

1 **Title:** Elephant megacarcasses increase local nutrient pools in African savanna soils and plants

- 3 Courtney G. Reed^{1*}, Michelle L. Budny², Johan T. du Toit^{3,4}, Ryan Helcoski³, Joshua P.
- 4 Schimel¹, Izak P. J. Smit^{5.6}, Tercia Strydom⁵, Aimee Tallian^{3,7}, Dave I. Thompson^{8,9}, Helga van
- 5 Coller^{8,10}, Nathan P. Lemoine^{2,11}, Deron E. Burkepile^{1,8*}
- 6
- 7 ¹Department of Ecology, Evolution, and Marine Biology, University of California, Santa
- 8 Barbara, CA, USA
- 9 ²Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
- ³Department of Wildland Resources, Utah State University, Logan, UT, USA
- ⁴Institute of Zoology, Zoological Society of London, London, England, UK
- 12 ⁵Scientific Services, South African National Parks, Skukuza, South Africa
- 13 ⁶Sustainability Research Unit, Nelson Mandela University, George, South Africa
- ¹⁴ ⁷Norwegian Institute for Nature Research, Høgskoleringen 9 Trondheim, 7485 Norway
- 15 ⁸South African Environmental Observation Network (SAEON), Ndlovu Node, Phalaborwa,
- 16 South Africa
- 17 ⁹Unit for Environmental Sciences and Management, Potchefstroom Campus, North West
- 18 University, Potchefstroom, South Africa
- ¹⁰The Expanded Freshwater and Terrestrial Environmental Observation Network (EFTEON),
- 20 Kimberley 8306, South Africa
- 21 ¹¹Department of Zoology, Milwaukee Public Museum, Milwaukee, WI, USA
- 22

- 23 *Corresponding authors: Courtney Reed, <u>courtneyreed@ucsb.edu</u>, Deron Burkepile,
- 24 <u>dburkepile@ucsb.edu</u>

25 Abstract

26	African elephants (Loxodonta africana) are the largest extant terrestrial mammals, with bodies
27	containing enormous quantities of nutrients. Yet we know little about how these nutrients move
28	through the ecosystem after an elephant dies. Here, we investigated the initial effects (1-26
29	months post-death) of elephant megacarcasses on savanna soil and plant nutrient pools in Kruger
30	National Park, South Africa. We hypothesized that: (H1) elephant megacarcass decomposition
31	would release nutrients into soil, resulting in higher concentrations of soil nitrogen (N),
32	phosphorus (P), and micronutrients near the center of carcass sites; (H2) carbon (C) inputs to the
33	soil would stimulate microbial activity, resulting in increased soil respiration potential near the
34	center of carcass sites; and (H3) carcass-derived nutrients would move from soil into plants,
35	resulting in higher foliar nutrient concentrations near the center of carcass sites. To test our
36	hypotheses, we identified 10 elephant carcass sites split evenly between nutrient-poor granitic
37	and nutrient-rich basaltic soils. At each site, we ran transects in the four cardinal directions from
38	the center of the gravesite, collecting soil and grass (Urochloa mosambicensis) samples at 0, 2.5,
39	5, 10, and 15 m. We then analyzed samples for CNP and micronutrient concentrations and
40	quantified soil microbial respiration potential. We found that concentrations of soil nitrate,
41	ammonium, ¹⁵ N, P, sodium, and potassium were elevated closer to the center of carcass sites
42	(H1). Microbial respiration potentials were positively correlated with soil organic C, and both
43	respiration and organic C decreased with distance from the carcass (H2). Finally, we found
44	evidence that plants were readily absorbing carcass-derived nutrients from the soil, with foliar
45	%N, ¹⁵ N, iron, potassium, and sodium significantly elevated closer to the center of carcass sites
46	(H3). Together, these results indicate that elephant megacarcasses release ecologically
47	consequential pulses of nutrients into the soil, which then move into above-ground nutrient pools

- 48 in plants. These localized nutrient pulses may drive spatiotemporal heterogeneity in plant
- 49 diversity, herbivore behavior, and ecosystem processes.

50 Sect. 1 Introduction

51	Living animals affect nutrient flows and ecosystem processes (Schmitz et al. 2018), but we have
52	only recently acknowledged that animal carcasses could also influence nutrient availability
53	(Barton et al. 2013; Monk et al. 2024). In marine ecosystems, whale carcasses function as unique
54	hotspots of nutrient cycling, biodiversity, and ecosystem processes (Roman et al. 2014). In
55	terrestrial systems, mass mortality events (e.g., wildebeest, cicadas) create nutrient hotspots
56	(Yang, 2004; Subalusky et al. 2020), while individual small and medium-sized carcasses release
57	pulses of nutrients into the soil (Town, 2000; Barton et al. 2016; Olea et al. 2019). Yet, terrestrial
58	ecosystem ecology lacks knowledge about another potential driver of spatiotemporal
59	heterogeneity in nutrient cycling and ecosystem processes – megacarcasses (animals such as
60	elephants and rhinoceros that are >1000 kg at death) – which may be functionally different than
61	smaller carcasses due to the extraordinarily high concentration of nutrients and residence time of
62	the decomposing animal (see reviews by Barton et al. 2013; Barton, 2016; Barton & Bump
63	2019). This question is particularly relevant given the megaherbivore losses that occurred during
64	the Pleistocene extinctions and that are still occurring today (Ripple et al. 2015). We are only
65	beginning to understand how the 'extinction aftershock' of losing the largest species impacts
66	ecosystems (Owen-Smith, 1989; Flannery, 1990), and no study has yet investigated how the loss
67	of megacarcasses might influence terrestrial ecosystem dynamics (Doughty et al. 2013; Doughty
68	et al. 2016).
69	We can only evaluate the importance of terrestrial megacarcasses for nutrient cycling in
70	ecosystems where megaherbivores still exist, such as African savannas. The African savanna

71 elephant (Loxodonta africana) is the largest extant land animal and is known for its key

72 ecological effects in savannas while alive (e.g., dispersing seeds, creating plant refuges,

