH results from the 727 

two ML-based CBH algorithms. Particularly, the CBH results from the ML-based 728 

VIS+IR model algorithm concentrate in the range of 2.5 km to 5 km. Therefore, 729 

Figure 5 to Figure 9 further substantiates the weak diurnal variations captured by 730 

ML-based techniques, primarily attributed to the scarcity of comprehensive CBH 731 

training samples throughout the entire day. Besides, although the two robust 732 

physics-based algorithms of GEO IDPS and GEO CLAVR-x (the optimal one) can 733 

retrieve high-quality CBHs from H8/AHI data, especially the diurnal cycle of CBH 734 

during the daytime, they still struggle to retrieve CBHs below 1 km. 735 

5. Conclusions and discussion 736 

To explore and argue the optimal and most robust CBH retrieval algorithm from 737 

geostationary satellite imager measurements, particularly focusing on capturing the 738 

typical diurnal cycle characteristics of CBH, this study employs four different 739 

retrieval algorithms (two physics-based and two ML-based algorithms). High 740 

spatiotemporal resolution CBHs are retrieved using the H8/AHI data from 2017 to 741 

2019. To assess the accuracies of the retrieved CBHs, point-to-point validations are 742 

conducted based on spatiotemporally matched CBHs from the joint 743 

CloudSat/CALIOP product, as well as ground-based lidar and cloud radar 744 

observations in China. The main findings and conclusions are outlined below. 745 

Four independent CBH retrieval algorithms, namely physics-based GEO IDPS, 746 

GEO CLAVR-x, ML-based VIS+IR, and ML-based IR-single, have been developed 747 

and utilized to retrieve CBHs from GEO H8/AHI data. The two physics-based 748 

algorithms utilize cloud top and optical property products from AHI as input 749 

parameters to retrieve high spatiotemporal resolution CBHs, with operations limited 750 

to daytime. In contrast, the ML-based VIS+IR model and IR-single model algorithms 751 

use the matched joint CloudSat/CALIOP CBH product as true values for building RF 752 

prediction models. Notably, the ML-based IR-single algorithm, which relies solely on 753 

infrared band measurements, can retrieve CBH during both day and night. 754 
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The accuracy of CBHs retrieved from the four independent algorithms is verified 763 

using the joint CloudSat/CALIOP CBH products for the year 2017. The GEO IDPS 764 

algorithm shows an R of 0.62 and an RMSE of 2.642 km. The GEO CLAVR-x 765 

algorithm provides more accurate CBHs with an R of 0.647 and RMSE of 2.91 km. 766 

After filtering samples with optical thickness less than 1.6 and brightness temperature 767 

(at 11 μm band) greater than 281 K, the ML-based VIS+IR and ML-based IR-single 768 

algorithms achieve higher accuracy with an R(RMSE) of 0.922(1.214 km) and 769 

0.911(1.415 km), respectively. This indicates strong agreement between the two 770 

ML-based CBH algorithms and the CloudSat/CALIOP CBH product. 771 

However, in stark contrast, the results from the physics-based algorithms (with R 772 

and RMSE of 0.592/2.86 km) are superior to those from the ML-based algorithms  773 

(with R and RMSE of 0.385/3.88 km) when compared with ground-based CBH 774 

observations such as lidar and cloud radar. In the comparison with the cloud radar at 775 

Beijing Nanjiao station in 2017, the R of the GEO CLAVR-x algorithm is 0.573, 776 

while the R of the GEO IDPS algorithm is 0.515. Meanwhile, notable differences are 777 

observed in the CBHs between both ML-based algorithms. Similar conclusions are 778 

also evident in the 2-day comparisons at Yunnan Lijiang station. 779 

The CBH results from the two ML-based algorithms (R > 0.91) can likely be 780 

attributed to the use of the same training and validation dataset source as the joint 781 

