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Abstract. Two groups of retrieval algorithms, one physics-based and the other

machine-learning (ML) based, each consisting of two independent approaches, have

been developed to retrieve cloud base height (CBH) and its diurnal cycle from

Himawari-8 geostationary satellite observations, Validations have been conducted

using the joint CloudSat/CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization)

CBH products in 2017, ensuring independent assessments. Results show that the two

ML-based algorithms exhibit markedly superior performance (the optimal method is

with a correlation coefficient of R > 0.91 and an absolute bias of approximately 0.8
km) compared to the two physics-based algorithms. However, validations based on
CBH data from the ground-based lidar at the Lijiang station in Yunnan province and
the cloud radar at the Nanjiao station in Beijing, China, explicitly present
contradictory outcomes (R < 0.60). An identifiable issue arises with significant
underestimations in the retrieved CBH by both ML-based algorithms, leading to an
inability to capture the diurnal cycle characteristics of CBH. The strong consistence
observed between CBH derived from ML-based algorithms and the spaceborne active
sensor may be attributed to utilizing the same dataset for training and validation,
sourced from the CloudSat/CALIOP products. In contrast, the CBH derived from the
optimal physics-based algorithm demonstrates the good agreement in diurnal
variations of CBH with ground-based lidar/cloud radar observations during the
daytime (with an R value of approximately 0.7). Therefore, the findings in this
investigation from ground-based observations advocate for the more reliable and
adaptable nature of physics-based algorithms in retrieving CBH from geostationary
satellite measurements. Nevertheless, under ideal conditions, with an ample dataset of
spaceborne cloud profiling radar observations encompassing the entire day for
training purposes, the ML-based algorithms may hold promise in still delivering
accurate CBH outputs.

Key words: Geostationary meteorological satellite; cloud base height; physics-based

algorithm; machine learning.
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MiBR T : retrieval algorithms, comprising two physics-based
and two machine-learning (ML) approaches, have been

developed to retrieve cloud base height (CBH) and its diurnal
cycle from Himawari-8 geostationary satellite observations...
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1 Introduction

Clouds, comprising visible aggregates like atmospheric water droplets,
supercooled water droplets, ice crystals, etc., cover roughly 70% of the Earth's surface
(Stubenrauch et al., 2013). They play a pivotal role in global climate change, the
hydrometeor cycle, aviation safety, and serve as a primary focus in weather
forecasting and climate research, particularly storm clouds (Hansen, 2007; Hartmann
and Larson, 2002). From advanced geostationary (GEO) and polar-orbiting (LEO,

low earth orbit) satellite imagers, various measurable cloud properties, such as cloud

fraction, cloud phase, cloud top height (CTH), and cloud optical thickness, (COT or

o (ﬂﬁﬂ@%T: depth

Dcor), are routinely retrieved. However, the high-quality cloud geometric height

(CGH) and cloud base height (CBH), a fundamental macro physical parameter

delineating the vertical distribution of clouds, remains relatively understudied and
underreported. Nonetheless, for boundary-layer clouds, the cloud base height stands
as a critical parameter depending on other cloud-controlling variables. These variables
encompass the cloud-base temperature (Zhu et al., 2014), cloud-base vertical velocity
(Zheng et al., 2020), activation of CCN (Cloud Condensation Nuclei) at the
cloud-base (Rosenfeld et al., 2016; Miller et al., 2023), and the cloud-surface
decoupling state (Su et al., 2022). These factors significantly impact convective cloud

development and ultimately the climate. As well known, there are distinct diurnal

(MR 12 (Lietal, 2022)

cycle characteristics of clouds in different regions across the globe (Li et al., 2022).

These diurnal cycle characteristics primarily stem from the daily solar energy cycle

absorbed by both the atmosphere and Earth's surface. Besides, vertical atmospheric

motions are shaped by imbalances in atmospheric heating and surface configurations

also leading to a range of cloud movements and structures (Miller et al., 2018). Cloud

base plays a pivotal role in weather and climate processes. It is critical for predicting

fog and cloud-related visibility issues important in aviation and weather forecasting.

For instance, lower cloud bases often lead to more intense rainfall. In climate

modeling, CBH is integral for accurate long-term weather predictions and

understanding the radiative balance of the Earth, which influences global

temperatures (Zheng and Rosenfeld, 2015). Hence, the accurate determination of

CBH and its diurnal cycle with high spatiotemporal resolution becomes very

- O]I}W% T: spatial-temporal

important, necessitating comprehensive investigations (Viadez-Mora et al., 2015;
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Wang et al., 2020). Such efforts can provide deeper insights into potential
ramifications of clouds on radiation equilibrium and global climate systems.
However, as one of the most crucial cloud physical parameters in atmospheric
physics, the CBH poses challenges in terms of measurement or estimation from space.
Presently, the primary methods for measuring CBH rely on ground-based
observations, utilizing tools such as sounding balloons, Mie-scattering lidars,
stereo-imaging cloud-height detection technologies, and cloud probe sensors
(Forsythe et al., 2000; Hirsch et al., 2011; Seaman et al., 2017; Zhang et al., 2018;
Zhou et al., 2019; Zhou et al., 2024). While in-situ ground-based observation methods
offer highly accurate, reliable, and timely continuous CBH results, they are
constrained by localized observation coverage and the sparse distribution of
observation sites (Aydin and Singh, 2004). In recent decades, with the rapid
advancement of meteorological satellite observation technology, spaceborne
observing methods have emerged that provide global cloud observations with high

spatiotemporal, resolution compared to conventional ground-based remote sensing

QWU % 1 : spatio-temporal

methods. In this realm, satellite remote sensing techniques for measuring CBH fall
primarily into two categories: active and passive methods. Advanced active remote

sensing technologies like CloudSat (Stephens et al., 2002) and Cloud-Aerosol Lidar

QWU [ 1 (Stephens et al., 2002)

and Infrared Pathfinder Satellite Observation (CALIPSO) (Winker et al., 2009) in the

(IR T : (Winker et al., 2009)

National Aeronautics and Space Administration (NASA) A-Train (Afternoon-Train)
series (Stephens et al., 2002) can capture global cloud profiles, including CBH, with

high quality by detecting unique return signals from cloud layers using onboard active
millimeter wave radar or lidar. However, their viewing footprints are limited along the
nadir of the orbit, implying that observation coverage remains confined primarily to a
horizontal scale (Min et al., 2022; Lu et al., 2021).

In addition to active remote sensing methods, satellite-based passive remote
sensing technologies can also play an important role in estimating CBH (Meerkotter
and Bugliaro, 2009; Lu et al., 2021). As well known, the physics-based principles and

retrieval methods for CTH, have reached maturity and are now widely employed in

satellite passive remote sensing field (Heidinger and Pavolonis, 2009; Wang et al.,
2022). However, the corresponding physical principles or methods for measuring

CBH using satellite passive imager measurements are still not entirely clear and

unified (Heidinger et al., 2019; Min et al., 2020). A recent study by, Yang et al, (2021)

utilized oxygen A-band data observed by the Orbiting Carbon Observatory 2 (OCO-2)

4

@’H [ T : (Stephens et al., 2002)
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to retrieve single-layer marine liquid CBH. These methods aforementioned are

prominent in retrieving CBH through passive space-based remote sensing techniques.
The first method involves the extrapolation technique for retrieving CBH for clouds

of the same type. For instance, Wang et al, (2012) proposed a method to extrapolate

CBH from CloudSat using spatiotemporally, matched MODIS (Moderate Resolution

Imaging Spectroradiometer) cloud classification data. The second physics-based
retrieval method first approximates the cloud geometric thickness using its optical
thickness. It then employs the previously derived CTH product to compute the
corresponding, CBH using the respective NOAA (National Oceanic and Atmospheric

Ol’ﬂ k% 7 wo primary

(g 7

—~

(w7,

OIHU K% 1 : spatial-temporally

NN AN

s (HHW/%T: correlated

Administration) SNPP/VIIRS (Suomi National Polar-orbiting Partnership/Visible
Infrared Imaging Radiometer Suite) products (Noh et al., 2017). Hutchison et al.
(2002 and 2006) also formulated an empirical algorithm that estimates both cloud
geometric thickness (CGT) and CBH. This algorithm relies on statistical analyses
derived from MODIS COT and cloud liquid water path products (Hutchison et al.,

- (MU@%T: cloud optical thickness

2006; Hutchison, 2002).