73	preventing woody encroachment) (Skarpe et al. 2004; Asner et al. 2009; Campos-Arceiz &
74	Blake, 2011; Coverdale et al. 2016; Guy et al. 2021). The elephant's large body mass may mean
75	that it also has an outsized impact after death. A 4000-kg elephant megacarcass likely represents
76	~2000 kg carbon (C), ~300 kg nitrogen (N), and ~125 kg phosphorus (P) deposited in the
77	savanna landscape (estimated from stoichiometry of elephants and other mammals in Sterner &
78	Elser, 2002). The N deposition from one elephant megacarcass (in a 700 m ² impact zone
79	assuming a 15 m disturbance radius) is roughly equivalent to the N delivered to 10,000 m^2 of
80	savanna from ~100 years from atmospheric deposition (Mphepya et al. 2006).
81	If megacarcasses provide large nutrient pulses, then they likely create hotspots of
82	important below- and aboveground processes. Belowground, soil respiration and organic matter
83	decomposition might increase with nutrient inputs from carcasses (Rische et al. 2020).
84	Concentrations of C, N, P, and potassium (K) are elevated near carcasses of medium-sized
85	animals (e.g., bison, moose, kangaroo, vicuña) (Towne, 2000; Bump et al. 2009a; Macdonald et
86	al. 2014; Risch et al. 2020; Monk et al. 2024), and nutrients such as P and calcium (Ca) continue
87	leaching from bones even after soft tissues have been consumed or degraded (Coe, 1978; Keenan
88	& Beeler, 2023). Aboveground, plant growth in African savannas is strongly limited by nutrient
89	availability, most commonly N and P, but also by micronutrients such as Ca, K, and magnesium
90	(Mg) (Jobbágy & Jackson, 2004; Ries & Shugart, 2008; Pellegrini, 2016). Thus, the large influx
91	of nutrients released from megacarcasses might increase the mobilization of nutrients by plants,
92	potentially increasing nutrient accessibility for above-ground herbivores (Yang, 2008; Grant &
93	Scholes, 2006; Anderson et al. 2010; Joern et al. 2012). Indeed, carcasses of smaller vertebrates
94	(e.g., salmon, deer) can increase the proportions of nitrogen and ¹⁵ N in plants within just a few
95	months post-death (Hocking & Reynolds, 2012; van Klink et al. 2020).

96	To assess the effects of megacarcasses on local nutrient pools (Figure 1), we measured
97	the initial contributions of elephant carcasses (1-26 months post-death) to soil and plant nutrients
98	in the Kruger National Park (KNP), South Africa. Further, we examined the effects of elephant
99	carcasses on the two main soil types in KNP: sandy, relatively nutrient-poor granitic soils and
100	clayey, nutrient-rich basaltic soils (Venter et al. 2003). At each site, we ran transects in each
101	cardinal direction from the center of the site where an elephant died, collecting samples of soil
102	and a palatable grass species (Urochloa mosambicensis) at 0, 2.5, 5, 10, and 15 m. We then
103	analyzed soil samples for CNP content, quantified soil microbial respiration potential, and
104	measured %N and ¹⁵ N in grass tissue. We hypothesized that: (H1) elephant megacarcass
105	decomposition would release nutrients into soil, resulting in higher concentrations of soil N, P,
106	and micronutrients near the center of carcass sites; (H2) C inputs to the soil would stimulate
107	microbial activity, resulting in increased soil respiration potential near the center of carcass sites;
108	and (H3) carcass-derived nutrients would move from soil into plants, resulting in higher foliar
109	nutrient concentrations near the center of carcass sites. We predicted that enrichment effects
110	from megacarcasses would be greater on nutrient-poor granitic sites compared to nutrient-rich
111	basaltic sites.
112	

113 Sect. 2 Methods

114 **2.1 Study system and sample collection**

115 We performed this research in the southern part of the Kruger National Park (KNP), South

- 116 Africa (24.996 S, 31.592 E, ~275m elevation). The landscape is a mix of savanna grasslands and
- 117 broadleaf woodlands, with an overstory dominated by trees from the genus Combretum (red
- 118 bushwillow, C. apiculatum; russet bushwillow, C. hereroense; leadwood, C. imberbe) and trees

119	formerly known as acacias (knobthorn, Senegalensis nigrescens; umbrella thorn, Vachellia
120	tortillis). The park hosts a full suite of African savanna animals, including ~30,000 elephants
121	(Loxodonta africana) (Coetsee & Ferreira, 2023), with a mortality rate of ~2% (~600 elephants
122	per year). The targeted region of KNP has a high density of scavengers and predators, including
123	white-backed vultures (Gyps africanus), spotted hyenas (Crocuta crocuta), and lions (Panthera
124	leo) (Owen-Smith & Mills, 2007).
125	During the wet season in March 2023, we identified ten elephant carcass sites (1-26
126	months post-death), five on relatively nutrient-rich basaltic soil and five on nutrient-poor granitic
127	soil. KNP section rangers provided precise GPS locations of where elephant carcasses had been
128	found. These sites were recognizable in situ by a persistent bonefield, undigested gut contents,
129	and an absence of herbaceous vegetation. At each site, we hammered a rebar post into the center
130	of the megacarcass disturbance and ran 15 m transects out from the post in each of the four
131	cardinal directions. We collected green leaf material from Urochloa mosambicensis, a common
132	and abundant palatable grass species, and used an auger to collect soil samples to a depth of 10
133	cm at five points along each transect (0.5, 2.5, 5, 10, and 15 m). We pooled and homogenized the
134	samples to yield one composite leaf and one composite soil sample per sampling distance from
135	each carcass site. Soil samples were sieved in a 5-mm metal sieve which was cleaned in between
136	samples with 70% ethanol. On the day of collection, we used 5 g of each soil sample for soil
137	respiration measurements (described below). The rest of each sample was stored plastic bags in a
138	-20°C freezer until nutrient analyses. Leaf samples were stored in paper bags at room
139	temperature until dried for analyses (see below).
140	

141 **2.3 Hypothesis testing**

142	We tested our first hypothesis that elephant megacarcass decomposition would release nutrients
143	into the soil by performing soil nutrient analyses. First, we sent 250 g of each soil sample to Eco-
144	Analytica laboratory at the North-West University in Potchefstroom, South Africa for
145	measurements of soil ion concentrations of ammonium [NH4] ⁺ , nitrate [NO3] ⁻ , phosphate [PO4] ³⁻ ,
146	and plant-available P using a 1:2 water extract analysis. To determine whether soil
147	micronutrients were distinct and elevated at the center of carcass sites relative soil further from
148	the center, Eco-Analytica used mass spectrometry to measure concentrations of sodium (Na),
149	magnesium (Mg), iron (Fe), calcium (Ca), and potassium (K), which are micronutrients
150	important to both plant reproduction and herbivore nutrition (Pandey, 2010; Chen et al. 2015; Hu
151	et al. 2021; Kaspari, 2021; Sardans & Peñuelas, 2021). Finally, to determine whether elevated N
152	levels in soils were derived from the carcass, we sent 10 g of each sample to the BIOGRIP
153	laboratory within the Central Analytical Facility at Stellenbosch University for measurements of
154	soil %N and ¹⁵ N, obtained using a Vario Isotope Select Elemental Analyzer connected to a
155	thermal conductivity detector and an Isoprime precision isotope ratio mass spectrometer (IRMS).
156	To test our second hypothesis that nutrient inputs to the soil would stimulate microbial
157	activity, we measured soil organic C, water content, and microbial respiration potential. We sent
158	10 g of each sample to the BIOGRIP laboratory for measurements of soil organic C using a
159	Vario TOC Cube (Elementar, Langensebold, Germany). To quantify soil respiration and water
160	content, we used an incubation method (Lemoine et al. 2024) in which 5 g (\pm 0.2 g) of each
161	sample was placed into a 100 ml clear glass bottle, sealed, and flushed with CO ₂ -free air.
162	Following flushing, we incubated the bottles for one hour at 25°C. We then recorded CO_2
163	concentrations using an LI-850 CO ₂ /H ₂ O infrared gas analyzer. After soil respiration
164	measurements, we determined sample dry weight by drying each sample at 60°C for 24-48 hours