CloudSat/CALIOP product. However, this dataset has limited spatial coverage and 782 

small temporal variation, potentially limiting the representativeness of the training 783 

data. In contrast, the GEO CLAVR-x algorithm demonstrates the best performance 784 

and highest accuracy in retrieving CBH from geostationary satellite data. Notably, its 785 

results align well with those from ground-based lidar and cloud radar during the 786 

daytime. However, both physics-based methods, utilizing CloudSat CPR data for 787 

regression, struggle to accurately retrieve CBHs below 1 km, as the lowest 1 km 788 

above ground level of this data is affected by ground clutter. 789 

Additionally, despite utilizing the same physics principles in spaceborne and 790 

ground-based lidar/radar CBH algorithms, the previous study (Thorsen et al., 2011) 791 

has highlighted differences in profiles between them. Therefore, this factor could 792 

contribute to the relatively poorer results in CBH retrieval by ML-based algorithms 793 

compared to ground-based lidar and radar. The analysis and discussion above suggest 794 

that ML-based algorithms are constrained by the size and representativeness of their 795 
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datasets. Therefore, in scenarios involving a large time scope, such as climate 800 

research, it is more reasonable to opt for physics-based cloud base height algorithms. 801 

Ideally, if more spaceborne cloud profiling radars with different passing times 802 

(covering all day) can be included in the training dataset, the promising ML technique 803 

will certainly generate a higher quality CBH product with more comprehensive 804 

observations. The CBH product using ML-based algorithms should continue to be 805 

improved in future work. Particularly, exploring the joint ML-physics-based method 806 

presents a promising direction, which can address the complexities and challenges in 807 

retrieving cloud properties. By integrating established physical relationships into ML 808 

models, we can potentially enhance the accuracy and reliability of predictions. This 809 

approach not only leverages the strengths of both physics-based models and 810 

data-driven techniques but also offers a pathway to more robust and interpretable 811 

solutions in atmospheric sciences. At present, we will focus on developing 812 

physics-based algorithms for cloud base height for the next generation of 813 

geostationary meteorological satellites, to support the application of these products in 814 

weather and climate domains.  815 

Besides, at night, current GEO satellite imaging instruments encounter 816 

challenges in accurately determining CBH due to limited or absent solar illumination. 817 

Because it is unable to retrieve cloud optical depth in the visible band, the current 818 

method faces limitations. However, there is potential for enhanced accuracy in 819 

deriving cloud optical and microphysical properties, as well as CBH, by incorporating 820 

the Day/Night Band (DNB) observations during nighttime in the future (Walther et al., 821 

2013). 822 
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height (CBH) retrieval algorithms (GEO IDPS and GEO CLAVR-x retrieval 870 

algorithms), cloud products such as cloud top height (CTH), effective particle radius 871 

(Reff), and cloud optical thickness (DCOT) will be utilized in both algorithms. To 872 

validate the reliability of these cloud products derived from the Advanced Himawari 873 

Imager (AHI) aboard the Himawari-8 (H8), a pixel-by-pixel comparison is conducted 874 

with analogous MODIS Collection-6.1 Level-2 cloud products. Both Aqua and Terra 875 

MODIS Level-2 cloud products (MOD06 and MYD06) are accessible for free 876 

download from the MODIS official website. For verification purposes, the 877 

corresponding Level-2 cloud products from January, April, July, and October of 2018 878 

are chosen to assess CTH, DCOT, and Reff retrieved by H8/AHI. 879 

Figure S2 (in the supplementary document) shows the spatiotemporally matched 880 

case comparisons of CTH, DCOT and Reff from H8/AHI and Terra/MODIS (MYD06) 881 

at 03:30 UTC on January 15, 2018. It can be seen that the CTH, DCOT and Reff from 882 

