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Abstract.  

As a consequence of climate warming, high-altitude periglacial and glacial environments exhibit the clearest signs of 

cryosphere degradation, and the Alps serve as a natural laboratory for studying the primary effects on permafrost-related 

features. Our research in South Tyrol, North-East Italy, aimed to develop an updated classification system for rock glaciers 15 

activity, based on remote sensing data and statistical models, with the aim of categorizing them as active, transitional, or 

relict according to the recent RGIK guidelines. Since the current regional inventory includes activity attributes based only on 

morphological observations and differential SAR interferometry (DInSAR) coherence, it lacks a comprehensive definition 

integrating climatic drivers, displacement rates, and morphometric parameters. To address this, we utilized the Alaska 

Satellite Facility's InSAR cloud computing, employing small baseline subset (SBAS) approach and MintPy algorithms to 20 

extract velocity data for each rock glacier in South Tyrol. Additionally, we analyzed geomorphological and climatic maps 

derived from in-situ and remote sensing data to obtain descriptive parameters influencing rock glaciers development and 

activity. From a wide range of potential variables, we selected eight key predictors, representing physical (e.g. temperature), 

morphological (e.g. roughness), and dynamic (e.g. velocity and coherence indicators) attributes. These predictors were 

successively integrated in a multiclass generalized additive mixing model (GAM) classifier to categorize the landforms. 25 

Applying this model to the entire dataset (achieving an AUC over 0.9) allowed us to address gaps in previous classification 

methods and provided activity attributes for previously unclassified rock glaciers, along with associated uncertainty values. 

Our approach improved classification accuracy, leaving only 3.5% of features unclassified compared to 13% in 

morphological classification and 18.5% in DInSAR-based methods. The results revealed a predominance of relict features 

(~75%) and a smaller number of active ones (~10%). The distribution of active, transitional, and relict classes suggests that 30 

the transition from active to relict states is not a direct process. Instead, an intermediate transitional phase is commonly 

observed. This comprehensive approach refines the categorization of mapped features and improves our understanding of the 

factors influencing rock glaciers activity in alpine environment. 
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1 Introduction 

Rock glaciers are widespread periglacial landforms in mountain regions and are regarded as key geomorphological evidence 35 

of permafrost presence in alpine environments (Haeberli, 2000). They consist of a continuous, thick seasonally frozen debris 

layer (known as active layer), covering ice-supersaturated debris or pure ice. They are characterized by gravity-driven creep 

as a consequence of ice/debris mixtures deformations under permafrost conditions (Haeberli et al., 2006), which promote a 

distinctive surface topography (i.e., ridges and furrows complexes, convex transverse or longitudinal surface undulations). 

The large-scale spatial distribution of rock glaciers is influenced by the complex interaction of topographic factors and 40 

climate, specifically by mean annual air temperature and precipitation. However, on a local scale, their distribution is 

dictated by local factors such as slope and aspect, structure and lithology of bedrock, debris input, heat budget of the ground, 

shading, and duration and thickness of snow cover (Cicoira et al., 2019; Kenner and Magnusson, 2017; Bodin et al., 2009). 

Rock glaciers distribution and evolution, and current permafrost degradation may affect the slope stability, runoff patterns, 

vegetation coverage, and water availability and quality, promoting landslides, geological disasters, debris flows, 45 

destabilization phenomena (Pruessner et al., 2021; Marcer et al., 2019; Gruber and Haeberli, 2007), and direct or indirect risk 

to human activities and/or facilities (e.g., infrastructures, buildings) (Hassan et al., 2021; Arenson and Jakob, 2017). 

Furthermore, some rock glaciers act as essential hydrological reserve in high mountain systems, prolonging long-term water 

(and ice) storage, and consequently their presence and abundance could affect the amount and properties of runoff from high 

mountain watersheds (Bearzot et al., 2023; Wagner et al., 2021; Brighenti et al., 2019).  50 

The genesis of rock glaciers has been debated for a very long time during which some studies claim the relationship between 

rock glaciers to periglacial conditions and permafrost presence (Knight et al., 2019; Haeberli et al., 2006), or linked them to 

paraglacial processes (Frauenfelder and Kӓӓb, 2000) whereas others suggest the glacial origin of rock glaciers (Monnier et 

al., 2013; Krainer and Mostler, 2000; Whalley and Palmer, 1998) in which they originate from the evolution of debris-

covered glacier and where interstitial ice is glacial origin rather than meteoric (i.e., permafrost). Depending on their 55 

permafrost content and activity, rock glaciers have been categorized into three categories: (i) active rock glaciers, in which 

the internal deformation of frozen material and ice produces an effective surface displacement, (ii) inactive (dynamic or 

climatic) rock glaciers that still contain ice but have stopped moving and (iii) relict rock glaciers that no longer contain ice 

and consequently with no movement (RGIK, 2023). The active and inactive rock glaciers are commonly grouped together 

into the class called intact rock glaciers. Although widely used, this classification brings two relevant limitations both from 60 

subjectivity point of view (activity attribution based on geomorphological approach is depended on the operator skills) as 

well as categorization since the activity of rock glaciers is considered constant over time at the scale of decades to centuries. 

In response to the ongoing increase in permafrost temperature, an acceleration trend has been observed worldwide, although 

with different phases based on the geographical regions and the characteristics of the individual landforms. For these 

reasons, the existing rock glaciers classification was redefined as follow: (i) active rock glaciers (A) which moving 65 

downslope over most of its surface and present steep front and lateral margins contain freshly exposed material on top, (ii) 
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transitional rock glaciers (T) which show slow movement to no downslope movement over most of its surface and can either 

evolve towards a relict or an active state, depending on topographic and climatic context and (iii) relict rock glaciers (R) that 

show no evidence of recent movement, generally characterized by smoothed lateral and frontal margins and by the presence 

of vegetation and soil cover (RGIK, 2023). Therefore, this updated classification does not consider the ground ice content 70 

but rather the efficiency of sediment conveyance, namely the surface movement at the time of observations.  

In the regional territory of South Tyrol (Eastern Italian Alps), two rock glaciers activity classifications coexist over the same 

inventory, one is the South Tyrol Inventory produced by the Autonomous Province of Bolzano/Bozen (PAB) and the other 

one is made by Bertone et al. (2019). Although a descriptive attribute of activity from independent morphological 

observations and a SAR coherence-based estimation is already included in the two datasets, a comprehensive definition of 75 

activity based on the integration of climatic drivers, displacement rates, and morphological parameters is lacking. 

The primary innovation of this study lies in the analysis of multiple variables each one describing a key evidence or 

predisposing condition of rock glaciers activity, integrated through multivariate statistical analysis in a predictive multiclass 

generalized additive mixing model (GAM). We extracted the input variables by leveraging diverse sources, including 

multispectral (Landsat, MODIS) and radar (Sentinel 1) satellites, interpolated ground measurements (weather stations) and 80 

digital terrain model (DTM) to derive morphometric factors. 

To this aim we propose a workflow where i) we first exploit satellite remote sensing products and implement routines to 

extract velocity attributes and environmental descriptors at the regional scale; ii) we then calibrate and validate predictive 

multiclass GAM that maximizes their explanatory potential; iii) we apply the model to the entire dataset reclassifying each 

landform in a specific activity class. Our approach effectively highlights which variables (such as climatic, morphological, 85 

and dynamic parameters) and interactions best control each rock glaciers’ class of activity in the area investigated. 

Throughout this paper, the recent classification (A, T and R classes) was considered to define the activity of rock glaciers. 