165 until stable mass was achieved. We subtracted dry weight from starting weight to obtain soil 166 water content. Finally, we used the dry weights and the Ideal Gas Law to standardize all 167 respiration measurements to $CO_2 \mu g h^{-1} g dry soil^{-1}$. 168 To test our third hypothesis that carcass-derived nutrients would move from soil into 169 plants, we measured foliar nutrient concentrations in U. mosambicensis. We dried each leaf 170 sample in a drying oven at 60°C for 48 hours, ground dried samples with a Retsch MM400 mill 171 (Germany), and sent 2 g of each dry sample to the BIOGRIP laboratory for measurements of %N 172 and ¹⁵N via stable isotope analysis as described above. Additionally, we sent 5 g per sample to 173 Cedara Analytical Services Laboratory to quantify micronutrients in grass tissue (P, Na, Mg, K, 174 Ca, and Fe) using a microwave-assisted digestion procedure (Ethos UP, Magna Analytical) and 175 an Agilent ICP-MS mass spectrometer. At three of the ten sites, we did not find sufficient plant 176 material at the central point for analysis, resulting in a sample size of N = 7 for the center 177 (distance = 0-0.5m) measurement for leaf nutrient analyses. 178 To test whether each response variable for the three hypotheses was significantly 179 associated with soil type and/or distance from the carcass center, we performed a model selection 180 procedure. For each response variable, we first ran a Shapiro-Wilk normality test to determine 181 whether the variable was normally distributed. If not, we normalized the data via log-182 transformation, adding 0.001 to each variable before transformation to address zeros in the 183 dataset. Soil %N, nitrate, ammonium, ¹⁵N, phosphate, plant-available P, organic C, respiration, 184 water, and micronutrients were non-normally distributed and required log transformations 185 (Figure S1). Leaf micronutrients were normally distributed except for Fe and Ca (Figure S2), 186 which we log-transformed for individual analysis. Next, we ran five generalized linear mixed 187 models in the package lme4 (Bates et al. 2015) for each response variable: (i) soil type + distance

188	+ soil type × distance interaction, (<i>ii</i>) soil type + distance, (<i>iii</i>) soil type, (<i>iv</i>) distance, and (v) a
189	null model indicating no significant difference in slope or intercept after accounting for carcass
190	site. All models included carcass site as a random effect to account for individual variation. The
191	narrow distribution of ages (1-26 months since death) with the sample size of $N = 10$ sites made
192	testing for the effect of age challenging, so we did not include carcass age in the models. We
193	compared the models for each response variable using Akaike Information Criterion (AICc).
194	Models with a $\triangle AICc \le 2$ were considered roughly equivalent in fit (Burnham and Anderson,
195	2002).
196	In addition to these models, for our second hypothesis we regressed soil respiration
197	potential against soil organic C, expecting that the two would be positively correlated. We ran a
198	generalized linear mixed model with soil respiration potential as the response variable. The
199	model included soil organic C + distance + soil type, with carcass site as a random effect. We did
200	not include an interaction with soil type in this model due to sample size restrictions. Respiration
201	potential and organic C were both log-transformed to achieve normality.
202	To determine whether leaf and soil micronutrient composition differed with distance and
203	soil type, we ran permutational analysis of variance (perMANOVA) in vegan (Oksanen et al.
204	2022). We ran the same model separately for soil and leaf micronutrient composition (soil type +
205	distance). To determine which micronutrients contributed most to compositional differences
206	across distances and soil types, we calculated samplewise Bray-Curtis dissimilarity and
207	performed principal component analysis. Finally, we ran linear models to test for correlations
208	between leaf and soil concentrations of each micronutrient. Each model included distance as a
209	covariate and site as a random effect.
210	All statistical analyses were performed in R version 4.2.1 (R Core Team, 2022).

- 211
- 212 Sect. 3 Results

213 **3.1** Hypothesis 1: Effects of megacarcasses on soil nutrient pools

- 214 We found partial support for our first hypothesis that soil N and P concentrations would be
- 215 higher closer to the center of carcass sites (Table S1). Our results were inconclusive for soil %N
- 216 (Figure 2A) and nitrate concentration (Figure 2B); there was substantial support for the null
- 217 model and an alternative model in both instances. For %N, soil type was the top model, with %N
- higher in basaltic soils, but there was also some support for the null model ($\Delta AICc = 1.80$). The
- top model for soil nitrate was distance and showed nitrate decreasing with distance from the
- 220 center of the carcass site, but the null model also had some support in this case as well ($\Delta AICc =$
- 221 1.68). The top model for ammonium concentration (Figure 2C) was soil type + distance,
- 222 indicating that ammonium concentrations were greatest in granitic soils and decreased with
- 223 distance from the carcass regardless of soil type. The top models for ¹⁵N (Figure 2D) were (i)
- 224 distance and (ii) soil + distance. ¹⁵N was greatest in granitic soils and decreased with distance
- 225 regardless of soil type, indicating that the proportion of animal-sourced N was greater near the
- 226 center of the carcass site. The top model for phosphate (Figure 2E) was soil type + distance +
- soil type × distance interaction. Phosphate concentrations were greater in granitic soils, but only
- 228 towards the center of carcass sites. Phosphate concentrations dropped precipitously from 0-2.5 m
- 229 distance and then were similar in both soil types. For plant-available P (Figure 2F), all four
- 230 biological models (excluding the null) fell within the set of top models. Plant-available P was
- 231 greater in basaltic soils and decreased with distance from the center in both soil types, but the
- effect of distance was stronger in granitic soils.