H8/AHI are in good agreement with the matched MODIS cloud products. However, 883 

there are still some differences in Reff at the regions near 35°N, 110°E in Figures S2d 884 

and S2c. The underestimated Reff values from H8/AHI relative to MODIS have been 885 

reported in previous studies. (Letu et al., 2019) compared the ice cloud products 886 

retrieved from AHI and MODIS, and concluded that the Reff from both products differ 887 

remarkably in the ice cloud region and the DCOT from them are roughly similar. 888 

However, the DCOT from AHI data is higher in some areas. Looking again at the cloud 889 

optical thickness that at the same time, the slight underestimation of H8/AHI DCOT 890 

can be found in Figures S2e and S2f. Figure S3 (in the supplementary document) 891 

shows another case at 02:10 UTC on January 15, 2018. Despite of the good 892 

consistence between H8/AHI and MODIS cloud products, there are slight differences 893 

in CTH in the area around 40°S–40.5°S, 100°E–110°E in Figs. S3a and S3b. Besides, 894 

as shown in Figure S2, there are still underestimations in the Reff of H8/AHI.  895 

To further compare and validate these three H8/AHI cloud products, the 896 

spatiotemporally matched samples from H8/AHI and Aqua/Terra MODIS in four 897 

months of 2018 are counted within the three intervals of 0.1 km (CTH), 1.0 μm (Reff), 898 

and 1 (DCOT) in Figure S4 (in the supplementary document). The corresponding mean 899 

absolute error, mean bias error, RMSE and R values are also calculated and marked in 900 

each subfigure. As can be seen, the R of CTH is around 0.75 in all four months and is 901 

close to 0.8 in August. The results of DCOT show the highest R, reaching above 0.8. In 902 

contrast, the underestimation trend in Reff is also shown in this figure. These different 903 
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consistencies between two satellite-retrieved cloud products may be attributed to: (1) 915 

different spatiotemporal resolutions between H8/AHI and MODIS; (2) different 916 

wavelength bands, bulk scattering model, and specific algorithm used for retrieving 917 

cloud products; (3) different view zenith angle between GEO and low-earth-orbit 918 

satellite platforms (Letu et al., 2019). In addition, other external factors such as 919 

surface type also can affect the retrieval of cloud product. However, according to 920 

Figure S4, the bulk of the analyzed samples are still around the 1:1 line, indicating the 921 

good quality of H8/AHI cloud products. 922 

 923 

Appendix B 924 

 The ML-based visible (VIS)+infrared (IR) model algorithm mentioned above 925 

uses 230 typical variables (see Table 1) as model predictors, and the importance 926 

scores of top-30 predictors are ranked in Figure S5 (in the supplementary document). 927 

It can be seen that the most important variables are CTH and CTT, and DCOT is an 928 

important or sensitive factor affecting these two quantities. A sensitivity test is also 929 

performed to further investigate the potential influence of DCOT on the CBH retrieval 930 

by the VIS+IR model (see Table S1 in the supplementary document). From Figure 931 

S7a, we find that the samples with DCOT lower than 5 cause the relatively large CBH 932 

errors compared with the matched CBHs from the joint CALIPSO (Cloud-Aerosol 933 

Lidar and Infrared Pathfinder Satellite Observation)/CloudSat product.  934 

According to the results in this Figure S7b, we may filter the samples with 935 

relatively small DCOT to further improve the accuracy of CBH retrieval by the VIS+IR 936 

model (see Table S1). Figure S7b shows that after filtering the samples with the DCOT 937 

less than 1.6, the R increases from 0.895 to 0.922, implying a better performance of 938 

CBH retrieval. According to the ranking of predictor importance (see Fig. S6 in the 939 

supplementary document), we also conduct another sensitivity test on the BT 940 

observed by H8/AHI IR Channel-14 (Cha14) at 11 μm, which plays an important role 941 

in the IR-single model. Figure S7c shows that the BT values of H8/AHI Channel-14 942 

ranges from 160 K to 316 K, and the samples with BT higher than 300 K show large 943 