2 Study area 

The study area covers the entire South Tyrol region (Northeast Italy, ~7400 km2) and extends over altitudes between 

approximately 200 m a.s.l. in the valley bottoms to 3900 m a.s.l. of Ortler Peak. The Periadriatic Line (P.L.; Fig.1a) 90 

separates the central eastern part, where sedimentary and metasedimentary rocks of the South Alpine domain outcrop, from 

the western regions characterized by the metamorphic lithologies of the Austroalpine and Pennidic domain, outcropping in 

the north easternmost sector (Stingl and Mair, 2005). The climate of South Tyrol is characterized by a rather continental 

character, with mean annual precipitation sum (period 1981-2010; Crespi et al., 2021) generally around 1000 mm. However, 

the precipitation varies largely in South Tyrol from a regional point of view: the western sector, which includes Val Venosta 95 

(Fig.1b) and its side valleys such as Val Senales, Val di Trafoi, Val Martello, and Val d’Ultimo, has less precipitation 

(average annual precipitation ≤ 825.2 mm) than the central and eastern sector, which includes the vast highland in central 

and eastern South Tyrol (average annual precipitation > 825.2 mm) (Hao et al., 2019). Mean annual temperature extracted 
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over the same period 1981-2010, are around 12°C in the valley bottoms and decrease on the slopes till reaching the 0°C 

isotherm around at 2400-2500 m a.s.l. (Crespi et al., 2021; Carturan et al., 2023). 100 

Regarding the permafrost map (www.provincia.bz.it/edilizia/progettazione/alto-adige.asp), the region is characterized by 

discontinuous mountain permafrost which develops from a minimum height of 2300-2400 to 2500 m. a.s.l. (Fig.1b), 

according to sectors and site-specific climate conditions (Boeckli et al., 2012). 

3 Data collection and analysis 

Multi source and multi platforms data from remote sensing products and ground-based measurements were collected and 105 

jointly analysed. Using MODIS and Landsat satellite data allows the extraction of environmental parameters such as snow 

cover duration and land surface temperature. MODIS, on board of Terra and Aqua satellites, with its multispectral 

capabilities and daily repeat time, demonstrated efficacy in extracting the snow cover area both regionally and globally 

(Notarnicola, 2020). Using Landsat 8 (nominal spatial resolution 100 m) and operational line imager and thermal infrared 

Sensor (OLI and TIRS) satellite data, we extracted Land surface temperature (LST) which has been acknowledged as one of 110 

the Essential Climate Variables (ECVs) by both the Global Climate Observing System (GCOS) and the Climate Change 

Initiative (CCI) of the European Space Agency (ESA) (Galve et al., 2022; Parastatidis et al., 2017; Ermida et al., 2020). 

Figure 1: South Tyrol region: a) lithological and structural map of the main geological units and faults in South Tyrol. 

Rock glaciers of the autonomous province of Bozen dataset are highlighted in black; b) digital elevation model with 

permafrost and glaciers distribution. 
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Sentinel-1 SAR images were processed using HyP3 software (section 2.3) to retrieve dynamic attributes i.e., velocity and 

coherence values over the entire area of interest (AOI).  

These variables, coupled with a range of data pertaining to rock glaciers morphometry and encompassing factors such as 115 

slope angle, elevation, lithology, and climate conditions, lead to a redefinition of activity classifications for all the mapped 

landforms within the pre-existing dataset. The overall workflow is sketched in Fig. 2. 

3.1 Rock glaciers dataset  

This study utilized a comprehensive rock glaciers dataset (yr. 2010) covering the entire South Tyrol region. The 

identification and mapping of periglacial landforms were conducted by using LIDAR (Light Detection and Ranging) Digital 120 

Terrain Models (DTMs) with a ground sample distance of 2.5 meters, supplemented by orthophotos from 2000, 2006, 2008 

and 2014. The resulting catalogue includes not only boundary polygons but also incorporates descriptive features and 

qualitative aspects, determined through visual morphological inspection of each form. Employing this approach, a 

classification attribute has been assigned, categorizing forms, where feasible, into active, inactive, and relict states (table1). 

Figure 2:Schematic workflow illustrating the variables employed and the steps involved in the statistical analysis to derive 

the final activity class. 
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This dataset is freely available on the WebGIS portal of the provincial administration of South Tyrol 125 

(https://geokatalog.buergernetz.bz.it/geokatalog) and accounts for 1779 features. The 13.5% is active, 70% classified as 

relict and 3.3% as inactive. The remaining part could not be classified (n.d.) based on a simple geomorphological approach. 

Starting from the same catalogue, Bertone et al., 2019 reclassified all the features by adopting an interferometric coherence-

based approach, that was used as indicator of displacements. Considering only a kinematic approach the features were 

reclassified as (i) “moving”, for those rock glaciers with displacement detectable using coherence and (ii) “no-moving” rock 130 

glaciers where displacement was not detectable (table1). Based on this classification, 13 % of the mapped features is 

moving, 68% is not moving and the remaining 18% could not be classified simply with the SAR interferometric (InSAR) 

coherence approach because of vegetation cover, too small dimensions of the rock glaciers or layover and shadowing 

conditions. 

The two classifications offer distinct kinematic attributes, with one (Autonomous Province of Bolzano/Bozen Inventory) 135 

focusing on the potential presence of inner permafrost and its morphological expression, while the other (Bertone’s 

Inventory) provides an indication of surface movements. To integrate both perspectives and gather a singular and consistent 

activity indicator aligned with the newly proposed RGIK classes (RGIK, 2023), we categorized rock glaciers as "active" (A) 

only if they exhibited movement in both classifications. The "relict" (R) class was assigned to rock glaciers showing no 

movement in both datasets and determined to be either inactive or relict. For the remaining cases, which did not fall into the 140 

aforementioned categories, we classified them as "transitional” (T), excluding features that could not be classified (table 1). 

This reclassification serves to diminish uncertainty in categorizing the A and R forms, as these groups align more 

consistently. However, greater uncertainty is associated with the T class, where the two classifications do not converge.  

 

 145 

 

 

 

 

PAB classification (2010): morphological approach  

Active Inactive Relict n.d. 

Bertone et al., 

2019: DInSAR 

coherence 

Moving A T T n.d. 

Not moving T R R n.d. 

n.d. n.d. n.d. n.d. n.d. 

Table 1: table reporting the activity attributes of the Autonomous Province of Bozen (PAB) classification (row) and those from 

Bertone coherence-based classification (column). A (= active), T (= transitional), R (= relict) and n.d. (= not defined) correspond to 

the new preliminary labels attributed combining the two initial attributes. 
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3.2 Rock glaciers dataset  

To comprehensively characterize the rock glacier area, we extracted terrain attributes linked to local topographic and 

climatic site conditions, along with area characteristics that can influence debris supply, like the main lithology of the area 

(table2). 150 

Type of 

variable 
Parameter 

Unit of 

measure 
Description 

Morphometric 

Lithology categorical  
Affects the debris supply capability of the 

catchment and the size of blocks 

Total insolation kWh / m2 Measure of the solar radiation energy received 

on a given surface  

Slope ° Effect on frost- and gravity-driven processes 

Aspect ° 
Dip direction of the landform. Controls on the 

received solar radiation 

Elevation m. a.s.l. 
Influence on climatic conditions controlling 

permafrost distribution 

Vector Ruggedness 

Measure (VRM) 
/ Index of surface heterogeneity and harshness 

Convergence / 
Outlines channels (convergent) and ridges 

(divergent) 

Profile Curvature 1/m 

Parallel to the direction of maximum slope. 