233	Contrary to our first hypothesis, soil micronutrient composition did not differ
234	significantly with distance from the carcass center; nor did most individual micronutrients (Table
235	S1). The perMANOVA results showed that soil micronutrient composition did not differ
236	significantly with distance ($R^2 = 0.00$, $F_{4,44} = 0.1$, $P = 1.000$) (Figure S3A), but it did differ
237	significantly with soil type ($R^2 = 0.71$, $F_{1,44} = 108.8$, $P = 0.001$) (Figure S3B). Principal
238	components analysis showed that dimension 1 explained 53.6% of the variation between soil
239	types and was driven primarily by differences in Mg, Ca, and Fe. Dimension 2 explained 25.9%
240	of variation and was driven primarily by differences in K. The top model for Na (Figure S4A)
241	was distance, indicating a significant decrease in soil Na with distance from the carcass. The top
242	model for K (Figure S4B) was soil type + distance + soil type × distance interaction. Soil K was
243	greater in basaltic soils and decreased with distance only in granitic soils. The remaining three
244	micronutrients (Ca, Fe, and Mg) all had soil type as the top model, appearing in higher
245	concentrations in basaltic soils (Figure S4C-E).
246	
247	3.2 Hypothesis 2: Effects of megacarcasses on soil carbon and respiration
248	Consistent with our second hypothesis, soil respiration potential was positively correlated with
249	soil organic carbon concentration ($P = 0.039$) and decreased significantly with distance ($P =$
250	0.020) but did not differ with soil type ($P = 0.408$) (Figure 3). Results for soil water content
251	(Figure S5) were inconclusive. The top model for water was soil, showing higher water content
252	in granitic soils, but there was also strong support for the null model ($\Delta AICc = 0.42$).
253	
254	3.3 Hypothesis 3: Effects of megacarcasses on plant nutrient pools

255	Consistent with our third hypothesis, we found evidence that N from carcasses had moved from
256	soils into plants. Leaf %N (Figure 4A) and ¹⁵ N (Figure 4B) both decreased significantly with
257	distance from the carcass site, indicating that the high N content in leaves closer to the center of
258	a megacarcass site likely had an animal origin. These trends did not hold true for P (Figure 4C),
259	another major limiting nutrient for savanna plants; the top model for leaf P was the null,
260	indicating no difference in leaf P content with soil type or distance from the carcass (Figure 4C).
261	Leaf micronutrient composition did not differ significantly with distance ($R^2 = 0.08$, $F_{4,40}$
262	= 1.7, $P = 0.115$; Figure S6A) but did differ with soil type (R ² = 0.43, F _{1,40} = 34.7, $P = 0.001$;
263	Figure S6B). Dimension 1 explained 44.4% of the variance across soil types and was primarily
264	driven by Mg and Na. Dimension 2 explained 30.0% of the variance and was driven mainly by
265	Ca. The top model for Na (Figure 5A) was soil type by distance, showing that leaf Na decreased
266	with distance and was greater in basaltic soils. Leaf K (Figure 5B) and Fe (Figure 5C) both had
267	distance as the top model and decreased significantly with distance from the carcass. The top
268	models for Ca (Figure 5D) and Mg (Figure 5E) were the nulls, indicating no significant
269	difference in these nutrients with distance or soil type. However, none of the individual
270	micronutrients were correlated between soil and leaf samples (Table S3).
271	
272	Sect. 4 Discussion

273 Here, we show that elephant megacarcasses influence soil and foliar nutrients during at least the

274 first two years following mortality. Consistent with our hypotheses, soil nitrate (Figure 2B),

ammonium (Figure 2C), ¹⁵N (Figure 2D), and P (Figure 2E-F) concentrations were all elevated at

the center of carcass sites and decreased with distance from the center. Microbial respiration

277 potential was also elevated towards the center of carcass sites and was strongly correlated with

278	the influx of organic C (Figure 3A). Finally, %N (Figure 4A) and ¹⁵ N in grass (Figure 4B) were
279	both elevated closer to the centers of carcass sites compared to grass farther from carcasses.
280	Similarly, micronutrients Na and K in both soils and grasses were elevated closer to the center of
281	carcass sites. Together, these results indicate that carcass-derived nutrients move into soil and
282	subsequently into plants over relatively short time scales, cycling essential nutrients such as N
283	from carrion into the soil and back into aboveground nutrient pools.
284	The initial influx of ammonium from elephant carcasses is consistent with literature on
285	smaller carrion (Parmenter & McMachon, 2009; Quaggiotto et al. 2019; Yong et al. 2019). The
286	mean ammonium level at the center of carcass sites (17.4 mg/L) was 5x the level generally
287	considered toxic to plants (3.5 mg/L; Britto & Kronzucker, 2002). Yet, we found living grass-
288	typically Urochloa mosambicensis—in the center of the carcass site at seven out of ten of our
289	sites and at the 2.5m distance for all sites. The three sites without vegetation in the center had the
290	highest ammonium levels (35-72 mg/L), suggesting that U. mosambicensis has a higher degree
291	of ammonium tolerance than some sympatric grass species but may still be limited by the
292	extreme ammonium levels at the centers of these three relatively fresh carcass sites. These results
293	indicate that ammonium remains elevated at elephant carcass sites for at least the first two years
294	post-death and may reduce, but not eliminate, plant growth over this time period.
295	Soil nitrate (Figure 2B) and soil respiration potential (Figure 3A) were also elevated near
296	the center of carcass sites, implying that the higher rates of soil microbial biomass and activity
297	are resulting in the oxidation of ammonium to nitrate (Prosser, 2011). These results are
298	consistent with other work on carrion, where microbial activity tends to be greater in soils near
299	carcasses as compared to surrounding soil (Bump et al. 2009b). However, carcass effects on soil
300	microbial respiration exhibit a high degree of intra-system variation (elk, bison; Risch et al.

301	2020), and the potentially short window during which increased respiration occurs may make
302	capturing these variations challenging. For example, soil respiration potential at the center of the
303	three youngest carcass sites was on average 2x higher than the seven older sites (18.43 and 9.62
304	ugCO2/hr, respectively). Thus, the impact of increased organic C on soil microbial processes
305	may be relatively short lived and last a matter of months.
306	Elevated soil phosphate (Figure 2E) and plant-available P (Figure 2F) at the center of
307	carcass sites were also consistent with expectations from the literature (Bump et al. 2009a;
308	Parmenter & MacMahon, 2009). However, elevated P levels in soil did not translate to elevated
309	P in grass leaves (Figure 4C), which could suggest a lag between trends in soil and plants that is
310	longer for P than for N. This lag could occur because P has low water solubility relative to N and
311	therefore is less mobile in soils (Wiersum, 1962).
312	The elevated plant-available P at the center of carcass sites likely came primarily from
313	phosphate released from decomposing tissue (Yong et al. 2019). Bone decomposition occurs
314	over years (Coe, 1978) and therefore should result in the slow release of P and a gradual decrease
315	in the N:P ratio (Parmenter & MacMahon, 2009; Quaggiotto et al. 2019). Indeed, initial
316	inorganic N influxes to the Mara River in Kenya from mass wildebeest die-offs are 10-fold
317	greater than concurrent increases in P, which instead releases slowly over about seven years of
318	bone decomposition (Subalusky et al. 2017). Research following megacarcasses over longer
319	timeframes post-death is needed to clarify when P from enriched soil moves into plants and at
320	what stage megacarcass bones begin contributing to soil P dynamics. It is also possible that bone
321	dispersal by scavengers may result in the P leaching from bones at distances far from the carcass
	1 , 6 , 6