Machine learning (ML) has proven to be highly effective in addressing nonlinear
problems within remote sensing and meteorology fields, such as precipitation
estimation and CTH retrieval (Min et al., 2020; HaKansson et al., 2018; Kiihnlein et

al., 2014). In recent years, several, studies have leveraged ML-based algorithms to

g QH@%T: previous

retrieve CBH, establishing nonlinear connections between CBH and GEO satellite

observations. For instance, Tan et al. (2020) integrated CTH and cloud optical

properties products from Fengyun-4A (FY-4A) GEO satellite with spatiotemporally

matched CBH data from CALIPSO/CloudSat, They developed a random forest (RF)

g OJH‘J % 7 : spatial-temporal

~(MBRT: (Tanetal, 2020)

model for CBH retrieval. Similarly, Lin et al. (2022) constructed a gradient boosted
regression tree (GBRT) model using U.S. new-generation Geostationary Operational
Environmental Satellites-R Series (GOES-R) Advanced Baseline Imager (ABI) level
1B radiance data and the ERAS (the fifth generation ECMWF) reanalysis dataset

(https://cds.climate.copernicus.cu/cdsapp#!/search?type=dataset), They employed

(WK 7: (Lin ctal, 2022)

CALIPSO CBH data as labels to achieve single-layer CBH retrievals. Notably, the
CBH quality of ML-based algorithms was found to surpass that of physics-based
algorithms (Lin et al., 2022). Moreover, Tana et al. (2023) utilized Himawari-8 data
and the random forest algorithm to develop a novel CBH algorithm, achieving a high

correlation coefficient (R) of 0.92 and a low root mean square error (RMSE) of 1.17
km,

: (ﬂﬁﬂﬁﬁ? 7: (Tanaetal., 2023)
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However, these former studies did not discuss whether both physics-based and
ML-based algorithms of GEO satellite could retrieve the diurnal cycle of CBH well.
This gap in research could be mainly attributed to potential influences from the fixed
LEO satellite (with active radar or lidar) passing time in the previous CBH retrieval

model (Lin et al., 2022). Hence, it is crucial to thoroughly investigate the diurnal

cycle features of CBH derived from GEO satellite measurements by comparing them
with ground-based radar and lidar observations (Min and Zhang, 2014; Warren and
Eastman, 2014). In this study, we aim to assess the applicability and feasibility of
both physics-based and ML-based algorithms of GEO satellites in capturing the
diurnal cycle characteristics of CBH.

The subsequent sections of this paper are structured as follows. Section 2
provides a concise overview of the data employed in this study. Following that,
section 3 introduces the four distinct physics/ML-based CBH retrieval algorithms. In
section 4, the CBH results obtained from these four algorithms are analyzed, and

comparisons are drawn with spatiotemporally matched CBHs from ground-based

MER T : As well known, there are distinct diurnal cycle
characteristics of clouds in different regions across the globe
(Li et al., 2022). These diurnal cycle characteristics primarily
stem from the daily solar energy cycle absorbed by both the
atmosphere and Earth's surface. Besides, vertical atmospheric
motions are shaped by imbalances in atmospheric heating and
surface configurations, also leading to a range of cloud
movements and structures (Miller et al., 2018). Cloud base
plays a pivotal role in weather and climate processes. It is
critical for predicting fog and cloud-related visibility issues
important in aviation and weather forecasting. For instance,
lower cloud bases often lead to more intense rainfall. In
climate modeling, CBH is integral for accurate long-term
weather predictions and understanding the radiative balance
of the Earth, which influences global temperatures (Zheng
and Rosenfeld, 2015). ...

QWU F% 1 : spatially and temporal

cloud radar and lidar. Finally, section 5 encapsulates the primary conclusions and new

findings derived from this study.

2 Data

In this study, observations from the Himawari-8 (H8) Advanced Himawari
Imager (AHI) are utilized for the retrieval of high spatiotemporal resolution CBH.
Launched successfully by the Japan Meteorological Administration on October 7,
2014, the H8 geostationary satellite is positioned at 140.7°E. The AHI onboard H8
encompasses 16 spectral bands ranging from 0.47 um to 13.3 pum, featuring spatial
resolutions of 0.5-2 km. This includes 3 visible (VIS) bands at 0.5-1 km, 3
near-infrared (NIR) bands at 1-2 km, and 10 infrared (IR) bands at 2 km. The
H8/AHI can scan a full disk area within 10 minutes, two specific areas within 2.5
minutes, a designated area within 2.5 minutes, and two landmark areas within 0.5
minutes (Iwabuchi et al., 2018). Its enhanced temporal resolution and observation

frequency facilitate, the tracking of rapidly changing weather systems, enabling the

(MU@T:S

accurate determination of quantitative atmospheric parameters (Bessho et al., 2016).
Operational H8/AHI Level-1B data, accessible from July 7, 2015, are freely

available on the satellite product homepage of the Japan Aerospace Exploration
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Agency (Letu et al., 2019). The Level-2 cloud products utilized in this study,
including cloud mask (CLM), CTH, cloud effective particle radius (CER or Rer), and
COT, are generated by the Fengyun satellite science product algorithm testbed

(FYGAT) (Wang et al., 2019; Min et al, 2017) of the China Meteorological
Administration (CMA) for various applications. It is important to note that certain

crucial preliminary cloud products, such as CLM, have been validated in prior studies

(Wang et al., 2019; Liang et al., 2023). Nevertheless, before initiating CBH retrieval,
it is imperative to validate the H8/AHI cloud optical and microphysical products from
the FYGAT retrieval system. This validation is carried out by using analogous
MODIS Level-2 cloud products as a reference. Additional details regarding the
validation of cloud products are provided in the Appendix A section.

In addition to the H8/AHI Level-1/2 data, the Global Forecast System (GFS)
numerical weather prediction (NWP) data are employed for CBH retrieval in this
study. The variables include land/sea surface temperature and the vertical profiles of
temperature, humidity, and pressure. Operated by the U.S. NOAA (Kalnay et al.,
1996), the GFS serves as a global and advanced NWP system. The operational GFS
system routinely delivers global, high-quality and gridded NWP data at 3-hour

Q]HU k% 7 cloud optical thickness (

(MR T:)

NN

(BB 7 the

Q]HU 47 : cloud mask

NN

(g 7 1y

intervals, with four different initial forecast times per day (00:00, 06:00, 12:00, and
18:00 UTC). The three-dimensional NWP data cover the Earth in a 0.5°%0.5° grid
interval and resolve the atmosphere with 26 vertical levels from the surface (1000 hPa)
up to the top of the atmosphere (10 hPa).

As previously mentioned, the official MODIS Collection-6.1 Level-2 cloud
product Climate Data Records_(Platnick et al., 2017) are utilized in this study to
validate the H8/AHI cloud products (CTH, CER, and COT) generated by the FYGAT

system. MODIS sensors are onboard NASA Terra and Aqua polar-orbiting satellites.
Terra functions as the morning satellite, passing through the equator from north to
south at approximately 10:30 local time, while Aqua serves as the afternoon satellite,
traversing the equator from south to north at around 13:30 local time. As a successor
to the NOAA Advanced Very High Resolution Radiometer (AVHRR), MODIS
features 36 independent spectral bands and a broad spectral range from 0.4 pm (VIS)
to 14.4 um (IR), with a scanning width of 2330 km and spatial resolutions ranging
from 0.25 to 1.0 km. Recent studies (Baum et al., 2012; Platnick et al., 2017) have
highlighted significant improvements and collective changes in cloud top, optical, and

microphysical properties from Collection-5 to Collection-6.