Distinguish between concave (negative) and 

convex (positive) topography 

Climatic 

Land surface temperature 

(LST) 
°C 

Radiative skin temperature of the land surface: 

related to the energy budget of permafrost 

environments 

Precipitations  mm 
Liquid and solid precipitations from 

interpolation of ground weather stations data 

Snow cover duration 

(SCD) 
days 

Number of days a particular place was covered 

by snow 

Table 2: spatial environmental parameters extracted for each rock glacier. 
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3.2.1 Morphometric variables 

The lithology varies significantly across the AOI (Fig.1) due to the juxtaposition of rocks from different geodynamic 155 

settings. Starting from a geological map of South Tyrol (scale 1:25000 derived from CARG surveys at 1:10000 scale; 

http://www.provincia.bz.it/costruire-abitare/edilizia-pubblica/geologia-e-prove-materiali.asp), and based on the lithologies 

origin (sedimentary, igneous, or metamorphic), we categorized them into four macro classes: i) granitoids and volcanic 

rocks; ii) metasediments and low metamorphic facies; iii) facies from middle to high metamorphism; iv) sedimentary cover. 

Then, as our main goal is on classifying the activity class of mapped rock glaciers rather than analyzing factors contributing 160 

to their initiation, we also incorporated morphological indexes sensitive to various permafrost dynamics (table2). Active 

landforms should in fact display a more swollen appearance due to the presence of inner permafrost and their deformation 

that often leads to the formation of furrows and transversal ridges inducing a consequent increase in surface roughness. On 

the other hand, relict rock glaciers, with limited or absent permafrost core, may have a more convex and flatter surface with 

consequent lower values of Vector Ruggedness Measure (VRM) and positive profile curvature. 165 

Terrain attributes obtained from a smoothed 10 m DEM resolution (down sampling of the 2006 digital elevation model at 2.5 

m from the Autonomous Province of Bozen http://geokatalog.buergernetz.bz.it/geokatalog/#!) were incorporated into the 

analysis as they are expected to capture the overall characteristics of the topographic niche of rock glaciers. All the analyses 

have been done in SAGA GIS and ARCGIS 10.8. 

 170 

3.2.2 Climatic variables 

Land surface temperature 

Land surface temperature (LST, Fig.S1) represents the radiative skin temperature of the land surface, as measured in the 

direction of the remote sensor. While acknowledging the disparities between ground surface temperature (GST) and LST, 

this latter generally displays a pattern that may closely follow the GST variability suggesting the possibility of linking GST 175 

to LST products (Serban et al., 2023; Sun et al., 2015). As consequence, due to the lack of ground measurements that could 

be used to retrieve the GST, we considered a Landsat derived LST as indicator of surface temperature variability, sensitive to 

factors such as elevation, slope, aspect, soil structure, snow, and vegetation cover.  

Analyses were carried out on Google Earth Engine (GEE) platform by using the code proposed by Ermida et al. (2020) to 

process thermal infrared (TIR) band signals provided by Landsat 8 over the period 2013 to 2023 (table3).  180 

Satellite Bands Wavelength (μm) Dataset 
ground 

resolution 
time period 

Landsat 8 

(OLI; TIRS) 

Red: B4 

NIR: B5 

TIR: B10 

0.64–0.67 

0.85–0.88 

10.6–11.19 

C01/T1_SR 

C01/T1_SR 

C01/T1_TOA 

30 m 

30 m 

100 m * 

Septembers from 

2013 

to 2023 

Table 3:dataset used to compute land surface temperature (LST) in Google Earth Engine (GEE). * Resampled to 30m 
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The distribution of the rock glaciers spread across a wide range of elevation (1850-3100 m a.s.l.). Since several of them, 

especially those classified as R, occupy low altitude sectors and can be covered by bushes and shrubs, some precautions 

were imposed on the algorithm to quantify the LST properly such as the correction of NDVI (Normalized Difference 

Vegetation Index) to emissivity to adjust it for the surface vegetation contribution (Malakar et al., 2018, Parastatidis et al., 185 

2017, Ermida et al., 2020). A cloud filter was also added to exclude images with a cloud coverage exceeding 20% over the 

scene. For the analyses, we then only consider images acquired in September to emphasize potential spatial differences 

between rock glaciers bearing permafrost and areas with no permafrost. In September, as the air temperature begins to drop, 

the differing response rates of permafrost and rocks to this change can lead to a more pronounced temperature delta. In 

addition, after the warmer summer months, permafrost may still be in the process of thawing during which heat absorption 190 

phenomena occurs, contributing to a slower increase in temperature compared to rocks without permafrost. 

Precipitations 

Mean seasonal precipitation maps (Fig.S2, S3) were extracted starting from high-resolution gridded datasets (cell size of 250 

m) of daily precipitation records for Trentino South Tyrol (Crespi et al., 2021). 

We analyzed a twenty-year timeframe spanning from 2000 to 2018, calculating the average precipitation values for both 195 

summer (July to September) and winter (from October to June) seasons. This differentiation is crucial in high-altitude 

environments due to the necessity of discerning between periods dominated by liquid precipitation in summer and those 

characterized by solid precipitation in winter months. This is particularly important because the weather station in South 

Tyrol collects precipitation data without distinguishing between these two contributions. 

Snow Cover Duration 200 

Snow cover duration (SCD, Fig.S4) on the ground significantly affects the ground thermal regime modifying the heat 

insulation, water storage and runoff contribution, but the interaction of ground temperature and snow cover is not entirely 

straightforward and its effects on permafrost conditions can change according to snow depth, type, and water content 

(meaning snow water equivalent, SWE; Bender et al., 2020). However, the analysis of the thickness and SWE of the snow 

cover goes behind the scope of this study and would require additional information from ground measurements. Here, we 205 

only consider the snow cover duration, retrieved from MODIS satellite with 250 m spatial resolution, as number of days per 

year having a multispectral indication of snow on the ground (Notarnicola et al., 2013). Using this SCD parameter, a 

potential correlation between the rock glaciers’ activity at a regional level was made. In fact, SCD was used not only to 

investigate into the predisposing factors that lead to the formation/absence of rock glaciers but also to understand how the 

temporal duration of snow cover might relate to the observed activity of the rock glaciers in the specific AOI. 210 
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3.3 InSAR data 

We utilized Copernicus Sentinel-1 C-band single-look complex (SLC) radar data acquired in the snow free period between 

July and October spanning the years 2020 to 2022. The combination of Sentinel-1's extensive swath width and rapid revisit 

time renders it well-suited for monitoring widespread landscape-scale deformations. The data were collected in 215 

interferometric wide (IW) swath mode with a swath width of 250 km, employing vertical co-polarization (VV) along both 

ascending orbits 117 (68 SAR images-165 interferograms), as well as descending orbit 168 (57 SAR images-133 

interferograms). The Sentinel-1 SLCs exhibit a spatial resolution of 22 m in the azimuth (along-track direction) and 2.7-3.5 

m in the range (across-track direction).  

Figure 3: First and second steps of the DInSAR processing chain: a) workflow implemented in HyP3-MintPy and 

CNN correction; interferometric pairs elaborated for the ascending (b) and descending (c) geometry; d) example of 

an unwrapped interferogram without CNN APS filtering and with CNN APS filter (e). 