323	The contributions of megacarcasses to soil nutrient pools were strongly associated with
324	soil type. Results confirmed that basaltic soils are overall more nutrient rich, with greater
325	concentrations of micronutrients (P, Ca, Fe, and Mg; Figure S4B-E). However, soil ammonium
326	(Figure 2C) and phosphate (Figure 2E) concentrations were both greater in granitic soils,
327	indicating that organic matter from megacarcasses may persist longer in nutrient-poor and sandy
328	granitic soil compared with nutrient-rich and clayey basaltic soil. With the exception of Na
329	(Figure 5A), soil type had no significant effect on leaf micronutrient concentrations (Figure 5B-
330	E). We were surprised that grass on more nutrient-rich soil did not exhibit greater nutrient
331	concentrations. One potential explanation is that grass may primarily be limited by
332	macronutrients like N and P on both soil types (Craine et al. 2008; Holdo, 2013) rather than by
333	micronutrients. Thus, even with increased micronutrient availability their actual uptake may not
334	differ substantially. Studies on ungulate carcasses (e.g., muskoxen, moose, zebra) have shown
335	increased foliar N at carcass sites (Danell et al. 2002; Bump et al. 2009b; Turner et al. 2014), but
336	to date there is little research on the flow of micronutrients from carrion to plants and none on
337	the pipeline from megacarcasses to plants. Moreover, it remains to be seen whether increases in
338	foliar N and other nutrients affect herbivory rates at carcass sites and how long such effects may
339	last.

340

341 Sect. 5 Conclusions

This research is an initial step in understanding the ecological legacies of megacarcasses on
savanna nutrient pools. During the first two years post-death, megacarcasses released pulses of
N, P, and key micronutrients, which all influence primary production when limited. These
nutrients stimulated soil microbial activity and enriched foliar N, and the effects were strongest

346	in nutrient-poor soil. These carcass-derived nutrient hotspots represent a previously unstudied
347	function of megaherbivores on savannas – one that we need to better understand as
348	megaherbivore populations continue to decline across their native ranges.
349	
350	Code Availability: Computer code will be posted on Dryad Digital Repository.
351	
352	Data Availability: Data will be archived on Dryad Digital Repository.
353	
354	Author Contributions: Deron E. Burkepile, Nathan P. Lemoine, Izak P. J. Smit, Tercia
355	Strydom, Aimee Tallian, Johan T. du Toit, Dave I. Thompson, and Joshua P. Schimel conceived
356	the study. Michelle L. Budny, Johan T. du Toit, Nathan P. Lemoine, Joshua P. Schimel, Izak P.
357	J. Smit, Tercia Strydom, Aimee Tallian, Dave I. Thompson, Helga van Coller, and Deron E.
358	Burkepile collected samples. Courtney G. Reed, Nathan P. Lemoine, Dave I. Thompson, and
359	Deron E. Burkepile analyzed the data. Courtney G. Reed drafted the manuscript, and all authors
360	contributed to editing.
361	
362	Competing Interests: The authors declare that they have no conflict of interest.
363	
364	Acknowledgments: Funding for this research was provided by the National Science Foundation
365	(#s 2128092, 2128093, and 2128094) and the University of California Santa Barbara Academic
366	Senate. All research was completed under permits from South African National Parks (SS554).
367	We thank the field assistants of SANParks for guiding and protection in the field, as well as the
368	section rangers and Sandra Snelling for GPS locations and ages of carcasses.

370	370 References			
371	1.	Anderson, T. M., Hopcraft, J. G. C., Eby, S., Ritchie, M., Grace, J. B., & Olff, H. Landscape-		
372		scale analyses suggest both nutrient and antipredator advantages to Serengeti herbivore		
373		hotspots. Ecol., 91, 1519–1529, https://doi.org/10.1890/09-0739.1, 2010.		
374	2.	Asner, G. P., Levick, S. R., Kennedy-Bowdoin, T., Knapp, D. E., Emerson, R., Jacobson, J.,		
375		Colgan, M. S., & Martin, R. E. Large-scale impacts of herbivores on the structural diversity		
376		of African savannas. PNAS, 106, 4947–4952, <u>https://doi.org/10.1073/pnas.0810637106</u> ,		
377		2009.		
378	3.	Barton, P. S., Cunningham, S. A., Lindenmayer, D. B., & Manning, A. D. The role of carrion		
379		in maintaining biodiversity and ecological processes in terrestrial ecosystems. Oecologia,		
380		171, 761–772, https://doi.org/10.1007/s00442-012-2460-3, 2013.		
381	4.	Barton, P.S. Carrion Ecology, Evolution, and Their Applications. Edited by: M.E. Benbow,		
382		J.K. Tomberlin, A.M. Tarone. CRC Press, Boca Raton, FL, USA. 2016.		
383	5.	Barton, P. S., McIntyre, S., Evans, M. J., Bump, J. K., Cunningham, S. A., & Manning, A. D.		
384		Substantial long-term effects of carcass addition on soil and plants in a grassy eucalypt		
385		woodland. Ecosphere, 7, e01537, <u>https://doi.org/10.1002/ecs2.1537</u> , 2016.		
386	6.	Barton, P.S., Bump, J.K. Carrion decomposition. In: Carrion Ecology and Management.		
387		Edited by: P.P. Olea, P. Mateo-Tomas, J.A. Sanchez-Zapata. Springer, NY, USA, 101-124,		
388		2019.		
389	7.	Bates, D., Mächler, M., Bolker, B., & Walker, S. Fitting Linear Mixed-Effects Models Using		
390		lme4. J. Stat. Softw., 67, 1–48, <u>https://doi.org/10.18637/jss.v067.i01</u> , 2015.		