7
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In addition to the passive spaceborne imaging sensors mentioned above, the
CloudSat satellite , equipped with a 94-GHz active cloud profiling radar (CPR), holds

the distinction of being the first sun-synchronous orbit satellite specifically designed

to observe global cloud vertical structures and properties. It is part of the A-Train,

series of satellites, akin to the Aqua satellite, launched and operated by NASA
(Heymsfield et al., 2008). CALIPSO is another polar-orbiting satellite within the
A-Train constellation, sharing an orbit with CloudSat and trailing it by a mere 10-15
seconds. CALIPSO is the first satellite equipped with an active dual-channel CALIOP
at 532 and 1064 nm bands (Hunt et al., 2009). Both CloudSat and CALIPSO possess
notable advantages over passive spaceborne sensors due to the 94-GHz radar of
CloudSat and the joint return signals of lidar and radar on CALIPSO. These features
enhance their sensitivity to optically thin cloud layers and ensure strong penetration
capability, resulting in more accurate CTH and CBH detections compared to passive
spaceborne sensors (CAL LID L2 05kmCLay-Standard-V4-10). The joint cloud
type products of 2B-CLDCLASS-LIDAR, derived from both CloudSat and CALIPSO
measurements, offer a comprehensive description of cloud vertical structure
characteristics, cloud type, CTH, CBH, etc. The time interval between each profile in
this product is approximately 3.1 seconds, and the horizontal resolution is 2.5 km
(along track)x1.4 km (cross-track). Each profile is divided into 125 layers with a
240-m vertical interval. For more details on 2B-CLDCLASS-LIDAR products, please

refer to the CloudSat official product manual (Sassen and Wang, 2008). In this study,

we consider the lowest effective cloud base height from the joint CloudSat/CALIOP,

data as the true values for training and validation. Please note that for this study, we
utilized one-year H8/AHI data and matched it with the joint CloudSat/CALIOP data
from January 1 to December 31 of 2017.

3 Physics/machine-learning based cloud-base height algorithms

3.1 GEO Cloud-base height retrieval algorithm from the interface data
processing segment of the Visible Infrared Imaging Radiometer Suite

The Joint Polar Satellite System (JPSS) program is a collaborative effort between
NASA and NOAA. The operational CBH retrieval algorithm, part of the 30
Environmental Data Records (EDR) of JPSS, can be implemented operationally
through the Interface Data Processing Segment (IDPS) (Baker, 2011). In this study,
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our geostationary satellite CBH retrieval algorithm aligns with the IDPS CBH
algorithm developed by (Baker, 2011). Utilizing the geostationary H8/AHI cloud
products discussed earlier, this new GEO CBH retrieval algorithm is succinctly

outlined below. |

The new GEO IDPS CBH algorithm initiates the process by first retrieving the
CGT, from bottom to top. Subsequently, CGT is subtracted from the corresponding

CTH, to calculate CBH (CBH = CTH — CGT). The algorithm is divided into two

independent executable modules based on cloud phase, distinguishing between liquid

water and ice clouds. CBH of water cloud retrieval requires COT and CER as inputs. _

o(m
(W)

For ice clouds, an empirical equation is employed for CBH retrieval. However, the

standard deviations of error in IDPS CBH for individual granules often exceed the
JPSS VIIRS minimum uncertainty requirement of +2km (Noh et al., 2017). The
accuracy of IDPS algorithm-derived CBHs can be directly affected by several factors,
including cloud optical thickness, cloud effective particle size, the presence of

multizlayered cloud systems, lack of solar illumination, and highly reflective surfaces

@H‘J F% 7 ': cloud geometric thickness (

(w7

[T : cloud top height (

Ql’ﬂ % 1 ': Cloud Optical Thickness (

% 1 : or Dcor)

73
[ 7 : Effective Radius (
BT : or Rerr)

N AN

g QWWﬁ T:ple

such as snow or ice surfaces. For a more comprehensive understanding of this CBH

algorithm, please refer to the IDPS algorithm documentation (Baker, 2011). Note that

similar to previous studics on cloud retricval (Noh et al., 2017; Platnick et al., 2017),

this investigation also assumes a single-layer cloud for all CBH algorithms, due to the

challenges associated with determining multilayer cloud structures.

3.2 GEO Cloud-base height retrieval algorithm implemented in the Clouds from
Advanced Very High Resolution Radiometer Extended system

As mentioned above, the accuracy of the GEO IDPS algorithm is highly
dependent on the initial input parameters such as cloud phase, Dcor and Resr, which
may introduce some uncertainties in the final retrieval results. In contrast, a more
reliable statistically-based algorithm is proposed and implemented here, which is
named the GEO CLAVR-x (Clouds from AVHRR Extended, NOAA's operational
cloud processing system for the AVHRR) CBH algorithm (Noh et al., 2017), and it

(BBTHRR: 7@ X7 1

S (BETHER: FHEE: LT

(BBTHRR: TG X7 1

N AN AN

(MR 7: (Noh et al., 2017)

mainly refers to NOAA AWG CBH algorithm (ACBA) (Noh et al., 2022). Previous

(MK T: (Noh et al, 2022)

studies have also demonstrated a R of 0.569 and a RMSE, of 2.3 km for the JPSS

VIIRS CLAVR-x CBH algorithm. It is anticipated that this algorithm will also be
employed for the NOAA GOES-R geostationary satellite imager (Noh et al., 2017;

Seaman et al., 2017).

Q]ﬁ Bk T : correlation coefficient
|

% 7' root mean square error (

(mEx7:)
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Similar to the GEO IDPS CBH retrieval algorithm mentioned earlier, the GEO
CLAVR-x CBH retrieval algorithm also initially obtains CGT and CTH, subsequently
calculating CBH by subtracting CGT from CTH (CTH—CGT). However, the specific

calculation method for the CGT value differs. This algorithm is suitable for

single-layer and the topmost layer of multi-layer clouds, computing CBH using the

CTH at the top layer of the cloud. In comparison with the former GEO IDPS CBH
algorithm, the GEO CLAVR-x CBH algorithm considers two additional cloud types:
deep convection clouds and thin cirrus clouds. For more details on this CLAVR-x

CBH algorithm, please refer to the original algorithm documentation (Noh et al.,

2017).

3.3 Random-forest-based cloud-base height estimation algorithm

RF, one of the most significant ML algorithms, was initially proposed and
developed by (Breiman, 2001). It is widely employed to address classification and
regression problems based on the law of large numbers. The law of large numbers
states that when independent and identically distributed random experiments are
repeatedly conducted, the average of the results will converge to the expected value as
the number of trials increases. In RF algorithms, it primarily serves to increase
randomness and independence in model construction, thus enhancing the model's
stability and generalizability. Here, the RF method utilizes a forest of trees, serving as
an integrated algorithm that enhances overall model accuracy and generalization by
combining multiple weak classifiers. The final prediction is calculated through voting
or averaging. The RF method is well-suited for capturing complex or nonlinear
relationships between predictors and predictands. As mentioned earlier, this statistical
or ML-based algorithm has been already proven successful in retrieving CTH and
CBH (Min et al., 2020; Tan et al., 2020).

In this study, two distinct ML-based GEO CBH algorithms, namely VIS+IR and
IR-single (only uses observations of H8/AHI IR channels), are devised to retrieve or
predict the CBH using different sets of predictors. The RF training of the chosen
predictors is formulated as follows:

CBH=RF'reg[x1, X2, ..., Xn], @)

where RFy; denotes the regression Random Forest, model, and x; represents the ith

MBS T : This algorithm is suitable for both single-layer and
multi-layer clouds, computing CBH using the CTH at the top

)

OIHW//%T:S

predictor. The selected predictors from H8/AHI for both the VIS+IR and IR RF

model training and prediction are detailed in Table 1, mainly referencing Min et al.

10
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(2020) and Tan et al. (2020). The VIS+IR algorithm retrieves CBH based on NWP
data (atmospheric temperature and altitude profiles, total precipitable water (TPW),
surface temperature), surface elevation, air mass 1 (air mass 1=1/cos(view zenith
angle)), and air mass 2 (air mass 2=1/cos(solar zenith angle)). The rationale for
choosing air mass and TPW is their ability to account for the potential absorption
effect of water vapor along the satellite viewing angle. The predictors in CBH
retrieval also include the IR band Brightness Temperature (BT) and VIS band
reflectance. The IR-single algorithm selects the same Global Forecast System (GFS)
NWP data as the VIS+IR algorithm but employs different view zenith angles and
azimuth angles.

To optimize the RF prediction model, the hyperparameters of the RF model are
tuned individually. The parameters and their dynamic ranges involved in tuning the
RF prediction models include the number of trees [100, 200, 300, 400, 500], the
maximum depth of trees [10, 20, 30, 40, 50], the minimum number of samples
required to split an internal node [2, 4, 6, 8, 10], and the minimum number of samples
required to be at a leaf node [1, 3, 5, 7, 9]. In this study, we set the smallest number of

trees in the forest to 100 and the maximum depth of the tree to 40.