 

10
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We set a revisit time range of 6, 12, 24 and 30 days and computed interferometric pairs employing the Small Baseline Subset 220 

(SBAS) processing of Sentinel-1 data through Alaska Satellite Facility's Hybrid Pluggable Processing Pipeline (ASF HyP3, 

Fig 3), a web-based SAR data processing platform that primarily utilizes Amazon services. Multi-looking was performed, 

involving 10 looks in range and 2 looks in azimuth, resulting in interferograms with a pixel spacing of about 40 m. ASF 

HyP3 then utilized the 2021 release of the 30 m Copernicus "GLO-30" digital elevation model (DEM) product to eliminate 

the topographic component of the phase and geocode the interferograms. The Atmospheric Phase Screen (APS) contribution 225 

in interferograms was filtered through a convolutional neural network (CNN) approach (Brencher et al.,2023). This method 

was employed to eliminate both stratified and turbulent atmospheric noise. 

The key strengths of this approach stem from its independence of external atmospheric data or synthetic training data; 

instead, corrections are derived directly from the observed ones. After the atmospheric filtering, unwrapped interferogram 

were re-ingested in Python-based Miami InSAR Time-series software MintPy (Yunjun et al., 2019) to produce mean Line-230 

of-Sight (LOS) displacement rate maps. MintPy works based on a weighted least squares inversion formula (Augustan et al., 

2022, Yunjun et al., 2019). By default, and starting from the interferometric stack, it estimates the average velocity as the 

slope of the best fitting line to the displacement time-series corrected for the APS contribution. All deformations are referred 

to a single point within the analysis that is automatically selected among the pixels with high average spatial coherence 

(>0.85, Yunjun et al., 2019). 235 

Figure 4:Third step of the DInSAR processing chain: a) workflow adopted to filter velocity product applying 

coherence, velocity, and topographic masks; b) visibility map; c) coherence map; d) final filtered velocity map. 
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For each polygon we selected the most suitable acquisition geometry, and we provided the corresponding C index (Notti et 

al. 2014) to indicate how well each landform is caught from the satellite according to the combination of slope, aspect and 

satellite orbit parameters (LOS, orbital and azimuth angle). In refining the velocity maps, we employed coherence, velocity, 

and topographic filters (Fig.4) to remove pixels with high uncertainty due to geometric and displacement uncertainties. Areas 

affected by layover and shadowing were discarded from the displacement map, as well as areas with coherence values under 240 

0.25.  

3.4 Data extraction and integration 

3.4.1 Extraction of environmental and climatic statistics 

For each rock glacier polygon, mean values for environmental and climatic variables were assigned based on the values 

within the polygon boundary. Furthermore, for DInSAR-related variables (i.e., velocity and coherence), additional statistical 245 

descriptors were extracted such as variance, 25th-75th, and 90th percentiles. Finally, each rock glacier was given an 

estimation based on how much of its area is covered by the filtered SAR data (Fig.4). This information can be considered a 

measure of uncertainty associated to the data based on the spatial coverage within each polygon.  

Starting from the distribution map of the rock glaciers and considering their displacement range, we then made two 

distinctions: (i) movements strictly related to periglacial processes that are confined within mapped rock glacier boundaries 250 

and (ii) movements less influenced by permafrost creep and deformation mechanisms and lacking respective morphological 

evidence that are placed in the surrounding areas of polygon boundaries. To accomplish this diversification, around each 

mapped landform, at a distance of 100 m, a 100 m wide buffers (Fig.S5) was generated to address areas with no visible 

displacement ascribable to periglacial deformations. In the case of adjacent forms or multiple rock glaciers coalescing into 

one body, these rims were cut to avoid overlaps between different features. 255 

The delineation of surrounding areas external to the rock glaciers serves a dual purpose: facilitation in the comparison step 

between parameters measured inside the periglacial landform and its immediate surroundings and secondly it permits the 

differentiation of contributions from permafrost movement and potential deformations (such as gravitational movements) 

which could affect the slope stability. Consequently, we also computed the delta of values between the interior and exterior 

of the rock glaciers. This calculation accentuates variations (e.g. velocity difference) that may be attributed to the presence 260 

and activity of permafrost or other sources of deformations. 

 

3.4.2 Statistical modelling 

To discern the key factors influencing the distinction between A, R, and T rock glacier classes, we performed an initial 

Exploratory Data Analysis. This exploration served to inform the selection of explanatory variables by assessing their 265 

potential impact on defining the activity class and examining their relationships with the response variables. Subsequently, a 

GAM was employed to investigate the associations between the chosen predictor variables derived from both environmental 

and DInSAR datasets and the response variables. 
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GAM provides a versatile framework for examining non-linear associations between the response variables (here, the three 

activity classes of rock glaciers: A, T and R) and continuous variables (e.g., morphometric and DInSAR indexes) by 270 

enabling the incorporation of both parametric and non-parametric covariates, facilitating the exploration of individual effects 

(Brenning, 2010). The initial phase of the model construction involved the determination of smoothing parameters, which 

control the flexibility of the model, for continuous variables. This process utilized internal cross-validation, with a constraint 

of four effective degrees of freedom for spline parameterization. The significance of each term was assessed based on p-

values, with the null hypothesis (no effect of the term) being rejected at a threshold of 0.05. Consequently, only terms 275 

demonstrating a significant effect (p-values < 0.05) were incorporated into the final model (Wood, 2013).  In the model set 

up, we examined not only the individual predictors influence outcomes but also considered interaction terms. Interactions 

can in fact reveal relationships that may not be apparent when considering single predictors. For example, understanding 

how morphometric characteristics and DInSAR indexes interact can help to uncover the mechanisms driving the activity 

classes of rock glaciers. Additionally, we utilize the Accumulated Local Effects (ALE; Apley and Zhu 2020) approach for 280 

GAM to interpret the influence of each predictor variable on the model, providing insights into their respective impacts on 

the response variable. The GAM model was then fitted to the data and its performance evaluated using receiver operating 

curve (ROC) analysis for a multinomial response variable with three classes. Once verified its performance, the model was 

finally applied for the classification of unknown features, and predictive performance estimates were computed through 

multiple independent test sets employing 2, 5, and 10 k-fold cross-validation selections. The calculation of predictive 285 

performance involved iteratively dividing the original dataset into training data (utilized for model fitting), and test data 

(employed for calculating the AUROC metric). 

4 Results 

4.1 Exploratory Data Analysis 

The exploratory data analysis allowed first insights into empirical associations between the rock glaciers classes and 290 

potential predictor variables. 

Considering the classification in Table 1, we analyzed the distribution of morphometric and environmental variables among 

the A, T and R classes. In this step, boxplot and conditional density plots were used to highlight the distribution of 

continuous variables over the three classes, specifically focusing on parameters where the interquartile ranges display higher 

divergence among classes. In this analysis, both rock glaciers related values (computed inside the boundary of the 295 

landforms), and delta values (computed as difference between rock glacier and the corresponding outer area), were 

considered. In particular, the variables that resulted most significative are LST (land surface temperature), SCD (snow cover 

duration), VRM (vector ruggedness measure), mean and variance values of coherence, coherence difference (from inside the 

rock glacier and the area outside), variance in velocity and highest velocity (Fig.5). Land surface temperature (Fig.5a) serves 

as a discerning factor delineating among distinct categories of landforms: R, T, and A rock glaciers. R landforms exhibit the 300 
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highest temperature regime, characterized by a mean LST value of approximately 17°C. T landforms occupy an intermediary 

position, displaying a mean LST value of around 14°C. Meanwhile, A rock glaciers share a similar mean LST value to T 

ones, albeit with lower maximum temperatures. This differential temperature ranges across the rock glacier classes 

underscores the utility of LST as a diagnostic parameter for delineating the thermal conditions favouring or limiting the 

activity of these landforms. Similarly, SCD exhibits notable discriminative characteristics among the various rock glacier 305 

classes. R rock glaciers demonstrate a mean SCD of 225 days, whereas T and A classes display longer durations, with 

respective values of 290 and 310 days of snow cover (Fig.5b). Here SCD solely reflects the presence of snow cover on the 

ground without providing details regarding snow depth or water content within the snowpack. Surface roughness (Fig.5c), 

expressed by VRM, also provides an indication of the surface conditions controlled by permafrost deformation, with T and A 

classes holding a slightly higher VRM than R ones. Therefore, recognizing its significance in representing potential surface 310 