- 391 8. Britto, D. T., & Kronzucker, H. J. NH4+ toxicity in higher plants: a critical review. J. Plant
- 392 Physiol., 159, 567–584, <u>https://doi.org/10.1078/0176-1617-0774</u>, 2002.
- 393 9. Bump, J. K., Peterson, R. O., & Vucetich, J. A. Wolves modulate soil nutrient heterogeneity
- and foliar nitrogen by configuring the distribution of ungulate carcasses. Ecol., 90, 3159–
- 395 3167, <u>https://doi.org/10.1890/09-0292.1</u>, 2009.
- 10. Bump, J. K., Webster, C. R., Vucetich, J. A., Peterson, R. O., Shields, J. M., & Powers, M.
- 397 D. (2009). Ungulate Carcasses Perforate Ecological Filters and Create Biogeochemical
- 398 Hotspots in Forest Herbaceous Layers Allowing Trees a Competitive Advantage. Ecosyst.,
- 399 12, 996–1007, <u>https://doi.org/10.1007/s10021-009-9274-0</u>, 2009.
- 400 11. Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference. Springer
- 401 New York, NY. <u>http://doi.org/10.1007/b97636</u>, 2002.
- 402 12. Campos-Arceiz, A., & Blake, S. Megagardeners of the forest the role of elephants in seed
- 403 dispersal. Acta Oecol., 37, 542–553, <u>https://doi.org/10.1016/j.actao.2011.01.014</u>, 2011.
- 404 13. Chen, J., Gutjahr, C., Bleckmann, A., & Dresselhaus, T. Calcium signaling during
- 405 reproduction and biotrophic fungal interactions in plants. Mol. Plant, 8, 595–611,
- 406 <u>https://doi.org/10.1016/j.molp.2015.01.023</u>, 2015.
- 407 14. Coe, M. The decomposition of elephant carcases in the Tsavo (East) National Park, Kenya. J.
- 408 Arid Environ., 1, 71–86, <u>https://doi.org/10.1016/S0140-1963(18)31756-7</u>, 1978.
- 409 15. Coetsee, M. & Ferreira, S. Bridging science, management, and opinion: GLTFCA elephant
- 410 management [Conference presentation]. Savanna Science Network Meeting, Skukuza,
- 411 Kruger National Park, South Africa, 2023 March 5-9.
- 412 16. Coverdale, T. C., Kartzinel, T. R., Grabowski, K. L., Shriver, R. K., Hassan, A. A., Goheen,
- 413 J. R., Palmer, T. M., & Pringle, R. M. Elephants in the understory: opposing direct and

- 414 indirect effects of consumption and ecosystem engineering by megaherbivores. Ecol., 97,
- 415 3219–3230, <u>https://doi.org/10.1002/ecy.1557</u>, 2016.
- 416 17. Craine, J. M., Morrow, C., & Stock, W. D. Nutrient concentration ratios and co-limitation in
- 417 South African grasslands. New Phytol., 179, 829–836, <u>https://doi.org/10.1111/j.1469-</u>
- 418 <u>8137.2008.02513.x</u>, 2008.
- 419 18. Danell, K., Berteaux, D., & Bråthen, K. A. Effect of Muskox Carcasses on Nitrogen
- 420 Concentration in Tundra Vegetation. Arctic, 55, 389–392,
- 421 <u>http://www.jstor.org/stable/40512497</u>, 2002.
- 422 19. Doughty, C. E., Roman, J., Faurby, S., Wolf, A., Haque, A., Bakker, E. S., Malhi, Y.,
- 423 Dunning, J. B., Jr, & Svenning, J.-C. Global nutrient transport in a world of giants. PNAS,
- 424 113, 868–873, <u>https://doi.org/10.1073/pnas.1502549112</u>, 2016.
- 425 20. Doughty, C. E., Wolf, A., & Malhi, Y. The legacy of the Pleistocene megafauna extinctions
- 426 on nutrient availability in Amazonia. Nat. Geosci., 6, 761–764,
- 427 <u>https://doi.org/10.1038/ngeo1895</u>, 2013.
- 428 21. Flannery, T. F. Pleistocene faunal loss: implications of the aftershock for Australia's past and
- 429 future. Archaeol. Ocean., 25, 45–55, <u>https://doi.org/10.1002/j.1834-4453.1990.tb00232.x</u>,
- 430 1990.
- 431 22. Grant, C. C., & Scholes, M. C. The importance of nutrient hot-spots in the conservation and
- 432 management of large wild mammalian herbivores in semi-arid savannas. Biol. Conserv., 130,
- 433 426–437, <u>https://doi.org/10.1016/j.biocon.2006.01.004</u>, 2006.
- 434 23. Guy, T. J., Hutchinson, M. C., Baldock, K. C. R., Kayser, E., Baiser, B., Staniczenko, P. P.
- 435 A., Goheen, J. R., Pringle, R. M., & Palmer, T. M. Large herbivores transform plant-

- 436 pollinator networks in an African savanna. Curr. Biol., 2964–2971,
- 437 <u>https://doi.org/10.1016/j.cub.2021.04.051</u>, 2021.
- 438 24. Hocking, M. D. & Reynolds, J. D. Nitrogen uptake by plants subsidized by Pacific salmon
- 439 carcasses: a hierarchical experiment. Can. J. For. Res., 42, 908-917,
- 440 <u>https://doi.org/10.1139/x2012-045</u>, 2012.
- 441 25. Holdo, R. M. Effects of fire history and N and P fertilization on seedling biomass, Specific
- 442 Leaf Area, and root:shoot ratios in a South African savannah. S. Afr. J. Bot., 86, 5–8,
- 443 <u>https://doi.org/10.1016/j.sajb.2013.01.005</u>, 2013.
- 444 26. Hu, L., Wu, Z., Robert, C. A. M., Ouyang, X., Züst, T., Mestrot, A., Xu, J., & Erb, M. Soil
- 445 chemistry determines whether defensive plant secondary metabolites promote or suppress
- 446 herbivore growth. PNAS, 118, e2109602118, <u>https://doi.org/10.1073/pnas.2109602118</u>,
- 447 2021.
- 448 27. Jobbágy, E. G., & Jackson, R. B. The uplift of soil nutrients by plants: Biogeochemical
- 449 consequences across scales. Ecol., 85, 2380–2389, <u>https://doi.org/10.1890/03-0245</u>, 2004.
- 450 28. Joern, A., Provin, T., & Behmer, S. T. Not just the usual suspects: insect herbivore
- 451 populations and communities are associated with multiple plant nutrients. Ecol., 93, 1002–
- 452 1015, <u>https://doi.org/10.1890/11-1142.1</u>, 2012.
- 453 29. Kaspari, M. The Invisible Hand of the Periodic Table: How Micronutrients Shape Ecology.
- 454 Annu. Rev. Ecol. Evol. Syst., 52, 199–219, <u>https://doi.org/10.1146/annurev-ecolsys-012021-</u>
- 455 <u>090118</u>, 2021.
- 456 30. Keenan, S. W., & Beeler, S. R. Long-term effects of buried vertebrate carcasses on soil
- 457 biogeochemistry in the Northern Great Plains. PloS One, 18, e0292994,
- 458 <u>https://doi.org/10.1371/journal.pone.0292994</u>, 2023.