3.4 Evaluation method, -5

The performance of RF models and physics-based method will be assessed using

mean absolute error (MAE), mean bias error (MBE), RMSE, R, and standard _

deviation (STD) scores based on the testing dataset. These scores mentioned above
are used to understand different aspects of the predictive performance of model: MAE
and RMSE provide insights into the average error magnitude, MBE indicates bias in
the predictions, R evaluates the linear association between observed and predicted
values, and STD assesses the variability of the predictions. In the RF IR-single
algorithm, 581,783 matching points are selected from H8/AHI and CloudSat data for
2017. Seventy percent of these points are randomly assigned to the training dataset,
and the remainder serves as the testing dataset. For the RF VIS+IR algorithm, a total
of 418,241 matching points are chosen, with 70% randomly allocated to the training

set. Note that the reduced data amount is because only daytime data can be used for

]
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the VIS+IR method training. It's important to note that the two training datasets in
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CloudSat will also be used to verify the CBHs obtained by cloud radar and lidar. The

statistical formulas for evaluation are as follows:

MAE = %Z?ﬂp}i - xy, 2

MBE = iz?zl(yi - x), 3)

RMSE = \[%Z?:l(yi —x))2, )

R= —Zm@nen (5)
Jz&ﬂyrysziﬂm—mz

STD = \/n—flz?ﬂ(xi - x)2, (6)

where 7 is the sample number, y; is the ith CBH retrieval result, and x; is the ith joint
CloudSat/CALIOP CBH product.
Since the two RF models (VIS+IR and IR-single) select 230 typical variables to+

fit CBHs, the importance scores of these predictors in the two ML-based algorithms

are ranked for better optimization. In a Random Forest model, feature importance

indicates how much each input variable contributes to the model's predictive accuracy

by measuring the decrease in impurity or error when the feature is used to split data

(Gregorutti et al., 2017),_In the VIS+IR model, the top-ranked predictors are CTH and

cloud top temperature (CTT) from the H8/AHI Level-2 product (see Fig. Bl in

Appendix B). It i3 important to note that Dcor is a crucial and sensitive factor for .

(RN Giik: PA4EE: 0.74 K )
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these ML -based algorithms. Retrieving CBH samples with relatively low Dcor

remains challenging due to the low signal-to-noise ratio when DcotJs low (Lin et al.

o (EETHRR: TR R

A N A P N4

(Mg 7

2022). To address this issue, samples with Dcor less than 1.6 are filtered in the

VIS+IR model, and samples with relatively large BTs at Channel-14 are filtered in the

IR-single model. This filtering process significantly improves the R value from 0.869
to 0.922 in the VIS+IR model and from 0.868 to 0.911 in the IR-single model. For

more details on the algorithm optimization, please refer to Appendix B.

4 Results and Discussions
4.1 Comparisons with the joint CloudSat/CALIPSO cloud-base height product

The H8/AHI satellite CBH data retrieved by the four algorithms are matched
spatiotemporally with the 2B-CLDCLASS-LIDAR cloud product from joint

(T s
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CloudSat/CALIPSO observations in 2017. In this process, the nearest distance ;

matching method is employed, ensuring that the observation time difference between

the CloudSat/CALIPSO observation point and the matched Himwari-8 data is less

[ﬁETi’gﬁ FAA: (BRIA) Times New Roman, (
71

than 5 minutes (Noh et al., 2017), As in earlier study (Min et al., 2020), we also used

70% of the matched data for training and 30% of an independent sample for

validation. Figure, 1 displays a comparison of CBH results over the full disk at 02:00
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UTC on January 1, 2017, retrieved by the GEO IDPS algorithm, the GEO CLAVR-x
algorithm, the RF VIS+IR algorithm, and the RF IR-single algorithm. A similar
distribution pattern and magnitude of CBHs retrieved by these four independent

algorithms can be observed in Figure, 1. However, notable differences exist between

=
o
P N N ) . ) ) A

physics-based and ML-based algorithms. Further comparisons are conducted and
analyzed with spaceborne and ground-based lidar and radar observations in the

subsequent sections of this study.

4.1.1 Joint scatter plots -

Figure 2 presents the density scatter plot of the CBHs retrieved from the GEO

IDPS and GEO CLAVR-x algorithms compared with the CBHs from the joint
CloudSat/CALIPSO product, along with the related scores of MAE, MBE, RMSE,
and R calculated and labeled in each panel. The calculated R exceeds the 95%
significance level (p < 0.05). For the GEO IDPS algorithm, the R is 0.62, the MAE is
1.826 km, and the MBE and RMSE are -0.232 and 2.642 km (Fig. 2a). In comparison,
Seaman et al, (2017) compared the operational VIIRS CBH product retrieved by the

similar SNPP/VIIRS IDPS algorithm with the CloudSat CBH results. In their results,
the R is 0.569, and the RMSE is 2.3 km. For the new GEO CLAVR-x algorithm (Fig.
2b), the R is 0.647, and the RMSE is 2.91 km. The larger RMSE from two
independent physics-based CBH algorithms demonstrate a slightly poorer
performance and precision of these retrieval algorithms for GEO satellites.
Particularly, the larger RMSEs (2.642 and 2.91 km) indicate weaker stabilities of the
GEO IDPS and CLAVR-x CBH algorithms, compared with VIIRS CBH product

(Seaman et al., 2017). In this figure, more samples can be found near the 1:1 line,
implying the good quality of retrieved CBHs. However, in stark contrast, quite a
number of CBH samples retrieved by both GEO IDPS and GEO CLAVR-x
algorithms (compared with the official VIIRS CBH product) fall below 1.0 km,
indicating relatively large errors when compared with the joint CloudSat/CALIPSO

CBH product, Moreover, Figure, 2 reveals that relatively large errors are also found in
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MERT: The poor predictive performance of physics-based
algorithm for samples with a CBH lower than 1 km is likely

due to insufficient cloud base information in the visible band
observation data.
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511  the CBHs lower than 2 km for the four independent algorithms, primarily caused by
512  the weak penetration ability of VIS or IR bands on thick and low clouds.

‘513 Referring to the joint CloudSat/CALIPSO CBH product, Figures 2c and 2d QIHU\S%T:A

514  present the validations of the CBH results retrieved from two ML-based algorithms
515  using the VIS+IR (only retrieving the CBH during the daytime) and IR-single models.

‘516 Figure, 2c demonstrates better consistency of CBH between the VIS+IR model and the @h‘\J&%T: .

517  joint CloudSat/CALIPSO product with R = 0.905, MAE = 0.817 km, MBE = 0.425

‘518 km, and RMSE = 1.706 km. Figure2d also displays a relatively high R of 0.876 when @ﬁﬂﬁﬁ Iy
519  validating the IR-single model, with MAE = 0.882, MBE = —0.445, and RMSE =
520  1.995. Therefore, both VIS+IR and IR-single models can obtain high-quality CBH
521  retrieval results from geostationary imager measurements. In comparison, previous
522  studies also proposed similar ML-based algorithms for estimating CBH using FY-4A
523  satellite imager data. For example, (Tan et al., 2020) used the variables of CTH, Dcor,
524  Refr, cloud water path, longitude/latitude from FY-4A imager data to build the training
525 and prediction model and obtained CBH with MAE=1.29 km and R=0.80. In this
526  study, except CTH, the other Level-2 products and geolocation data
527  (longitude/latitude) used in (Tan et al., 2020) are abandoned, while the matched
528  atmospheric profile products (such as temperature and relative humidity) from NWP
529  data are added. These changes in ML-based model training and prediction lead to
530 more accurate CBH retrieval results. Note that, in accordance with the previous study
531 conducted by (Noh et al, 2017), we excluded CBH samples obtained from
532  CloudSat/CALIPSO that were smaller than 1 km in our comparisons. This exclusion
533  was primarily due to the presence of ground clutter contamination in the CloudSat

534  CPR data (Noh et al., 2017).

535 4.1.2 Test case - (BeHeRm: G BOATARE: 0 X
536 Figure, 3 displays two cross-sections of CBH from various sources overlaid with @W%Tx
537  CloudSat radar reflectivity (unit: dBZ) for spatiotemporally matched cases. The @ﬁuﬁfﬁ?:spatially and temporal