Figure 5: variables retained for the discrimination of the three activity classes of rock glaciers. Both boxplots and 

conditional density plots are reported for each variable. Boxplots shows the distribution of values for each variables in 

each class, conditional density plots  describe how the conditional distribution (0-1) of the categorical variables A-T-R and 

y changes over a numerical variable; a) land surface temperature-LST; b) snow cover duration- SCD; c) vector 

ruggedness measure- VRM; d) mean coherence; e) variance of coherence representing the variability of coherence values 

inside rock glacier polygons; f) coherence ∆, computed as difference between the mean values inside the 100m rim of each 

rock glacier and mean value inside the rock glacier; g) variance of velocity; h) highest velocity values. Negative values are 

considered to retain only movements away from the satellite. 
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variations, we retained this parameter and incorporated it into the subsequent analysis in conjunction with other parameters. 

Coherence-related metrics such as mean coherence value (Fig.5d), coherence variance (Fig.5e), within each polygon, and 

coherence delta (Fig.5f), between the rock glacier landform and the surrounding 100 m rim emerge as highly discriminative 

indicators among the three activity classes, as evidenced by boxplots that exhibit minimal overlap. Generally, A rock glaciers 

have a low coherence value, mean value around 0.5, while R rock glaciers, which keep a higher surface stability, reach 315 

values of 0.8. Velocity values prove to be an effective classificatory too, especially considering vLOS variance (Fig.5g), 

related to internal surface variations of velocity, possibly between discrete sectors or lobes, and the highest velocity value 

recorded in each rock glacier (Fig.5h). Less influence is exerted by other morphometric indexes (Fig.6) like as aspect, slope, 

total insolation, curvature, and convergence that did not lead to an evident distinction among the classes. In contrary, 

elevation shows a high capacity in separating R class from T and A classes. However, we did not consider this variable since 320 

its contribution also affects the LST measure that has a strong elevation related trend. Keeping the elevation parameter 

would have added redundancy in data. 

 

Figure 6: morphometric variables that were not retained in the analysis due to their little discriminant capacity between activity 

classes: a) elevation; b) aspect, computed as mean direction towards north; c) total insolation coming from the combined 325 
contribution of direct and diffuse insolation; d) slope angles; e) profile curvature: positive values indicate concave structure of the 

landform, negative values convex shapes; f) convergence: positive values indicate divergent areas, negative values convergent 

areas. 
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4.2 Multiclass GAM model 

After the above steps, we considered the eight selected variables (Fig.5) as predictor variables in a multinomial response 330 

variable GAM model which included smooth terms for specific variables and tensor product smooth interactions between 

pairs of variables, all using thin-plate regression splines with a smoothness parameter of 4. The decision to incorporate tensor 

product interactions, specifically between variables such as mean coherence and coherence ∆, as well as variance of 

coherence and variance of velocity, was driven by considering that diverse values of coherence might also be reflected in 

higher variations of coherence between the inside and outside of the landform. Similarly, variations in variance of coherence 335 

may be associated with variations in variance of vLOS as consequence of increased surface deformations and terrain 

alterations. These interactions aim to capture the potential interplay and mutual influence between these variables, 

acknowledging that their joint effects on the response variable may not be adequately captured by single smooth terms. 

Figure 7: ALE plot for predictor variables. Each plot shows how the predicted outcome varies with changes in individual 

predictor variables, while holding other variables constant. Movement of the line indicates shifts in predicted probability 

for a class as the predictor variable changes: steeper slopes denote greater influence of the predictor variable on the 

predicted probability. x axis represents the range of values of each variable, the y axis refers to the main effect of the 

feature compared to the average prediction of the data. 

 

https://doi.org/10.5194/egusphere-2024-1511
Preprint. Discussion started: 16 July 2024
c© Author(s) 2024. CC BY 4.0 License.



17 

 

In addition, considering the interaction between these terms also led to an improvement in model performance, as indicated 

by lower Akaike Information Criterion (AIC; Akaike, 1974) values (AIC=1264 considering tensor product interactions, 340 

AIC=1271 considering single smooth terms). 

As feature effect method we adopted an accumulated local effect (ALE; Apley and Zhu, 2020) representation to inspect the 

effect of changes in the value of each predictor variable on the model’s predictions. 

The value of the ALE can be interpreted as the main effect of the feature at a certain value compared to the average 

prediction of the data. In Fig.7, it’s evident that the mean coherence and the SCD values (Fig.7a and 7d, respectively) are the 345 

major control factors in distinguish the T, A, R classes. For the A class, the ALE plot exhibited a descending trend as 

coherence increased. Notably, higher coherence values are associated with lower predicted responses, suggesting a negative 

impact or a diminishing effect on outcomes within the A class as coherence increased. On the contrary, R and T classes 

initially displayed negative y-values for low coherence, indicating that lower coherence is associated with lower predicted 

responses. However, as coherence increased, the effect transitioned to positive y-values, resulting in an overall ascending 350 

trend. This observed pattern suggests that higher coherence values are associated with higher predicted responses for the T 

and R classes. An opposite trend is found for SCD (Fig.7d) which shows how, over a certain number of days, there is a 

positive effect of snow cover duration on A and T rock glaciers, while R are influenced negatively. Slight differences in the 

LST (Fig.7f) and velocity which can also be correlated to a different capability in predicting the activity classes. LST values 

around 5°C are more representative of conditions proper of A and T rock glaciers. This is probably due to the presence of 355 

internal permafrost and the occupied topographic area (Fig.6a). Higher temperatures on the contrary correspond to an 

increase in predictability of R classes. 

4.3 Fitting performance evaluation and model extension 

We used the Receiver Operating Characteristic (ROC) and in particular the area under the curve (AUC) metric to evaluate 

the performance of our classification model across different thresholds. In the case of multiclass classification, a notion of 360 

TPR (True Positive Rate) and FPR (False Positive Rate) is obtained after binarizing the output. This can be done according 

two different schemes: i) one-vs-rest scheme, which compares each class against all the others (assumed as one); ii) one-vs-

one scheme, which compares every unique pairwise combination of classes.  

The evaluation of our multi-class classification model yielded an AUC of 0.87 in the One-vs-One (OvO) scenario and 0.95 

in the One-vs-Rest (OvR) scenario (Fig.8). These AUC values signify a strong overall performance in distinguishing 365 

between the three rock glacier classes, further supporting the effectiveness of the GAM in capturing the relationships within 

the data. The lower AUC value for T class vs. A class and T vs R classes might indicate that the model faces challenges in 

discriminating between these classes, possibly due to the disparity in class frequencies (higher number of relict forms vs 

active and transitional ones) or a higher uncertainty associated with the identification of T landforms. These AUC values 

signify the model's consistent ability to distinguish between individual classes when compared to the rest and the 370 

effectiveness of discriminating one class against the collective set of other classes. The metrics, surpassing the 0.5 baseline, 
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underscore the model's efficacy in capturing relationships within the dataset, suggesting its potential utility for accurate 

classification across diverse categories.  

Once evaluated the predictivity capability of the model, we applied it to the entire regional dataset, considering also the n.d. 

landforms (table1) to predict the most probable class. The model's performance was evaluated by assessing the match 375 

between predicted and true classes, as well as measuring the proximity to the nearest class in terms of probability.  