- 459 31. Lemoine, N. P., Budny, M. L., Rose, E., Lucas, J., & Marshall, C. W. Seasonal soil moisture
- 460 thresholds inhibit bacterial activity and decomposition during drought in a tallgrass prairie.
- 461 Oikos, 2024, e10210, <u>https://doi.org/10.1111/oik.10201</u>, 2024.
- 462 32. Macdonald, B. C. T., Farrell, M., Tuomi, S., Barton, P. S., Cunningham, S. A., & Manning,
- 463 A. D. Carrion decomposition causes large and lasting effects on soil amino acid and peptide
- 464 flux. Soil Biol. Biochem., 69, 132–140, <u>https://doi.org/10.1016/j.soilbio.2013.10.042</u>, 2014.
- 465 33. Monk, J. D., Donadio, E., Smith, J. A., Perrig, P. L., Middleton, A. D., & Schmitz, O. J.
- 466 Predation and Biophysical Context Control Long-Term Carcass Nutrient Inputs in an Andean
- 467 Ecosystem. Ecosyst., 27, 346–359, <u>https://doi.org/10.1007/s10021-023-00893-7</u>, 2024.
- 468 34. Mphepya, J. N., Galy-Lacaux, C., Lacaux, J. P., Held, G., & Pienaar, J. J. Precipitation
- 469 Chemistry and Wet Deposition in Kruger National Park, South Africa. J. Atmos. Chem., 53,
- 470 169–183, <u>https://doi.org/10.1007/s10874-005-9005-7</u>, 2006.
- 471 35. Oksanen J, Simpson G, Blanchet F, Kindt R, Legendre P, Minchin P, O'Hara R, Solymos P,
- 472 Stevens M, Szoecs E, Wagner H, Barbour M, Bedward M, Bolker B, Borcard D, Carvalho G,
- 473 Chirico M, De Caceres M, Durand S, Evangelista H, FitzJohn R, Friendly M, Furneaux B,
- 474 Hannigan G, Hill M, Lahti L, McGlinn D, Ouellette M, Ribeiro Cunha E, Smith T, Stier A,
- 475 Ter Braak C, Weedon J. Community Ecology Package. R package version 2.6-4,
- 476 <u>https://CRAN.R-project.org/package=vegan</u>, 2022.
- 477 36. Olea, P.P, Mateo-Tomas, P., Sanchez-Zapata, J.A. (eds.) Carrion Ecology and Management.
- 478 Springer, NY, USA, 2019.
- 479 37. Owen-Smith, N. Megafaunal extinctions: the conservation message from 11,000 years B.P.
- 480 Conserv. Biol., 3, 405–412, https://www.jstor.org/stable/2386221, 1989.

- 481 38. Owen-Smith, N., & Mills, M. G. L. Predator-prey size relationships in an African large-
- 482 mammal food web. J. Anim. Ecol., 77, 173–183, <u>https://doi.org/10.1111/j.1365-</u>
- 483 <u>2656.2007.01314.x</u>, 2008.
- 484 39. Pandey, N. Role of Micronutrients in Reproductive Physiology of Plants.
- 485 https://www.semanticscholar.org/paper/af9a8662b83613f6e0d5e538ed33f3add4a1d5a1,
- 486 2010.
- 487 40. Parmenter, R. R., & MacMahon, J. A. Carrion decomposition and nutrient cycling in a
- semiarid shrub-steppe ecosystem. Ecol. Monogr., 79, 637–661, <u>https://doi.org/10.1890/08-</u>
- 489 <u>0972.1</u>, 2009.
- 490 41. Pellegrini, A. F. A. Nutrient limitation in tropical savannas across multiple scales and
- 491 mechanisms. Ecol., 97, 313–324, <u>https://doi.org/10.1890/15-0869.1</u>, 2016.
- 492 42. Prosser, J. I. Soil Nitrifiers and Nitrification. In Nitrification. ASM Press, pp. 347-383, 2014.
- 493 43. Quaggiotto, M.-M., Evans, M. J., Higgins, A., Strong, C., & Barton, P. S. Dynamic soil
- 494 nutrient and moisture changes under decomposing vertebrate carcasses. Biogeochemistry,
- 495 146, 71–82, <u>https://doi.org/10.1007/s10533-019-00611-3</u>, 2019.
- 496 44. R Core Team. R: A language and environment for statistical computing. R Foundation for
- 497 Statistical Computing, Vienna, Austria. <u>https://www.R-project.org/</u>, 2022.
- 498 45. Ries, L. P., & Shugart, H. H. Nutrient limitations on understory grass productivity and
- 499 carbon assimilation in an African woodland savanna. J. Arid Environ., 72, 1423–1430,
- 500 <u>https://doi.org/10.1016/j.jaridenv.2008.02.013</u>, 2008.
- 501 46. Ripple, W. J., Newsome, T. M., Wolf, C., Dirzo, R., Everatt, K. T., Galetti, M., Hayward, M.
- 502 W., Kerley, G. I. H., Levi, T., Lindsey, P. A., Macdonald, D. W., Malhi, Y., Painter, L. E.,

- 503 Sandom, C. J., Terborgh, J., & Van Valkenburgh, B. Collapse of the world's largest
- 504 herbivores. Sci. Adv., 1, e1400103, DOI:<u>10.1126/sciadv.1400103</u>, 2015.
- 505 47. Risch, A. C., Frossard, A., Schütz, M., Frey, B., Morris, A. W., & Bump, J. K. Effects of elk
- and bison carcasses on soil microbial communities and ecosystem functions in Yellowstone,
- 507 USA. Funct. Ecol., 34, 1933–1944, <u>https://doi.org/10.1111/1365-2435.13611</u>, 2020.
- 508 48. Roman, J., Estes, J. A., Morissette, L., Smith, C., Costa, D., McCarthy, J., Nation, J. B.,
- 509 Nicol, S., Pershing, A., & Smetacek, V. Whales as marine ecosystem engineers. Front. Ecol.
- 510 Environ., 12, 377–385, <u>https://doi.org/10.1890/130220</u>, 2014.
- 511 49. Sardans, J., & Peñuelas, J. Potassium Control of Plant Functions: Ecological and Agricultural
- 512 Implications. Plants, 10, <u>https://doi.org/10.3390/plants10020419</u>, 2021.
- 513 50. Schmitz, O. J., Wilmers, C. C., Leroux, S. J., Doughty, C. E., Atwood, T. B., Galetti, M.,
- 514 Davies, A. B., & Goetz, S. J. Animals and the zoogeochemistry of the carbon cycle. Science,
- 515 362, <u>https://doi.org/10.1126/science.aar3213</u>, 2018.
- 516 51. Skarpe, C., Aarrestad, P. A., Andreassen, H. P., Dhillion, S. S., Dimakatso, T., du Toit, J. T.,
- 517 Duncan, Halley, J., Hytteborn, H., Makhabu, S., Mari, M., Marokane, W., Masunga, G.,
- 518 Ditshoswane, M., Moe, S. R., Mojaphoko, R., Mosugelo, D., Motsumi, S., Neo-Mahupeleng,
- 519 G., ... Wegge, P. The return of the giants: ecological effects of an increasing elephant
- 520 population. Ambio, 33, 276–282, <u>http://www.jstor.org/stable/4315497</u>, 2004.
- 521 52. Sterner, R. W., & Elser, J. J. Ecological Stoichiometry: The Biology of Elements from
- 522 Molecules to the Biosphere. Princeton University Press.
- 523 <u>http://www.jstor.org/stable/j.ctt1jktrp3</u>, 2002.