538  periods covered are from 03:16 to 04:55 UTC on January 13, 2017 (154.0°E-160.0°E;
539  40.56°S-53.39°S) and from 05:38 to 07:17 UTC on January 14, 2017 (107.1°E—
540 107.8°E; 8.35°N-11.57°N). The CloudSat radar reflectivity and joint
541  CloudSat/CALIPSO product provide insights into the vertical structure or distribution
542  of clouds and their corresponding CBHs. The results from the four GEO CBH
543  retrieval algorithms (GEO IDPS, GEO CLAVR-x, RF VIS+IR model, and RF

544  IR-single model) mentioned earlier are individually marked with different markers in
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each panel. According to Figure, 3a, the GEO IDPS algorithm faces challenges in

accurately retrieving CBHs for geometrically thicker cloud samples near 157°E.
Optically thick mid- and upper-level cloud layers may obscure lower-level cloud
layers. However, the CBH results retrieved by the GEO IDPS algorithm near 155°E
(in Fig. 3a) and 107.4°E (in Fig. 3b) align with the joint CloudSat/CALIPSO CBH
product. It is worth noting that the inconsistency observed between 107.2°E and

107.3°E in Figure, 3b, specifically regarding the CBHs around 1 km obtained from

(g

(i 7.

CloudSat/CALIPSO, can likely be attributed to ground clutter contamination in the
CloudSat CPR data (Noh et al., 2017). The GEO CLAVR-x algorithm achieves
improved CBH results compared to the GEO IDPS algorithm. It can even retrieve
CBHs for some thick cloud samples that are invalid when using the GEO IDPS
algorithm. However, the CBHs from the GEO CLAVR-x algorithm are noticeably
higher than those from the joint CloudSat/CALIPSO product. In contrast, the CBHs
from the two ML-based algorithms show substantially better results than those from
the other two physics-based algorithms. Particularly, the ML-based VIS+IR model
algorithm yields the best CBH results. However, compared with those from the two
physics-based algorithms, the CBHs from the two ML-based algorithms still exhibit a

significant error around 5 km.

4.2 Comparisons with the ground-based lidar and cloud radar measurements

Lidar actively emits lasers in different spectral bands into the air. When the laser
signal encounters cloud particles during transmission, a highly noticeable
backscattered signal is generated and received (Omar et al., 2009). When lidar
measures clouds, the intensity of the echo signal from the cloud to the laser satisfies
the lidar equation as follows:

Pry=Cx*B(ry*r?« exp[—Z for a(z)dz], (7
where P (r) is the intensity of the atmospheric backscattered signal received by the
laser telescope from the emission point in distance » (unit: Watt or W); C is the lidar
system instrumentation constant (unit: W-km?3sr); r is the detection distance (unit:
km); f(r) is the backscattering coefficient at the emission point in distance r (unit:
km™'-sr!); o(z) is the extinction coefficient at the distance emission point in distance
z (unit: km™). This return signal is markedly distinct from atmospheric aerosol

scattering signals and noise, making CBH easily obtainable from the signal difference

15

B T : Since the two RF models (VIS+IR and IR-single)
select 230 typical variables to fit CBHs, the importancet
scores of these predictors in the two ML-based algorithms
are ranked for better optimization. In the VIS+IR model,
the top-ranked predictors are CTH and cloud top
temperature (CTT) from the H8/AHI Level-2 product (see
Fig. B1 in Appendix B). It's important to note that Dcor is
a crucial and sensitive factor for these ML-based
algorithms. Retrieving CBH samples with relatively low
Dcor remains challenging due to the low signal-to-noise
ratio when Dcor is low (Lin et al., 2022). To address this
issue, samples with Dcor less than 1.6 are filtered in the
VIS+IR model, and samples with relatively large BTs at
Channel-14 are filtered in the IR-single model. This
filtering process significantly improves the R value from
0.869 to 0.922 in the VIS+IR model and from 0.868 to
0.911 in the IR-single model. For more details on the
algorithm optimization, please refer to Appendix B.
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or mutation (Sharma et al., 2016). In this study, continuous ground-based lidar data
from the Twin Astronomy Manor in Lijiang City, Yunnan Province, China (26.454°N,
100.0233°E, altitude = 3175 m) are used to evaluate the diurnal cycle characteristics
of CBHs retrieved using GEO satellite algorithms (Young and Vaughan, 2009). The

geographical location and photo of this station are shown in Figure, 4.

4.2.1 Comparison of CBH retrievals from ground and satellite data

The ground-based lidar data at Lijiang station on December 6, 2018, and January

8, 2019, are selected for validation. In fact, this lidar was primarily used for the ;

calibration of ground-based lunar radiation instruments. During the two-month

observation period (from December of 2018 to January of 2019), it was always

operated only under clear sky conditions, resulting in the capture of cloud data on just

h [&Eﬂ%ﬁ: k. (BA) Times New Roman, (%13

two days. The number of available and spatiotemporally matched CBH sample points

from ground-based lidar is 78 and 64 on December 6, 2018, and January 8, 2019,
respectively. Fig 5a and 5b show the point-to-point CBH comparisons between
ground-based lidar and four GEO satellite CBH algorithms on December 6, 2018, and
January 8, 2019. It is worth noting that the retrieved CBHs of the two physics-based
algorithms on December 6, 2018, are in good agreement with the reference values
from the lidar measurements, and, in particular, the GEO CLAVR-x algorithm can
obtain better results. From the results on January 8, 2019, more accurate diurnal cycle
characteristics of CBHs are revealed by the GEO CLAVR-x algorithm than by the
GEO IDPS algorithm.

Compared with the CBHs measured by ground-based lidar, the statistics of the
results retrieved from the GEO IDPS algorithm are R = 0.67, MAE = 3.093 km, MBE
= 0.856 km, and RMSE = 3.609 km (Fig. S5c). However, for cloud samples with CBH
below 7.5 km, the GEO IDPS algorithm shows an obvious underestimation of CBH in
Figure Sc. For the GEO CLAVR-x algorithm, it can also be seen that the matched

(ﬂﬂﬂﬁfﬁT: Fig. )
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samples mostly lie near the 1:1 line with R = 0.773 (the optimal CBH algorithm),
MAE = 1.319 km, MBE = 0.222 km, and RMSE = 1.598 km. In addition, this figure
also shows the CBH comparisons between the ML-based VIS+IR model/IR-single
model algorithms and the lidar measurements, revealing that the retrieved CBH
results from the ML-based VIS+IR model are better than those from the ML-based
IR-single model algorithm. The comparison results between the CBHs of the
ML-based VIS+IR model algorithm and the lidar measurements are around the 1:1

line, with smaller errors and R = 0.599. In contrast, the R between the CBHs of the
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ML-based IR-single model algorithm and the lidar measurements is only 0.494, with a
relatively large error. By comparing the retrieved CBHs with the lidar measurements
at Lijiang station, it indicates that CBH results from two physics-based algorithms are
remarkably more accurate, particularly that the GEO CLAVR-x algorithm can well
capture diurnal variation of CBH.

To further assess the accuracy and quality of the diurnal cycle of CBHs retrieved

with these algorithms, CBHs from another ground-based cloud radar dataset covering

the entire year of 2017 are also collected and used in this study. Due to the density of

points in the one-year time series, the point-to-point CBH comparison results for the

entire year are not displayed here (monthly results are shown in the supplementary

document), we only show 4 days results in the following Figure 6. As well known, the

diurnal variation of cloud base height is primarily influenced by solar heating, causing

the cloud base to rise in the morning and reach its peak by midday. As the surface

cools in the afternoon and evening, the cloud base lowers, playing a crucial role in

weather patterns and forecasting (Zheng et al., 2020). Therefore, it is essential to

rigorously compare the ML-based algorithm with ground-based observations to

determine its ability to adapt to the daily variations in cloud base height caused by

natural factors. The observational instrument is a Ka-band (35 GHz) Doppler
millimeter-wave cloud radar (MMCR) located at the Beijing Nanjiao Weather
Observatory (a typical urban observation site) (39.81°N, 116.47°E, altitude = 32 m;
see Fig. 4), performing continuous and routine observations. The MMCR provides a
specific vertical resolution of 30 m and a temporal resolution of 1 minute for single
profile detection, based on the radar reflectivity factor. In a previous study (Zhou et
al., 2019), products retrieved by this MMCR were utilized to investigate the diurnal
variations of CTH and CBH, and comparisons were made between MMCR-derived

CBHs and those derived from a Vaisala CL51 ceilometer. The former study also

found that the average R of CBHs from different instruments reached up to 0.65. It is

worth noting that the basic physics principle for detecting cloud base height from both
spaceborne cloud profiling radar and ground-based cloud radar and lidar
measurements is the same. All these algorithms of detecting CBH are based on the
manifest change of return signals between CBH and the clear sky atmosphere in the
vertical direction (Huo et al., 2019; Ceccaldi et al., 2013). The joint spaceborne
CloudSat/CALIPSO detection might face limitations in penetrating extremely dense,

optically thick, or areas with heavy precipitation clouds. Hence, in comparison, the
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CBH values gathered from ground-based lidar and cloud radar measurements are
expected to be more accurate than the data derived from spaceborne
CloudSat/CALIPSO detection.