The robustness and discriminative performance of the classification model were assessed through repeated k-fold cross-

validation (Fig.9a). The cross-validation approach, employing 2-fold, 3-fold, 5-fold, and 10-fold splits, was implemented to 

systematically evaluate the model's generalization across various train-to-test ratios. The performance of the model was 

quantified using the AUROC. The resulting boxplot visually depicts the distribution of AUROCs across different cross-380 

validation scenarios, offering insights into the model's stability and discriminative prowess. 

1716 rock glaciers over 1779 were classified and 63 could not be classified due to the lack of data, such as the invalid 

velocity pixels which were excluded for coherence or topographic effects. The spine plot in Fig.9b illustrates the 

correspondence between predicted and initial classes, with each spine representing a predicted class and the height of its 

segments indicating the proportion of observations assigned to each initial class within that prediction. The conditional 385 

density plot (Fig.9c, 9d) further delves into model behaviour by showcasing the distribution of predicted classes across 

varying degrees of uncertainty, depicted along the x-axis as the uncertainty index. Fig.9c depicts the distribution of 

uncertainty in the complete dataset, while Fig.9d only represents the uncertainty distribution in the n.d. cases. Values close to 

1 points out a higher confidence level, while lower values indicate a higher uncertainty in the classification. Being the most 

Figure 8: multiclass model performance evaluated for each class as a) One vs One and b) One vs Rest. 
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abundant ones, the R features, are characterized by a high confidence level, whereas this level decreases considerably for the 390 

T class which show the highest uncertainty in the prediction. 

 

Upon reclassification, approximately 67% of the initially proposed classifications remained unchanged, i.e. rock glaciers 

classification fitted Bertone and PAB label as reported in Table 1. Conversely, approximately 32% of the landforms were 

reclassified into different categories. The spatial distribution of newly attributed activity classes and the agreement/not 395 

agreement among the initial classification label is shown in Fig.10a, whereas in Fig.10b the regional distribution of the rock 

glaciers, adopting the new classification, is shown. Respect to other methods, our model additionally offers estimations of 

predicted probabilities for each class (Fig.10c), with relict forms exhibiting the highest level of confidence (indicated with 

different border colour lines in the figure). This heightened confidence of the R (Fig.10d) respects the other two categories is 

partly attributed to the great diversity in number of the rock glaciers into each class. The R class shows the highest level of 400 

confidence (> 0.8) probably due to the greater abundance of them (1345) respect to T and A. The A class (formed by 171 

rock glaciers) shows an intermediate confidence interval in our dataset whereas the T (formed by 200 features) exhibits the 

lowest confidence level (< 0.4), primarily due to the inherent mismatch between their geomorphological parameters and 

coherence-based attributes, as evident in Table 1. 

Figure 9: Model performance and fractional breakdown of the obtained activity classes: a) boxplot showcasing the AUC 

metric for each k-fold cross-validation.; b) spinogram illustrating the distribution of classified rock glaciers based on both 

our model and the initial classification.; c) conditional density plot for uncertainty values over all the observations; d) 

conditional density plot  of uncertainty values only over not determined (n.d.) features. Red histograms indicate the 

distribution of uncertainty index values for the plotted observations (all the observations in Fig.9c, only n.d. observations 

in Fig. 9d). 
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5 Discussions 405 

5.1 Classification approaches  

The growing interest in periglacial landforms, particularly rock glaciers within alpine mountain systems, emphasizes the 

importance of understanding their dynamics in the context of climate change and its far-reaching implications. As climate 

change effects intensify, with temperature fluctuations and alterations in precipitation patterns, comprehensively 

quantification of the activity and deformation of these landforms becomes increasingly crucial since it provides knowledge 410 

of ongoing changes in the high mountain cryosphere (Kääb et al., 2007). 

Various approaches exist for assessing the activity of landforms at a broad scale. These include: i) a morphological method, 

which involves visually inspecting orthophotos, satellite images, or conducting field surveys to identify diagnostic features 

Figure 10: model classification outputs: a) distinction between matching and not matching activity class between the 

initial label and the new one; b) new rock glaciers classes; c) example of the attributes associated to some rock glaciers in 

the area identified within the red square. The colours of the borders correspond to the confidence interval (CI) for each 

feature in the activity classes. Values close to 1 point out a higher confidence, lower values higher uncertainty in the 

prediction; d) distribution of classification uncertainty in each class. 
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associated with permafrost deformation, such as furrows, ridges, steep fronts, and lateral margins (Scotti et al., 2013); ii)  an 

interferometric coherence method, as utilized by Bertone et al., 2019, which relies solely on kinematic analysis to 415 

differentiate between moving and non-moving landforms based on coherence values; and iii) a velocity method, typically 

derived from DInSAR data, particularly for regional scale investigations (Kääb et al., 2021, Strozzi et al., 2020; Zhang et 

al.,2021). While each of these approaches has demonstrated effectiveness in defining the activity state of rock glaciers, they 

also possess significant limitations when considered alone. The accuracy of geomorphic-based classification is heavily 

dependent on image quality and operator expertise, leading to subjective mapping outcomes. Conversely, InSAR-based 420 

methods encounter intrinsic limitations inherent to the technique itself, particularly evident in complex environments like the 

high alpine terrain.  

Commonly these techniques aim at validating the results of one method with evidence of another (Bertone et al., 2024; Ma et 

al., 2024), for instance visually inspecting the presence of morphostructures and displacement related features with DInSAR 

surface patterns (Agliardi et al., 2024). 425 

In our study, we just not simply compare the results gathered from the interferometric approach and morphological and 

climatic ones, but we jointly exploit their descriptive potential to develop a comprehensive statistical model for categorizing 

mapped landforms into the three activity classes proposed by RGIK 2023: active (A), transitional (T), and relict (R). 

We processed both geomorphological and climatic maps (table2), incorporating data from in situ measurements obtained 

from weather stations, as well as remote sensing products such as MODIS and Landsat. Through exploratory data analysis, 430 

we then selected variables that proved to have a higher discriminatory power in classifying rock glaciers across the three 

activity classes.  

In delineating the activity of rock glaciers, we found that three variables, namely snow cover duration (SCD), vector 

roughness measure (VRM), and land surface temperature (LST), hold greater significance, with higher quartile distinction 

between the boxplots of each activity class or with p values <0.1 as smooth terms in the GAM, compared to traditional 435 

topographic factors like slope, aspect, and curvature.  

SCD, for instance, plays a crucial role in regulating the energy balance of the land surface, thereby directly influencing 

melting and refreezing rates within rock glaciers, and thus also controlling the displacement patterns. This result is also 

supported by previous studies which highlighted the relevance of the snow cover in determining permafrost occurrence at a 

local scale (Apaloo et al., 2012), and at the regional scale (Marcer et al., 2017), influencing rock glacier activity distribution 440 

by altering the ground thermal regime. Similarly, the VRM, associated to velocity variations, offers valuable insights into 

surface roughness variations, which directly reflect the flow dynamics within rock glaciers. These two variations manifest as 

the formation of furrows and ridges, resulting from compressive and tensile stresses associated with different flow velocities 

and internal deformation interactions with the topography. Additionally, LST serves as a key indicator of heat exchange 

processes, offering valuable information on areas potentially hosting permafrost. Despite not being a direct measure of in 445 

situ land surface temperature, LST from Landsat proves to be reliable in studying the spatial variability of surface 

temperature in complex topography (Gök et al., 2024). Here, its application to the periglacial environment is effective in 
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discriminating areas with lower temperatures influenced by a combination of factors such as, for example, altitude, 

exposition and ground conditions which can consequently be correlated to permafrost conditions. Using LST as descriptive 

variable is thus acceptable even if it does not directly refer to the deeper ground surface temperature. 450 

Although not immediately evident, the relatively minor influence of the other morphometric indexes (i.e., slope, aspect, 

curvature), likely stems from their primary role as predisposing factors to the initiation of rock glaciers within the study area, 

rather than exerting significant control over their ongoing activity.  