- 524 53. Subalusky, A. L., Dutton, C. L., Rosi, E. J., & Post, D. M. Annual mass drownings of the
- 525 Serengeti wildebeest migration influence nutrient cycling and storage in the Mara River.
- 526 PNAS, 114, 7647–7652, <u>https://doi.org/10.1073/pnas.1614778114</u>, 2017.
- 527 54. Subalusky, A.L., Dutton, C.L., Rosi, E.J, Puth, L.M., Post, D.M. River of bones: wildebeest
- skeletons leave a legacy of mass mortality in Mara River, Kenya. Front. Ecol. Evol., 8,
- 529 <u>https://doi.org/10.3389/fevo.2020.00031</u>, 2020.
- 530 55. Towne, E. G. Prairie vegetation and soil nutrient responses to ungulate carcasses. Oecologia,
- 531 122, 232–239, <u>https://www.jstor.org/stable/4222536</u>, 2000.
- 532 56. Turner, W. C., Kausrud, K. L., Krishnappa, Y. S., Cromsigt, J. P. G. M., Ganz, H. H.,
- 533 Mapaure, I., Cloete, C. C., Havarua, Z., Küsters, M., Getz, W. M., & Stenseth, N. C. Fatal
- attraction: vegetation responses to nutrient inputs attract herbivores to infectious anthrax
- 535 carcass sites. Proc. R. Soc. B, 281, <u>https://doi.org/10.1098/rspb.2014.1785</u>, 2014.
- 536 57. van Klink, R., van Laar-Wiersma, J., Vorst, O., & Smit, C. Rewilding with large herbivores:
- 537 Positive direct and delayed effects of carrion on plant and arthropod communities. PloS One,
- 538 15, e0226946, <u>https://doi.org/10.1371/journal.pone.0226946</u>, 2020.
- 539 58. Venter FJ, Scholes RJ, Eckhardt HC. Abiotic template and its associated vegetation pattern.
- 540 In: JT Du Toit, KH Rogers, HC Biggs, eds. The Kruger experience: ecology and
- 541 management of savanna heterogeneity. Washington, DC, USA: Island Press, 83–129, 2003.
- 542 59. Wiersum, L. K. Uptake of nitrogen and phosphorus in relation to soil structure and nutrient
- 543 mobility. Plant Soil, 16, 62–70, <u>https://doi.org/10.1007/BF01378158</u>, 1962.
- 544 60. Yang, L. H. Periodical cicadas as resource pulses in North American forests. Science, 306,
- 545 1565–1567, <u>https://doi.org/10.1126/science.1103114</u>, 2004.

- 546 61. Yang, L. H. Pulses of dead periodical cicadas increase herbivory of American bellflowers.
- 547 Ecol., 89, 1497–1502, <u>https://doi.org/10.1890/07-1853.1</u>, 2008.
- 548 62. Yong, S. K., Jalaludin, N. H., Brau, E., Shamsudin, N. N., & Heo, C. C. Changes in soil
- 549 nutrients (ammonia, phosphate and nitrate) associated with rat carcass decomposition under
- 550 tropical climatic conditions. Soil Res., 57, 482–488, <u>https://doi.org/10.1071/SR18279</u>, 2019.
- 551

553 Figure 1. Hypothesized impacts of elephant megacarcasses on soil and plant nutrients. First 554 (H1), we hypothesized that elephant carcasses would release pulses of nutrients into the soil, 555 resulting in higher concentrations of soil nutrients such as nitrogen (ammonium, [NH₄]⁺), 556 phosphorus (phosphate, [PO₄]³⁻), and soil organic C. Second (H2), we hypothesized that C inputs 557 from the carcass would result in increased soil microbial respiration potential. Third (H3), we 558 hypothesized that plants would take up nutrients from the carcass soil, resulting in plants with 559 distinct nutrient profiles and increased concentrations of key limiting nutrients such as N and P. 560 Image credit: Kirsten Boeh.

562 Figure 2. Soil N and P responses to elephant carcasses. (A) Soil N (%) was greater in basaltic 563 soils but did not differ with distance from the center of the carcass site. (B) Soil nitrate decreased with distance but did not differ with soil type. (C) Ammonium and (D) ¹⁵N were both greater in 564 565 granitic soils and decreased with distance from the carcass. (E) Soil phosphate and (F) plant-566 available P both decreased with distance, and the effects were stronger in granitic soils. Log-567 transformed data have been back-transformed for visualization. Points represent individual 568 measurements and are offset to be visible when they would otherwise overlap. Each plot includes 569 only visualization (i.e., lines/colors) for parameters that were included in the set of top models.

570

571 Figure 3. Soil respiration potential was positively correlated with soil organic C (%) and

572 decreased significantly with distance from the carcass. Log-transformed data have been back-

573 transformed for visualization. Points represent individual measurements and are offset to be

⁵⁷⁴ visible when they would otherwise overlap.

Figure 4. Leaf N and P responses to elephant carcasses. (A) Leaf %N and (B) ¹⁵N both decreased with distance from the carcass site, while (C) leaf P did not differ significantly with distance or soil type. Log-transformed data have been back-transformed for visualization. Points represent individual measurements and are offset to be visible when they would otherwise overlap. Three of the ten sites had bare ground at the 0 m distance, resulting in a sample size of 7 sites for that distance and 10 for the other distances.

Figure 5. Generalized linear mixed model results for leaf micronutrients. (A) Leaf Na was greatest in basaltic soil and decreased significantly with distance. (B) Leaf K and (C) Fe both decreased significantly with distance. (D) Ca and (E) Mg did not differ significantly with distance or soil type. Log-transformed data have been back-transformed for visualization. Points represent individual measurements and are offset to be visible when they would otherwise overlap.