CBH errors. Similarly, by filtering the samples with BT higher than 281 K, we can get 944 

a better IR-single model algorithm for retrieving high-quality CBH (see Table S2 in 945 

the supplementary document). Figure S7d also proves that the R value increases from 946 

0.868 to 0.911. 947 
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 1171 

Tables and Figures 1172 

 1173 
Table 1. Predictand and predictor variables for both visible (VIS)+infrared (IR) model 1174 

and IR-single regression model training, which are divided according to the different 1175 

predictor variables from satellite and NWP data 1176 

Predictand IR-single model input VIS+IR model input 

Predictor 

[satellite 

measurements] 

BT(3.9μm), BT(6.2μm), BT(6.9μm), 

BT(7.3μm), BT(8.6μm), BT(9.6μm), 

BT(10.4μm), BT(11.2μm),  

BT(12.4μm), BT (13.3μm),  

BTD(11.2–12.4μm), BTD(11.2–

13.3μm) [Unit = K], 

Air Mass (1/cos(VZA)), 

View azimuth angles [Unit = degree], 

Cloud top height from H8/AHI [unit: 

m], 

Cloud top temperature from H8/AHI 

[unit: K] 

BT(3.9μm), BT(6.2μm), BT(6.9μm), 

BT(7.3μm), BT(8.6μm), BT(9.6μm), 

BT(10.4μm), BT(11.2μm), 

BT(12.4μm), BT(13.3μm), 

BTD(11.2–12.4μm), BTD(11.2–

13.3μm) [Unit = K], 

Air Mass(1/cos(VZA)), 

Air Mass(1/cos(SZA)), 

View/Solar Azimuth angles [Unit = 

degree], 

Cloud top height from H8/AHI [unit: 

m],  

Cloud top temperature from H8/AHI 

[unit: K] 

Ref(0.47μm), Ref(0.51μm), 

Ref(0.64μm), Ref(0.86μm), 

Ref(1.64μm), Ref(2.25μm) 

Predictor [GFS 

NWP] 

Altitude profile (from surface to 
about 21 km, 67 layers) [unit: m], 
Temperature profile (from surface to 
about 21 km, 67 layers) [unit: K], 
Relative humidity profile (from 
surface to about 21 km, 67 layers) 
[unit: %], 
Total precipitable water, 
Surface temperature [unit: K] 

Altitude profile (from surface to about 
21 km, 67 layers) [unit: m], 
Temperature profile (from surface to 
about 21 km, 67 layers) [unit: K], 
Relative humidity profile (from 
surface to about 21 km, 67 layers) 
[unit: %], 
Total precipitable water, 
Surface temperature [unit: K] 

Predictor 

[other] 
Surface elevation [unit: m] Surface elevation [unit: m] 

Notes: VZA = view zenith angle [unit: degree]; SZA = solar zenith angle [unit: 1177 

degree] 1178 
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 1181 
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 1185 
 1186 
 1187 
 1188 
 1189 
 1190 
 1191 

 1192 

Figure 1. Comparison of full disk CBH results retrieved by the four-independent 1193 

algorithms at 02:00 UTC on January 1, 2017. (a) GEO IDPS algorithm, (b) GEO 1194 

Clouds from AVHRR Extended (CLAVR-x) algorithm, (c) ML-based (RF, random 1195 

forest) VIS+IR algorithm and (d) ML-based (RF) IR-single algorithm. 1196 

 1197 

 1198 

 1199 

 1200 

 1201 

 1202 

 1203 



      32 

 1204 

 1205 

 1206 

 1207 

 1208 
Figure 2. Density distributions of CBHs retrieved from (a) GEO IDPS, (b) GEO 1209 

CLAVR-x, (c) VIS+IR and (d) IR-single algorithms compared with the CBHs from 1210 

the joint CloudSat/CALIPSO product (taken as true values) in 2017. The mean 1211 

absolute error (MAE), mean bias error (MBE), root mean square error (RMSE) and R 1212 

are listed in each subfigure where the difference exceeds the 95% significance level (p 1213 