For instance, slope should play an important role in controlling surface velocities which can be described through a creep 

law by the joint interaction of slope angle and rock glacier thickness (Cicoira et al., 2020. Kaab et al., 2023). However, our 455 

findings do not outline such a clear dependency between velocity and steepness as also reported in Buchelet et al. (2023). 

Also considering aspect alone we could not find meaningful links with the activity rate. Bertone et al. (2024) got similar 

results over a sub portion of our same area of study, thus confirming that using aspect as topographic proxy for inferring the 

permafrost content, and the activity class, may be problematic. 

Therefore, to establish the true impact of changes in these variables on activity classes, local scale detailed analyses should 460 

be conducted. It is crucial to explore their local influence in site-specific cases, as local conditions (such as lithology, 

permafrost distribution, and local changes in slope) can significantly influence the activity of rock glaciers. These aspects 

may modulate factors like ice content, ground temperature, and frictional behaviour, thereby shaping the dynamics of rock 

glacier movement and activity patterns. 

An additional consideration should be given to the precipitation values, which did not display a clear correlation between 465 

mean summer and winter values and activity classes at the regional scale. Despite precipitation events are likely contributors 

to short-term and seasonal variations in the velocity of rock glaciers (Kenner and Magnusson, 2017; Kenner et al., 2021), 

when analysed at a broader regional scale further investigation is required to catch the quantitative relationships between 

their class of activity and precipitation levels (Zhang et al., 2023). This is due to local factors that may exert a more 

significant influence on controlling rock glaciers activity than broader precipitation patterns alone. Precipitation cannot be 470 

considered a singular influencing factor as it strongly interacts with other local conditions (temperature, exposition etc.) in 

regulating the activity and evolution of periglacial features. 
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To incorporate these variables into our analysis, alongside DInSAR derived parameters, we utilized a multiclass GAM 

classifier. The model addressed gaps in the morphological and DInSAR based techniques, enabling the classification of a 

greater number of landforms that were previously undefined in one or both inventories made by PAB and Bertone. Figure 475 

11a visually depicts these changes, illustrating the number of features that changed classes (arrows) and those that remained 

within the same category (vertices). A ternary graph (Fig.11b) represents the associated probability of the rock glaciers to 

fall in each class. As evident from the graph, the direct class-shift from A to R (and vice versa) is a rarely frequent process 

(only 7 cases), and an intermediate transition passage into T class is more frequent and evident, as highlighted by the curve 

trend. The observed reclassification shows that there is a common trend that transforms A into R, shifting previously through 480 

a T phase, highlighting the dynamic response of rock glaciers to environmental (fluctuations in air temperature and changes 

in precipitation) and geomorphological (slope orientation, ice content, debris cover) factors as described in Barsch, 1993. 

The transitional phase serves as a critical buffer, enabling gradual adjustments to these changing environmental drivers and 

facilitating smoother transitions to the relict state. This dynamic interplay is further underscored by the complex interactions 

between ice presence, debris material, permafrost content, and other external factors like temperature and precipitation, often 485 

leading to non-linear responses but rather to a more transitional process (Etzelmüller et al., 2011). In our case, the transition 

of rock glaciers from A to R classes is also supported by velocity changes, with a decreasing trend in detected velocities 

processing from A to R states (Fig.11b). 

This phenomenon is particularly pronounced when considering the velocity delta between the rock glaciers and their 

surrounding areas not involved in the creeping process. As rock glaciers evolve towards an active state, the differential 490 

velocity between the rock glacier and its surroundings increases, indicating heightened activity and movement within the 

landform. This observation underscores the dynamic nature of rock glaciers and highlights the significance of velocity 

changes in tracking their evolution and behaviour over time. 

Figure 11: Distribution of rock glaciers according to the activity class; a) number of rock glaciers retaining their 

original class after reclassification (vertices of the triangle) and reclassified into different categories (arrows on the 

sides); b) distribution of reclassified data based on their probability of belonging to each class. The size of the circles is 

related to the spatial cover of SAE data over each landform. Higher coverage reflects in larger circles and vice versa. 
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Considering the integration of DInSAR and environmental features, a specific class may undergo reclassification when 

alternative or integrated approaches are utilized. This variability underscores the importance of considering multiple factors 495 

and methodologies in landform classification, especially in situations where input variables are incomplete or uncertain. 

Moreover, relying solely on a single classification approach may be misleading, as factors such as inaccurate morphological 

mapping or the inability to recognize subtle features can compromise the accuracy of the classification. 

Figure 12: Examples of rock glaciers with different activity labels. Panels a,c and d report DInSAR velocity patterns 

over the selected features; b,d and f show the surface morphology through hillshade maps; g) summary table with the 

original activity label for each dataset, the new class and the confidence level. 
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Figure 12 shows some examples regarding the different classification among the three approaches (PAB, Bertone, and our 

new approach). Rock glacier in Fig.12a,b, even if it shows the presence of swollen furrows and lobes, was classified as R by 500 

the PAB. In Bertone and in our classification, this rock glacier is identified as A because there is both a clear velocity InSAR 

signal and the presence of distinct morphological features indicate surface displacement. Opposite situation happens 

considering the rock glacier IV (Fig.12c,d). This rock glacier is A for the PAB, while Bertone et al., 2019 classify it as F and 

from our classification it results T. Even if this rock glacier has typical superficial structures dictated by downslope 

displacements, the results derived from the coherence approach (made by Bertone) and the velocity data (from our approach) 505 

indicate that these morphological features are presumably ‘’paleo’’ structures, i.e. nowadays stable and therefore evidence of 

a direction flow happened in the past. Relying exclusively on a single remote sensing approach that is based solely on 

coherence may prove inadequate for detecting the slow movements of rock glaciers. This is especially true when these 

movements do not cause noticeable changes in surface characteristics over the specified temporal baseline. Furthermore, 

movement may occur primarily due to vertical deformation caused by ice melting over gentle slopes, where shear movement 510 

does not occur. In such instances, the absence of discernible flow structures can offer valuable indications for accurately 

characterizing the activity state of the rock glacier (Fig.12e.f, rock glacier VII). Other factors, such as thermal variations or 

vegetation cover, may also influence activity patterns, highlighting the need for a comprehensive and diverse classification 

approach to ensure accurate representation of landscape dynamics. 

 515 

5.2 DInSAR limitations 

Our results suggest that DInSAR proxies, especially the coherence statistics (Fig.5 and Fig.7), as also demonstrated by 

Bertone et al., 2019, effectively discriminate the active class from the relict and inactive ones. Low coherence indicates a 

diminished similarity between SAR images within the interferometric pair, typically resulting from variations in surface 

scattering properties, wherein displacement emerges as a primary contributor. Conversely, high coherence values reflect 520 

stability in target properties, signifying minimal disturbances affecting the surface of the landform. This stability results in 

reduced deformation and displacement rates. 

Velocity from DInSAR analysis still displays a discriminative effect, even if less sharp than coherence. This can be 

attributed to the steps of the processing and filtering techniques used at a regional level, which introduce more disturbances 

and might make the final velocity estimation less accurate compared to coherence. Following the specifics proposed by the 525 

IPA group (RGIK 2023), the identification of moving areas is in fact based on the manual delineation and classification 

polygons, manually drawn around InSAR pattern, usually in wrapped interferograms to have a better visualization of fringe 

pattern (Bertone et al., 2022, RGIK 2023). 