Similar to Figure 5. Figure 6 presents two sample groups of CBH results from the

(k% 7 Fig. 5, Fig. 6

cloud radar at Beijing Nanjiao station relative to the matched CBHs from the four
retrieval algorithms (GEO IDPS, GEO CLAVR-x, ML-based IR-single, ML-based
VIS+IR) on April 9-10 and July 26-28, 2017. Similar to the results at Lijiang station

discussed in Figure 5, we observe better and more robust performances in retrieving

diurnal cycle characteristics of CBH from the two physics-based CBH retrieval
algorithms. In contrast, more underestimated CBH samples are retrieved by the two

ML-based algorithms.

4.2.2 Diurnal cycle analysis of CBH retrieval accuracy «

To further investigate the diurnal cycle characteristics of retrieved CBH from

GEO satellite imager measurements, Figure 7, presents box plots of the hourly CBH

B T : Due to the density of points in the one-year time
series, the point-to-point CBH comparison results for the
entire year are not displayed here (monthly results are shown
in the supplementary document). Similar to the results at

‘ QM@%T: Fig. 5

(BB M HgE: 0 EX

: (MU@%T:Fig. 7

errors (relative to the results of cloud radar at Beijing Nanjiao station) in 2017 from
the four different CBH retrieval algorithms. Remarkably, there are significant
underestimations of the CBHs retrieved from the two ML-based algorithms. The
ML-based VIS+IR method achieves relatively better results than the ML-based
IR-single method during the daytime. Comparing the two ML-based algorithms, the
errors of the IR-single model algorithm have a similar standard deviation (2.80 km) to
those of the VIS+IR model algorithm (2.69 km) during the daytime. For the IR-single
model algorithm, it can be applied during both daytime and nighttime, its nighttime
performance degrades slightly, with an averaged RMSE (3.88 km) higher than that of
daytime (3.56 km). The nighttime CBH of the IR-single model algorithm is the only

choice that should be used with discretion.

Figure & shows the comparisons of hourly MAE, MBE, RMSE, and R relative to

B T To the best of our knowledge, there is no alternative
nighttime CBH product for geostationary satellite imagers
right now. The nighttime CBH of the IR-single model

(B T : Fig. 8

the CBHs from the cloud radar at Beijing Nanjiao station during daytime between
four retrieval algorithms in 2017. The RMSE of the two ML-based algorithms shows

stable diurnal variation. It is noted that all algorithms have lower R at sunrise, around

07:00 local time, which improve as the day progresses. However, the GEO CLAVR-x
algorithm stands out for its relatively higher and more stable in R and RMSE during
daytime.

Figure, 9a displays scatter plots and relevant statistics of the CBHs retrieved from

g (HH‘J’?/%T: correlation coefficients (

(w7

NN
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the GEO IDPS algorithm against the CBHs from cloud radar. The CBHs from the
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GEO IDPS algorithm align well with the matched CBHs from cloud radar at Beijing
Nanjiao station, with R = 0.515, MAE = 2.078 km, MBE = 1.168 km, and RMSE =
2.669 km. In Figure 9b, the GEO CLAVR-x algorithm shows better results with R =

(e 7.

0.573, MAE = 2.059 km, MBE = —0.204 km, and RMSE = 2.601 km. It is not
surprising that Figs. 8c and 8d reveal obvious underestimated CBH results from the
two ML-based CBH algorithms. Particularly, the CBH results from the ML-based
VIS+IR model algorithm concentrate in the range of 2.5 km to 5 km. Therefore,
Figure, 5 to Figure, 9 further substantiates the weak diurnal variations captured by

ML-based techniques, primarily attributed to the scarcity of comprehensive CBH
training samples throughout the entire day. Besides, although the two robust
physics-based algorithms of GEO IDPS and GEO CLAVR-x (the optimal one) can
retrieve high-quality CBHs from H8/AHI data, especially the diurnal cycle of CBH
during the daytime, they still struggle to retrieve CBHs below 1 km.

5. Conclusions and discussion

To explore and argue the optimal and most robust CBH retrieval algorithm from
geostationary satellite imager measurements, particularly focusing on capturing the
typical diurnal cycle characteristics of CBH, this study employs four different
retrieval algorithms (two physics-based and two ML-based algorithms). High
spatiotemporal, resolution CBHs are retrieved using the H8/AHI data from 2017 to

(e 7.

(g 7.

NN

O]’}U [%: T : spatial-temporal

2019, To assess the accuracies of the retrieved CBHs, point-to-point validations are

(ﬂﬂu@’ﬁ?:and 2018

conducted based on spatiotemporally, matched CBHs from the joint

QWU F% 1 : spatially-temporally

CloudSat/CALIOP product, as well as ground-based lidar and cloud radar
observations in China. The main findings and conclusions are outlined below.

Four independent CBH retrieval algorithms, namely physics-based GEO IDPS,
GEO CLAVR-x, ML-based VIS+IR, and ML-based IR-single, have been developed
and utilized to retrieve CBHs from GEO H8/AHI data. The two physics-based
algorithms utilize cloud top and optical property products from AHI as input

parameters to retrieve high spatiotemporal, resolution CBHs, with operations limited

QWU % 1 : spatial-temporal

to daytime. In contrast, the ML-based VIS+IR model and IR-single model algorithms
use the matched joint CloudSat/CALIOP CBH product as true values for building RF
prediction models. Notably, the ML-based IR-single algorithm, which relies solely on

infrared band measurements, can retrieve CBH during both day and night,

(H’J“J k% T : throughout the day
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The accuracy of CBHs retrieved from the four independent algorithms is verified
using the joint CloudSat/CALIOP CBH products for the year 2017. The GEO IDPS
algorithm shows an R of 0.62 and an RMSE of 2.642 km. The GEO CLAVR-x
algorithm provides more accurate CBHs with an R of 0.647 and RMSE of 2.91 km.
After filtering samples with optical thickness less than 1.6 and brightness temperature
(at 11 um band) greater than 281 K, the ML-based VIS+IR and ML-based IR-single
algorithms achieve higher accuracy with an R(RMSE) of 0.922(1.214 km) and
0.911(1.415 km), respectively. This indicates strong agreement between the two
ML-based CBH algorithms and the CloudSat/CALIOP CBH product.

However, in stark contrast, the results from the physics-based algorithms (with R

and RMSE of 0.592/2.86 km) are superior to those from the ML-based algorithms ,

(with R and RMSE of] 0.385/3.88 km) when compared with ground-based CBH

observations such as lidar and cloud radar. In the comparison with the cloud radar at
Beijing Nanjiao station in 2017, the R of the GEO CLAVR-x algorithm is 0.573,
while the R of the GEO IDPS algorithm is 0.515. Meanwhile, notable differences are

observed in the CBHs between, both ML-based algorithms. Similar conclusions are

(% 7 (with R and RMSE of 0.592/2.86 km

(B3 7 - and

OJHU fk T, respectively

NN

O]H‘J fk 7 : from

also evident in the 2-day comparisons at Yunnan Lijiang station.