< 0.05) according to the Pearson’s χ2 test.  1214 
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 1224 

 1225 

 1226 

 1227 

 1228 

Figure 3. Inter-comparisons of CBH products retrieved by CloudSat (red solid circle), 1229 

the GEO IDPS algorithm (blue solid circle), the GEO CLAVR-x (green solid circle), 1230 

the ML-based VIS+IR model algorithm (orange solid circle), and the ML-based 1231 

IR-single model algorithm (pink solid circle) at (a) 03:16–04:55 UTC on January 13, 1232 

2017 (a) and (b) 05:38–07:17 UTC on January 14, 2017. The black and gray colormap 1233 

represents the matched CloudSat radar reflectivity.  1234 
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 1247 

 1248 

Figure 4. Geographical locations and photos of lidar and cloud radar at Yunnan 1249 

Lijiang and Beijing Nanjiao stations. 1250 
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 1268 

 1269 

 1270 

Figure 5. Comparisons of the CBHs from the ground-based lidar measurements 1271 

(black solid circle) at Yunnan Lijiang station and the four GEO satellite retrieval 1272 

algorithms, namely the GEO IDPS (red cross symbol), the GEO CLAVR-x (green 1273 

solid asterisk), the ML-based VIS+IR model (orange solid diamond) and the 1274 

ML-based IR-single model (blue plus sign) algorithms. Fig 5a and 5b show the time 1275 

series of CBHs from lidar and the four GEO satellite retrieval algorithms on 1276 

December 6, 2018 and January 8, 2019, respectively. Fig 5c shows the scatterplots of 1277 

CBH samples from the lidar measurements and the four retrieval algorithms. 1278 
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 1286 

 1287 

 1288 

 1289 

 1290 

 1291 

Figure 6. Same as Figure 5, but for the CBH sample results from the cloud radar at 1292 

Beijing Nanjiao station (black solid circle) on April 9–10, 2017 (top panel) and July 1293 

26–28, 2017 (bottom panel). 1294 
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 1306 
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 1309 

 1310 

 1311 

 1312 

 1313 
Figure 7. Box plots of the hourly CBH errors of four GEO satellite retrieval 1314 

algorithms (GEO IDPS, GEO CLAVR-x, ML-based VIS+IR and ML-based IR-single) 1315 

relative to the CBHs from the cloud radar at Beijing Nanjiao station in 2017. The box 1316 

symbols signify the 25th, 50th and 75th percentiles of errors. The most extreme 1317 

sample points between the 75th and outlier, and the 25th percentiles and outliers are 1318 

marked as whiskers and diamonds, respectively. Except for the period between 7 and 1319 

17 UTC (local time), the three algorithms of GEO CLAVR-x, GEO IDPS, and ML 1320 

VIS+IR are unavailable due to the lack of reflected solar radiance measurements. 1321 

 1322 

 1323 
 1324 
 1325 
 1326 
 1327 
 1328 
 1329 
 1330 
 1331 



      38 

 1332 
 1333 
 1334 
 1335 
 1336 
 1337 

 1338 

 1339 
Figure 8. Comparisons of hourly (a) MAE, (b) MBE, (c) RMSE, and (d) R of CBH 1340 

(relative to the CBHs from the cloud radar at Beijing Nanjiao station) from 07 to 17 1341 

(local time) between four retrieval algorithms (GEO IDPS, GEO CLAVR-x, 1342 
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ML-based VIS+IR and ML-based IR-single) in 2017. 1343 
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  1346 

 1347 

Figure 9. Comparisons between the CBHs from the cloud radar at Beijing Nanjiao 1348 

station and the matched CBHs from the four retrieval algorithms (GEO IDPS, GEO 1349 

CLAVR-x, ML-based VIS+IR and ML-based IR-single) in 2017. 1350 

 1351 

 1352 

 1353 

 1354 

 1355 

 1356 