Given our objective to classify all mapped landforms without delving into the internal activity of individual lobes or sectors 

at this stage, we opted to treat entire rock glacier polygons as moving areas and subsequently analyse their internal velocity 530 

patterns. To speed up these analyses and facilitate application at the regional scale, we employed interferometric synthetic 

aperture radar analysis utilizing Sentinel-1 data over the entire AOI. The analysis leveraged the GAMMA procedure 
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implemented within the HyP3 plugin on OpenSARlab, a service developed by ASF in conjunction with the MintPy package 

(Yunjun et al., 2019). To enhance result reliability, we iteratively repeated the time series inversion on smaller subsets of the 

interferometric stack. This iterative approach facilitated the selection of reference points in closer proximity to the landforms 535 

within the AOI, ensuring thorough consideration of topographic and atmospheric conditions specific to the selected area. 

Despite the efficiency demonstrated by such a large-scale classification and velocity analysis approach, it is essential to 

acknowledge the inherent limitations associated with InSAR measurements. A significant source of uncertainty in extracting 

LOS velocities arises from the distance between the reference point used in the inversion and the actual landforms. 

Topographic variations inherently influence error propagation, especially impacting velocity measurements as the distance 540 

from the reference point increases, particularly in regions characterized by significant elevation relief. In addition, while the 

mean annual vLOS provides a valuable first-order approximation, we also have to remind that it does not fully capture the 

3D movement across all areas of the landform, particularly in features where multiple lobes overlap and the direction of 

movement diverges from the satellite vLOS. Despite this limitation, we retain the mean annual vLOS as a reference measure 

within this study, recognizing its utility for large-scale classification and initial assessments of rock glacier kinematics. 545 

Previous studies (e.g., Brencher et al., 2021) have applied various methods such as reprojecting LOS measurements along 

the maximum slope direction or integrating both ascending and descending geometries to extract vertical and east-west 

movement components. However, in our approach, we chose to utilize the vLOS while taking into account the reliability 

index provided by the C factor (Notti et al., 2014) associated with each rock glacier. This decision was made to mitigate the 

introduction of additional biases and assumptions that may arise from geometrical reprojections, while always considering 550 

the C factor to get valuable insights into the satellite's favourable orientation relative to the landform.  

Another potential factor that may adversely affect the measured vLOS displacement is attributable to the CNN-APS method 

(Brencher et al., 2023). Since CNN methods operate directly on the data, they have the capability to filter out real portions of 

displacement signals rather than simply blurring them, resulting in a reduction of the displacement associated with each 

feature. Consequently, while the considered vLOS provides descriptive information regarding the dynamics of each feature, 555 

this filtering effect may need to be considered when compared to the actual displacement rate.  

Active phenomena in fact show displacement ranges in the order of cm/yr, while knowledge of some case studies from 

previous works suggests higher displacement rates exceeding tens of cm/yr. However, these are detailed specific site studies 

(Kofler et al., 2021, Bertone et al., 2023) where more refined DInSAR approaches, with higher resolution and control on the 

area investigated, have been applied overcoming the inevitable biases associated with a regional scale problem. 560 

Despite the general underestimation of the measured signal, related to intrinsic limitations of the SBAS approach (Pepin and 

Zebker, 2021) and post processing steps, the distinction between A and R features according to our model results effective as 

proved by the high AUC and its application to predict activity class for not defined features provided good results (Fig.8). 

 

 565 
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5.3 Geomorphological factors and related rock glaciers spatial distribution 

After completing the classification process, a final evaluation of the classification plausibility was conducted, integrating 

elevation and permafrost indicators, which were initially excluded as predictor variables. This supplementary analysis 

confirmed that the identified patterns align with established knowledge in periglacial environments. A and T rock glaciers 570 

are typically situated at higher elevations (generally above 2600 m a.s.l.), while R classes are more commonly found at lower 

elevations (between approximately 2200-2500 m a.s.l.), which are consistent with widespread observations in periglacial 

landscapes (Fig.13a). Additionally, an assessment of permafrost occurrence probabilities (Fig.13b) within the reclassified 

features unveiled a significant correspondence between higher probabilities and activity classes. In fact, R is characterized by 

lowest elevation and lower permafrost probability respect the T and A classes, with highest elevation and more probability of 575 

preserve permafrost presence nowadays. This underscores the influential role of permafrost dynamics in shaping rock glacier 

activity patterns. Furthermore, the impact of lithology on controlling rock glaciers’ activity is often minimal or negligible 

compared to the previous two factors (Fig.13c). Studies have demonstrated that lithology alone does not exert significant 

control over rock glaciers’ activity (Kääb et al., 2005).  

Given that rock glaciers primarily consist of unconsolidated debris, their movement is predominantly driven by internal 580 

deformation processes rather than lithological properties (Haeberli et al., 2006). Additionally, the insulating effect of debris 

cover can mitigate thermal variations in the substrate, diminishing the influence of lithological disparities on permafrost 

conditions and rock glacier dynamics. Therefore, while lithology may play a secondary role in modulating rock glaciers 

activity in specific contexts, its impact is generally overshadowed by other factors such as topography, climate, and 

permafrost distribution. Moreover, the need to aggregate lithologies into macro classes for regional-scale studies limits the 585 

detailed examination of their effects on rock glacier activity, highlighting the challenge of incorporating fine-scale geological 

variability into broader analyses. 

Figure 13: distribution of elevation (a), permafrost presence (b) and percentage of lithologies (c) in the three activity 

classes: active (A), transitional (T) and relict (R). The lithology names indicated on the line at the bottom of the figure are 

referred only to the (c) panel.  
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5 Conclusions 

This study introduces an updated classification for the state of activity of the rock glaciers in South Tyrol (Italy). The main 

strength of our comprehensive approach lies in the use of replicable routines (i.e., HyP3-MintPy tools) and multivariate 590 

statistical methods. This workflow can be adjusted and modify (for example, by selecting known stable reference points if 

possible, considering different snow free months, and adopting a different atmospheric correction), and successively applied 

to other areas, allowing to partially fill the gaps of the traditional techniques, morphological and dynamic classifications. 

Through the integration of regional-scale spaceborne DInSAR processing with both geomorphological and climatic 

descriptors, we have unified the two primary classification methods of activity of periglacial features, gathering a higher 595 

classification spatial coverage for the mapped rock glaciers and a more robust distinction between active, inactive, and 

transitional features. The integration of the kinematic information with environmental variables was accomplished through a 

multiclass GAM model. This model effectively leveraged both linear and nonlinear relationships between features, providing 

a statistical definition of the key variables influencing the activity classification of rock glaciers at the regional scale.  

The achieved results underscore a predominance of relict features (1345 landforms mapped in total), in contrast to a 600 

significantly smaller number of active ones (only 171). Looking at the distribution of these three classes (A, T, and R), it was 

found that a transition state from active to relict rock glaciers is not a direct process. Instead, an intermediate transition phase 

between A and R landforms seems to represent a common feature. At a regional scale, this transition is likely controlled by 

local factors that influence not only the activity state and the evolution of rock glaciers but also affect the velocity phase of 

this transition process, allowing changes from one more active class to the relict one. These local settings, characterized by 605 

the dynamic and complex interplay of factors such as slope, lithology, and climate, shape the dynamics of rock glaciers, 

leading to varying rates of progression between different states of activity. 
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