The CBH results from the two ML-based algorithms (R > 0.91) can likely be
attributed to the use of the same training and validation dataset source as the joint
CloudSat/CALIOP product. However, this dataset has limited spatial coverage and
small temporal variation, potentially limiting the representativeness of the training
data. In contrast, the GEO CLAVR-x algorithm demonstrates the best performance
and highest accuracy in retrieving CBH from geostationary satellite data. Notably, its
results align well with those from ground-based lidar and cloud radar during the
daytime. However, both physics-based methods, utilizing CloudSat CPR data for
regression, struggle to accurately retrieve CBHs below 1 km, as the lowest 1 km
above ground level of this data is affected by ground clutter.

Additionally, despite utilizing the same physics principles in spaceborne and
ground-based lidar/radar CBH algorithms, the previous study (Thorsen et al., 2011)
has highlighted differences in profiles between them. Therefore, this factor could
contribute to the relatively poorer results in CBH retrieval by ML-based algorithms
compared to ground-based lidar and radar. The analysis and discussion above suggest

that ML-based algorithms are constrained by the size and representativeness of their
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datasets. Therefore, in scenarios involving a large time scope, such as climate
research, it is more reasonable to opt for physics-based cloud base height algorithms.
Ideally, if more spaceborne cloud profiling radars with different passing times
(covering all day) can be included in the training dataset, the promising ML technique
will certainly generate a higher quality CBH product with more comprehensive
observations. The CBH product using ML-based algorithms should continue to be

improved in future work. Particularly, exploring the joint ML-physics-based method

presents a promising direction, which can address the complexities and challenges in

retrieving cloud properties. By integrating established physical relationships into ML

models, we can potentially enhance the accuracy and reliability of predictions. This

approach not only leverages the strengths of both physics-based models and

data-driven techniques but also offers a pathway to more robust and interpretable

solutions in atmospheric sciences. At present, we will focus on developing

physics-based algorithms for cloud base height for the next generation of
geostationary meteorological satellites, to support the application of these products in
weather and climate domains._

Besides, at night, current GEO satellite imaging instruments encounter

(e 7

challenges in accurately determining CBH due to limited or absent solar illumination.
Because it is unable to retrieve cloud optical depth in the visible band, the current
method faces limitations. However, there is potential for enhanced accuracy in
deriving cloud optical and microphysical properties, as well as CBH, by incorporating
the Day/Night Band (DNB) observations during nighttime in the future (Walther et al.,
2013).
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Appendix A

Based on the previously discussed description of two physics-based cloud base
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height (CBH) retrieval algorithms (GEO IDPS and GEO CLAVR-x retrieval
algorithms), cloud products such as cloud top height (CTH), effective particle radius
(Refr), and cloud optical thickness (Dcor) will be utilized in both algorithms. To
validate the reliability of these cloud products derived from the Advanced Himawari
Imager (AHI) aboard the Himawari-8 (H8), a pixel-by-pixel comparison is conducted
with analogous MODIS Collection-6.1 Level-2 cloud products. Both Aqua and Terra
MODIS Level-2 cloud products (MODO06 and MYDO06) are accessible for free
download from the MODIS official website. For verification purposes, the
corresponding Level-2 cloud products from January, April, July, and October of 2018
are chosen to assess CTH, Dcor, and Refr retrieved by H8/AHI.

Figure, S2 (in the supplementary document) shows the spatiotemporally matched

case comparisons of CTH, Dcor and Resr from H8/AHI and Terra/MODIS (MYDO06)
at 03:30 UTC on January 15, 2018. It can be seen that the CTH, Dcor and Refr from
H8/AHI are in good agreement with the matched MODIS cloud products. However,

there are still some differences in Refr at the regions near 35°N, 110°E in Figures, S2d

(g 7.

QWU F% 1 : spatially-temporal

NN

(g 7.

and S2c. The underestimated Retr values from H8/AHI relative to MODIS have been
reported in previous studies. (Letu et al., 2019) compared the ice cloud products
retrieved from AHI and MODIS, and concluded that the Resr from both products differ
remarkably in the ice cloud region and the Dcor from them are roughly similar.
However, the Dcor from AHI data is higher in some areas. Looking again at the cloud
optical thickness that at the same time, the slight underestimation of H8/AHI Dcor
can be found in Figures, S2e and S2f. Figure, S3 (in the supplementary document)

shows another case at 02:10 UTC on January 15, 2018. Despite of the good
consistence between H8/AHI and MODIS cloud products, there are slight differences
in CTH in the area around 40°S—40.5°S, 100°E—110°E in Figs. S3a and S3b. Besides,
as shown in Figure, S2, there are still underestimations in the Resr of H8/AHI.

(g 7.

(g 7.

NN

(g 7.

To further compare and validate these three H8/AHI cloud products, the
spatiotemporally, matched samples from H8/AHI and Aqua/Terra MODIS in four

QWU F% 1 : spatially-temporally

months of 2018 are counted within the three intervals of 0.1 km (CTH), 1.0 pm (Refr),
and 1 (Dcor) in Figure, S4 (in the supplementary document). The corresponding mean

(Mg 7.

absolute error, mean bias error, RMSE and R values are also calculated and marked in

each subfigure. As can be seen, the R of CTH is around 0.75 in all four months and is
close to 0.8 in August. The results of Dcor show the highest R, reaching above 0.8. In

contrast, the underestimation trend in Refr is also shown in this figure. These different
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consistencies between two satellite-retrieved cloud products may be attributed to: (1)

different spatiotemporal, resolutions between H8/AHI and MODIS; (2) different

(mgz 7

: spatial-temporal

wavelength bands, bulk scattering model, and specific algorithm used for retrieving
cloud products; (3) different view zenith angle between GEO and low-earth-orbit
satellite platforms (Letu et al., 2019). In addition, other external factors such as

surface type also can affect the retrieval of cloud product. However, according to

Appendix B

Figure, S4, the bulk of the analyzed samples are still around the 1:1 line, indicating the Qm%t?: .
good quality of H8/AHI cloud products.
The ML-based visible (VIS)+infrared (IR) model algorithm mentioned above
uses 230 typical variables (see Table 1) as model predictors, and the importance
scores of top-30 predictors are ranked in Figure, S5 (in the supplementary document). @’}U\%T: .
It can be seen that the most important variables are CTH and CTT, and Dcor is an @ﬁu&%?: cloud top temperature

important or sensitive factor affecting these two quantities. A sensitivity test is also

performed to further investigate the potential influence of Dcor on the CBH retrieval

Lidar and Infrared Pathfinder Satellite Observation)/CloudSat product.

NN

by the VIS+IR model (see Table S1 in the supplementary document). From Figure, QW,%T:.
S7a, we find that the samples with Dcor lower than 5 cause the relatively large CBH
errors compared with the matched CBHs from the joint CALIPSO (Cloud-Aerosol

According to the results in this Figure, S7b, we may filter the samples with @Mﬁﬁ T
relatively small Dcor to further improve the accuracy of CBH retrieval by the VIS+IR
model (see Table S1). Figure, S7b shows that after filtering the samples with the Dcor QIHU\S%T: .
less than 1.6, the R increases from 0.895 to 0.922, implying a better performance of CW@T: B3
CBH retrieval. According to the ranking of predictor importance (see Fig. S6 in the
supplementary document), we also conduct another sensitivity test on the BT
observed by H8/AHI IR Channel-14 (Chal4) at 11 pm, which plays an important role
in the IR-single model. Figure, S7c shows that the BT values of H8/AHI Channel-14 @’}Hﬁﬁ T
ranges from 160 K to 316 K, and the samples with BT higher than 300 K show large
CBH errors. Similarly, by filtering the samples with BT higher than 281 K, we can get
a better IR-single model algorithm for retrieving high-quality CBH (see Table S2 in
the supplementary document). Figure, S7d also proves that the R value increases from OJJ}U&%T: .

0.868 to 0.911.
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Tables and Figures

Table 1. Predictand and predictor variables for both visible (VIS)+infrared (IR) model

and IR-single regression model training, which are divided according to the different

predictor variables from satellite and NWP data

Predictand IR-single model input VIS+IR model input
BT(3.9um), BT(6.2um), BT(6.9um), | BT(3.9um), BT(6.2um), BT(6.9um)
BT(7.3um), BT(8.6um), BT(9.6um), | BT(7.3um). BT(8.6um), BT(9.6um)
BT(10.4pum), BT(11.2um) BT(10.4um). BT(11.2um),
BT(12.4pum), BT (13.3pum) BT(12.4um), BT(13.3pum)
BTD(11.2-12.4um), BTD(11.2— BTD(11.2-12.4um), BTD(11.2—
13.3um) [Unit = K], 13.3um) [Unit = K],
Air Mass (1/cos(VZA)) Air Mass(1/cos(VZA)),

Predictor View azimuth angles [Unit = degree], | Air Mass(1/cos(SZA))

[satellite Cloud top height from H8/AHI [unit: | View/Solar Azimuth angles [Unit =
measurements] | m], degree],

Cloud top temperature from H8/AHI

Cloud top height from H8/AHI [unit:

unit: K

B

Cloud top temperature from H8/AHI
Ref(0.47um), Ref(0.51um)
Ref(0.64um), Ref(0.86um)
Ref(1.64um), Ref(2.25um)

Predictor [GFS

Altitude profile (from surface to

Altitude profile (from surface to about

about 21 km, 67 layers) [unit: m]

21 km, 67 layers) [unit: m],

Temperature profile (from surface to

Temperature profile (from surface to

about 21 km, 67 layers) [unit: K]

about 21 km, 67 layers) [unit: K]

Relative humidity profile (from

Relative humidity profile (from

NWP surface to about 21 km, 67 layers) surface to about 21 km, 67 layers)
unit: %], unit: %],
Total precipitable water. Total precipitable water,
Surface temperature [unit: K] Surface temperature [unit: K]
Predictor ) ) ) )
Surface elevation [unit: m] Surface elevation [unit: m]
other

Notes: VZA = view zenith angle [unit: degree];

degree]
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SZA = solar zenith angle [unit:
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Figure 1. Comparison of full disk CBH results retrieved by the four-independent
algorithms at 02:00 UTC on January 1, 2017. (a) GEO IDPS algorithm, (b) GEO
Clouds from AVHRR Extended (CLAVR-x) algorithm, (c) ML-based (RF, random
forest) VIS+IR algorithm and (d) ML-based (RF) IR-single algorithm.
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Figure 2. Density distributions of CBHs retrieved from (a) GEO IDPS, (b) GEO
CLAVR-x, (c) VIS+IR and (d) IR-single algorithms compared with the CBHs from
the joint CloudSat/CALIPSO product (taken as true values) in 2017. The mean
absolute error (MAE), mean bias error (MBE), root mean square error (RMSE) and R
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1229  Figure 3. Inter-comparisons of CBH products retrieved by CloudSat (red solid circle),
1230  the GEO IDPS algorithm (blue solid circle), the GEO CLAVR-x (green solid circle),
1231 the ML-based VIS+IR model algorithm (orange solid circle), and the ML-based
1232 IR-single model algorithm (pink solid circle) at (a) 03:16—-04:55 UTC on January 13,
1233 2017 (a) and (b) 05:38-07:17 UTC on January 14, 2017. The black and gray colormap
1234  represents the matched CloudSat radar reflectivity.

1235

1236

1237

1238

1239

1240

1241

1242

33



1243

1244

1245

1246

1247
60° N
50° N A
40° N
30° N
20° N
10° N

70° E 80° E 90° E 0° E 120° E 130° E 140° E
1248

1249  Figure 4. Geographical locations and photos of lidar and cloud radar at Yunnan
1250  Lijiang and Beijing Nanjiao stations.
1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

34



1266

1267
1268
1269
20.0 (a) 20.0 (b)
e LIDAR e LIDAR
17:5 *  GEO CLAVR-x 17.5 *  GEO CLAVR-x
£ X GEO IDPS £ X GEO IDPS
44. 15.0 ML VIS+IR ¢< 15.0 ML VIS+IR
] + ML IR-single e + ML IR-single
E‘ 125 Kx%;‘ff?‘x;ix“xxwx § 125
.o *
5 1007 7, a *E 00 il P 10.0
@ 75 ....'.‘nt.o.g"";“ Ceoso| @ 754 . . . oo
B * o tt;';*.‘x--- e ®se®e®on
R T e e Y e R X S TES £3 25 SRS
(9] (9] X X
25 25 X xx x XX
0.0 - X X x XXXXXX
02:10 03:00 04:00 05:00 06:00 07:00 08:00 04:10  05:00 06:00 07:00 08:00
2018-12-06 2019-01-08
20.0 ) -
MAE=1.319 MAE=3.093 MAE=2.§,&1’
17.5{MBE=0.222 MBE=-0.856 MBE=: 661
245 RMSE=1.598 RMSE=3.609 ’BMSE=2.989
O U|R=0.733 R =0.67 ~R=0.494
° e
2125 2
=
[
£10.0
<
E 75
&=
& 5.0 % GEO CLAVRx
@) ,, X GEO IDPS
2.5 ML VIS+IR
' + ML IR-single
Q%'
.0 2.5 5.0 7.5 100 125 15.0 17.5 20.0
LIDAR CBH, km
1270

1271 Figure 5. Comparisons of the CBHs from the ground-based lidar measurements
1272 (black solid circle) at Yunnan Lijiang station and the four GEO satellite retrieval
1273 algorithms, namely the GEO IDPS (red cross symbol), the GEO CLAVR-x (green
1274  solid asterisk), the ML-based VIS+IR model (orange solid diamond) and the

:*275 ML-based IR-single model (blue plus sign) algorithms. Fig Sa and 5b show the time : @Mﬁ% 7:6

1276  series of CBHs from lidar and the four GEO satellite retrieval algorithms on ‘Qlﬁﬂﬁﬁ'f 6

NN

:‘277 December 6, 2018 and January 8, 2019, respectively. Fig 5¢ shows the scatterplots of QIW%%T: 6

1278  CBH samples from the lidar measurements and the four retrieval algorithms.
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*292 Figure 6. Same as Figure, 5, but for the CBH sample results from the cloud radar at

Beijing Nanjiao station (black solid circle) on April 9—10, 2017 (top panel) and July
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Figure 7. Box plots of the hourly CBH errors of four GEO satellite retrieval
algorithms (GEO IDPS, GEO CLAVR-x, ML-based VIS+IR and ML-based IR-single)
relative to the CBHs from the cloud radar at Beijing Nanjiao station in 2017. The box
symbols signify the 25th, 50th and 75th percentiles of errors. The most extreme
sample points between the 75th and outlier, and the 25th percentiles and outliers are
marked as whiskers and diamonds, respectively. Except for the period between 7 and
17 UTC (local time), the three algorithms of GEO CLAVR-x, GEO IDPS, and ML

VIS+IR are unavailable due to the lack of reflected solar radiance measurements.
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1340  Figure 8. Comparisons of hourly (a) MAE, (b) MBE, (c¢) RMSE, and (d) R of CBH
1341  (relative to the CBHs from the cloud radar at Beijing Nanjiao station) from 07 to 17

1342 (local time) between four retrieval algorithms (GEO IDPS, GEO CLAVR-x,

38



1343

1344

1345
1346

1347
1348

1349

1350

1351

1352

1353

1354

1355
1356

ML-based VIS+IR and ML-based IR-single) in 2017.

200 vaE=2.078 (a) 2001 AE=2.059 (b)
17.5| MBE=1.168 5 | MBE=-0.204
. | RMSE=2.669 £ | RMSE=2.601
R =0.515 < R =0.573
<150 n=11481 5 1% n=17556
&125 g z125 :
o o ’
% 10.0 9100
s 0
S 7.5]. £
T, : £
8 > 3
(9]

CBH from cloud radar, km

00 25 50 75 10.0 12.5 15.0 17.5 20.0

25 50 7.5 10.0 12.5 15.0 17.5 20.0
CBH from cloud radar, km

200 MAE=2.439 (C) 00T MAE=3.357 (d)
17.5] MBE=0.962 51 MBE=2.774
| RMSE=2.86 | RMSE=3.88
R =0.592 R =0.385
S15011 221367 501 n =69297
& - 2.5
> ~
2 0.0
= o
é 7.5
F 5.0 e
o

0.0+

00 25 50 7.5 10.0 125 15.0 17.5 20.0
CBH from cloud radar, km

Figure 9. Comparisons between the CBHs from the cloud radar at Beijing Nanjiao

station and the matched CBHs from the four retrieval algorithms (GEO IDPS, GEO
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CLAVR-x, ML-based VIS+IR and ML-based IR-single) in 2017.
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